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Abstract 
 
Machine learning (ML) has been increasingly used within cardiology, particularly in the domain 
of cardiovascular imaging. Due to the inherent complexity and flexibility of ML algorithms, 
inconsistencies in the model performance and interpretation may occur. Several review articles 
have been recently published that introduce the fundamental principles and clinical application of 
ML for general cardiologists. The current document builds on these introductory principles and 
outlines a more comprehensive list of crucial responsibilities that need to be completed when 
developing ML models. The document thus aims to serve as a scientific foundation to aid 
investigators, data scientists, authors, editors, and reviewers involved in machine learning 
research with the intent of uniform reporting of ML investigations. An independent 
multidisciplinary panel of ML experts, clinicians, and statisticians worked together to review the 
theoretical rationale underlying seven sets of requirements that may reduce algorithmic errors 
and biases. Finally, the document summarizes a list of reporting items as an itemized checklist 
that highlight steps for ensuring correct application of ML models and the consistent reporting of 
model specifications and results. It is expected that the rapid pace of research and development 
and the increased availability of real-world evidence may require periodic updates to the 
checklist.  
 

Keywords: Machine Learning, Artificial Intelligence, Reporting Items, Checklist, 
Cardiovascular imaging 

 
Abbreviations: 
AI, Artificial intelligence 
ML, Machine learning 
 
Highlights: 

• Algorithmic complexity and flexibility of ML techniques can result into inconsistencies 
in model reporting and interpretations. 

• The PRIME Checklist provides seven items to be reported for reducing algorithmic errors 
and biases. 

• The checklist aims to standardize reporting on model design, data, selection, assessment, 
evaluation, replicability and limitations. 

• As artificial intelligence and ML technologies continue to grow, the checklist would need 
periodic updates in future. 
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In 2016, during a two day Think Tank meeting, The American College of Cardiology's 

Executive Committee and Cardiovascular Imaging Section Leadership Council initiated a 

discussion regarding the future of cardiovascular imaging among thought leaders in the field (1). 

One of the goals was focused on machine learning (ML) tools and methods that embrace data-

driven approaches for scientific inquiry. The 2016 document stressed the creation and adoption 

of standards, the development of registries, and the use of new techniques in bioinformatics. 

Furthermore, the imaging community’s unfamiliarity with the approach was cited as a potential 

barrier to widespread adoption. In the recent years, the field of cardiac imaging has seen a 

remarkable burst of innovation with the use of ML, demonstrating powerful algorithms that start 

impacting the ways clinical and translational research is designed and executed (2-15). 

ML is a subfield of artificial intelligence (AI) where an algorithm automatically discovers 

patterns of data in the datasets without using explicit instructions. Several recent state-of-the-art 

review articles have focused on providing introductory concepts regarding ML algorithm 

applications for general cardiologists (3, 8, 16, 17). While ML is creating headlines in medical 

journals, congress, and on the web, considerable uncertainty and debate have arisen around 

topics such as problems with real-world data sources, the inconsistent availability of labeled data 

and outcome information, bias injection, inaccurate measurements, reproducibility, lack of 

external validation, and insufficient reporting, which contribute to hindering the reliable 

assessment of prediction model studies and reliable interpretations of the results by clinicians. 

This Proposed Recommendations for Cardiovascular Imaging Related Machine Learning 

Evaluation (PRIME) Checklist aims to provide general framework as reference in guiding 

scientific work for investigators, data scientists, authors, editors, and reviewers involved in 

machine learning research in cardiovascular imaging. The goal of the PRIME Checklist 
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document is to standardize the application of artificial intelligence (AI) and ML, including data 

preparation, model selection, and performance assessment. The document provides a set of 

strategic steps towards developing a pragmatic checklist (Table 1), which may allow consistent 

reporting of machine learning models in cardiovascular imaging studies. To further determine its 

ease of use and applicability, we illustrate the application of checklist developed in PRIME 

Checklist for two recent articles that developed ML models in cardiovascular imaging 

(Supplementary Table S1).  

 

1. Designing the Study Plan 

Defining the goal of the analysis is a key first step that informs many downstream decisions as to 

whether to use machine learning at all including the presence or absence of labeled data for 

supervised or unsupervised learning. These informed decisions can alter the approach to model 

training, model selection, development, and tuning. 

Determining the appropriateness of machine learning to the dataset  

The first question researchers should address is whether the ML approach could be applicable 

and beneficial to their study. There is overlap between traditional statistics and ML, but they 

differ regarding the extent of the assumptions and the formulation of the methods to either 

predict or make inferences. If the dataset is relatively small (i.e., fewer than hundreds of sample 

per class for “average” modeling problems), then overfitting becomes a much bigger concern 

resulting in models that fail to generalize well for unseen instances (18). Similarly, if variables 

that are important to modeling the data are missing or if the model is too simple, the resulting 

ML model may underfit the data, thus producing less than optimal results (18). Statistical 

analyses rely on simpler models that are not necessarily optimized to the specific data under 
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observation, and are therefore less prone to overfitting, at the price of lower performance if the 

problem is complex (19). On the contrary, datasets with large numbers of features, on the order 

of thousands or those having many irrelevant or redundant features, with regard to a given task 

may just as easily lend to overfitting. ML is especially useful where the data are unstructured, 

feature selection or exploratory analyses are preferred to identify meaningful insights. As such, 

the learning algorithm may find patterns in the data to generate a homogenous fraction and 

identify relationships in a data-driven manner beyond the a priori knowledge or existing 

hypotheses (3). While the use of advanced machine learning algorithms may be better suited for 

handling big or heterogeneous datasets, it comes at the cost of the interpretability, complexity, 

and the ability to draw a causal inference. Caution should be taken against causally interpreting 

results derived from models designed primarily for prediction. For tasks where the goal is to 

establish causality, the techniques that are commonly used in “traditional” biostatistics, including 

statistical analyses methods such as propensity score matching, or bayesian inference, maybe 

better suited; however, newer methods involving ML algorithms are being developed for causal 

inferences (20, 21).   

 

Understanding and Describing the Data 

Irrespective of whether ML tools or statistical analysis methods are used, it is crucial to 

understand and describe the data available for analysis to draw appropriate conclusions, whether 

it is tabular, images, time-series data, or a combination. Important considerations about the data 

include the availability of data that is representative of the target population, the method used to 

obtain data, and the resultant biases that may influence the conclusions that can be drawn from 

the data. Describing the data can also help understand the relevance to the target population. The 
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method of data collection, including the sampling method, is also important, as bias may be 

introduced from systematic error, coverage error, or selection. Various guidelines and associated 

checklists for medical research have been established to aid in the reporting of relevant details 

about the data, depending on the study design (22). Clearly describing the data preprocessing or 

data cleaning methods used is essential to enable reproducibility. 

It should be acknowledged that all ML or statistical algorithms are guided by basic data 

assumptions; an independent and identical distribution is an important assumption where the 

random variables are mutually independent and have the same statistical distribution and 

properties. Methods to check for the model assumptions, such as learning curve (23), diagnosing 

bias and variance (24) or error analyses, may be required.  

 

Defining the process 

When building ML models, it is crucial to specify the inputs (e.g., pixels in images, a set of 

parameter values, and patient information), and desired outputs (e.g., object categories and the 

presence or absence of disease, an integer representing each category, the probability for each 

category, the prediction of a continuous outcome measurement, transformed pixel data) that are 

required. While defining outputs is essential for supervised learning approaches, unsupervised 

learning approaches may also benefit from defining the output that is desired for the task to 

select an appropriate model. Some tasks, once well-defined, can only be achieved using certain 

types of algorithms. For example, image recognition tasks from raw pixel/image data may 

require the extraction of the optimal features from the data, which is intrinsically performed by 

deep neural networks and goes beyond the use of hand-crafted features as input. At the 

conceptual level, deep learning works by breaking a complex task (e.g., identifying a tumor or 
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other abnormalities in organs/tissue) into simple fewer abstract tasks. For example, if the task is 

to identify a square from other geometric shapes in an image, this task can be divided further into 

smaller nested sub-steps i.e., by first checking if there are four lines associated with a shape or 

not. Alternately, one could check if lines are inter-connected and perpendicular to each other and 

whether they are closed or not and so on in a step-by-step hierarchical fashion. After the 

consecutive hierarchical identification of complex task, deep-learning approaches automatically 

find out the features that are important for solving the problem. It is generally preferable to start 

by defining the overall broader analysis, necessary to accomplish the task of interest, and 

dividing it into several sub-tasks. Defining the problem or task as precisely as possible can also 

help guide the data annotation strategy and model selection. Once the data analysis objective has 

been identified and the inputs/outputs have been defined for each task, it is easier to determine 

the appropriate models for the analysis pipeline (Figure 1). 

 

  

Strategic steps for developing the checklist: 

• Identify and assess if machine learning could be appropriate.  

• Define the objectives of machine learning to achieve the overall goal.  

• Understand and describe the data.  

• Identify input and target variables.  

• Describe the baseline data and understand biases that may exist 
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2. Data Standardization, Feature Engineering and Learning  

Data preparation, standardization and feature extraction is key to the success of model 

development. It ensures that the data format is appropriate for machine learning, the utilized 

variables carry relevant information for solving the problem at hand and the learning system is 

not biased towards a subset of the variables or categories in the database. 

 

 Data format   

To analyze the data of N patients (also called ‘observations’), each with M different 

measurements (also called ‘variables’ or ‘dimensions’), e.g., ejection fraction, body mass index 

(BMI), and image pixels/voxels, by using an ML algorithm, a data matrix X should first be 

constructed such that the rows of this data matrix correspond to the observations and the columns 

correspond to the variables (Figure 2). Depending on the database and the problem at hand, X 

can be either a ‘wide’ (Figure 2a) or a ‘tall’ (Figure 2b) data matrix. In the former case, the 

number of observations is much smaller than the number of variables (N << M; Figure 2c), while 

in the latter, there is a large group of observations, but each observation has only a few variables 

(N >> M; Figure 2d). 

Generating a data matrix from cardiac images can be performed either on entire images 

or on selected regions of the images, depending on the learning purpose. When the goal is to use 

a learning algorithm for modeling the global characteristics of the images, hand-crafted features 

(e.g., radiomics) extracted based on all the pixels of selected regions of a given image are 

considered to be the variables of one observation (Figure 2c), which typically leads to a wide 

data matrix. On the contrary, to model regional image characteristics, however, a region of 

interest (ROI) or patch consisting of a small group of pixels, thus more easily yielding a tall data 
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matrix (Figure 2d). Further, a series of techniques (e.g., convolution, max pooling or patch-based 

methods) can further be applied in reducing the size of the image-data matrix to highly 

informative elements, which often results in a tall/thin matrix, either for classification or for 

pattern recognition task to identify key regions of interest (7, 25). For example, a data matrix 

generated by using, say, a single frame from longitudinal, 4 chamber or short-axis view of the 

heart that is 512x512 pixels in size for a total of N patients would result in creating a N x (5122) 

size matrix for input into deep learning algorithms. 

 

Data preparation 

To analyze cardiac images in a ML framework, some preprocessing stages are usually carried 

out. The irrelevant areas of the images can be removed in a ‘cropping’ stage to focus on learning 

from useful regions and to prevent learning from extraneous regions (which can also contribute 

to leakage, as discussed below). If the images that are acquired from a group of subjects have 

different sizes, they typically should be ‘resized’ first (26) to a reference image size to construct 

a data matrix with the same number of variables. More advanced techniques from computational 

atlases are also necessary to align the anatomy-based data of each subject to a common geometry 

and temporal dynamics, as spatiotemporal misalignment of input images will increase variance 

in the input of neurons of a neural network thereby slowing its ability to learn relevant features 

(27, 28). Another common preprocessing stage is ‘noise removal’, which helps a learning 

algorithm to better model the essential characteristics of the images. When the acquired images 

have poor contrast, a ‘histogram equalization’ (26) technique can be used to adjust the intensities 

of the pixels and to increase the contrast of a low contrast region, thus facilitating its 

interpretation and analysis. The pixel intensities can also be manually adjusted during image 
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acquisition. An example is the changing of the dynamic range of echocardiographic images by 

an operator. Techniques may also be applied to correct the differences in slice thickness, grey 

level distribution or even image resolution and different imaging protocols (contrast / non 

contrast; low dose / high dose).  Deep learning techniques, which are robust with regards to 

image quality, may need to be employed. For CT and MRI images a particular window and level 

settings may be applied before the deep learning training and normalized to the full intensity 

ranges.    

In cardiovascular imaging, data samples are often represented in 3D and 4D formats 

which currently may present challenges for the deep learning techniques due to the constraints 

posed by computing resources related to image sampling as well as large number of input 

variables. Nevertheless, efficient deep learning techniques have been developed for video 

analysis and these can be potentially adapted to the direct interrogation of 3D or 4D data often 

seen in echography, nuclear cardiology or CT (29). An alternative approach to deal with complex 

multidimensional data is to provide an intermediate simplified image representation. In cardiac 

imaging, often a bull’s eye representation (aka ‘polar map’) is used for the projection of 3D or 

4D image data into a simple 2D (or 2D+time) format.  For example, a bull’s-eye representation 

approach has successfully been implemented for deep learning of nuclear cardiology studies (6, 

30, 31). It allows data normalization from multiple scans and disparate sources such as 

motion/thickening, perfusion or flow. Such approaches could also be applied to other 

cardiovascular modalities.       

Thus, data preparation step aids in normalizing and compressing images, with respect to 

their intensities, anatomical representation and viewpoint etc., across a given study prior to their 

entry into the ML framework. This process ensures that the algorithm spends more time and 
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capacity learning the features that are important, rather than trying to rectify issues related to 

intensities or noise levels in the image data. Size of the images can also be reduced in order 

decrease memory requirements.  

 

Feature engineering and learning 

The next stage after data preparation is extracting a set of ‘features’ from the data matrix to be 

later used as the input to the learning methods. Feature extraction helps to overcome the 

following two main problems that can limit the efficient performance of a learning framework: 

(i) Curse of dimensionality: When the data matrix is wide, the variable/feature space of the data 

can be referred to as ‘high-dimensional’. This may lead to an algorithm which fails to learn 

essential characteristics of the data due to its complexity and poor generalization power when 

dealing with unseen data — a phenomenon that is referred to as the ‘curse of dimensionality’ 

(32, 33). To tackle these problems, the number of observations should increase significantly with 

the data dimensionality. For example, in pattern recognition, a typical rule of thumb is that there 

should be at least 5 training examples for each uncorrelated dimension in the representation (34). 

Moreover, it has been previously suggested that the sample to feature ratio should be between 5-

10 depending upon the complexity of the classifier (35-36). However, a significant increase in 

the number of observations is not always possible, especially for medical data/studies, given that 

it necessitates the collection of data from a large group of patients. This curse of dimensionality 

is one of the main reasons why having a large database is desirable to build an efficient learning 

algorithm. 

(ii) Correlated variables: When a database includes correlated variables, a subset of the 

variables that are mutually uncorrelated may be sufficient to learn the data characteristics 
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effectively (32). Indeed, adding correlated variables to a database will only bring redundant 

information and does not help the learning algorithm to achieve a better understanding of the 

data. For the imaging data for example, neighboring pixels typically have similar values and are 

highly correlated (37).  

Given the curse of dimensionality, learning process of algorithms cannot work effectively 

in data with too many features. Techniques to reduce the number of variables while retaining the 

most relevant information are critically important; a process called ‘feature extraction’ and 

‘dimensionality reduction’. It can be performed either manually using expert knowledge or by 

algorithms such as principal component analysis or multifactor dimensionality reduction (32–

34). The result of the feature extraction process should be a compact set of (ideally uncorrelated) 

features or variables in the form of a tall matrix that encodes the essential characteristics of the 

data. 

The available approaches for extracting features from the image data can be divided into 

the following three broad categories (Figure 3): (i) handcrafted methods (e.g., local binary 

patterns (LBP) (38) and scale invariant feature transform (SIFT) (39)), (ii) classic ML methods 

for dimensionality reduction (e.g., PCA (40), independent component analysis (ICA) (41), or  

ISOMAP (42)) and (iii) deep learning methods (43). The methods in the first two categories are 

manually designed to extract specific types of features from the data, while in the last one, the 

features are learned from the database itself. Moreover, in the case of deep-learning, techniques 

such as max-pooling provide effective ways of down-sampling the image size in each layer, 

eliminating the need for feature extraction and improving overall training performance (25). 

Nevertheless, the classical feature learning algorithms have some limitations in the data 

modeling approaches like linearity, sparsity, or lack of hierarchical representation. The deep 
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learning techniques, on the other hand, can learn complex features from the data at multiple 

levels and do not have limitations of the classical algorithms. However, they need a large-scale 

database to achieve efficient learning of the data characteristics. To train a deep learning 

algorithm with a smaller database, the following two main strategies can be used: (i) data 

augmentation (e.g., by using different types of data/image transformations) (44) and (ii) transfer 

learning, which works by fine-tuning a deep network that has been pretrained with a different 

large database (e.g., natural images) (44, 45). However, the field of transfer learning for medical 

imaging data is currently at its early stages, and more critical insights into its actual relevance 

will be known in the coming years. 

 

Variable normalization 

For a database that is composed of several variables of different nature (e.g., anthropometric or 

imaging-derived measurements), the values of the variables lie in different ranges. Direct usage 

of these variables may bias the learning system towards the characteristics of the variables with 

larger values despite the usefulness of the variables with smaller values in solving a given 

problem. To deal with such challenges, a ‘variable normalization’ approach can be used to 

transform the variables such that they all lie in the same range prior to entering the learning 

phase (33, 34). Variable normalization is especially helpful for a deep learning algorithm, as it 

helps achieve faster convergence of a deep neural network (46).  

 

Missing variable estimation 

Machine learning algorithms often need complete datasets. If data are missing, the options are to 

exclude those subjects, encode them as missing or to impute missing values (45, 47, 48). In 
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cardiovascular imaging, 2D images are normally collected from multiple views, e.g., for 

volumetric measurements, and 3D images are composed of multiple 2D slices. These images can 

also be acquired throughout the cardiac cycle. When some of the 2D views are not accessible or 

when a group of 2D images at some points during the cardiac cycle or in a 3D volume are 

artefactual/missing, an imputation technique can estimate these images or the parameters 

extracted from them (48). Thanks to development of the new deep learning algorithms, such as 

generative adversarial networks (GAN) (49), missing images can often be estimated (50) based 

on the available data, although the physiological relevance of their content is not fully 

guaranteed. However, it should be acknowledged that most of the imputation methods assume 

that the missing observations occur at random, are missing completely at random, or are missing 

not at random (51).  

Researchers should consider whether the missing observations carry any specific biases 

(e.g., selection bias or immortal time bias). While there is no clear guidance or cutoff on what 

proportion of missing data warrants the use of data imputation techniques (52)  and given that 

this answer depends on the complexity of the addressed problem, missing value imputation is 

best utilized whenever possible as it provides evidence about the robustness of the learned 

models regardless of its impact on model performance (53).  
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Feature selection 

An important phase in designing a classic ML system is to determine the optimal number of 

preserved features. This determination can be performed by using a ‘feature selection’ technique 

where a larger than required set of features is first extracted and then a subset with discriminative 

information is selected (34, 54). When a deep learning algorithm is used, the optimal features are 

automatically learned during the end-to-end training of the algorithm, and utilizing an 

independent feature selection method is often not required (43, 55). 

 

Outliers 

An observation is considered as an outlier if its values deviate substantially (or significantly, if 

looked through a statistical test) from the average values of a database, which may be attributed 

to measurement error, variability in the measurement, or abnormalities due to disease (33, 34). 

Even though outliers can negatively influence and mislead the training process resulting in less 

accurate models, they may carry relevant information related to the given task. Thus, outliers 

should be carefully examined to see if this comes from improper measurements that should be 

repeated, or not. With the existence of outliers, learning algorithms and/or a performance metrics 

that are robust to outliers can be useful alternatives. Methods robust to outliers including but not 

limited to decision trees and k-nearest neighbor (KNN) should be employed as much as possible 

(33). If no other solution exits, the removal of outliers, using an outlier detection approach (56), 

may be considered and the selection criterion along with the proportion of samples removed 

should be reported.  

 

Class imbalance 
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A significant imbalance in data classes (e.g., healthy vs. diseased) is quite common in medical 

datasets because, on the one hand, the majority of subjects in a database are usually healthy and, 

on the other hand, because collecting patient data for some rare diseases is difficult and is not 

always possible. As a result, the performance of the learning algorithm might be skewed, as it 

only learns the characteristics of the larger sized categories. This problem is referred to as ‘class 

imbalance’ and can be dealt with in the following three established ways: (i) rebalancing the 

categories using ‘under-sampling’ or ‘over-sampling’ (i.e., making the different classes similarly 

sized by omitting samples from the larger class or by up-sampling the data in the smaller class), 

(ii) giving more importance (i.e., weight) to the samples of smaller categories during the learning 

process (34), and iii) utilizing synthetic data generation methods, such as the synthetic minority 

over-sampling technique (SMOTE) (57). While the random over-sampling generates new data by 

duplicating some of the original samples of the minority class or category, SMOTE interpolates 

values using a k-nearest neighbor technique to synthesize new data instances (58) . Recent 

advances in deep generative techniques, such as GAN or variational autoencoders or the use of 

loss functions that are robust to data imbalance (59), have made it possible to tackle complicated 

imbalanced data based on the learning strategies.  

 

Data shift 

Data shift is a common problem that afflicts the ML models in cardiovascular imaging in which 

the distribution of the database that is used for testing the performance of the learning models or 

systems may differ from the distribution of the training data. This may occur when the data 

acquisition conditions or the systems that are used for collecting the test data change from when 

the training dataset was acquired, and could induce i) a covariate shift – a shift in the distribution 
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in the covariates, ii) a prior probability shift – a difference in the distribution of the target 

variable, or iii) a domain shift – a change in measurement systems or methods. It is imperative to 

assess and treat the shifts that may occur in the dataset prior to evaluating a model (60).    

 

Data leakage 

Data leakage is a major problem in ML, in which data outside of the training set seeps into the 

model while building the model. This event could lead to error-prone or invalid ML models. 

Data leakage could occur if the same patient’s data is used in the training and testing sets and is 

generally a problem in complex datasets, such as time series, audio and images, or graph 

problems.  

 

 

Strategic steps for developing the checklist: 

• The data format for training a machine learning algorithm should be large and the ratio 

of the observations/measurements (i.e., N/M) should be at least five. 

• When the data matrix is wide, a feature extraction/learning algorithm or dimensionality 

reduction technique should be used. 

• Redundant features should be removed, and variables should be normalized.  

• Outliers should be addressed/removed  

• Missing features should be imputed using relevant methods. 

• Dataset shift, leakage and class imbalance are common pitfalls and should be evaluated. 
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3. Selection of Machine Learning Models 

Model selection is the process of identifying the model that yields the best resolution and 

generalizability for the project and can be defined at multiple levels, i.e., learning methods, 

algorithms, and tuning hyperparameters. Learning methods include supervised, unsupervised, 

and reinforcement learning. Importantly, supervised learning is a method that learns from labeled 

data, i.e., data with outcome information to develop a prediction model, while unsupervised 

learning aims to find patterns and association rules in data that do not have labels (Figure 4).  

Common algorithms, such as regression or instance-based learning, often handle high-

dimensional data well and tend to perform better or equivalent to complex algorithms on small 

datasets while retaining the interpretability of the model. To achieve better performance, simple 

algorithms, or weak learners, may be combined in various ways using ensemble methods, such 

as boosting, bagging, and stacking, which sacrifice the interpretability. More complex algorithms 

that are also difficult to interpret, including neural networks, can outperform simpler models 

given an adequate amount of data. A subset of neural networks, known as deep convolutional 

neural networks (7, 25), are particularly useful for finding patterns in image data without the 

need for feature extraction (61-64). The implementation of an algorithm can vary significantly in 

terms of the size and complexity (e.g., the size and number of features in a random forest 

decision tree, the number and complexity of kernels applied in an SVM, and the number and type 

of nodes and layers in a neural network) of the algorithms.  

Regardless of the choice of the algorithms, it is imperative to perform hyperparameter 

tuning and model regularization to produce the optimal performance (65, 66). These processes 

may be more important than selecting the types of algorithms that could impact the 

interpretability, simplicity, and accuracy. When performing model selection (especially 
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involving large-scale data and/or deep learning methods), hardware constraints (e.g., memory 

size, cache, parallelism etc.) are often a key limiting factor beyond model performance. 

However, recent advances towards developing hardware accelerators (e.g., graphical processing 

units, tensor processing units) and growing convenience/abstraction by cloud computing could 

improve the overall process of model training/selection/optimization. Moreover, selecting the 

best model often involves the relative comparison of performance between different models. 

Therefore, the purposeful selection of loss function and the metric that represents it (e.g., 

absolute error, mean-squared error etc.), which in turn is heavily influenced by the model choice, 

dataset, and particular problem/task to solve, becomes fundamental in selecting an appropriate 

model. 

The size and complexity of algorithms should be chosen carefully to minimize the bias, 

the model error on the training dataset, and the variance, the model error on the validation 

dataset. Simpler models may underfit the data; they may generalize better (lower variance) at the 

cost of lower accuracy (higher bias). Further, overfitting (high variance and low bias) may come 

from a too complex model or insufficient representative training samples. Several considerations 

including size, complexity/dimensionality, number of features and nonlinear relationships among 

variables in the dataset guides the choice of the initial algorithm and its complexity, but the final 

algorithm design (including the choice of hyperparameters) is determined empirically or by 

specific optimization and cross-validation. 
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Finally, an essential factor in algorithm selection is the need for the interpretability of the 

model’s decisions, i.e., an understanding of which input features caused the model to make the 

decision it made. Interpretability may be extremely important for certain learning tasks and less 

important for others. Regression, decision trees, and instance-based learning methods are 

generally highly interpretable, while methods to interpret the function of deep neural networks 

are still evolving; saliency mapping, class activation, and attention mapping are some example 

methods for neural network interpretation and visualization (67,68). New mechanisms for 

understanding the workings of machine learning models (69-72), and approaches for 

probabilistic deep learning (73,74) further provide an opportunity to develop models to balance 

between both inference and prediction. 

 

 

Strategic steps for developing the checklist: 

• For the initial model development, always select the simplest algorithm that is 

appropriate for the available data. 

• The size of the dataset and the complexity of the employed algorithm should be 

considered to achieve a good compromise between ‘bias’ and ‘variance’ in the 

estimations. 

• Complex algorithms must be benchmarked to the performance of the initial simple 

model across several metrics. 

• Tune the hyperparameters to optimize the models and to increase performance.  
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4. Model Assessment   

The next step after selecting a learning model is to evaluate the generalizability by applying it to 

new data, i.e., assessment of its performance on unseen data. Ideally, model assessment should 

be performed by randomly dividing the dataset into a ‘training set’ for learning the data 

characteristics, a ‘validation set’ for tuning the hyperparameters of the learning model, and a ‘test 

set’ for estimating its generalization error, where all the three sets have the same probability 

distribution (i.e., the statistical characteristics of the data in these three sets are identical). 

However, in many domains, including cardiovascular imaging, having access to a large dataset is 

often difficult, thus preventing model assessment using three independent data subsets. As 

mentioned in the previous section, the ratio of the training samples to the number of measured 

variables should be at least five to ten (34, 35), depending on the dataset and complexity of the 

classifier (75), to learn the data characteristics properly. If this criterion is not met, the data are 

called scarce. In this situation, the data may be divided into two subsets for training and final 

validation of the learning algorithm. However, the results may depend on the random selection of 

the samples. Therefore, the training set can then be further partitioned into two subsets, but this 

process is repeated several times by selecting different training and testing subjects to obtain a 

good estimate of the generalization performance of the learning algorithm (33). This method of 

model assessment can be performed via ‘cross-validation’ or ‘bootstrapping’, as further 

explained below. These techniques ensure that (i) the learning model is trained properly given 

that the majority of the data samples can be used in the training process, (ii) the learning model is 

not biased towards the characteristics of a subset of the data and (iii) the optimal values of the 

hyperparameters of the learning model (e.g., the number of layers in a neural network and the 

neurons in each layer) can be determined (33). 
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Cross-validation 

This technique works by dividing the data into multiple nonoverlapping training and testing 

subsets (also called folds) and using the majority of the folds for training a learning model and 

the remaining folds for evaluating its performance (32–34). The cross-validation process can be 

implemented in one of the following ways. 

i. k-fold cross-validation: The data is randomly partitioned into k folds of roughly equal 

sizes, and in each round of the cross-validation process, one of the folds is used for 

testing the learning algorithm and the rest of the folds are used for its training (Figure 5). 

This process is repeated k times such that all folds are used in the testing phase and the 

average performance on the testing folds is computed as an unbiased estimate of the 

overall performance of the algorithm (32, 33).  

ii. Leave-one-out cross-validation: In this technique, the number of the folds is equal to the 

number of the observations in the database, and in each round, only one observation is 

used for testing the learning algorithm.  

iii. Monte-Carlo cross-validation: In this method of cross-validation, there is no limit to the 

number of the folds, and a database can be randomly partitioned into multiple training 

and testing sets. The training samples are randomly selected ‘without replacement’, and 

the remaining samples are used for the testing group (Figure 6I) (76).  

Bootstrapping  

This method works by randomly sampling observations from a database ‘with replacement’ to 

form a training set whose size is equal to the original database. As a result, some of the 

observations can appear several times in the training set, while some may never be selected. The 

latter observations are called ‘out-of-bag’ and are used to test the learning algorithm. This 
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process is repeated multiple times to estimate the learning method’s generalization performance 

(Figure 6 II) (33, 76). While bootstrapping tends to drastically reduce the variance, it often tends 

to provide more biased results, more importantly when dealing with small sample sizes.  

 

5. Model Evaluation 

The reporting of accuracy in ML is closely linked to the reporting of summary statistics, and the 

same background and assumptions apply. While a review of statistical theory is out of scope for 

the PRIME Checklist, we encourage the readers to obtain a clear understanding of the statistics 

for classification and prediction (77-83). Most of the following section applies to supervised 

learning algorithms, for which labels are used in the definition of the performance measures. 

Unsupervised learning is more difficult to evaluate but should also evaluate the relevance of the 

output data representation and the stability of the results against the data and model parameters. 

 

Strategic steps for developing the checklist: 

• Model assessment should be performed by randomly dividing the dataset into training, 

validation and testing data when applicable. 

• When data is inadequate or scarce, model assessments using cross-validation and/or 

bootstrapping techniques should be performed to obtain a good estimate of the 

generalization performance of the learning algorithm. 

• Typical numbers for k in a k-fold cross-validation should be 5 and 10. 

• Consider using leave-one-out cross validation as an appropriate choice when the data 

is small. 
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For classification tasks, the accuracy is the percentage of data that is correctly classified by the 

model, which could be influenced by the quality of the expert annotations. The balance of classes 

in the training data is also a known source of bias. As such, a prerequisite for reporting accuracy 

measures is to provide a clear description of the data material used for training and validation. 

We further suggest balancing the class data according to prevalence when possible, or that 

balanced accuracy measures are reported (84). 

The model parameters (e.g., initialization scheme, number of feature maps, and loss 

function), regularization strategies (e.g., smoothness and dropouts), and hyperparameters (e.g., 

optimizer, learning rate, and stopping criterion) also play a part in the model performance. A 

second prerequisite is, therefore, to provide a clear description of how the ML model was 

generated. We further suggest that the certainty of the accuracy measure is reported where 

applicable, for instance, by estimating the ensemble average and variance from several models 

generated with random initialization. Additionally, cross-validation analysis should be added to 

underline the robustness of the model, especially for limited training and test data (see the 

previous section).  Furthermore, to assess the generalizability of the algorithm, it is necessary to 

report the accuracy of the model by testing the data from different geographical locations with 

similar statistical properties and distributions (85). 

A report of the accuracy for ML algorithms in cardiovascular imaging will depend on the 

method and problem. For instance, the classification of disease from image features differs from 

the classification of image pixels in semantic segmentation, both in terms of the measures 

reported and of the risk in use.  
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For multiclass/label classification, we suggest using a statistical language close to the clinical 

standard. For instance, the report sensitivity, specificity, and odds ratio should be used instead of 

the precision, recall, and F1 score. This will also ensure that true negative outcomes are 

considered (86). Nonetheless, for classification tasks, the confusion matrix should normally be 

included but could be supplementary material. For image segmentation problems, we suggest 

reporting several measures to summarize both the global and local deviations, such as the mean 

absolute error (MAE), the Dice score to summarize the average performance and the Hausdorff 

distance metric to capture local outliers. 

When the output of the regression or segmentation algorithms are linked to clinical 

measurements (e.g., ejection fraction), we suggest Bland-Altman plots as for conventional 

evaluation of the image measurements, and we stress the importance of comparing the 

performance with several expert observers for both intra- and inter- expert variability.  

For the classification of disease from image features, the cost of misclassification should 

be clearly conveyed, e.g., rare diseases may not be properly represented in the dataset. The 

balance of classes should reflect the prevalence of the disease of interest, and scoring rules based 

on estimated probability distributions should be used for the accuracy reporting when possible, 

instead of direct classification. The choice of the scoring rule used for the decision, e.g., mean 

squared error, Brier score, and log-loss, should be rationalized. The common classification scores 

(sensitivity, specificity, positive- and negative predictive value) should include a full ROC 

analysis to provide a more in-depth evaluation of the detection performance. It is also relevant to 

include benchmark results from alternative ML methods as well as more traditional techniques, 

such as logistic regression.  
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6. Best Practices for Model Replicability 

The reproducibility of scientific results is essential to make progress in cardiac medicine. The 

ability to reproduce findings helps to ensure the validity and correctness, as well as enabling 

others to translate the results into clinical practice. However, there are several complementary 

definitions of reproducibility. We focus here primarily on technical replicability (87); i.e., the 

ability to independently confirm published results of a model by inspecting and executing data 

and code under identical conditions. Technical replicability is especially important in ML 

projects, which often involve custom software scripts, the use of external libraries, and intensive 

or expensive computation. Actions taken at any point in an ML workflow, from quality control 

and data preparation into suitable data structures to algorithm development to the visualization of 

Strategic steps for developing the checklist: 

• Use a statistical language close to the clinical standard and introduce new measures 

only when needed. 

• Balance the classes according to prevalence where available or report balanced 

accuracy measures. 

• Estimate the accuracy certainty, e.g., from an ensemble of models, to strengthen 

the confidence in the values reported. 

• Include Bland-Altman plots when machine learning is linked to clinical 

measurements. 

• Include an inter-/ intra-observer variability measures as a reference where possible. 

• The risk of misclassification should be conveyed, and appropriate scoring rules for 

decisions may be needed for the classification of a disease. 
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results, are often based upon heuristic judgments, and there are potentially numerous justifiable 

analytic options. Ultimately, these selections may significantly alter the results and conclusions. 

The first step for making ML projects reproducible could be the release of all the original 

code written for a project. There are several options for the publication of code. When possible, 

we suggest uploading source code with software and packages’ version information as 

supplementary material alongside the manuscript. Other options include permanent archival on a 

lab website, or per-project archival on open source and public source code repositories if 

permitted by investigator’s institution. Manuscripts should explicitly state where and how the 

code may be downloaded and under what license. 

Although there are numerous open source licenses available, in most cases, either of two 

licenses will suffice: the Massachusetts Institute of Technology/Berkeley Software Distribution 

(MIT/BSD) licenses (https://opensource.org/licenses/MIT) (the MIT and BSD licenses are 

essentially equivalent) and the GNU General Public License (GNU GPLv3). The MIT/BSD 

licenses allow published code to be distributed, modified, and executed freely without liability or 

warranty; the GNU GPLv3 license allows the same with the additional restriction that all 

software-based upon the original code must also be freely available under the GNU GPLv3 

license, meaning others cannot reuse the original code in a closed-source product.   

Although the availability of code is required for technical replicability, equally important is the 

availability of the data used in the project (86). Clinical data should be anonymized, or if 

anonymization is not possible (as in the case of some genetic data), then data should be made 

available to other researchers with appropriate IRB approval. Other options include the 

generation of synthetic datasets with the same statistical properties as the original dataset, a field 

of study called differential privacy. Manuscripts must state where both the raw and 
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manipulated/transformed data may be obtained and justify any restrictions to data availability. 

All data should also be accompanied by a codebook (also known as a data dictionary) containing 

clear and succinct explanations of all variables and class labels along with detailed description of 

their data types and dimensions. 

Finally, we note that even in the case of freely available data and open-source code, it can 

be difficult to reproduce the results of published work due to the complexities of software 

package versioning and interactions between different computing environments. We, thus, 

suggest that authors make the entire analyses automatically reproducible through the use of 

software environments (e.g., Docker containers, https://www.docker.com/). Analyses in software 

containers may be freely downloaded and run from beginning to end by other scientists, greatly 

 Strategic steps for developing the checklist: 

• Release the code and upload data as supplementary information alongside the 

manuscript when possible for non-commercial use; otherwise, consider making the 

code and data available via an academic website for non-commercial use as 

permissible. 

• Use the MIT/BSD or GPLv3 license to release open-source code. 

• Release a codebook (data dictionary) with clear and succinct explanations of all 

variables. 

• Document the exact version of all external libraries and software environments. 

• Consider the use of Docker containers or similar packaging environments such as 

Sphinx for straightforward technical reproducibility and to generate reliable 

code/software manuals. 
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improving the technical replicability. Moreover, documentation generation tools (e.g., Sphinx, 

https://www.sphinx-doc.org/en/master/) or easy-to-launch demos (e.g. through Jupiter python 

notebooks) should be employed. 
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7. Reporting Limitations, Biases and Alternatives  

“All models are wrong, but some are useful” is a well-known statistical aphorism attributed to 

George Box. Accurate reporting and acknowledgement of limitations are required for 

manuscripts incorporating ML (ML). Any statistical model or ML algorithm incorporates some 

assumptions regarding the data. All model assumptions should be affirmatively identified and 

checked with the dataset utilized in the manuscript, and the results should be reported in the 

manuscript or supplementary material. The algorithms used in computational research efforts 

span a large spectrum of complexity. Generally, more basic models and algorithms should first 

be investigated before additional complexity is incorporated into models or different algorithms 

are selected. Deep learning models should be benchmarked against simpler models whenever 

possible, especially when applied to tabular data. Statistical or ML models incorporating large 

numbers of variables (e.g., polygenic risk score models) should be benchmarked against standard 

clinical risk prediction models using more traditional clinical variables. 

Concordant findings from multiple, independent datasets dramatically increase the 

scientific value of manuscripts, since it decreases the likelihood that the algorithms have been 

erroneously overfitted to the idiosyncratic features of a certain dataset. Deep learning models are 

especially notorious for harnessing spurious or confounding features of the dataset to perform 

well. For example, Zech and Badgeley et al. reported a case where a convolutional neural 

network trained on a health system’s chest X-rays used the presence of a “PORTABLE” label on 

X-ray images to predict cardiomegaly with high accuracy (88). Furthermore, in the case of 

supervised ML involving human-annotated variables or outcomes, it should be noted that ML 

algorithms will recapitulate the underlying biases of the humans who constructed the dataset. 
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Strategic steps for developing the checklist: 

• Affirmatively identify and check relevant model assumptions and report the 

findings. 

• Benchmark complex algorithms against simpler algorithms and justify the use of 

more complex models. 

• Benchmark algorithms, incorporating high-dimensional data or novel data sources, 

against standard clinical risk prediction models 
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Summary and Future Directions 

As artificial intelligence and ML technologies continue to grow, three specific areas of 

opportunities will need further consideration for future standardization. First, there has been 

growing enthusiasm in the use of automated machine learning (auto-ML) platforms that 

democratize machine-learning strategies. Second, using the ‘multiomics-approach’, clinical and 

other data like smart-phones based health-data could be integrated with imaging variables to 

provide more algorithmic sophistication and objectivity to the existing taxonomy of risk factors 

and cardiac diseases (89-91). Finally, sophisticated algorithms and variations of GAN will be 

increasingly used to synthesize data that closely resemble the distribution of the input data (92-

94). This approach may be particularly fruitful for the field of simulation and in-silico clinical 

trials, which were recently recognized by the Food and Drug Administration (FDA) as key new 

directions to validate novel devices and therapies (95). In this context, recent studies have 

combined computational modeling with ML for synthetic data generation or tracking a disease 

course (96). Moreover, the ML research presents unprecedented opportunities for restructuring 

the industry, research, and medical alliance. This fact is well recognized by the FDA, which has 

mandated the standardization and applications of ML software as medical devices (97). With the 

advancement of organizations and cardiac medicine and imaging towards the actualization of 

precision medicine, the PRIME Checklist would need to be updated continuously as ML 

algorithms continue to transform cardiovascular imaging practice over the next decade. 
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Figure Legends  
 
Figure 1: Machine learning pipeline 
Schematic diagram of a general ML pipeline. The data section consists of project planning, data 
collection, cleaning, and exploration. The modelling section describes the model building, in 
which hyperparameter tuning and the dimensionality reduction process, such as feature selection 
and engineering, model optimization and selection, and evaluation, are included. Finally, the 
reporting segment consists of the reporting mechanisms of the analysis, including reproducibility 
and maintenance, and a description of the limitations and alternatives.  
  
Figure 2: Schematic demonstration of short/wide (a) and tall/thin (b) data matrices and the 
way that they can be created from the image data.  
In a short and wide data matrix, the number of observations is much smaller than the number of 
variables (N<<M). Considering different regions of interest (ROI) on the whole image of a given 
patient, the extraction of hand crafted features (e.g., radiomics features) may lead to a short and 
wide data matrix, as the number of features extracted for each ROI per image is typically larger 
than the number of samples or patients (c). To make a tall and thin data matrix from the image 
data, an image can be divided to many (overlapping) ROIs or patches, each with a small number 
of pixels (d). The extraction of pixel data as features from each patch per patient may be much 
smaller in size than the total number of patients.  
 
Figure 3: The main approaches for feature engineering and learning.  
The hand-engineering approaches are manually designed to extract certain types of features from 
the data; for example, Local Binary Pattern (LBP) and Scale-Invariant Feature Transform (SIFT) 
derives the properties from the image such as object recognition or edge detection. The classic 
learning techniques use data samples to learn their characteristics for dimensionality reduction, 
but they have limitations in their data modeling techniques, such as linearity, sparsity or lack of 
hierarchical representation. Principal component analysis (PCA) applies orthogonal 
transformation to produce linear combination of uncorrelated variables that best explains the 
variability of the data whereas independent component analysis (ICA) transforms the dataset into 
independent components to reduce dimensionality. Deep learning methods, however, can learn 
complex features from the data at multiple levels in various hidden layers. 
 
Figure 4: Model selection process 
Illustration of the model selection process, which consists of identifying the two classes of ML. 
A) In Supervised learning method, after the hyperparameter tuning, data can be applied to two 
different tasks: classification or regression, depending on the type of the outcome. If the outcome 
is a category, then classification can be performed whereas if the outcome variable is a numeric 
value, regression may be applied for prediction. B) Unsupervised learning method, the data in 
which the data are either utilized for clustering, topical modeling, or representing the data 
distribution while reducing the dimensionality of the data according to the problem to be solved.  
  
Figure 5: Schematic illustration of the k-fold cross-validation process. Data are randomly 
partitioned into k distinct folds, and in each round, (k-1) folds are used for training the learning 
algorithm, and the kth fold is used for testing its performance. This process is repeated k times 
such that all folds are used in the testing phase. 
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Figure 6: Schematic illustration of the monte-carlo and bootstrap resampling methods. I) 
Monte-Carlo cross-validation performed in k rounds. In each round, the training and testing 
samples are randomly selected without replacement from the original data. II) The bootstrapping 
process, which can be performed in B rounds. In each round, the training data is generated by 
randomly sampling from the original data with replacement. The samples that are not included in 
the training dataset (i.e., out-of-bag samples) form the testing dataset. 
 
Central Illustration: Steps for building a machine learning pipeline and the reporting items 
in a checklist. This illustration provides the principal requirements for building a checklist (at 
every step of the model building process) to enable the precise application of predictive 
modeling, consistent reporting of model specifications and results in the field of cardiovascular 
imaging. CV = cross validation; GPL = general public license; LOOCV = leave one out cross 
validation; ML = machine learning; S/W = software. 
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Table 1. Checklist for Standardized Reporting of Machine Learning Investigations 
Section Checklist item Page # 
1 Designing the Study Plan  
1.1 Describe the need for the application of machine learning to the dataset  
1.2 Describe the objectives of the machine learning analysis  
1.3 Define the study plan   
1.4 Describe the summary statistics of baseline data  
1.5 Describe the overall steps of the machine learning workflow  
2 Data Standardization, Feature Engineering, and Learning  

2.1 Describe how the data were processed in order to make it clean, uniform, and 
consistent  

2.2 Describe whether variables were normalized and if so, how this was done  
2.3 Provide details on the fraction of missing values (if any) and imputation methods  
2.4 Describe any feature selection processes applied  
2.5 Identify and describe the process to handle outliers, if any  

2.6 Describe whether class imbalance existed and which method was applied to deal 
with it  

3 Selection of Machine Learning Models   
3.1 Explicitly define the goal of the analysis e.g., regression, classification, clustering  

3.2 Identify the proper learning method used (e.g., supervised, reinforcement learning 
etc.) to address the problem  

3.3 Provide explicit details on the use of simpler, complex, or ensemble models  
3.4 Provide the comparison of complex models against simpler models if possible  
3.5 Define ensemble methods, if used  
3.6 Provide details on whether the model is interpretable  
4 Model Assessment  
4.1 Provide a clear description of data used for training, validation, and testing  

4. 2 Describe how the model parameters were optimized (e.g., optimization technique, 
number of model parameters etc.)  

5 Model Evaluation  
5.1 Provide the metric(s) used to evaluate the performance of the model   
5.2 Define the prevalence of disease and the choice of the scoring rule used   
5.3 Report any methods used to balance the numbers of subjects in each class   
5.4 Discuss the risk associated to misclassification  
6 Best Practices for Model Replicability  

6.1 Consider sharing code or scripts on a public repository with appropriate copyright 
protection steps for further development and non-commercial use  

6.2 Release a data dictionary with appropriate explanation of the variables  
6.3 Document the version of all software and external libraries used  
7. Reporting Limitations, Biases and Alternatives  
7.1 Identify and report the relevant model assumptions and findings  

7.2 
If well performing models were tested on a hold-out validation dataset, detail the 
data of that validation set with the same rigor as that of training dataset (see 
section 2 above) 
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Introduction 

Artificial Intelligence 

Branch of computer science concerned with building intelligent 
systems that automatically behave based on the data and 
experience they learn. Typically, there are two types of AI: 
general and applied AI. General AI is a self-sufficient system 
that can possess a cognition capability comparable to, or even 
surpassing, that of humans. Applied AI is a functional system 
that is specialized for a purpose. Natural language processing 
and ML are forms of AI. 

Machine Learning 
 
 

A subfield of applied AI that concerns algorithms, statistical 
modeling, and data analysis and that learns from the data to 
detect patterns and make assessments with minimal human 
intervention. There are 3 main classes to apply ML: supervised, 
unsupervised, and re-enforcement learning. Semi-supervised 
learning is also considered a class of ML. 

 
Designing the study plan 

Model Interpretability 

A degree to which an individual can comprehend the reason and 
decision made by the algorithm. Higher the interpretability of the 
ML model, easier it is for an individual to comprehend the reason 
to a decision reached by an algorithm.  

Model Complexity 

Refers to the number of features/covariates/variables and the 
transformations and linearity (or non-linearity) of the features that 
are included in the predictive model. It can also refer to the 
learning and computational complexity of a given learning 
algorithm. 

Bayesian inference 

Process to interpret probability and represent the confidence given 
an occurrence of an event. It is based on Bayes’ statistical method 
that assigns probabilities to events or parameters based on the 
current data but updates as the probabilities as more data is 
obtained.  

Systematic error 
The errors that are produced from measurement errors. This may 
occur if the measurement unit is faulty, incorrectly used, or the 
data incorrectly interpreted or entered. 
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Coverage error 

The bias that is introduced in the data when all components of the 
population are not adequately covered. It may occur if a 
component is included more than actual estimate from the survey 
(over-coverage), failure to include adequately (under-coverage), or 
misclassified. 

Selection bias 

The bias in the data that occurs when the individual or group of 
data for analysis is not collected with proper randomization, and, 
therefore, is not representative enough of the population of 
interest. 

Hyperparameters 
Parameters that are used to modulate how the model learns from 
the data and typically tuned before the learning process begins, or 
during the cross-validation process. 

Neural Networks 

ML models that are inspired from the neurons of the human brain. 
A network has input layers and output layers and may have one or 
more intermediate layers. Some networks have only one or a few 
layers, such as perceptron, or multiple layer perceptron, which 
only feeds the data forward. Deep learning relies on a network 
with several layers in the architecture and has a backward data 
feed to minimize error. 

Deep neural network / 
Deep Learning 

A type of ML based on neural networks made of several (in 
general, at least 3) intermediate layers. It is used for supervised 
and unsupervised tasks but requires large amount of data compared 
to traditional shallow learners. It is also known as deep neural 
network. Convolutional neural network, generative adversarial 
network, recurrent neural network are some examples popular in 
computer vision and medical imaging. 

Independent and 
Identical Distribution 

If the data or a random variable is collected from the same 
probability distribution as all others and is mutually independent 
such that the outcome of the data is not dependent on the previous 
observation. 

 
Data standardization, feature engineering and learning 

Matrix Mathematical object that contains numeric values, symbols, or 
expressions arranged in a rectangular array of columns and rows. 

Histogram equalization A method in image processing to adjust the contrast of the image 
using the image’s histogram.  

Pixel intensity 
The value of a pixel’s brightness. In normal medical images, pixel 
intensities range from 0 to 255 where greater values indicate 
brighter colors. 
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Data Annotation A process of labeling the data available in various formats (e.g., 
image, video, audio or text) to make it usable for ML. 

Data augmentation  A technique to add data or variability to the data. 

Transfer learning 

Transfer learning is a method of ML in which the knowledge 
gained from another pretrained model is applied to learn from 
another set of data. This method can reduce the need for data by 
orders of magnitude. 

Dimensionality 
Reduction 

An unsupervised ML technique to find a new representation of the 
data while reducing the features that describe the data. This 
method is useful for avoiding overfitting and producing simpler 
models. 

Multicollinearity 
An issue in statistics and ML regression models in which two or 
more variables provide the same information due to their close 
relationship. 

Generative Adversarial 
Network (GAN) 

Generative models using deep neural network architecture that 
consists of the following two stages: the generator stage, which 
generates new examples, and the discriminator stage, which 
classifies if the generated examples are real (with the same 
distribution as the problem domain) or fake. Importantly, 
generative models became popular due to their ability to generate 
highly realistic images (in terms of appearance, not necessarily 
physiological content). 

Hand-crafted features 

In image-based classification tasks, "hand-crafted" features refer to 
properties derived using certain manually predefined algorithm 
based on the expert knowledge using the information present in the 
image itself. Some examples of hand-crafted features include local 
binary patterns, scale invariant feature transform and histogram of 
oriented gradients etc. 

Variational Autoencoders 

In deep learning, variational autoencoders (VAE) are a class of 
neural networks that can learn to compress data (i.e., image, text or 
sequence) and perform dimensionality reduction completely in an 
unsupervised manner. Instead of letting a neural network learn 
from an arbitrary function, VAEs learn from the parameters of a 
probability distribution by modeling input data.  

Linearity 
In statistical terms, linearity means that the response variable is a 
linear combination of the parameters of independent variables (i.e., 
regression coefficients) and the predictor/dependent variables. 
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Sparsity 

In numerical terms, sparsity is estimated as the number of zero-
valued elements divided by the total number of elements in a data 
array or matrix. Input data will be considered sparse when most of 
the elements (> 50% of data) of a data array or matrix are zero i.e., 
when its sparsity is greater than 0.5. 

 
Selection of Machine Learning Models 

Supervised 
A class of ML that learns from labeled data to predict or classify the 
outcome of interest. The most common supervised learning tasks are 
regression and classification. 

Unsupervised 
A class of ML that learns from unlabeled data. The most common 
unsupervised learning tasks are clustering and dimensionality 
reduction. 

Semi-supervised Learning 
A class of ML that learns from labeled and unlabeled data in the 
dataset. Typically, the proportion of unlabeled data is higher than the 
proportion of labeled data. 

Overfitting A case when the model fits the training data too closely, but the 
generalization of the model is unreliable. 

Underfitting 
A case when the model neither fits the training data nor generalizes to 
new data. An underfit model results in low generalization and 
unreliable predictions.  

Clustering 

An unsupervised ML task in which the fractions of data with some 
notion of similarity are grouped together while keeping the others 
separate. K-means and agglomerative hierarchical clustering are 
popular clustering algorithms. 

Ensemble learning 

An ML process to combine multiple models to obtain better predictive 
performance compared to the performance from a single model. 
Bagging, boosting, and stacking are three main methods of ensemble 
learning.  

Bagging 

 
Bagging also known as ‘bootstrap aggregating’ is an ensemble 
technique that is designed to improve the stability and the accuracy of 
ML algorithms. The objective of bagging is simple, generate several 
random training sets and “average” their predictions in order to obtain 
a model with a lower variance. Thus, bagging reduces variance and 
helps to avoid overfitting.  
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Boosting 

In ML boosting is also an ensemble technique that attempts to create a 
strong learner from a number of weak learners. The main objective of 
boosting is to increase the complexity of models that suffer from high 
bias especially in the case of underfitting. In simple terms, boosting 
tries to reduce the error in predictions and hence reduces bias.  

Saliency mapping 

Saliency can be seen as a kind of image segmentation. In computer 
vision, a saliency map is an image that shows each pixel's unique 
quality. The goal of a saliency map is to simplify and/or change the 
representation of an image into something that is more meaningful and 
easier to analyze. 

 
Model Assessment 

Model 

The mathematical representation of the process that is governed by the 
data. The data is partitioned into training or testing, and the training set is 
generally used to generate the model that can be tested for its 
generalizability in ML. For example, a model is presented as  
 

𝑦" = 𝛽%𝑥% +	𝛽)𝑥) …	𝛽+𝑥+ 
 
in linear regression. 

Model Parameters 
Model parameters are internal configuration variables such as coefficients 
in linear regression (e.g., β1, β2, etc. in the equation above) that are 
estimated from the data and describe the model. 

 
 
Model Evaluation 

Classification A supervised ML technique that attempts to classify data into binary 
scores or categories. 

Regression A supervised ML technique that attempts to predict a continuous 
value. 
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Loss function 

A method to measure error made by the model in prediction for a 
single training example. Mean squared error, likelihood loss, mean 
absolute error are some of the common loss functions in evaluating 
the model. It is also known as error function.  

Regularization 
Technique to reduce complexity and avoiding overfitting by adding 
penalty term which can e.g.,  shrink or eliminate the coefficients, to 
smoothen the estimated trend or classification boundary.  

Precision 

Proportion of samples that were classified or identified as positive.  
 

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 

Recall 
Proportion of positive samples classified or identified correctly. 

9:;<	=>?@A@B<
9:;<	=>?@A@B<CDEF?<	G<HEA@B<

 

F1 score 

Weighted average of the precision and recall where 1 is the best 
value and 0 is the worst.  
 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

Brier score 

Method to verify the accuracy of a classification where 0 is for 100% 
accurate and 1 is 100% inaccurate. The most common formulation of 
the Brier score is 

𝐵𝑆 =
1
𝑁R

(fU − 𝑜A))
G

AX%

 

where N is the number of instances, ft is the forecast probability (i.e. 
25% chance) and ot corresponds to the outcome (1 if it happened, 0 if 
it didn’t). 

 
Software Engineering Best Practices and Data Availability for Reproducibility 

Source code repository A central file storage location used by version control system to 
manage and store several versions of source codes. 
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Practical illustration of how to apply the checklist developed in the PRIME 
guidelines 
 
The finalized PRIME reporting guidelines are shown in Table 1. The guidelines checklist 
is structured to correspond with the various facets of the building machine learning 
systems (data preprocessing, analysis, model development etc) and is intended to 
capture critical information to enable correct application of machine learning (ML) models 
and allow consistent reporting of model results in cardiovascular imaging studies. 
 
Basically, checklist is a set of essential items for authors to consider when reporting 
results from ML models for publication in cardiovascular imaging. The checklist begins 
with an item that relates to providing a detailed description of the overall study plan. It is 
very important to clearly define and establish the need for the application of ML 
approaches to a given problem, as it becomes the foundation for all the other steps in ML 
workflow. Model selection, algorithm complexity, performance evaluation and 
assessment all are interlinked and often depend on the task that one is trying to solve. 
Similarly, we also recommend listing and reporting items related to limitations, biases and 
alternative analysis strategies, to satisfy the need for precision, completeness, and 
transparency in reporting results of modeling studies. Apart from these, we also created 
separate checklist items for each process in the ML workflow to provide a list of reporting 
items to be included in a research articles and reports.  
 
To further determine its ease of use, applicability and understand how well it captures all 
the practical steps of developing predictive models, we gathered information from two 
recent articles that developed ML models in cardiovascular imaging. The entire 
manuscripts were searched thoroughly to extract any information reported that was in 
reference to the PRIME recommendation’s checklist items. A complete checklist along 
with page numbers referring to each item is provided in Table S1 (see below). Both of 
these studies implemented deep learning models either to improve the diagnosis of 
congenital heart disease or augment the computer-assisted echocardiographic 
interpretation. Almost 90% of the items in the PRIME reporting checklist were addressed 
or satisfied by the two studies considered, indicating that these reports/articles were 
executed with PRIME-analogous guidelines in mind. Certain missing checklist items such 
as “Benchmark complex models against more simplistic models if possible” were in fact 
not applicable due to the specific nature of the selected ML model and the nature of the 
study (e.g., deep learning applied to video or image analysis. Thus, the guidelines listed 
here could be effective in capturing the reporting requirements of studies employing 
machine learning approaches in cardiovascular imaging. 
 
 
 
 
 
 
Supplemantary Table S1 



60 
 

Section Checklist item Madani et al (1) Arnaout R et al (2) 

1 Designing the study plan     
1.1 Describe the need for the application of machine learning to 

the dataset  
pg 1 pg 2-3 

1.2 Describe the objectives of the machine learning analysis pg 1 pg 2-3 
1.3 Define the study plan  pg 2, Fig 1 pg 4-7 
1.4 Describe the summary statistics of baseline data  pg 2, Fig 1 pg 4-7 
1.5 Describe the overall steps of machine learning workflow  pg 3, pg 4, Fig 2, Table 1 pg 4,7 

2 Data standardization, feature engineering, and learning     

2.1 Describe how the data were processed in order to make it 
clean, uniform, and consistent 

Fig 1, Fig 3, Table 1, pg 
5, pg 6 

pg 4 

2.2 Describe whether variables were normalized and if so, how 
this was done 

pg 5-7 pg 5 

2.3 Provide details on the fraction of missing values (if any) and 
imputation methods 

pg 5-7 N/A 

2.4 Perform and describe feature selection process pg 5-7 pg 5 

2.5 Identify and describe the process to handle outliers, if any N/A N/A 

2.6 Describe whether class imbalance existed and which method 
was applied to deal with it 

pg 4 pg 5 

3 Selection of Machine Learning Model     
3.1 Explicitly define the goal of the analysis e.g., regression, 

classification, clustering 
pg 1-7 pg 2-3, 10 

3.2 Identify the proper learning method used (e.g., supervised, 
reinforcement learning etc.) to address the problem 

pg 1, pg 5 pg 5 

3.3 Provide explicit details on the use of simpler, complex, or 
ensemble models 

pg 4 pg 5-10 

3.4 Provide the comparison of complex models against simpler 
models if possible 

pg 2, Fig 5 N/A 

3.5 Define ensemble methods, if used N/A pg 5-6 
3.6 Provide details on whether the model is interpretable pg 2-7, Fig 6 N/A 

4 Model Assessment     
4.1 Provide a clear description of data used for training, 

validation, and testing 
pg 7 pg 5-6 

4.2 Describe how the model parameters were optimized (e.g., 
optimization technique, number of model parameters etc.) 

pg 7 pg 5 

5 Model Evaluation     
5.1 Provide the metric(s) used to evaluate the performance of 

the model 
pg 4-6, Figs 4-6 pg 7-9 

5.2 Define the prevalence of disease and the choice of the 
scoring rule used  

 X  X 

5.3 Report any methods used to balance the numbers of subjects 
in each class 

pg 5 pg 5 

5.4 Discuss the risk associated to misclassification pg 6 X 

6 Best Practices for Model Replicability      
6.1 Consider sharing code or scripts on public repository with 

appropriate copyright protection steps for further 
development and non-commercial use 

pg 5-7 pg 5,7 
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6.2 Release data dictionary with appropriate explanation of the 
variables 

pg 5-7 N/A 

6.3 Document version of all software and external libraries pg 5-7 pg 5 
7 Reporting limitations, biases and alternatives     

7.1 Identify and report the relevant model assumptions and 
findings 

X X 

7.2 If well performing models were tested on a hold-out 
validation dataset, detail the data of that validation set with 
the same rigor as that of training dataset (see section 2 
above) 

X X 
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