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Abstract. Anomaly detection focuses on identifying examples in the
data that somehow deviate from what is expected or typical. Algorithms
for this task usually assign a score to each example that represents how
anomalous the example is. Then, a threshold on the scores turns them into
concrete predictions. However, each algorithm uses a different approach to
assign the scores, which makes them difficult to interpret and can quickly
erode a user’s trust in the predictions. This paper introduces an approach
for assessing the reliability of any anomaly detector’s example-wise predic-
tions. To do so, we propose a Bayesian approach for converting anomaly
scores to probability estimates. This enables the anomaly detector to
assign a confidence score to each prediction which captures its uncertainty
in that prediction. We theoretically analyze the convergence behaviour of
our confidence estimate. Empirically, we demonstrate the effectiveness of
the framework in quantifying a detector’s confidence in its predictions on
a large benchmark of datasets.

Keywords: Anomaly detection · Interpretability · Confidence scores.

1 Introduction

Anomaly detection is a central task in data mining. It involves identifying
portions of the data that do not correspond to expected normal behaviours.
From a practical point of view, anomaly detection is important as anomalies
often have significant costs in the real world. For example, fraudulent credit card
transactions [2], retail store water leaks [18], or abnormal web traffic [15].

Typically, anomaly detection is tackled from an unsupervised perspective
due to the costs and difficulties associated with acquiring labels for the anomaly
class (e.g., you will not allow expensive equipment to breakdown simply to
observe how it behaves in an anomalous state). The underlying assumption to
these approaches is that anomalies are both (i) rare and (ii) somehow different
from normal examples. Hence, anomalies may lie in low-density regions of the
instance space or be far away from most other examples. The algorithms use
these intuitions to assign a real-valued score to each example that denotes how
anomalous an example is. Usually, these anomaly scores are converted to binary
predictions (an example is normal or anomalous) by setting a threshold on the
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Fig. 1. Illustration of why confidence scores are important on three 1D toy datasets.
The top plots show the data distributions under small perturbations. The middle plots
show the anomaly scores assigned by Knno and iForest. These two models produce
non-standard scores, which are difficult to interpret and compare. The bottom plots show
the corresponding confidence scores computed using our method (see Section 3). Small
changes in the data distribution affect anomaly scores and predictions. The confidence
scores capture clearly where the models (dis)agree. The dips in the confidence scores
correspond to a transition in the predicted label of the underlying model.

scores. However, the scores for many prominent approaches, such as Knno,
iForest, and Ssdo are difficult for a human to interpret and compare. A natural
way to address this issue is to transform the anomaly scores into a probability
estimate. The standard approach is to calibrate the transformation such that
for all examples that are predicted to have a c% probability of belonging to the
anomaly class, c% of them should actually be anomalies. A user can now ignore
any predictions with a low chance of being an anomaly. However, calibration
requires labels which are generally not available in an anomaly detection setting.

The fact that anomalies are rare and unpredictable causes another issue.
Hypothetically, even if we could collect multiple datasets, each one would con-
tain distinct anomalies to which the anomaly detectors would assign different
scores. Additionally, small perturbations in the training data might cause (large)
differences in an example’s anomaly score and, consequently, a different predic-
tion. Consider the three one-dimensional toy datasets in Figure 1. The middle
row plots show the continuous anomaly scores that Knno and iForest assign
to each example in the distributions. These scores change as a result of small
perturbations in the dataset, ultimately resulting in different predictions.

This paper tackles this challenge by providing a measure of how uncertain an
anomaly detector’s predictions are on an example-wise basis. The measure will
allow a user to assess the reliability of anomaly detectors in different scenarios. We
make the following four contributions. First, we propose a notion of a confidence
measure that captures how consistent a model’s prediction would be for that
example if the training data were perturbed. Second, we propose ExCeeD
(EXample-wise ConfidEncE of anomaly Detectors), an approach that is able
to compute our confidence measure for any anomaly detector that produces a
real-valued anomaly score. The method begins by transforming the anomaly
scores to outlier probabilities using a Bayesian approach. Then, it uses these
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probabilities to derive the example-wise confidence scores. This is illustrated in
the bottom plots of Figure 1, which show the computed confidence scores for
Knno’s and iForest’s prediction that each example is anomalous. The scores
show in an interpretable way where the algorithms disagree and where they are
uncertain about their prediction. Third, we perform a theoretical analysis of
the convergence behaviour of our confidence estimates. Fourth, we perform an
extensive empirical evaluation on 21 benchmark datasets.

2 Related Work

2.1 Assigning Anomaly Scores

Several different assumptions underpin anomaly detectors, but all exploit the fact
that anomalies are rare and different than normal examples. From a geometric
perspective, this means that anomalies are far away from normal examples. From
a statistical perspective, this means that anomalies will fall in a low-density
region of the instance space. Although any model producing scores can be used,
we briefly describe three canonical unsupervised anomaly detection algorithms.

kNNO assigns an anomaly score based on the k-distance, which is the distance
between an example and its k’th nearest neighbor [14]. Examples far away
from other examples get high scores indicating they are more anomalous.

iForest assigns an anomaly score based on how difficult it is to isolate an
example from the rest of the data by iteratively splitting the data along
random dimensions [9]. Examples in low-density regions get higher scores.

OCSVM assigns an anomaly score based on the signed distance to the surface
of the hypersphere encapsulating the normal examples. Examples outside the
sphere get high scores indicating their anomalousness [16].

Because each algorithm produces a score in a completely different way, cross-
comparisons between the algorithms are difficult. Consider the example of Figure 1,
where sometimes Knno predicts anomalies while iForest does not, even though
the Knno scores are consistently lower.

2.2 From Anomaly Scores to Outlier Probabilities

A challenge with the anomaly scores produced by the aforementioned methods
(as well as many others) is that it is difficult to interpret them. For example,
understanding the k-distance requires context or domain knowledge (e.g., the
number features, what constitutes a big distance, etc.). Therefore, a possible
solution is to convert the anomaly score of an example to a probability estimate.
The standard approach is to employ Platt scaling [13]:

P(Y = 1|S = s) = 1
1 + exp(α× s+ β)

where Y is the true class for an example with anomaly score s, and α and β
are parameters that should be learned from the labeled data. Ideally, such a
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transformation should produce calibrated probability estimates. Intuitively, a
probability P(Y = 1|S = s) = c is calibrated if out of all examples with this
probability, about c percent of these examples are member of the positive class.

However, in most anomaly detection applications we lack labeled data with
which to train such a calibration model. We typically only know the contamination
factor γ which is the proportion of anomalies in the data. Hence, the standard
approach is to calibrate the transformation such that γ percent of the examples
have a probability > 0.5. Beyond the logistic calibration approach, there is a long
literature of approaches [5,7,8,10,11,17] for ensuring that this property is obtained
and we now briefly describe some prominent approaches. Isotonic Calibration [20]
is a non-parametric form of regression in which the transformation function is
chosen from the class of all non-decreasing functions. Beta Calibration [8] is based
on the assumption that scores are Beta distributed class-wise and transforms
them according to the likelihood rate.

In anomaly detection, three methods are widely used to get calibrated outlier
probabilities. The linear and squashing methods map the scores to probabilities
using respectively a linear and a sigmoid transformation [4]. The unify method
assumes that scores are normally distributed and estimates the outlier probability
through the Gaussian cumulative distribution function [6].

3 A Theoretical Framework for Assessing an Anomaly
Detector’s Example-Wise Confidence

Using an anomaly detector in practice requires converting its returned anomaly
score into a hard prediction. Typically, this is done by setting a threshold λ on
the scores. Then, any example x with a score s > λ will be classified by the
model as an anomaly. Standard approaches [9,14,16] set a threshold by analyzing
the data used to train the model. Hence, perturbing the training data would lead
to a different threshold being picked, which in turn would affect an example’s
predicted class.

To capture this potential uncertainty, we propose a notion of a detector’s
example-wise confidence in its predictions, which works with any anomaly detector
producing a real-valued scores. Intuitively, we can think of the example-wise
confidence as the probability that a detector’s prediction would change if a
different dataset was observed. More formally, we define it as follows.
Definition 1 (Example-wise Confidence). Let f : Rd → R be a function that
maps examples to anomaly scores. Given a dataset D such that |D| = n, the
model’s confidence in its prediction for an example x with anomaly score s = f(x)
can be defined as

C (Ŷ )x =
{
P(Ŷ = 1 | s, n, γ, p̂s) if Ŷ = 1
1− P(Ŷ = 1 | s, n, γ, p̂s) if Ŷ = 0

(1)

where Ŷ is the class label predicted by the anomaly detector, p̂s is the estimated
outlier probability (i.e., the probability that the example belongs to the anomaly
class), and γ is the expected proportion of positive examples.
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From now on, when we use the term confidence we will refer to P(Ŷ = 1 | s, n, γ, p̂s),
as the case when Ŷ = 0 is directly computable from the previous one. Hence,
when Ŷ = 1, high values of P(Ŷ = 1 | s, n, γ, p̂s) indicate that model is confident
in its prediction that the example is an anomaly. One would expect confidence
values around 0.5 when an example is near the decision boundary, that is on the
border between normal and abnormal behaviors. We estimate the confidence in
two steps. First, we employ a Bayesian approach to estimate the distribution
of anomaly scores. This allows us to derive an example’s outlier probability p̂s.
Second, we use the outlier probability to estimate the confidence of the anomaly
detector by considering how the combination of the observed training set and
contamination factor γ would be used to select the threshold λ for converting
anomaly scores into predictions.

3.1 Notation

Let (Ω,=,P) be a probability space, where Ω is the sample space, = represents a σ-
algebra over Ω and P is a probability measure. Let X : Ω → Rd be a multivariate
real random variable with values in the feature space Rd, and Y : Ω → {0, 1} be a
random variable identifying the class label. Assume that D is an available dataset,
which can be seen as an i.i.d. sample of size n drawn from the joint distribution
of X and Y . An anomaly detection problem is the setting where there exists a
function f : Rd → R that maps the feature points from the dataset D to a single
real value called anomaly score. A common assumption is that the function f
is measurable, so that S = f(X) is a real random variable with anomaly scores
as values. From now on, we will use the notation Dn referring to the dataset of
scores Dn = {s1, . . . , sn} = {f(x1), . . . , f(xn)}, with x1, . . . , xn ∈ D. Given an
Anomaly Detector Γ , for any example x we define the outlier probability of x as
the probability that x is anomalous according to its anomaly score s = f(x)

P(Y = 1|f(X) = f(x)) = P(Y = 1|S = s) := P(S ≤ s), (2)

where f is the function provided by Γ . Subsequently, the probability that one
example is normal can be computed as

P(Y = 0|f(X) = f(x)) = 1− P(Y = 1|S = s) = P(S > s).

3.2 A Bayesian Approach for Assigning an Outlier Probability

Our goal is to infer the true class label based on the anomaly score. Formally, for
any score s ∈ R, we can model the example’s true class given the score as the
conditional random variable Y |S = s. Based on this framework, we can estimate
an example’s outlier probability (i.e., the probability it belongs to the anomaly
class) as follows:

Ps := P((Y |S) = 1|s) = P(Y = 1|S = s) = P(S ≤ s).
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Because Y |S = s takes values in the set {0, 1}, we model its outcome using a
Bernoulli distribution:

Y |S = s ∼ Bernoulli(Ps)

where Ps is the probability of success. If we knew S’s distribution, we could
compute P(S ≤ s)–the probability that an example belongs to the anomaly class–
using the cumulative distribution function of S. Unfortunately, the distribution
of S is usually unknown which makes it infeasible to directly approximate Ps.

Our solution is to take a Bayesian approach to this problem. The key insight
is to measure the area of {S < s} by drawing samples from the real distribution.
We will view Ps as a random variable and assume a uniform prior. Theoretically,
we can derive the probability that an example belongs to the anomaly class as
follows. First, we draw one example a from the distribution of S, which simply
entails drawing an example x from X and computing its anomaly score a = f(x).
Second, we record the event as a success (i.e., b = 1) if a ≤ s and as failure (i.e.,
b = 0) otherwise. We repeat the process n times and record the total number of
successes as t and failures as n− t. In fact, the rate between successes and trials,
corrected with other factors, will approximate the outlier probability as defined
in formula 2. Thanks to Bayes’s rule we can use the following theorem.

Theorem 2. Assume that a random variable Ps follows a Beta distribution
Beta(α, β) as prior. Given the events b1, . . . , bn, which are i.i.d. examples drawn
from a Bernoulli random variable Bernoulli(Ps), then the posterior distribution
of Ps is still a Beta distribution with new parameters Beta (α+ t, β + n− t),
where t =

∑n
i=1 bi is the number of successes.

Proof. According to the hypotheses, the prior distribution of Ps is

π(q) = qα−1(1− q)β−1

B(α, β) ,

where B(α, β) is the Euler beta function. So, by using the Bayes’s rule

π(q|b1, . . . , bt) = π(q) · P(b1, . . . , bt|q)∫ 1
0 π(r) · P(b1, . . . , bt|r) dr

=
qα−1(1−q)β−1

B(α,β) · qt (1− q)n−t∫ 1
0
rα−1(1−r)β−1

B(α,β) · rt (1− r)n−t dr

= qα+t−1 (1− q)β+n−t−1∫ 1
0 r

α+t−1 (1− r)β+n−t−1 dr
= Beta (α+ t, β + n− t)

where t =
∑n
i=1 bi, π(q|b1, . . . , bn) is the posterior distribution of Ps after i.i.d.

sampling n Bernoulli(Ps) examples, and P(b1, . . . , bn|q) is the likelihood.

In our setting we assume that Ps ∼ Beta(1, 1) = Unif(0, 1). As a result, the
posterior distribution of Ps is still a Beta distribution

Ps|b1, . . . , bn ∼ Beta (1 + t, 1 + n− t) . (3)
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In order derive an estimate of the outlier probability from Ps, we take the
expectation of Ps. Since the posterior distribution is known from (3), E[Ps] can
be obtained as a function of the parameters:

p̂s := E[Ps] = 1 + t

2 + n
. (4)

In practice we cannot sample from the true distribution and instead need to
use the dataset Dn to infer the posterior distribution. Thus, when drawing an
example, we are restricted to sampling from the dataset. This limits us to drawing
n examples, that is, the total number of examples in the dataset. An additional
consideration concerns the value of t. It represents the number of successes
when sampling from Y |S = s ∼ Bernoulli(Ps). As a result, t is a practical
approximation of the real percentage θ of successes times the number of trials n

t ≈ θ · n. (5)

The reason why we use t is to obtain a corrected estimate of the real parameter
θ, which would be the exact probability value of Y |S = s if it were known.

3.3 Deriving a Detector’s Confidence in its Predictions

Although the second step of our framework works with any approach that
converts anomaly scores into outlier probabilities, here p̂s refers to the definition
in Equation 4. Deriving the confidence value requires estimating the proportion
of times that an example will be predicted as being anomalous by the chosen
anomaly detection algorithm. This requires analyzing how to set the threshold λ
for converting anomaly scores to predictions. Typically, anomaly detectors exploit
the contamination factor γ to pick the threshold λ. Note that γ may be known
from domain knowledge (e.g., historical anomaly rates) or it can be estimated
from partially labeled data (c.f. [12]). There are two different scenarios:

γ ∈ (0, 1): The training set contains some anomalies. Here, the standard
approach is to compute the expected number of anomalies in the training set
as k = γ × n.1 Then, it ranks the training examples by their anomaly scores
and sets the threshold to be the value in position k.

γ = 0: The training set contains only normal examples. In this case, the
threshold has to be equal to the maximum anomaly score in the training set.
Picking a lower value would result in a false positive on the training data.

In both cases the chosen threshold depends on the distribution of anomaly
scores in the training set. In turn, these scores depend on the available data
sample. That is, if we drew another training set from the population, the chosen
threshold may change. This leads to our key insight: the task of measuring
the model’s confidence can be formulated as estimating the probability that an
example with score s will be classified as an anomaly based on a theoretical
1 We assume that k ∈ N, taking the floor function when needed.
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sample Dn drawn from the population. Formally, given the training set size
n and the contamination factor γ, we want to compute the probability that
an example x with score s = f(x) and outlier probability p̂s will be classified
as an anomaly when randomly drawing a training set of n examples from the
population of scores. In practice, the confidence can be seen as the probability
that the chosen threshold λ value will be less than or equal to the score s. This
probability depends on our two cases for picking the threshold:

Contamination factor γ ∈ (0, 1). In this case by drawing theoretically from the
Bernoulli distribution of Y |S = s with parameter Ps, we should get at least
n−k+ 1 successes to classify s as anomaly, where k = γ×n and “success” means
that the drawn value is lower than s. As a result, our confidence is defined as:

P(Ŷ = 1 | s, n, γ, p̂s) =
n∑

i=n(1−γ)+1

(
n

i

)
p̂is(1− p̂s)n−i (6)

where p̂s = E[Ps], which is estimated using our Bayesian approach for computing
an example’s outlier probability (see Equation 4). Hence, our confidence estimate
explicitly relies on our outlier probability.

Contamination factor γ = 0. In this case, the threshold is the maximum score in
the training set, λ = max{si}ni=1. We need to compute the probability that an
example with score s and outlier probability p̂s will be classified as an anomaly
when randomly drawing n examples from the normal population. It is quite
similar to the previous case, with the only difference being that no failures2 are
allowed. So, when γ = 0 we need to denote the confidence as

P(Ŷ = 1 | s, n, 0, p̂s) = (p̂s)n (7)

where again p̂s = E[Ps] comes from our Bayesian estimate of the example’s outlier
probability (see Equation 4.)

4 Convergence Analysis of our Confidence Estimate

This section analyzes the behaviour of our confidence estimate. In particular,
given a fixed anomaly score s for a test example, we want investigate how our
confidence in the model’s prediction changes as the number of training examples
tends towards infinity. We would expect that as the size of the training set
increases, our confidence estimate should converge. Again, we analyze the two
cases based on whether or not the training set contains any anomalies.

2 A failure would correspond to an training example having a higher anomaly score
than the chosen threshold. Given the assumption that all training examples are
normal, this would indicate a false positive.
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4.1 Convergence Analysis when γ ∈ (0, 1)

In this case, when we set the threshold based on a fixed dataset Dn, we can
derive our confidence for a test example with score s by merging Eq. 4 and 6:

P(Ŷ = 1 | s, n, γ, p̂s) =
n∑

i=n(1−γ)+1

(
n

i

)(
1 + t

2 + n

)i(1 + n− t
2 + n

)n−i
(8)

where t represents the successes in the Bayesian learning phase (section 3.2).
This leads to the question: how does the confidence about the class prediction

for a score s behave as the number of training examples n goes towards +∞? In
order to formally analyze this, we rewrite Formula 8 as

P(Ŷ = 1 | s, n, γ, p̂s) = FT (n)− FT (n− γn)

where the sum in Equation 8 is the cumulative distribution of a binomial random
variable T ∼ B(n, γn, p̂s) with n trials, γn successes, and probability p = p̂s.
When n increases, the central limit theorem yields:

P

(
T − n p̂s√
n p̂s(1− p̂s)

≤ c

)
→ Φ(c) for n→ +∞, ∀c ∈ R.

Consequently, assuming that n is large enough, we assert that, ∀c ∈ R,

P (T ≤ c) = FT (c) ≈ Φ
(
c− n p̂s + 0.5√
n p̂s(1− p̂s)

)
,

where +0.5 is a correction due to the continuity of the Gaussian variable. Thus,
the confidence can be approximated by the cumulative distribution function of a
Gaussian variable T ∗ with mean µ = n · p̂s + 0.5 and variance σ2 = n · p̂s(1− p̂s),

T ∗ ∼ N (n p̂s + 0.5, n p̂s(1− p̂s)).

Therefore:

P(Ŷ = 1 | s, n, γ, p̂s) = FT (n)− FT (n− γn)

≈ Φ

(
n− n p̂s + 0.5√
n p̂s(1− p̂s)

)
− Φ

(
n(1− γ)− n p̂s + 0.5√

n p̂s(1− p̂s)

)

= P (n(1− γ) ≤ T ∗ ≤ n) = P
(

(1− γ) ≤ T ∗

n
≤ 1
)
.

Next, we analyze the behaviour of T
∗

n as n→∞ in order to interpret the final
result. Since n ∈ N, it still follows a normal distribution with new parameters:

E
[
T ∗

n

]
= 1
n
E[T ∗] = p̂s −

1
2n = 1 + t

2 + n
− 1

2n ;

Var
[
T ∗

n

]
= 1
n2 Var[T ∗] = p̂s(1− p̂s)

n
= 1 + n− t
n(2 + n) .
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Since the mean and the variance of T
∗

n are bounded (they both are decreasing
sequences when n increases), the sequence of Gaussian random variables T∗

n
converges in distribution to a Gaussian random variable parameterized by the
limit of the mean and the limit of the variance, respectively:

lim
n→∞

E
[
T ∗

n

]
= θ, lim

n→∞
Var

[
T ∗

n

]
= 0,

where θ is defined in Equation 5. Hence, when n → +∞, the limit random
variable is normally distributed with mean θ and variance 0, which means the
only value it assumes is θ, the true outlier probability (see the end of section 3.2).
Formally, calling the limit degenerate random variable θ∗,

lim
n→∞

P(Ŷ = 1 | s, n, γ, p̂s) = P ((1− γ) ≤ θ∗ ≤ 1) .

Intuitively, this means that as the number of training examples goes to infinity
the population is perfectly estimated and represented by the sample, which yields
two cases. In the first case, the true outlier probability θ is greater than 1− γ.
Roughly speaking, the expected proportion of normal examples (1 − γ) is not
high enough to yield a threshold value less than the considered score s. Hence,
the confidence will be 1, because P ((1− γ) ≤ θ∗ ≤ 1) = 1 since θ∗ takes the
constant value θ and the inequalities are satisfied. In contrast, in the second case
the inequalities are not respected, meaning that θ does not fall inside the interval
[1− γ, 1]. Hence, in this scenario the proportion of normal examples is such that
the value of the threshold must be greater than s and, as a result, the confidence
is 0 when predicting class 1.

At the end, the limit of the confidence that s is predicted to be an anomaly is

lim
n→∞

P(Ŷ = 1 | s, n, γ, p̂s) =
{

1 if θ ≥ 1− γ;
0 if θ < 1− γ.

This corresponds to our intuition of what should occur when given an infinite
number of training examples.

4.2 Convergence Analysis when γ = 0

In this analysis, the main hypothesis is that the training set only contains
normal examples, which corresponds to learning a one-class model. Hence, only
a representative sample of the normal class can be used to train the model.

The problem we tackle is: Given a true anomaly with score s∗, how confident
will the model be in predicting that it belongs to the anomaly class? Our intuitions
might be misleading in this case. In fact, since the contamination factor is 0, the
threshold will be set as the highest observed score in the training set and the
definition of confidence slightly changes. In this case no failures are allowed (i.e.,
all training examples must have a score less than the chosen threshold), once
one training example has a score greater than s∗, this implies that the chosen
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threshold will be greater than s∗ as well. In practice, if s∗ is always greater than
or equal to the anomaly score for each training example, the model will always
predict that the test example is anomalous but its confidence might not be so
high. The reason is simple: since the sample Dn represents the normal class, the
model cannot learn from the anomalies. So, drawing a normal example with a
high anomaly score is theoretically possible. Hence, for a fixed anomalous test
example, we need to analyze how the model’s confidence in its prediction for the
example changes as the number of normal examples in the training increases.

Theorem 3. Given a dataset Dn with n scores and given a score s∗ such that
s < s∗ ∀s ∈ Dn, fixed γ = 0, the expected rate of anomalies in Dn, then

P(Ŷ = 1 | s∗, n, γ = 0, p̂s∗) −→ 1
e
≈ 0.368 for n→ +∞.

Proof. Assuming that Dn contains no anomalies, we get t = n successes. This
yields an outlier probability of:

p̂s∗ = E[Ps∗ ] = 1 + t

2 + n
= 1 + n

2 + n
.

Then, using the estimated probability that one score is less than or equal to
s∗, we can compute the confidence using the hypothesis that the contamination
factor in the training set is 0, meaning that no failures are allowed:

P(Ŷ = 1 | s∗, n, γ = 0, p̂s∗) = (p̂s∗)n .

In fact, if we drew a score greater than s∗ from the training set, then the threshold
would be greater than s∗ (predicted class equal to 0). Let’s now analyze the limit:

lim
n→+∞

P(Ŷ = 1 | s∗, n, γ = 0, p̂s∗) = lim
n→+∞

(p̂s∗)n = lim
n→+∞

(
1 + n

2 + n

)n
= lim
n→+∞

(
2 + n− 1

2 + n

)n
= lim
n→+∞

[(
1 + −1

2 + n

)2+n
·
(

1 + n

2 + n

)−2
]

= 1
e
,

where the first factor is a notable limit and converges to 1
e , whereas the second

term converges to 1 because of the rate of polynomials of degree 1.

This can be understood as follows. While the outlier probability for a true
anomaly goes to 1 when n→ +∞, the number of normal examples in the training
data also increases. Thus, we are more likely to observe unlikely events, i.e., the
training set containing a normal example with a high anomaly score.

5 Experiments

The goal of our empirical evaluation is to: (1) intuitively illustrate how our
confidence score works; (2) evaluate the quality of our confidence scores; and (3)
assess the effect of using our Bayesian approach for converting anomalies scores
to outlier probabilities on the quality of the confidence scores.
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Table 1. The 21 benchmark anomaly detection datasets from [1].

Dataset # Examples # Vars γ Dataset # Examples # Vars γ

ALOI 12384 27 0.030 PenDigits 9868 16 0.002
Annthyroid 7129 21 0.075 Pima 625 8 0.200
Arrhythmia 450 259 0.457 Shuttle 1013 9 0.013
Cardiotocography 1734 21 0.050 Spambase 3160 57 0.200
Glass 214 7 0.042 Stamps 340 9 0.091
HeartDisease 270 13 0.444 Waveform 3443 21 0.029
Hepatitis 80 19 0.163 WBC 454 9 0.022
Ionosphere 351 32 0.359 WDBC 367 30 0.027
Lymphography 148 19 0.040 Wilt 4655 5 0.020
PageBlocks 5473 10 0.102 WPBC 198 33 0.237
Parkinson 60 22 0.200

5.1 Experimental Setup

Our experimental goal is to evaluate ExCeeD’s ability to recover the example-
wise confidences of an anomaly detector as opposed to evaluating predictive
performance or quality of calibration. Hence, metrics like the AUC or Brier score
are not suitable for assessing how small perturbations in the training data affect
the example-wise predictions of the detector. For example, AUC would treat
models that flipped the positions of two anomalies (normals) in the ranking
produced by each model as being equivalently performant. In contrast, we are
explicitly interested in understanding the number and magnitude of such flips.
Moreover, our approach for converting the anomaly score to an outlier probability
is a monotone function and hence does not affect the AUC of the model. We
consider a confidence score to be good if it accurately captures the consistency
with which a detector predicts the same label for an example. Hence, we expect
a detector to predict for all examples subject to a confidence value of C (Ŷ )x
the same label C (Ŷ )x-percent of the time when retraining the detector multiple
times with slightly perturbed training datasets. Therefore, we propose a novel
method for evaluating an anomaly detector’s example-wise confidence as an
indication of how consistently it predicts the same label for that example. The
method (1) draws 1000 sub-samples from the training data with the size of
each sub-sample randomly selected in [0.2 · n, n], (2) trains an anomaly detector
on each sub-sample, (3) uses each detector to predict the class labels of every
example in the test set, and finally (4) computes for each test set example x the
frequency Fx with which the detector predicted the same class.

We carryout our study on a benchmark consisting of 21 standard anomaly
detection datasets from [1]. The datasets vary in size, number of features, and
proportion of anomalies (Table 1). Given a benchmark dataset, we can now
evaluate our confidence scores as follows. First, we split the dataset into training
and test sets with stratified 5-fold cross-validation. Then, we take the class-
weighted average of the L2 differences between the confidence score C (Ŷ )x and
the earlier computed frequency Fx of each test set example x, yielding:

error(C , F ) = 1
2|TN |

∑
x∈TN

(
C (Ŷ )x − Fx

)2
+ 1

2|TA|
∑
x∈TA

(
C (Ŷ )x − Fx

)2
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Table 2. Comparison of ExCeeD with the baselines. The table shows: the weighted
average error(C , F ) rank ± standard deviation (SD) of each method; the weighted
average error(C , F ) ± SD of each method (computed as in [3]); and the number of
times ExCeeD wins (lower error), draws, and loses (higher error) against each baseline.

Method Weighted avg. error(C , F ) rank # times ExCeeD Weighted avg. error(C , F )

± SD of each method Wins Loses Draws ± SD ×102 of each method

ExCeeD 1.429± 0.844 - - - 1.972± 2.637
Baseline 2.270± 0.641 52 3 8 2.679± 2.931
ExCeeD-Unify 4.103± 2.040 55 2 6 15.13± 16.29
Isotonic 5.151± 1.482 59 2 2 17.92± 13.68
Beta 5.421± 1.285 62 0 1 23.13± 29.65
Logistic 5.532± 1.525 62 0 1 23.89± 29.69
ExCeeD-m 5.937± 2.709 59 1 3 24.95± 37.38
ExCeeD-Linear 6.802± 1.350 61 2 0 31.47± 23.15
ExCeeD-Squash 8.357± 1.271 61 2 0 45.97± 36.67

where TN are the true test set normals and TA the true test set anomalies. We
take a class-weighted average because the large class-imbalances that characterize
anomaly detection datasets, would otherwise skew the final error. We report
averages over the folds. The underlying anomaly detector is either Knno, iForest,
or Ocsvm. This results in 21× 3 = 63 experiments for each method. We compare
9 approaches, which can be divided into three categories:

Our method. ExCeeD as introduced in Section 3.3
Naive baselines. ExCeeD-m, this is ExCeeD with a different prior distribution
Beta(γ ·m,m · (1− γ)) where γ is the contamination factor and m is such
that γ ·m = 10 (suggested in [19]). A Baseline approach which assumes the
confidence scores to be equal to the model’s predictions.

Outlier probability methods. The unify [6], linear, and squash methods for esti-
mating the outlier probabilities p̂s from anomaly scores. These probabilities
are not confidence scores. To obtain true confidence scores, we have to com-
bine each of these methods with the second step of our framework, yielding
ExCeeD-Unify, ExCeeD-Linear, and ExCeeD-Squash.

Calibration methods. The Logistic [13], Isotonic [20], and Beta [8] methods to
empirically estimate calibration frequencies. Although these methods do not
compute confidence scores, probabilistic predictions are often (incorrectly)
interpreted as such and therefore included for completeness.

5.2 Experimental Results

To illustrate the intuition beyond our approach, Figure 2 compares how the
confidence scores computed by the different methods evolve as we gradually
move an example from the large normal central cluster to the small anomaly
cluster in the bottom right (using Knno). For ExCeeD, the confidence scores
start out high when the example is close to the cluster of normal points and the
prediction is 0 (i.e., normal). The confidence gradually decreases as the example
3 Implementation available at: https://github.com/Lorenzo-Perini/Confidence_AD.

https://github.com/Lorenzo-Perini/Confidence_AD
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Fig. 2. Illustration of how moving an example along the purple arrow in the dataset
(left plot) affects its outlier probability (bottom-right plot) and its confidence score
derived from this probability (top-right plot). The underlying anomaly detector is
Knno. Left of the vertical black line, the detector predicts that the example belongs to
the normal class. Because at first the example is embedded in the cluster of normal
examples (the green points in the dataset), the initial confidence score is high. However,
the detector’s confidence in its prediction decreases as the example moves away from
the normal points. Finally, it increases again when the example nears the anomalies
(the red points) and the example is predicted to be an anomaly. ExCeeD’s confidence
score captures our intuitions that the prediction should be confident (i.e., confidence
score near 1.0) when the example is very obviously either normal or anomalous and
uncertain (i.e., confidence score is near 0.5) when the example is equidistant from the
normal and anomalous examples.

moves away from the normal cluster, eventually reaching about 50% when it
is halfway between the normal and abnormal clusters. Once the example is far
enough away from the normal cluster, the confidence increases again as the model
changes its prediction and becomes more certain that the example is anomalous.
Using ExCeeD with its Bayesian outlier probability clearly captures the gradual
change in confidence we would intuitively expect in this scenario.
Question 1: Does ExCeeD produce good confidence scores? Table 2
summarizes the comparison between ExCeeD and the baselines in terms of
error(C , F ). Our method outperforms all baselines and has the lowest average
error rank over the 63 experiments. It also achieves lower errors in at least 54
of the 63 experiments compared to every other method and achieves the lowest
weighted average error. When the results are split out per underlying anomaly
detector (Table 3), ExCeeD still outperforms all baselines, winning against each
baseline at least 20, 18 and 13 out of 21 times when the detectors are, respectively,
Knno, iForest and Ocsvm.

Question 2: Does the Bayesian approach to estimate outlier probabil-
ities contribute to better confidence scores? Our confidence score can be
computed from any outlier probability measure. To evaluate specifically how our
proposed Bayesian approach for estimating the outlier probabilities contributes
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Table 3. Comparison of ExCeeD with the baselines, split out per anomaly detector
(Knno, iForest, and Ocsvm). The table presents the number of times ExCeeD wins
(lower error), draws, and loses (higher error) vs. each baseline.

Method Knno: # of iForest: # of Ocsvm: # of

Wins Draws Losses Wins Draws Losses Wins Draws Losses

ExCeeD - - - - - - - - -
Baseline 21 0 0 18 0 3 13 3 5
ExCeeD-Unify 21 0 0 18 0 3 16 2 3
Isotonic 20 0 1 21 0 0 18 2 1
Beta 21 0 0 21 0 0 20 0 1
Logistic 21 0 0 21 0 0 20 0 1
ExCeeD-m 20 0 1 19 0 2 20 1 0
ExCeeD-Linear 21 0 0 21 0 0 19 2 0
ExCeeD-Squash 21 0 0 21 0 0 19 2 0

to the confidence scores, we simply compare ExCeeD with the ExCeeD-Unify,
ExCeeD-Linear, and ExCeeD-Squash baselines. The results are summarized
in Tables 2 and 3. The Bayesian subroutine of ExCeeD to compute the outlier
probabilities outperforms the three baselines by a substantial margin, obtaining
lower errors in respectively 55, 61, and 61 out of 63 experiments, indicating its
effectiveness.

6 Conclusions

We proposed a method to estimate the confidence of anomaly detectors in their
example-wise class predictions. We first formally defined the confidence as the
probability that example-wise predictions change due to perturbations in the
training set. Then, we introduced a method that estimates the confidence using a
two step approach. First, we estimate smooth outlier probabilities using a Bayesian
approach. Second, we use the estimated outlier probabilities to derive a confidence
score on an example-by-example basis. A large experimental comparison shows
that our approach can recover confidence scores matching empirical frequencies.
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