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Abstract—In recent years, the use of HVdc technology has
increased and VSC technology has enabled the realization of
HVdc grids. This calls for the development of new tools to solve
the transmission network expansion planning (TNEP) model. A
detailed representation of the dc grid TNEP problem is highly
nonlinear and more complex than the traditional ac grid expan-
sion problem due to extra constraints and additional decision
variables from the converter station model. The present day
industrial solvers have difficulties to tackle the resultant MINLP
problem. Therefore, the linearized ‘DC’ approximation is often
used in practice, which may not produce sufficiently accurate
answers. In this paper, different relaxations and approximations
of the dc grid TNEP problem are presented. The performance
of each formulation is evaluated using eight test cases. Although
there is no clear formulation that shows the best performance,
LPAC approximation and SOC relaxations seem to provide better
alternatives to ‘DC’ approximations. The developed formulations
do not guarantee feasibility and a second corrective stage is
required to obtain feasible solutions.

Index Terms—Transmission planning, HVdc grid, Convex
relaxations, Linear approximations, Nonlinear TNEP problem

NOMENCLATURE

Entities, indices and sets
i, j ∈ I ac nodes
l ∈ L ac branches
lij ∈ T ac ⊆ L× I × I ac topology
e, f ∈ E Candidate dc nodes
d ∈ D Candidate dc branches
def ∈ T dc ⊆ D × E × E Candidate dc topology
c ∈ C Candidate converters
cie ∈ T cv ⊆ C × I × E Candidates converter topology
g ∈ G Generators
mi ∈ T ac ac load
me ∈ T dc dc load

Parameters
Cd Cost of dc line d
Cc Cost of converter c
Nd Number of poles of dc line (link) d
rd Resistance of line d
tc Transformation ratio in converter station c
ac, bc, cc Coefficients of polynomial converter power loss
ztf
c , r

tf
c , x

tf
c , g

tf
c , b

tf
c Impedance, resistance, reactance, conductance and

susceptance of converter transformer

z
pr
c , r

pr
c , x

pr
c Impedance, resistance and reactance of phase reactor

bf
c Filter susceptance
Pme dc load at node e
Pmi, Qmi Active and reactive load at ac node i
gshunt
i , bshunt

i Shunt conductance and susceptance elements at ac node i

Variables
ξc Binary decision variable for converter station
ξd Binary decision variable for dc line
Ude, Udf dc voltage at node e and f
Pdef , Pdfe Active power flow from node e to f and f to e
P cv,ac
c , P cv,dc

c ac and dc side active power of converter c
Scv,ac
c Apparent power capacity of converter
icv
c ac side current of converter c
|Ui|, θi Magnitude and angle of voltage at ac grid node i
|U f
c|, θf

c Magnitude and angle of voltage at filter node
|U cv
c |, θcv

c Magnitude and angle of voltage at ac side node of converter
P tf
cie, P

tf
cei Active power flow in from node i to e and node e to i

in converter transformer
Qtf
cie, Q

tf
cei Reactive power flow from node i to e and node e to i

in converter transformer
P

pr
cie, Q

pr
cie Active and reactive power flow from node i to e

in phase reactor
Qf
c Reactive power absorbed by filter

P ac
lij , Q

ac
lij Active and reactive power flow from node i to j in line l

Pgi, Qgi Generator active and reactive power at node i
φ Voltage deviation from 1.0 p.u.

Others
x Upper bound of variable x
x Lower bound of variable x
x̂ Polyhedral outer approximation of x
|x| Magnitude of variable x
x∗ Auxiliary variable for x
W Lifted variable for square or bilinear voltage terms
i Lifted variable for current square terms

I. INTRODUCTION

High voltage direct current (HVdc) is the preferred way to
transmit power in many applications such as inter-connecting
different asynchronous grids, transporting bulk amount of
power over a long distance and underwater power transmission
using cables. In the context of power systems, the transmis-
sion network expansion planning (TNEP) problem solves the
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‘when’ and ‘where’ questions of adding new transmission
capacity, e.g. new dc connections. Traditionally, research on
the TNEP problem focused on ac1 networks. However, with
increasing adoption of HVdc systems, it needs to be extended
to accommodate this technology.

The fundamental TNEP problem is a red Non-Convex
Mixed Integer Nonlinear Program (Non-Convex MINLP), also
called ‘AC’ formulation here. This problem is difficult to solve
using the present day solvers. Therefore, many works resort to
linearizing techniques and use MILP solvers that are mature
and computationally efficient [1]. Out of many variants of
linearized formulation, the ‘DC’ approximation is commonly
used. However, it is not the most accurate approach to ap-
proximate the original MINLP problem [2]. In recent years,
convex relaxations have proven to be a promising alternative
for the classic nonlinear optimal power flow (OPF) problem
i.e. semi-definite programming (SDP) [3] [4], second order
cone programming (SOCP) [5] [6], and quadratic constrained
(QC) programming [7]. This has piqued the interest in apply-
ing these relaxations for different power system optimization
problems. We develop these relaxations for dc grid TNEP
problem and evaluate them on various test cases.

We also include a linear programming AC (LPAC) for-
mulation that, unlike ‘DC’, does not disregard the voltage
and reactive power representation. The advantage of such a
formulation is that it still can use mature MILP solvers while
closely representing ‘AC’ power flow equations. The LPAC
formulation in [1] for ac TNEP problem is taken as a reference
and extended for the dc grid.

The formulated dc grid TNEP problem in this paper
has the following benefits compared to alternatives found in
literature [8] [9] [10]: a) it includes a detailed converter station
model that is necessary to capture the full operational behavior
of ac/dc grids b) it is not only valid for point-to-point HVdc
link expansions, but also for a meshed dc grid expansion,
offering wider variety of possible expansions. In this regard,
our approach differs from [9] [10] that supply candidate three
terminal grids. The proposed formulation does not need to
supply such grid candidates separately, but can form multi-
terminal grids based on dc line and converter candidates.

This paper extends our previous work in [11] that con-
sisted of three basic dc grid TNEP formulations and imple-
ments more formulations for performance analysis. Fig. 1
provides an overview of the implementation. We focus on
seven different formulations, that differ from each other on the
ac grid side (on the left). Out of them, original MINLP, SOC
branch flow model (BFM), ‘DC’ approximation and linear
program AC (LP AC) remain different on the dc grid side, too.
However, the SDP and QC models are equivalent to the SOC
BIM (bus injection model), hence three separate formulations
are not required for dc lines and converter stations. This is
due to the radial nature of the converter station that ensures
SOC BIM to become the tightest relaxations among the

1we use small letters ac and dc for technology and capital letters ‘AC’ and
‘DC’ for formulations

introduced relaxations here and allows its use in conjunction
with SDP and QC without affecting their accuracy. Note
that two different SOC models (BFM and BIM) exist only
for the branch like components (converter station branch, ac
branch and dc branch here), but not for ac/dc converter itself.
Therefore, both models converge to the same set of equations
for the power electronics converter.
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converter station

=
∼
active dc branchac grid

SOC BIM

SOC BFM
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SDP BIM
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Fig. 1. Mapping of formulations for different parts of the ac/dc grid [12]

All formulations are implemented in Julia/JuMP [13] and
conceived as an extension of two existing open-source pack-
ages PowerModels.jl [14] and PowerModelsACDC.jl [15]. We
take advantage of the modularity offered by these packages
and build our problem using existing ac/dc grid power flow
models. The implemented code is embedded in PowerMod-
elsACDC.jl and is available for public access along with the
test cases introduced in this paper.

II. DC GRID TNEP PROBLEM

The ‘AC’ TNEP problem formulation is covered in detail
in our previous paper [11]. For completeness of this paper, it
is briefly described again in this section (see Model 1).

In order to allow a dc grid expansion, it is necessary
to decouple the decisions of building new dc lines and new
HVdc converters. Therefore, each of them is represented using
individual binary decision variables, i.e. ξd for candidate dc
lines and ξc for candidate converters. The objective (M1.1)
of the model is to minimize the investment cost of both
components. Note that the objective function can also includes
the generation cost during the planning horizon, but we restrict
it here to expansion related costs to clearly analyze the
performance of different formulations for this application.

A. Constraints for grid components

The dc line model is depicted in Fig. 2. Ude and Udf are
the voltage at the nodes e and f for branch d. Pdef and Pdfe

are the branch flows at the opposite ends of the branch d. The
power flows over dc line are defined using the BIM equation
(M1.2). The constraint is also applicable to the reverse node
order T dc,r, i.e. from f to e.

The HVdc converter station model is depicted in Fig.
3. It has four main components: 1) a power-electronic ac/dc
converter, 2) a phase reactor as a series impedance, 3) a
capacitive filter as a shunt susceptance, and 4) a transformer
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Fig. 2. dc line model (Nd = 1 for monopolar and 2 for bipolar)
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electronics
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Fig. 3. ac/dc converter station model

with tap and series impedance. Although a VSC (voltage
source converter) based HVdc system is assumed in this
paper, the LCC (line commutated converter) technology can be
easily integrated as described in [12]. The converter constraint
(M1.3) links ac and dc side active power injection using
the converter losses. The losses are approximated through
a quadratic function, dependent on the ac side converter
current (icv

c ) [16]. The nonnegative coefficients ac [MW], bc
[MW/A] and cc[Ω] respectively represent the no load, linear
and quadratic losses of the converter station. Constraint (M1.4)
specifies the converter’s apparent power capacity in terms of
ac side voltage and current.

The transformer is modeled by its equivalent impedance,
ztf
c = rtf

c + jxtf
c . Constraints (M1.5) - (M1.8) capture the active

and reactive power flows at opposite ends of the transformer
[12]. The parameters gtf

c and btf
c are the series conductance and

susceptance respectively. The phase reactor is also modeled in
the same manner by impedance zpr

c = rpr
c + jxpr

c . Therefore,
the same set of constraints can be applied to it when the
transformation ratio (tc) is set to 1.02. Constraints (M1.9) -
(M1.10) describe active and reactive power balance at the
filter node. The third term in constraint (M1.10) represents
the reactive power absorbed by the filter capacitance.

Constraints (M1.2) - (M1.10) should be deactivated
when the corresponding decision variable is zero. This is
accomplished by integrating the decision variables into the
constraints and with additional on/off constraints. The on/off
constraints are used for converter current and power flow
variables, where the upper and lower limits of variables are
defined by the branch and converter specifications. Although
the decision variables are already integrated in the most
constraints and additional on/off constraints are not strictly
required, we add them to keep a uniformity.

2As P cv,ac
c = -P pr

cie and Qcv,ac
c = -Qpr

cie, it is not strictly required to define
both, but they are retained here to keep the representation clear.

The described model is also subjected to the nodal
balance at the dc nodes and the converter connected ac nodes.
The balance for dc nodes e ∈ E can be given as:∑

cie∈T cv

P cv,dc
c +

∑
def∈T dc

Pdef =
∑

me∈T dc

−Pme, (1)

The generic ac grid node balance equations are modified to
include the dc grid. For every ac node i ∈ I, the following
equality must be respected:∑
cie∈T cv

P tf
cie +

∑
lij∈T ac

P ac
lij

=
∑

gi∈T ac

Pgi −
∑

mi∈T ac

Pmi − gshunt
i (|Ui|)2, (2a)∑

cie∈T cv

Qtf
cie +

∑
lij∈T ac

Qac
lij

=
∑

gi∈T ac

Qgi −
∑

mi∈T ac

Qmi + bshunt
i (|Ui|)2. (2b)

Model 1: ‘AC’ formulation

Minimize:∑
c∈C

Cc · ξc +
∑
d∈D

Cd · ξd (M1.1)

dc branch
Pdef = ξd

(
Nd
rd

)
Ude(Ude − Udf ) ∀def ∈ T dc ∪ T dc,r(M1.2)

Converter
P cv,ac
c + P cv,dc

c = acξc + bc|icv
c |+ cc|icv

c |2 ∀c ∈ C (M1.3)

(P cv,ac
c )2 + (Qcv,ac

c )2 = |U cv
c |2|icv

c |2 ∀c ∈ C (M1.4)

Transformer (or reactor when tc = 1)

P tf
cie =

[
gtf
c

(
|Ui|
tc

)2
− gtf

c
|Ui|
tc
|U f
c| cos(θi −

θf
c)− btf

c
|Ui|
tc
|U f
c| sin(θi − θf

c)
]
ξc

∀cie ∈ T cv (M1.5)

Qtf
cie =

[
-btf
c

(
|Ui|
tc

)2
+ btf

c
|Ui|
tc
|U f
c| cos(θi −

θf
c)− gtf

c
|Ui|
tc
|U f
c| sin(θi − θf

c)
]
ξc

∀cie ∈ T cv (M1.6)

P tf
cei =

[
gtf
c |U f

c|2 − gtf
c |U f

c|
|Ui|
tc

cos(θf
c −

θi)− btf
c |U f

c|
|Ui|
tc

sin(θf
c − θi)

]
· ξc

∀cei ∈ T cv (M1.7)

Qtf
cei =

[
-btf
c |U f

c|2 + btf
c |U f

c|
|Ui|
tc

cos(θf
c −

θi)− gtf
c |U f

c|
|Ui|
tc

sin(θf
c − θi)

]
· ξc

∀cei ∈ T cv (M1.8)

Filter
P

pr
cie + P tf

cei = 0 ∀c ∈ C (M1.9)

Q
pr
cie +Qtf

cei − ξcb
f
c(|U f

c|)2 = 0 ∀c ∈ C (M1.10)

On/off constraints
ξdx ≤ x ≤ xξd where x = [Pdef , Pdfe]

ξcx ≤ x ≤ xξc where x = [P cv,ac
c , P cv,dc

c , P tf
cie, Q

tf
cie, P

pr
cie,

P tf
cei, Q

pr
cie, Q

tf
cei, i

cv
c ]

ξd, ξc ∈ {0, 1}

In the following sections, we derive various relaxations
and approximations of this MINLP model. Refer to equations
in Model 1 wherever needed.

III. CONVEX RELAXATIONS

As shown in Fig. 1, the convex relaxations for the dc grid
are implemented through two second order cone models. The
BIM represents the grid equations in terms of nodal quantities
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(e.g. voltages) whereas the BFM represents them using the
quantities pertaining to line flows (e.g. branch current). Note
that both models are shown to be equivalent in [17].

Model 2: SOC BIM formulation

Minimize:
(M1.1)
dc branch
Pdef = ξd

(
Nd
rd

)
(W ∗de −W

∗
def ) ∀def ∈ T dc ∪ T dc,r(M2.1)

(W ∗def )
2 ≤W ∗deW

∗
df ∀def ∈ T dc ∪ T dc,r(M2.2)

Converter
P cv,ac
c +P cv,dc

c = acξc+bc|icv
c |+cci

sq,cv,mag
c ∀c ∈ C (M2.3)

(P cv,ac
c )2 + (Qcv,ac

c )2 ≤ (|U cv
c |)2(|icv

c |)2 ∀c ∈ C (M2.4)

(P cv,ac
c )2 + (Qcv,ac

c )2 ≤W cv
c i

sq,cv,mag
c ∀c ∈ C (M2.5)

i
sq,cv,mag
c ≤ |icv

c |I
cv,rated
c ∀c ∈ C (M2.6)

Transformer (or reactor when tc = 1)

P tf
cie = gtf

c

(
W∗

i
t2c

)
− gtf

c
Rtf

ic
tc
− btf

c
T tf
ic
tc

∀cie ∈ T cv (M2.7)

Qtf
cie = −btf

c

(
W∗

i
t2c

)
+ btf

c
Rtf

ic
tc
− gtf

c
T tf
ic
tc

∀cie ∈ T cv (M2.8)

P tf
cei = gtf

cW
f
c − gtf

c
Rtf

ic
tc

+ btf
c
T tf
ic
tc

∀cei ∈ T cv (M2.9)

Qtf
cei = −b

tf
cW

f
c + btf

c
Rtf

ic
tc

+ gtf
c
T tf
ic
tc

∀cei ∈ T cv (M2.10)

(Rtf
ic)

2 + (T tf
ic)

2 ≤WiW
f
c (M2.11)

Filter
(M1.9)
Q

pr
cie +Qtf

cei − ξcb
f
cW

f
c = 0 ∀cie ∈ T cv (M2.12)

On/off constraints
ξdx ≤ x ≤ xξd where x = [Pdef , Pdfe]

ξcx ≤ x ≤ xξc where x =
[
P cv,ac
c , P cv,dc

c , Qcv,ac
c , P tf

cie, Q
tf
cie, P

pr
cie, P

tf
cei,

W f
c, i

cv
c , i

sq,cv,mag
c , Rtf

ic, T
tf
ic

]
Auxiliary variable constraints
ξdx ≤ x∗ ≤ xξd where x =

[
W ∗de,W

∗
def

]
x− (1− ξd)x ≤ x∗ ≤ x− (1− ξd)x where x =

[
W ∗de,W

∗
def

]
ξcx ≤ x∗ ≤ xξc where x =W ∗i
x− (1− ξc)x ≤ x∗ ≤ x− (1− ξc)x where x =W ∗i

ξd, ξc ∈ {0, 1}

A. Second order cone BIM

The SOC-BIM formulation is provided in Model 2. The
dc branch equation (M1.2) can be linearized by assigning a
new lifted variable W for voltage square and bilinear terms
such that,

(Ude)
2 →Wde, (Udf )2 →Wdf , (Udef )2 →Wdef .

The new variables are coupled through a non-convex equal-
ity, (W ∗def )2 = W ∗deW

∗
df that can be replaced by a valid

inequality constraint (M2.2) in the form of a rotated SOC.
Similarly, the current square in the converter losses (M1.3) and
voltage square in the capacity constraint (M1.4) are replaced
by lifted variables isq,cv,mag

c and W cv
c . Hence, the converter

loss constraint becomes linear (M2.3). The converter capacity
constraint (M1.4) is relaxed through two valid inequalities,
rotated SOCs (M2.4) and (M2.5). Note that the upper-bounds
of all lifted variables must correspond to the upper-bounds of
the original variables, e.g. isq,cv,mag

c ∈ [0, |icv
c |2]. In addition,

to provide a tighter bound on isq,cv,mag
c , we adopt constraint

(M2.6).
Since the transformer (and reactor) models are similar to

ac branch model (i.e. z = r + jx), the classic approach from
[5] is used to prepare an SOC model for them. Along with
replacing the voltage square terms by respective W variables,
the approach relies on the following substitutions for nonlinear
terms,

|U f
c||Ui| cos(θf

c − θi)→ Rtf
ic, |U f

c||Ui| sin(θf
c − θi)→ T tf

ic

leading to a linearized power flow constraints (M2.7) -
(M2.10). The coupling among lifted variables is defined
through the rotated SOC (M2.11). The filter constraint (M2.12)
formulation is straightforward using the lifted variable. The bi-
nary decision variables for dc branches and converters (ξd, ξc)
are integrated using the on-off constraints for shown variables.
The product of bus voltages (both ac or dc) with the binary
variables are treated separately using the auxiliary variables
(marked with *). The shown disjunctive constraints ensures
that the auxiliary variables equals the original variables, i.e.
W ∗ = W when corresponding binary variable is 1, else they
are zero. This way the dc and ac node voltages (Wde,Wdf and
Wi) are not forced to be zero when a candidate converter is
not constructed between them.

B. Second order cone BFM

Model 3 represents the SOC-BFM formulation. We ex-
plain the converter transformer constraints first for this formu-
lation and then exclude the reactive component to obtain the
dc line constraints. Note that the transformer model is similar
to π model of ac branch, except the shunt element. Hence, the
SOC-BFM relaxation (or distflow) for ac branch from [18]
is adapted here. The relaxation can be defined using a lifted
variable for transformer current square such that,

(itfc )2 = isq,tf
c =

(P tf
cie)

2 + (Qtf
cie)

2

U2
i

. (3)

The power loss along the converter transformer can be defined
using constraints (M3.4) and (M3.5). In BFM, ohm’s law over
a line is defined as constraint (M3.6). The non-convexity in
(3) is resolved by converting it to a rotated SOC constraint for
the converter transformer (M3.7). Based on the transformer
model, the dc branch model (M3.1 - M3.3) can be easily
derived by removing the reactive power terms and making
necessary adjustments for tc and Nd. The converter and filter
constraints remain the same as in the SOC-BIM formulation.
The logic behind on/off and auxiliary variable constraints
remains unchanged.

IV. LINEAR FORMULATIONS

The linear formulations are particularly attractive since
they can employ MILP solvers that are more mature than
MINLP and Mixed Integer Convex Programming (MICP)
solvers. We select two linear formulations for our study: 1)
linear AC approximation that represents the reactive power and
the dc voltage in an approximate manner and 2) classic ‘DC’
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Model 3: SOC BFM formulation

Minimize:
(M1.1)
dc branch
Pdef + Pdfe = rdNdi

sq
def ∀def ∈ T dc (M3.1)

(Pdef )
2 ≤ (Nd)

2W ∗dei
sq
def ∀def ∈ T dc (M3.2)

W ∗df =W ∗de − 2 rd
Nd

Pdef + (rd)
2i

sq
def ∀def ∈ T dc (M3.3)

Converter
same as SOC-BIM
Transformer (or reactor when tc = 1)
P tf
cie + P tf

cei = rtf
c i

sq,tf
c , ∀cie ∈ T cv (M3.4)

Qtf
cie +Qtf

cei = xtf
ci

sq,tf
c , ∀cei ∈ T cv (M3.5)

W f
c =

W∗
i

(tc)2
− 2

(
rtf
cP

tf
cie + xtf

cQ
tf
cie

)
+((

rtf
c

)2
+
(
xtf
c

)2)
i
sq,tf
c ∀cei ∈ T cv (M3.6)

(P tf
cie)

2 + (Qtf
cie)

2 ≤ W∗
i

(tc)2
i
sq,tf
c ∀cie ∈ T cv (M3.7)

Filter
M1.7, M2.12
On/off constraints
ξdx ≤ x ≤ xξd where x = [Pdef , Pdfe]

ξcx ≤ x ≤ xξc where x = [P cv,ac
c , P cv,dc

c , Qcv,ac
c , P tf

cie, Q
tf
cie, P

pr
cie, P

tf
cei,

W f
c, i

cv
c , i

sq,cv,mag
c , i

sq,tf
c ]

Auxiliary variable constraints
ξdx ≤ x∗ ≤ xξd where x =

[
W ∗de,W

∗
df

]
x− (1− ξd)x ≤ x∗ ≤ x− (1− ξd)x where x =

[
W ∗de,W

∗
df

]
ξcx ≤ x∗ ≤ xξc where x =W ∗i
x− (1− ξc)x ≤ x∗ ≤ x− (1− ξc)x where x =W ∗i

ξd, ξc ∈ {0, 1}

approximation that discards the reactive power and assumes
the dc voltage magnitudes as a constant.

A. Linear Programming AC

The linear AC approximations are developed using the
LPAC formulation from [1] and [19] which approximate
nonlinear power flow equations based on the following mod-
ifications:
(a) Approximation of cosine by its polyhedral relaxation

(ĉos) and approximation of sin(x) by x
(b) Voltage magnitudes are assumed to be near to the nominal

voltages with tolerance φ such that |V | = 1.0 + φ
(c) Approximation of the branch capacity constraint by its

piecewise linear (PWL) approximation
(d) Taylor series approximation for any remaining nonlinear

terms
While using the already implemented LPAC model in

[14] for ac grid, we develop and extend the model for the dc
grid that is shown in Model 4. The nonlinear dc branch flow
(M1.2) with new voltage representation can be reformulated
as:

Pdef =Nd/rd · (1 + φde)[(1 + φde)− (1 + φdf )]

=Nd/rd · (1 + φ2de − φdf − φdeφdf )
(4)

Taking the taylor series approximation of the function near
φde = 0 and φdf = 0 and only considering the linear

terms results in constraint (M4.1). The converter losses are
approximated by accounting for the linear terms as shown in
(M4.2). The nonlinear converter capacity constraint (M1.4) is
approximated by replacing voltage and current variables on
the right with the converter apparent power rating as shown
in (M4.3). Then, the constraint is linearized using the PWL
approximation using Algorithm 1 [19]. The transformer and
reactor models are created using the ac branch model derived
in [20]. The polyhedral approximations of cosine (ĉos) are
applied between [−π/6, π/6] using 20 piecewise segments [1].
Finally, the voltage square term in the filter reactive power is
approximated through taylor series expansion as characterized
by constraint (M4.8).

Algorithm 1 PWL: converter capacity constraint
Input: Ns, l, Scv,ac

c , P cv,ac
c , Qcv,ac

c

Output: Ns no. of linear constraints (= 20 in this paper)

1: l ← 0
2: inc ← 2 ∗ pi/Ns
3: for k ← 1 to Ns do
4: a ← Scv,ac

c · sin(l), b ← Scv,ac
c · cos(l)

5: Constraint(k) ← a · P cv,ac
c + b ·Qcv,ac

c ≤(Scv,ac
c )2

6: l ← l + inc
7: end for

B. ‘DC’ approximation

The typical assumptions made to obtain ‘DC’ approxi-
mation model are:
(a) Phase angle difference of nodal voltages along an ac

branch is small enough to ensure cos(θ) ≈ 1.0 and
sin(θ) ≈ θ

(b) Magnitudes of nodal voltages are fixed at constant value,
i.e. 1.0 p.u.

(c) all lines are lossless
The dc branch constraint for a lossless line can defined by

(M5.1). Similar to LPAC, the converter losses are accounted
through only the linear terms as shown in constraint (M5.2),
where |icv

c | is replaced by the ratio of P cv,ac
c and the voltage

magnitude. Under the mentioned assumptions, the power flow
equations for the transformer reduce to (M5.3) - (M5.4). In
absence of the reactive power representation, only the active
power balance equation is present at the filter node.

Note that the nodal balance (1) - (2b) remain the same
for different relaxations and approximations except the voltage
square term (|Ui|)2 that is replaced by lifted variable (Wi) for
SOC, (1 + 2φ) for LPAC and 1.0 for ‘DC’, respectively.

V. NUMERICAL EXPERIMENTS

A. Test case preparation

At first, we analyze the performance of the developed for-
mulations using two variants of Garver 6 bus system [21]. The
basic 6 bus Garver system (case 6) has 5 interconnected nodes
and one isolated generator node [22]. The interconnected part
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Model 4: LPAC formulation

Minimize:
(M1.1)
dc branch
Pdef =

(
Nd
rd

)
(φ∗de − φ

∗
df ) ∀def ∈ T dc ∪ T dc,r (M4.1)

Converter
P cv,ac
c + P cv,dc

c = acξc + bc|icv
c | ∀c ∈ C (M4.2)

(P cv,ac
c )2 + (Qcv,ac

c )2 ≤ (Scv,ac
c )2 ∀c ∈ C (M4.3)

Transformer (or reactor when tc = 1)
∀cie ∈ T cv,

P tf
cie = gtf

c

(
ξc+2φ∗

i
t2c

)
− gtf

c

(
ĉos(θi−θf

c)+φ
∗
i +φ

f
c

tc

)
− btf

c

(
θ∗i−θ

f
c

tc

)
(M4.4)

Qtf
cie = −btf

c

(
ξc+2φ∗

i
t2c

)
+ btf

c

(
ĉos(θi−θf

c)+φ
∗
i +φ

f
c

tc

)
− gtf

c

(
θ∗i−θ

f
c

tc

)
(M4.5)

P tf
cei = gtf

c

(
ξc + 2φ∗i

)
− gtf

c

(
ĉos(θi−θf

c)+φ
∗
i +φ

f
c

tc

)
− btf

c

(
θf
c−θ

∗
i

tc

)
(M4.6)

Qtf
cie = −btf

c

(
ξc + 2φ∗i

)
+ btf

c

(
ĉos(θi−θf

c)+φ
∗
i +φ

f
c

tc

)
− gtf

c

(
θf
c−θ

∗
i

tc

)
(M4.7)

Filter
(M1.7)
Q

pr
cie +Qtf

cei − b
f
c(ξc + 2φf

c) = 0 ∀cie ∈ T cv (M4.8)

On/off constraints
ξdx ≤ x ≤ xξd where x = [Pdef , Pdfe]

ξcx ≤ x ≤ xξc where x = [P cv,ac
c , P cv,dc

c , Qcv,ac
c , P tf

cie, Q
tf
cie, P

pr
cie, P

tf
cei,

φf
c, θ

f
c, i

cv
c , ĉos(θi − θf

c)]

Auxiliary variable constraints
ξdx ≤ x∗ ≤ xξd where x = [φ∗de, φ

∗
df ]

x− (1− ξd)x ≤ x∗ ≤ x− (1− ξd)x where x =
[
φ∗de, φ

∗
df

]
ξcx ≤ x∗ ≤ xξc where x = [φ∗i , θ

∗
i ]

x− (1− ξc)x ≤ x∗ ≤ x− (1− ξc)x where x =
[
φ∗i , θ

∗
i

]
ξd, ξc ∈ {0, 1}

Model 5: ‘DC’ formulation

Minimize:
(M1.1)
dc branch
Pdef + Pdfe = 0 ∀def ∈ T dc (M5.1)

Converter
P cv,ac
c + P cv,dc

c = acξc + bc
P cv,ac
c
1.0

∀c ∈ C (M5.2)

Transformer (or reactor when tc = 1)

P tf
cie = −btf

c

(
θ∗i−θ

f
c

tc

)
∀cie ∈ T cv (M5.3)

P tf
cei = −b

tf
c

(
θf
c−θ

∗
i

tc

)
∀cie ∈ T cv (M5.4)

Filter
(M1.7)
On/off constraints
ξdx ≤ x ≤ xξd where x = [Pdef , Pdfe]

ξcx ≤ x ≤ xξc where x = [P cv,ac
c , P cv,dc

c , P tf
cie, Q

tf
cie, P

pr
cie, P

tf
cei]

Auxiliary variable constraints
ξcx ≤ x∗ ≤ xξc where x = θ∗i
x− (1− ξc)x ≤ x∗ ≤ x− (1− ξc)x x = θ∗i

ξd, ξc ∈ {0, 1}

has maximum generation capacity of 530 MW against the
total demand of 760 MW. The expansion must take place to

TABLE I
TEST CASE PREPARATION

Case ac grid changes Converter candidate Branch candidate
Nos./bus Cost Nos./corridor Cost

case 6, 24 None 1 eq. 5 available ac → dc
case 6-fs None 1 eq. 5 available ac → dc
case 9, 14, 30 3xgen,3xload 1 3 pu 3 1 pu
case 73 3xgen,3xload 1 3 pu 3 1 pu
(node 1-23)
case 118 3xgen,3xload 1 3 pu 3 1 pu
(node 1-33)

TABLE II
TOTAL NUMBER OF CANDIDATES

Case Total candidates

converter branch

case 6 6 75
case 6-fs 6 75
case 9 9 27
case 14 14 60
case 24 24 123
case 30 30 123
case 73 28 126
case 118 37 150

connect the generator node 6 to the rest of the network in order
to compensate for the lack of generation there. The second
variant of Garver system (case 6-fs) does not include any pre-
existing network. The 6 isolated nodes are equipped with the
same generation and demand as the first case, and expansion
must take place in order to form a network. We convert ac
line candidates for this bus system (provided in [21]) to the
dc line candidates. Even though ac and dc lines have different
characteristics, for simplicity, the data for dc line candidate
(i.e. resistance, cost, capacity, no. of candidates, connection
nodes) are taken from the ac line candidate. One converter
candidate is considered per ac node. Table I summarizes the
modifications made for this and all other test systems in this
paper to motivate a dc grid expansion and Table II lists the
total number of candidates for all test cases. The specifications
of converter station are prepared as follows. The active and
reactive power capability are set to 1000 MW and 500 MVar.
The reactance of transformer and reactor are set to 10 % and 7
% of short circuit impedance respectively, and the resistance of
both components are assumed to be 0.01 times their reactance
values. The filter reactance is assumed to be 8 % of the short
circuit admittance value [23]. The converter cost is calculated
using an approximate relation [24]:

Cc[Me] = 28 + 0.083|P cv,ac
c |[MW ] (5)

B. Evaluation criteria

The indexes for evaluating the quality of solutions are
the objective value, the number of built candidates and the
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feasibility of solutions. The solution obtained using local
MINLP solver is used to compare the objective value. The
feasibility of the solutions is analyzed by running ‘AC’ optimal
power flow problem of the reinforced grid. The rationale
behind doing this instead of an ‘AC’ power flow check as done
in optimal fuel cost studies is as follows. The TNEP problem
is usually solved in more than one step and generator and
converter set-points are expected to change over the time by
underlying operational problems. An ‘AC’ OPF run should
be sufficient to ensure if the obtained reinforcements are
physically adequate.

Approximations and relaxations do not always provide a
feasible solution. A common approach to deal with this is to
have a second corrective step to attain feasibility for TNEP
problem. If the solution is infeasible, we apply constraint
tightening approach used in [1] to retrieve a feasible solution.

C. Case analysis

‘AC’ formulation is solved using Juniper 0.5.2 [25],
supplied with Ipopt 3.12.10 [26] as a nonlinear solver and Cbc
2.10.3 [27] as a mixed integer solver. The SDP is solved using
Pajarito 0.6.0 [28], supplied with Mosek 9.0 [29] as a convex
solver and CPLEX 12.7 [30] as a mixed integer solver. The
rest of the formulations are solved using Gurobi 8.11 [31]. The
tests are run on a server with Intel Xenon, 3.30 GHz processor
and 128 GB RAM. The ‘AC’ formulation is allowed to run for
10 hours but others are set to a time limit of 2 hours. Table III
shows the objective function values for both 6 bus cases. The
convex relaxations (SOCs, SDP, QC) obtain the same value
as ‘AC’ local solution. LPAC and ‘DC’ perform well for case
6-fs, but are infeasible for case 6. Refer to table IV to review
the candidates built for case 6. All convex relaxations build the
same converter stations as the ‘AC’ solution, but not the same
line candidates. It indicates that many local solutions with
similar objective function values exist. This is expected since
the cost of individual line candidates or combinations of line
candidates are equal among themselves, leading to multiple
solutions with equal objective values. Since such instances are
common among all the test cases, we focus on the number of
built candidates rather than particular candidate itself for test
cases above 6 bus system. The candidates built for case 6-fs are
shown in table V. All formulations build the same candidates
and are feasible.

We further include the IEEE 9, 14, 30, 73 and 118 bus
systems from library in [32] and 24 bus system from [21]
to provide a larger test cases set. The following changes are
made to motivate the expansion. For cases 9, 14 and 30, the
generation and load values in the whole grid and for 73 and
118 bus systems, the generation and load values in a section
of the grid, are increased by a factor of 3 to motivate the
expansion. The sections are selected as the first 23 buses for
73 bus system and the first 33 buses for 118 bus system. The
buses directly connected to these sections are also included.
To limit the node numbers for candidate dc line connections,
it is assumed that they can only be installed using the existing
ac line corridors. A corridor here refers to the existing ac

branch installation and small area available around it along its
route. Three branch candidates per corridor and one converter
candidate per node are considered for which the cost are taken
as 1 pu and 3 pu respectively. For 73 and 118 bus systems,
the candidates are only provided in the selected section of the
grid. The 24 bus system (case 24) is already a TNEP test case,
so it does not require the increase in the generation and load
to motivate the expansion. The candidate preparation for this
test case is similar to 6 bus system described before. Also, the
converter specifications for all test cases are prepared based
on the assumption mentioned in section V-A. Refer to Table I
and II for a summary on the grid modification and expansion
candidates.

For case 9, all formulations provide a feasible solution
(see table III) with the same objective value. For case 14
onwards, all formulations generate infeasible reinforcements
except for LPAC in two instances. The SDP formulation does
not converge within the time limit for any test case above 9
bus system. The MINLP does not converge within the time
limit for any test case beyond and including 30 bus system.
The number of built line and built converter candidates are
shown in table VI. Among the feasible instances, all non-‘AC’
formulations build same number of candidates as ‘AC’ for case
9 and LPAC builds same number of candidates as ‘AC’ for case
14.

We use the constraint tightening approach for all infea-
sible instances. The thermal limits of ac lines are reduced
progressively, in four steps of 5 % until a feasible solution
is found. If feasible solution is not found in four steps, the
solution at the last step (i.e. 20 % line rating reduction) is
reported here. A relaxation or approximation may overestimate
the power flows in the ac branches. The constraint tightening
would remove such instances by setting a lower thermal limits
so that even an overestimation remains within the original
thermal limit. The constraint tightening is not done for SDP
because of its scalability issues.

For case 6, LPAC successfully gains the feasibility with
the same objective value as ‘AC’, but ‘DC’ solution remains
infeasible. The built candidates are indicated in table IV with
‘ct’. After constraint tightening, LPAC builds an additional
converter at node 2 and becomes feasible whereas ‘DC’
approximation builds more lines instead and still miss one
converter in obtaining feasibility. The case 6-fs and case 9 are
already feasible, hence constraint tightening is not required for
them.

After constraint tightening, all convex formulations for
case 14 achieve the objective value same as ‘AC’ solution (see
table III) and are feasible. They also build the same number of
candidates (see table VI). For case 24, all convex relaxations
and LPAC reach to feasibility at a higher objective value
than ‘AC’ solution. It is interesting to note that even though
the SOC solution proposes one dc line less than ‘AC’, SOC
formulation builds more expensive lines. This can be explained
as follows: the constraint tightening may cut through the
original feasible space with the reduced thermal rating of lines.
For case 30 and above, no benchmark to compare the results
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TABLE III
OBJECTIVE VALUES AND COMPUTATIONAL TIMES (NUMERICAL ISSUES INDICATED*)

objective value computational time (sec)
case ‘DC’ LPAC SOCBF SOCWR QC SDP ‘AC’ ‘DC’ LPAC SOCBF SOCWR QC SDP ‘AC’

case 6 483 484 595 595 595 595 595 0.34 0.31 1.69 13.47 31.3 279 3442
case 6-fs 755 755 755 755 755 755 755 0.18 0.16 0.45 3.42 2.71 72.96 5590
case 9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 0.069 0.23 0.19 0.27 0.31 26.62 59
case 14 13.0 14 12.0 12.0 12.0 * 14.0 0.18 2.05 0.43 2.74 5.65 limit 4729
case 24 320 527 494 494 510 * 638 0.42 8.93 7.52 18.39 65.74 limit 31183
case 30 23 27 24 24 24 * * 1.08 7.91 11.96 35.07 53.98 limit limit
case 73 16 25 22 22 23 * * 0.31 14.25 16.61 26.23 1050 limit limit
case118 25 27 22 22 23 * * 1.71 45.69 73.35 162 2765 limit limit

constraint tightening

case 6 515 595 NA NA NA NA NA 0.2 0.3 NA NA NA NA NA
case 14 14.0 NA 14.0 14.0 14.0 NA NA 0.12 NA 4.18 7.28 7.28 NA NA
case 24 547 662 694 694 703 NA NA 0.8 8 33 86 362 NA NA
case 30 27 28 28 27 28 NA NA 0.76 9.57 116 45.29 68.16 NA NA
case 73 26 31 27 27 27 NA NA 1.01 17.11 13.19 109 302 NA NA
case 118 31 NA 29 29 32∗(23%) NA NA 4.57 NA 194 213 limit NA NA

(Objective values are in M$ for original TNEP test cases and in pu for 9, 14, 30, 73 and 118 bus systems. Feasible solutions are marked in bold)

TABLE IV
CANDIDATES BUILT FOR CASE 6 (C-CONVERTER AND L-LINE)

built converters (X) No. of built lines
C2 C4 C5 C6 L26 L46 L25 L56

‘AC’ X X X X 1 2 - 1
SOC BFM X X X X - 3 - 1
SOC BIM X X X X 2 2 1 -
SDP X X X X 3 1 1 -
QC X X X X 1 2 - 1
LPAC - X X X 1 3 1 -
LPAC-ct X X X X 1 3 1 -
‘DC’ X X - X 1 4 - -
‘DC’-ct X - X X 4 - 2 -

feasible solutions are in bold. ct = solution after constraint tightening

TABLE V
CANDIDATES BUILT FOR CASE 6-FS (C-CONVERTER AND L-LINE)

built converters (X) No. of built lines
C2 C3 C4 C5 C6 L26 L46 L35 L23

All formulations X X X X X 2 2 3 1

is available. Instead, we comment the quality of solutions
based on the feasibility. For case 30 and case 73, all feasible
solutions are in the vicinity to each other, with maximum
difference of 1 pu among them and building almost the same
number of candidates. For case 118, the objective values of
feasible formulations after constraint tightening are higher
than the feasible LPAC solution before constraint tightening,
hence it is not the best possible solution. This can be due
to the reduction in feasibility space as mentioned above. The
objective value of QC does not reach to an optimality within
time limit and the value shown here is with 23 % gap from
incumbent. The number of candidates proposed for this case

are considerably different for among different formulations.
It is worth to mention that a lower resolution of constraint
tightening steps (< 5 % here) may able to provide better
solutions.

The computational time is of an importance since it can
indicate the scalability of formulations as problem size gets
bigger e.g. multi-period TNEP [11]. The SDP takes the most
time among all non-‘AC’ formulations. LPAC and SOC models
seem to be the computationally more efficient than QC while
resulting in feasibility in most cases.

VI. CONCLUSION

The nonlinear, non-convex TNEP problem is difficult and
computationally demanding to solve. We formulate different
linear approximations and convex relaxations for the problem
in order to find a trade-off between speed and accuracy.
Additionally, the LPAC approximations are developed for dc
grid. A number of dc grid TNEP test cases are introduced
based on the existing ac grid TNEP or OPF test cases.

Although none of the non-‘AC’ formulations are feasible
for all test cases, most convex relaxations and LPAC attain
the feasibility after the constraint tightening procedure, except
LPAC for case 73 and QC for case 118. Particularly, both SOC
models - BIM and BFM are feasible for all test cases. ‘DC’
approximation remains infeasible even after the constraint
tightening except for 118 bus system. We observe that the
constraint tightening does not always result in the best solution
but performs well to achieve the feasibility of a difficult mixed
integer problem.

From a computational point of view, SOC and LPAC
formulations are more attractive compared to QC. The MISDP
solvers are not matured yet, therefore, this formulation is not
interesting for the TNEP problem at this point of time.
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TABLE VI
NO. OF CANDIDATES BUILT FOR 9 - 118 BUS SYSTEMS (C-CONVERTER AND L-LINE)

Case 9 Case 14 Case 24 Case 30 Case 73 Case 118
C L C L C L C L C L C L

‘AC’ 2 2 3 5 4 5 * * * * * *
SOC BIM 2 2 3 (3) 3 (5) 4 (4) 1 (4) 5 (5) 9 (12) 5 (6) 7 (9) 4 (6) 10 (11)
SOC BFM 2 2 3 (3) 3 (5) 4 (4) 1 (4) 5 (5) 9 (13) 5 (6) 7 (9) 4 (6) 10 (11)
SDP 2 2 * * * * * * * * * *
QC 2 2 3 (3) 3 (5) 4 (4) 2 (5) 5 (5) 9 (13) 5 (6) 8 (9) 4 11
LPAC 2 2 3 5 3 (4) 5 (6) 5 (5) 12 (13) 6 (6) 7 (13) 5 12
‘DC’ 2 2 3 (3) 4 (5) 2 (3) 4 (5) 4 (4) 11 (15) 3 (5) 7 (11) 4 (5) 13 (16)

results after constraint tightening are shown in bracket.
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