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Abstract

When a particle moves through a spatially-random force field, its momentum may change at a

rate which grows with its speed. Suppose moreover that a thermal bath provides friction which gets

weaker for large speeds, enabling high-energy localization. The result is a unifying framework for

the emergence of heavy tails in the velocity distribution, relevant for understanding the power-law

decay in the electron velocity distribution of space plasma or more generally for explaining non-

Maxwellian behavior of driven gases. We also find long-time tails in the velocity autocorrelation,

indicating persistence at large speeds for a wide range of parameters and implying superdiffusion

of the position variable.
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I. INTRODUCTION

A particle moving in weak contact with a thermal bath experiences friction and noise in

an equilibrated fashion as expressed in the fluctuation-dissipation relation [1–4]. Brownian

motion is the standard example, obtaining a steady fluctuating motion as described in a

Langevin dynamics where possibly other conservative forces are added. The steady state

evolution is then said to run under the condition of detailed balance [5]. In some physically

interesting cases however the particle may also be subject to an external nonconservative

force field. Such a field can be the coarse-grained result of underlying more complicated

processes, such as arising from a turbulent environment or from the influence of biologically-

active matter. The force may be averaging out to zero either in space or in time and yet has

an influence on the particle motion. There is no extra systematic force, no drift is added,

but the environment provides extra sources of uncompensated noise. That noise need not be

Gaussian in general and can be interpreted as excess dynamical activity transmitted from

the environment to the particle. We refer to such environments (possibly massless) as active

media. The active velocity processes in the title are the inertial motions of particles in such

active media. We come back to the relation with (models for bio-)active particles in Sec.

III. Conceptually, our models are for example closer to those in [6, 7] where the dynamics

is studied of a tracer particle in an active gel. The main question of the present paper is to

investigate the resulting steady velocity distribution of the tagged particle and its relaxation

properties.

To be clear about the physical situation, the tagged particle (probe) is part of a dilute

bath to which we can associate a temperature, and the active medium is external and to

be modelled as an extra random force field. Let us discuss these two ingredients and our

assumptions on them first separately.

The heat bath: we suppose a dilute bath of particles where the friction is essentially

determined from the two-body scattering cross section. Therefore, the way the scattering

depends on the particle kinetic energy is an essential input. We assume that the scattering

gets vanishingly small at high energy, which is a condition of (high) energy localization. That

happens in many cases of interest, e.g. in the regime of Coulomb scattering [8]: charged

particles at high (kinetic) energy tend to keep their energy when moving fast.

The random force field: we imagine a spatial distribution of a nonequilibrium forcing.
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The latter may be caused by moving optical [9], acoustic [10] or mechanical walls or by

spacetime-dependent external force fields more generally. An important assumption is to

take the force field spatially-mixing of spatial average equal to zero and having a finite

correlation length. Such a condition can be called spatially chaotic. At the high speeds that

we will consider, we ignore the time-dependence of the force field.

Probes moving in such an active medium evolve under an inertial dynamics for which the

fluctuation-dissipation relation is violated, allowing net energy transfer from the medium

to the probe which may then be dissipated in the thermal bath. Active velocity processes

have appeared before in models of velocity resetting, e.g. as first considered for Fermi

acceleration [11], or in depot and Rayleigh-Helmholtz models [12–15] or in models of Taylor

dispersion [16] and Ulam ping pongs [17]. We can think of tagged grains in agitated matter

or of electrons in a driven plasma. Each time, the tagged particle (probe), while itself

passive, is weakly coupled to a thermal bath in the presence of a nonequilibrium forcing.

The central result of the present work is a unifying framework for suprathermal tails in

the velocity distribution and (nonequilibrium) long-time tails. The exponents follow from

the nature of the activity and from dependence of the scattering cross section on the kinetic

energy. As we show, the high-energy localization combined with the chaotic fluctuating

force field is responsible for interesting nontrivial behavior that is seen in nature, relevant

for astrophysical plasmas [18] and in excited granular media [19–21], or in general for the

dynamical properties of tagged particles in a thermal bath under spatially-mixing or chaotic

external driving conditions [22].

The essential mathematics is contained in the setup of Sec. II. We compare that setup

with (bio-)active particle models in Sec. III. Section IV introduces the key-step. The influ-

ence of the external nonconservative force field in the high-speed regime effectively results

in a weak coupling limit with a nonequilibrium bath. The resulting noise is then Gaussian

alright but no friction equilibrates it. The phenomenon is known as stochastic acceleration

[23–25]: when the particle speed is sufficiently large, the change in its momentum over even a

small time-interval fluctuates around zero following the central limit theorem. It induces an

extra diffusion in velocity space with an amplitude ∝ 1/v decaying with the particle speed.

In the end, the result of that analyis gives a three-dimensional Fokker-Planck description

in which the effects of stochastic acceleration are combined with (high-energy) localization:
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for a dilute gas or plasma, the probability density µ(v, t) for the speed satisfies

∂µ

∂t
(v, t) =

1

v2
∂

∂v

(
γ(v) v2

[
v µ(v, t) +

kBT

m

∂µ

∂v
(v, t)

])
+

1

v2
∂

∂v

(
v2

A2 L

2v m2

∂µ

∂v
(v, t)

)
(1)

where m is the mass of the particle and γ(v) its friction coefficient for moving through

the bath at temperature T . The random force field is felt by the last term, where A is

its amplitude and L its correlation length. For example and to be detailed below starting

with Sec. V, from (1) the power-law tail in the stationary velocity distribution is easily

derived when γ(v) ∝ v−3 for large speeds v such as obtained from the Rutherford formula

for Coulomb scattering.

II. GENERAL SETUP

We consider a dilute medium of particles with mass m where the interaction is described

on the one-particle level in terms of a friction γ and a white noise at temperature T. We

consider the velocity distribution in terms of a density ρ(v, t) with respect to the volume

element d3v. In the absence of any external force, assuming that the medium is spatially

homogeneous and that the initial density ρ(v, t = 0) only depends on the speed v, ρ(v, t) =

ρ(v, t) evolves in time t according to the 3-dimensional Fokker-Planck equation

∂ρ

∂t
(v, t) =

1

v2
∂

∂v

(
v2 γ(v)

[
v ρ(v, t) +

kBT

m

∂ρ

∂v
(v, t)

])
(2)

It is clear from (2) that because of the imposed Einstein relation between the fric-

tion mγ(v) and the noise variance mkBTγ(v), the stationary density for (2) is Gaussian

ρ(v) ∝ exp[−mv2/2kBT ] for arbitrary γ(v) > 0. We emphasize that this scenario is valid

as well for a dilute plasma where the particles (ions, electrons,...) mutually interact with

Coulomb forces and the friction behaves as γ(v) ∝ v−3, v ↑ ∞ following the Rutherford

scattering formula where the cross-section γ(v)/v ∝ (v2)−2 is inversely proportional to the

square of the energy. More generally, in the present paper we take

γ(v) = γ0

[
1 +

(
v

vR

)δ ]−1
(3)

parameterized by the linear friction constant γ0 > 0 and where vR is a reference speed

beyond which the friction starts to decrease. The important parameter giving the decay (3)
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with the speed is δ. For δ > 0, the scattering cross section for the particle in the thermal

environment decreases like v1+δ for large v. Coulomb scattering gives δ = 3 but we expect

that depending on the material and shape of the particles in inelastic short-range scattering,

values with δ < 3 become available. At any event, when δ > 1, high-energy localization

takes place as then the strength γ(v) v of the friction force decays as K(1−δ)/2 when the

kinetic energy K ∝ v2 grows large. Nevertheless, for every δ the stationary distribution for

(2) is Maxwellian.

To represent the active medium we add a force field f(r, t), r ∈ R3. The evolution is then

governed by the Langevin equation

ṙt = vt

mv̇t = −mγ(vt) vt + f(rt, t) + kBT γ
′(vt) et +

√
2mγ(vt)kBT ξt (4)

In the last term lives the standard white noise ξt. The third term on the right-hand side

of (4) involving γ′ = dγ
dv

arises from choosing the Itô-convention and et = vt/vt is the unit

vector in the direction of the velocity. That term would vanish when writing (4) in the

Stratonovich sense [26]. In that way, when f ≡ 0 (passive case), the Fokker-Planck equation

corresponding to (4) reduces to (2).

The force field f(r, t) is fundamentally arising from Newtonian forces, e.g. for electrons

as a Lorentz force from a time-dependent electromagnetic field or for granular particles

as collisions with a vibrating wall, but we think of it as sufficiently chaotic to motivate

its randomness. We treat it as a quenched random field, homogeneous in spacetime and

spatially isotropic. To make it locally constant over a spatial range L and with a persistence

time ν−10 , the statistics of the field f = (fi) is modeled with

〈f(r, t)〉 = 0,

〈fi(r, t) fj(r′, t′)〉 = C

(
r− r′

L
, ν0 (t− t′)

)
δij (5)

for Kronecker-delta δij and with a function C showing exponential decay in space with range

L, and changing in time at rate ν0. The length L and rate ν0 indicate the space and time-

scales over which its direction changes; see Fig. 1 for a schematic representation of f(r, t).

The dynamics (4) together with (5) specify mathematically what we mean by the active

velocity processes mentioned in the title of the paper. For our purposes we only need the
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FIG. 1: Discrete realization of a random force field f(r, t) which auto-decorrelates over distances

of order L. The tagged particle moves through it and at high speeds experiences a diffusive

acceleration.

spatial decay and the intrinsic temporal dependence can be ignored. In (5) we have only

one spatial scale L but the arguments below hold more generally for multi-scaled fields,

as long as they are sufficiently mixing to apply the central limit theorem (next). In any

event, the force f in (4) is a second (non-thermal) source of noise in the particle dynamics.

Correspondingly, there is a nonequilibrium steady condition for the dynamics (4) with a

stationary velocity distribution ρ(v) that we investigate next for its tails at large speed v

and for its relaxational behavior in Sec. VII. We continue its analysis in Sec. IV.

III. CONNECTION TO ACTIVE PARTICLE MODELS

The dynamics (4) is essentially different from active particle models for self-propelled mo-

tion in biology [27–29]. An important difference is that active particles in a biological context

have an overdamped dynamics. Moreover, our analysis essentially uses the dependence of

the friction γ(v) on the speed, which in the overdamped limit would imply a dependence

of the mobility on the speed, which is certainly not the main ingredient for e.g. bacterial

motion. In biology the particle itself is deemed active because of a persistent speed where

the direction of the velocity is subject to a colored or discrete noise.
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We use run-and-tumble models as an inspiration and example for a random force field

in Sec. VI. Tumbling, and run-and-tumble models, [30, 31] have been considered before

to model active particles such as via self-propulsion in bacteria or in nanomotors. In the

present paper we have no internal nonequilibrium degrees of freedom coupled to translation,

but we use tumbling as one way to model the activity of the external medium: the run-and-

tumble in Sec. VI concerns the incurred force. It is exciting to find tumbling forces relevant

in understanding physical phenomena beyond the usually studied biological applications.

Apart from inspiration, there is also significance of our work to active matter when we think

of the random force field as created by the presence of bio-active particles or active tissue

in which we immerse a passive (underdamped) probe. We already mentioned the examples

of motion in an active gel, [6, 7]. Then, the emergence of suprathermal distributions and

long-time tails give new signatures of activity.

IV. STOCHASTIC ACCELERATION

To investigate the consequences of the force field (5), we zoom in on the effect of f on

the change in momentum of a moving particle. Because of f , the tagged particle following

(4) will, at time t, incur a(n additional) change of momentum

∆ε(t) =

∫ t+ε

t

f(rt + vt s, s) ds (6)

over each small enough time-interval ε (so that the velocity of the particle is not changing

considerably). We fix that arbitrarily small ε for the rest of the argument. As the random

field is homogeneous and isotropic, the distribution of the change ∆ε(t) is independent of rt

and, with unit vector et in the direction of the velocity, we have∫ t+ε

t

f(rt + vt s, s) ds
D
=

1

vt

∫ vtε

0

f(x et, x/vt) dx (7)

with the equality meant in the sense of probability distribution. Hence, by taking vt large

compared to L/ε, (6) integrates to zero with a correction following the central limit theorem.

From (7), that means that (6) is of order
√
ε for large enough vt with, from (5), a finite

variance which is proportional to L/vt. As a conclusion, from the assumed chaoticity (5) of

the external medium we infer that for large speeds vt there is a constant A 6= 0 depending
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on the function C and possibly on the dimension, such that for (6),

∆ε(t)
D
=A

√
εL

vt
Z (8)

where Z is a 3-dimensional standard normal random variable. Since that argument can be

repeated for arbitrarily small ε, we have obtained what is needed for the velocity process to

become indistinguishable from a Markov diffusion when running at sufficiently high speeds.

It replaces the force f in (4) by a white noise. The equality (8) is meant in the sense of

distributions and is derived in Sec. VI for a precise realization of forcing. Mathematically

rigorous work for the more general case can be found in [23–25]. The main physical mecha-

nism goes back to the phenomenon of Taylor dispersion [16, 32–34], from where the general

concept of stochastic or turbulent acceleration arises [35–38].

As a result, for large speeds vt we effectively have two white noises, the thermal noise

from (4) and the stochastic acceleration from (8). The corresponding differential equation

for the probability density (denoted by µ(v, t) to make a difference with the dynamics (4))

exactly becomes (1). Note that the calculation (6)–(8) of the stochastic acceleration followed

the Itô-sense, estimating vt+ε − vt, and hence we have no additional correction to the drift.

The stationary density µ(v) for (1) can be solved exactly,

µ(v) ∝ exp

[
−m

∫ v

0

du
u

kBT + A2 L/(2γ(u)u)

]
(9)

The argument above can be concluded by the statement that for large v, the stationary

distribution ρ(v) for the (original) dynamics (4) equals the one from (1)–(9), i.e., ρ(v) ' µ(v).

V. SUPRATHERMAL TAILS

To understand the asymptotic behaviour of the stationary distribution ρ(v) we use the

explicit form (9) along with the friction γ(v) in (3). It turns out that the behaviour is

qualitatively different for δ = 3 and δ < 3 while for δ > 3 no stationary distribution exists

for (1).

Algebraic decay clearly appears from (9) when δ = 3. More specifically, when δ = 3 in

(3), then

ρ(v) ∼ v−2κ, κ = m
γ0 v

3
R

LA2
(10)
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FIG. 2: (a) Plot of ρ(v) vs v with fixed γ0 = 1 = L = A = T = ν0 for different values of δ; see (13).

Note the transition from a Maxwellian (for δ = 1.0) to power law decay (δ = 3.0) via compressed

(δ = 1.5), simple (δ = 2.0) and stretched (δ = 2.5) exponential regimes for increasing δ. Symbols

represent data obtained from Monte-Carlo simulations while solid black lines correspond to the µ(v)

obtained from evaluating (9) numerically. (b) and (c) Plot of ρ(v) vs v for δ = 3, A = 1 = T = ν0.

The power-law decay in the stationary velocity distributions is shown for (b) L = 1, and (c)

L = 1/2. Various values of γ0 following (13) are plotted. The symbols correspond to the data

obtained from numerical simulations and the red dashed lines indicate the theoretically predicted

algebraic decay.

for v � vR and mv2/2 � κ kBT . As a reminder, ρ(v) must be multiplied with 4πv2

(from d3v = 4πv2dv), to get the normalized speed distribution. To have a finite variance

(sometimes referred to as kinetic temperature) we thus need that κ > 5/2 which is consistent

with [18, 39]. Observe also that the κ in (10) is a ratio of friction-parameters over activity-

parameters: larger friction increases κ while larger activity and persistence reduce κ. In

solar plasma, the reported values for κ are around 5, while the onset of the power law

happens at energies ' 0.1 keV [40]. The term in the numerator γ0v
3
R is essentially known

from the Rutherford formula (or the mean-free length in dilute collisionless plasma of density

about 106m−3) to be about 0.14× 10−19 kg/s. Therefore our formula (10) will be useful to

estimate nonequilibrium aspects. From the previously mentioned numerical values we get

LA2 ' 1.8× 10−49 kg2/s, characterizing the effective driving force field in solar plasmas.

Suprathermal velocity distributions, where the high-energy tail is overpopulated with respect

to the corresponding Maxwellian, have been observed in space plasmas [18, 41, 42] and there

go under the name of kappa-distributions [8, 39, 43, 44]. The fact that an effective diffusivity

that depends inversely on the speed can produce suprathermal velocity distribution functions

was already discussed, e.g. in [8, 38], in the context of highly-energetic space plasmas. A
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general formulation based on a Fokker-Planck equation was e.g. already given in [41] but

without obtaining the kappa-distribution (10).

Continuing with (9), we predict a pure exponential decay for δ = 2, compressed exponen-

tial for 1 < δ < 2, stretched exponential for 2 < δ < 3 and Gaussian for δ ≤ 1. In general,

when 1 < δ < 3 in (3), then

ρ(v) ∼ exp

[
−κ
b

(
v

vR

)2b
]
, b =

3− δ
2

(11)

again for large v. When δ = 1 we recover the Maxwellian (Gaussian) behavior of (15) for

large v but with effective temperature T +mv2R/(2kBκ). The literature is vast and various

modeling schemes and approximations have been offered. As an example we refer to the

experimental results [19–21] in excited granular media.

From the standpoint of statistical physics, the emergence of suprathermal tails due to

a chaotic external force-field is new and unifies various phenomena. We will next take an

explicit example to illustrate the above scenario and to discuss long-time tails caused by

emerging persistence of high speeds.

VI. TUMBLING FORCES

So far we have considered general active velocity processes where the incurred force on

a tagged particle changes at a rate proportional to its speed. We can imagine that along

its trajectory there is a time-dependent force with local peristence time L/vt when the

speed gets big. In the rest of the paper we simplify that idea even further by taking a

class of dynamics where the external force is randomly ‘tumbling’. Such processes with

tumbling forces provide an interesting illustration of the general setup and conclusions of

the previous section. By the greater simplicty of telegraphic noise [45, 46] a more detailed

analysis becomes available while preserving the main physical idea. In particular we predict

a strong steady temporal autocorrelation, thus realizing long-time tails in a nonequilibrium

environment.

To start with and for simplicity of notation we restrict ourselves to one spatial dimension.

The tumbling-force model in one dimension for a particle of mass m = 1 with velocity vt ∈ R
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at time t is given by the Langevin equation (from now on, kB = 1)

ẋt = vt

v̇t = −γ(vt) vt + Aσt + T γ′(vt) +
√

2γ(vt)T ξt (12)

where ξt is standard white noise in the Itô-convention. The external force has amplitude

A ≥ 0 and the tumbler σt = ±1 is taken to flip at a rate

α(v) = ν0 + L−1 |v| (13)

The flipping rate or the frequency that the incurred force changes direction is thus linearly

increasing with its speed, consistent with then physical scenario of Sec. II As before, the

particle undergoes energy and momentum exchanges with a thermal bath at temperature

T ≥ 0 and nonlinear friction coefficient γ(v) = γ(|v|) > 0 given in (3).

Mathematically, the dynamics (12) defines a Markov process (vt, σt) in velocity and tum-

ble variables. The joint probability on velocity vt ∈ R and force σt = ±1 has a density

ρ±(v, t) for time t. The corresponding differential equation for the probability density is

∂ρ±
∂t

(v, t) =
∂

∂v
[(γ(v) v ∓ A− γ′(v)T ) ρ±(v, t)] + α(v) [ρ∓(v, t)− ρ±(v, t)]

+ T
∂2

∂v2
(γ(v)ρ±(v, t)) , v ∈ R (14)

Observe that for A = 0 (passive case) the Maxwellian

ρA=0
± (v) ∝ exp[−v2/2T ] (15)

is the stationary (equilibrium) density, independent of the friction γ(v). For A 6= 0 there is a

higher-order equation for ρ(v, t) = ρ+(v, t) +ρ−(v, t) that determines the stationary velocity

distribution ρ(v) (= ρ(v, t → ∞)). We want to understand its behavior as |v| → ∞ when

A 6= 0, and how it depends on the friction γ(v). The physical input that determines the

interesting choices for α(v), γ(v) are in (3) and (13). In what follows we often choose ν0 = 1

in (13) setting a time-scale.

The main idea to get a theoretical prediction for large |v| is to follow Sec. IV and to

exploit that α(v) grows with |v|. When |v| � Lν0, we may expect (extra) diffusive behavior

induced by the activity. Consider therefore the contribution of the tumbling force only, as

in the updating

vt+ε = vt + A

∫ t+ε

t

ds σs (16)
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for fixed small ε. Note that the tumbling correlations are given by 〈σuσs〉 = e−2α|u−s| where

we were allowed to take α = α(vt) constant for 0 ≤ u, s ≤ ε as ε is taken very small.

Therefore we have the variance 〈(vt+ε − vt)2〉 = A2 ε/α.

Moreover, in distribution,∫ t+ε

t

ds σs
D
=

1

α

∫ αε

0

du σ̃u

=

√
ε

α

1√
αε

∫ αε

0

du σ̃u (17)

where the process σ̃u runs with flip rate equal to one. Hence, whenever α(vt) ε� 1 we can

apply the central limit theorem to 1√
αε

∫ αε
0

du σ̃u and continue from (16) to get

vt+ε ' vt + A

√
ε

α(vt)
Z (18)

where Z is a standard normal random variable. That is the stochastic acceleration (8) as

α(v) ∼ L−1|v| for large |v|. Thus for large flipping rate α, the tumble force can effectively

be modeled by a white noise of strength A2/α; see also [45]. In the large-speed regime, the

dynamics (12) appears thus replaceable by a passive Langevin dynamics vt (in Itô-sense),

v̇t = −γ(vt) vt + T γ′(vt) +
√

2γ(vt)T ξ
(1)
t +

√
A2

α(vt)
ξ
(2)
t (19)

with two independent white noises ξ
(1)
t and ξ

(2)
t of zero mean and unit variance. We repeat

that the approximation ((19) instead of (12)) requires large |v| (as we assume in (13) that

α(v) grows with |v|) and gets better for high enough T to exclude the zero-T cut-off |v̇| ≤

γ0|v|+ A; see below for more on that around Figs. 4.

In order to verify these predictions we have simulated the dynamics (12) using the Euler-

discretization scheme,

vt+ε = vt − ε[γ(vt)vt − Aσt − Tγ′(vt)] +
√

2εTγ(vt)Z (20)

where Z is a random number drawn from the standard normal distribution. We use ε = 0.001

for the time-step. In all the simulations following (20), v is in units of vR which we put equal

to 1. We have also set m = 1 = kB. The distributions are then obtained by averaging over

at least 109 samples in the steady state.

In Fig. 2(a), we plot ρ(v) vs v for varying δ and compare the simulation results with a

numerical evaluation of Eq. 9. Fig. 2 (b) and (c) show plots of ρ(v) vs v for varying κ (fixed
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FIG. 3: Plot of ρ(v) vs v for varying γ0 with δ = 3, A = 1 = T (a) for d = 2 and ν0 = 1 = L, (b)

for d = 3 with ν0 = 3/2 and L = 2/3. Symbols show the data from numerical simulations and the

red dashed lines indicate corresponding analytical predictions.

δ = 3). Note the excellent match between our analytical predictions and the corresponding

simulation results.

Next we consider some generalizations of this simple model. First we can look at dimen-

sions d = 2, 3. The dynamics is given by (4) in the form,

v̇t = −γ(vt) vt + A f̂(t) + T γ′(vt) et +
√

2γ(vt)T ξt

where f̂(t) is a Markov process taking values in the space of unit-vectors (points on the circle

in d = 2, or points on the unit sphere for d = 3). Uniformly at rate R = 2α(vt)/d, a random

unit vector is chosen. Then, similar to (5), 〈f̂i(u) f̂j(s)〉 = 1
d

exp(−R |u− s|) δij, d = 2, 3. As

before in (8), and in (18) we have 〈(vt+ε − vt)
2〉 = A2ε

α
and the κ of (10) is unchanged. The

comparison with numerical results are presented in Fig. 3 (a) for d = 2 and in Fig. 3(b) for

d = 3.

A second generalization from the case (12) is to allow more than two values for σt. We skip

the detailed calculations but clearly all arguments are robust with respect to such changes.

The suprathermal nature of the stationary velocity distribution is not affected, and we again

get an algebraic decay of the velocity distribution ρ(v) (not shown here).

We conclude that tumbling forces model the dynamics of particles in random force fields

to produce heavy velocity tails. The flipping of the direction of the external force is easily

imagined for Fermi–Ulam ping pong [11, 17] or even in the case of granular gases under

nonequilibrium driving.

As a final remark, it is also interesting to inspect where the tumbling fingerprint lies for
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FIG. 4: Behaviour of ρ(v) for small v: (a) The bimodal stationary density appears low temperature

(here T = 0.01)for different values of γ0 with A = 1 = L and δ = 3. (b) Plot of ρ(v) vs. |v| for the

three-state run-and-tumble process with a flipping rate α(v)/2 between any two states. Trimodality

appears for small T (here T = 0.001), with A = 1 = L, δ = 3.

small |v| in the stationary distribution ρ(v) of (12). For low enough T , bimodality appears

in the steady state distribution of v; see Fig. 4(a). Note that at T = 0, the particle resembles

in velocity space a run-and-tumble particle in a harmonic trap which shows bimodality in

its stationary behavior [29, 45]. For small enough T 6= 0, this feature survives. For a fixed

low T , however, ρ(v) undergoes a shape transition from being highly localized near v = 0 to

a delocalized distribution as γ0 is decreased from very large to small values. A large friction

in effect makes the particle immobile. As T is increased the thermal noise takes over and the

diffusive behavior leads to a broadening of the peaks, which eventually disappear for large

enough temperatures. Similarly, when the tumbling variable takes three values 0, 1,−1, we

obtain a trimodal distribution for small v at sufficiently small T for varying γ0; see Fig. 4(b).

These features resemble well the results found in [6, 7].

VII. STEADY TIME-AUTOCORRELATION

One may wonder whether the heavy tails in the velocity distribution are accompanied by

long-time tails in the steady velocity autocorrelation,

c(t) = 〈v0 vt〉 − 〈vt〉〈v0〉 (21)

We continue in one dimension. We consider the averaging being carried out in the steady

state, so that 〈vt〉 = 0 = 〈v0〉. To estimate the time-dependence of (21) we imagine drawing

an initial velocity v0 from ρ(v)(' µ(v) under |v| � Lν0) in (9) and the question is to see

at what time vt decorrelates wth v0. If |v0| � vR (small initial speed), the friction induces
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σ = −1 and 1, respectively. Switching between the two symbols represents tumblings of the active

force.

a time-scale γ−10 with exponentially fast decorrelation. On the other hand, for large speeds

|v0|, the friction is mostly absent and decorrelation happens after another time-scale. For the

heuristics we refer to Fig.5 to observe a persistence in (large) speed. We get a quantitative

prediction by reconsidering (12) for cases when friction and thermal effects are negligible

and where the updating is given by (16). Clearly, for no matter what v0 > 0, when at time

t, ∫ t

0

ds σs ∈
[
−∆

A
v0 ,

∆

A
v0

]
(22)

then, v0vt ' (1 ± ∆) v20. where ∆ ' 1/2 is a dimensionless tolerance. Invoking the

central limit theorem as in (18), we are thus asked to estimate the probability that√
t
α
Z ∈

[
− v0

2A
, v0

2A

]
, which amounts to evaluating the error-function at a value propor-

tional to
√
α/t v0/A = t−1/2 v

3/2
0 /(

√
LA). We conclude that the event (22) occurs with high

probability if t � v30/(LA
2). Therefore, we predict that the time autocorrelation behaves

as

c(t) '
∫ ∞
a (LA2 t)1/3

dv ρ(v) v2 (23)

for some a > 0, when ρ(v) v2 < 1/v decays sufficiently fast. All other contributions decay

faster in time.

In the case where δ = 3 we substitute (10) for the stationary distribution ρ(v) and

15



10
0

10
1

10
2

10
3

t

10
-2

10
0

c(t)

10
0

10
2

10
4

t

10
-2

10
0

c(t)

(a) (b)

A=0

γ
0
=2.0

γ
0
=2.5

γ
0
=3.0γ

0
=4.0

δ=2.5

(δ=3.0)

δ=2.0
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L = 1 = A = T . The red dashed lines indicate the analytical prediction (24). (b) c(t) vs t for

two other values of δ; the red dashed lines indicate the best fit according to the prediction (25)

where k̄ has been used as a fitting parameter. Here L = 1 = T and γ0 = 2 = A. The lowest curve

corresponds to the equilibrium case A = 0 for δ = 3 with L = 1 = T = ν0 and γ0 = 2.

therefore, asymptotically in time t,

c(t) ∼ t1−2κ/3 (24)

(assuming κ > 3/2). This rough calculation indeed provides a fairly reasonable estimate

when κ > 2, as can be seen in Fig. 6(a) for a comparison of (24) with Monte Carlo results.

That is consistent with the discussion in Sec. V. The long-time tails are entirely due to

the active medium and the low friction at high speeds. Referring again to space plasmas,

measuring the time evolution of a specific space plasma parcel is practically very difficult

given that the observer (satellite) does not move with the solar wind expansion. Our estimate

(24) offers a specific prediction however. Long-time tails have been reported for driven

granular fluids in e.g. [47]. As another consequence, by time-integration of c(t), the position

is seen to be superdiffusive for κ < 3 with 〈(xt − x0)2〉 ∼ t1+f with f = 2− 2κ/3 > 0. Such

behavior is not unseen for tracer particles in bio-active media; see e.g. [48].

For 1 < δ < 3 when we substitute in (23) the expression (11) for ρ(v): for large times t,

we get

c(t) ∼ exp
[
−k̄ (γ0 t)

3−δ
3

]
(25)

with k̄ ∝ κδ/3/(3 − δ). We see that prediction compared with the simulation in Fig. 6(b)

for two values of δ = 2, 2.5; c(t) for lower values of δ are more difficult to evaluate. In the

passive case, A = 0 as for (15), we have exponential decay in time, reflecting the dilute

nature of the thermal bath. The same happens for A 6= 0 (active case) when δ = 0 where
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line indicates the expected 1/v∗ behavior. The other parameters are T = 1 = L = A = ν0 here.

friction remains prominent (and constant) even at large speeds.

Along similar lines, we also provide an estimate for the first passage time probability P (τ)

for the particle to remain in a velocity window [v∗−w , v∗+w] up to a time τ. For a purely

diffusive particle, the first passage time probability in a bounded region decays exponentially

with a decay rate proportional to the diffusion constant [49]. Using Eqs. (16)-(18), i.e., the

effective diffusion picture at low T and large v∗, and translating the result of Ref. [49] to

our case, we expect,

P (τ) ∼ exp[−λτ ], with λ ∝ A2 L/(w2 v∗) (26)

for large v∗. The average first passage time λ−1 increases linearly with v∗ which is a signature

of the trapping in the velocity space discussed before. Note that in that regime the rate λ

is independent of the linear friction coefficient γ0. We measure the first passage time proba-

bility using numerical simulations to verify this prediction; Fig. 7(a) shows plots of P (τ) vs

τ for different values of v∗ which clearly shows the exponential decay. The corresponding λ

are plotted as a function of v∗ in Fig. 7(b) – the expected 1/v∗ behavior is seen as v∗ increases.

VIII. CONCLUSIONS

The main result of the paper is that active forces produce suprathermal stationary velocity

distributions and long time-tails in the autocorrelation. The activity of the environment

can be so simple as modeled by a tumbling force with a fixed magnitude with a tumbling

rate that depends on the speed. The suprathermal distributions range from power laws
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over exponentials to Maxwellians, and the time autocorrelation ranges from algebraic to

exponential. The result on long-time tails indicates a persistence in the velocity (or the

emergence of extra inertia ∼ κ−1 at high speeds), which in point of fact makes contact

with an aspect of self-propelled particles. At the same time it widens the scope of standard

activity modeling as for active biological media, reaching out to and including astrophysical

and possibly cosmological processes. Suprathermal behavior and long time-tails carry clear

signatures of activity and correspondingly vanish in the absence of the nonconservative force

field.

On a more speculative note, apart from space plasmas the importance for equilibration

times in cosmological plasmas may be even bigger. In light of the derived long time-tails it

indeed cannot be excluded that the usual short-time thermal relaxation assumptions in the

derivation of the Kompaneets equation (where photons are treated in contact with electrons

having a Maxwellian velocity distribution) cannot be withheld; cf. also [50].
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