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Abstract

Efficient first-order algorithms for large-scale distributed optimization is the
main subject of investigation in this thesis. The algorithms considered cover a
wide array of applications in machine learning, signal processing and control.

In recent years, a large number of algorithms have been introduced that rely on
(possibly a reformulation of) one of the classical splitting algorithms, specifically
forward-backward, Douglas-Rachford and forward-backward-forward splittings.
In this thesis a new three term splitting technique is developed that recov-
ers forward-backward and Douglas-Rachford splittings as special cases. In the
context of structured optimization, this splitting is leveraged to develop a frame-
work for a large class of primal-dual algorithms providing a unified convergence
analysis for many seemingly unrelated algorithms. Moreover, linear convergence
is established for all such algorithms under mild regularity conditions for the
cost functions.

As another notable contribution we propose a randomized block-coordinate
primal-dual algorithm that leads to a fully distributed asynchronous algorithm
in a multi-agent model. Moreover, when specializing to multi-agent structured
optimization over graphs, novel algorithms are proposed. In addition, it is shown
that in a multi-agent model bounded communication delays are tolerated by
primal-dual algorithms provided that certain strong convexity assumptions hold.

In the final chapter we depart from convex analysis and consider a fully non-
convex block-coordinate proximal gradient algorithm and show that it leads to
nonconvex incremental aggregated algorithms for regularized finite sum and
sharing problems with very general sampling strategies.

xiii
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Chapter 1

Introduction

One of the main goals of current distributed optimization research is to develop
easy-to-implement iterative schemes for structured problems. To this end, proxi-
mal algorithms have become the standard tool; they are suitable for large-scale,
nonsmooth problems with different computational models. These methods oper-
ate by splitting the original problem into simpler subproblems that involve one
function at a time and can often be solved efficiently. The most widely used
proximal algorithms are the proximal gradient and Douglas-Rachford methods
that are based on the classical two term splittings, forward-backward splitting
(FBS) and Douglas-Rachford splitting (DRS).

Consider the structured convex optimization problem

minimize
x∈Rn

ϕ(x) = f(x) + g(x) + h(Lx), (1.1)

where L is a linear mapping, g and h are extended-real-valued nonsmooth
functions, and f is continuously differentiable with Lipschitz continuous gradient.
The proximal gradient method solves (1.1) when h ◦ L ≡ 0, and the Douglas-
Rachford algorithm solves it when f ≡ 0 and L is the identity. The idea here is
that in many applications (1.1) is formulated such that the proximal mappings
(cf. to §1.2.6) of g and h are easy to compute (refer to [14, §6 and §7], [49, 130]
for extensive lists of common proximable functions) but this is not the case for
g + h ◦ L or f + h ◦ L. In fact, in general even the proximal mapping of h ◦ L
cannot be efficiently computed based on that of h. Therefore, having algorithms
for the sum of more terms would allow us to effectively tackle larger classes of
applications.

A recent trend for solving problem (1.1), possibly with the smooth term f ≡ 0
or the nonsmooth term g ≡ 0, is to solve the monotone inclusion defined by

1
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the primal-dual optimality conditions [38, 67, 31, 50, 53, 170, 62, 96, 32]. The
popularity of this approach is mainly due to the fact that it results in fully split
primal-dual algorithms, in the sense that the proximal mappings of g and h, the
gradient of f , the linear mapping L and its adjoint are evaluated individually.
In particular, there are no matrix inversions or inner loops involved.

Different convergence analysis techniques have been proposed in the literature
for primal-dual algorithms. Some can be viewed as intelligent applications of
classical splitting methods such as forward-backward splitting (FBS), Douglas-
Rachford splitting (DRS) and forward-backward-forward splitting (FBFS), see
for example [170, 53, 31, 27, 50], while others employ different tools to show
convergence [38, 84, 62, 39]. Convergence rates of primal-dual schemes have also
been analyzed using different approaches, see for example [104, 55, 113, 39].

Our approach here is a systematic one and relies on first introducing a new
three term operator splitting method, asymmetric forward-backward-adjoint
(AFBA) splitting that is designed for solving monotone inclusions involving the
sum of three terms, a maximally monotone, a cocoercive and a bounded linear
operator. While AFBA cannot be recovered from existing operator splitting
methods, classical splittings DRS and FBS are its special cases. These are
discussed in detail in Section 2.3. In Chapter 3 we develop a simple primal-
dual framework (cf. Alg. 3.1) for problems of the form (1.1) by solving the
primal-dual optimality conditions using the splitting method AFBA. Based on
this approach one can obtain a wide range of algorithms by selecting different
values for two scalar parameters θ and µ (cf. Alg. 3.1). Many of the resulting
algorithms are new, while some extend previously proposed algorithms and/or
result in less conservative stepsize conditions. Figure 1.1 provides an overview of
several prominent special cases. The function l, stepsizes and other parameters
are defined in Section 3.2 for the more general problem (3.1). These special
cases are implemented in the open-source Julia Package ProximalAlgorithms1

as primal-dual AFBA solver.

Next, let us consider some motivating examples most of which are revisited
throughout this thesis. Many machine learning applications involve solving
empirical risk minimizations (ERM) of the form

minimize
x∈Rn

1
N

N∑
i=1
L(bi, 〈ai, x〉) + λΩ(x), (1.2)

where Ω is a regularizer (e.g., `1 norm or `2 norm, elastic net, etc), λ is a
positive constant and the pair (ai, bi) represents the ith data. The loss function
denoted by L measures the mismatch of the model and the observed data.

1https://github.com/kul-forbes/ProximalAlgorithms.jl

https://github.com/kul-forbes/ProximalAlgorithms.jl
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Algorithm 3.1

IISPCAPPDCA

dual
PDCA

DCAPPCA

SDCADRS-type

dual

Vũ-Condat
[53,170] He-Yuan [84]

Chambolle-
 Pock [38]

Briceño-Arias
 Combettes [31]

Drori-Sabach-
 Teboulle [62]TriPD[95]

Figure 1.1: Algorithm 3.1 and its special cases

This formulation includes many important problems such as LASSO, logistic
regression, SVM [83, 152]. Clearly, the ERM problem (1.2) can be written in
the form of (1.1) by setting g(x) = λΩ(x), h(u) = 1

N

∑N
i=1 L(Yi, ui) (where

u = (u1, u2, . . . , uN )) representing the loss function with the rows of L consisting
of a>i , and f ≡ 0. When the loss function is smooth one may choose to represent
it using f and setting h ◦ L = 0.

Another popular example in machine learning is the dual support vector machine
problem [83]

minimize
α1,...,αN

1
2‖

N∑
i=1

αibiai‖2 −
N∑
i=1

αi (1.3a)

subject to 0 ≤ αi ≤ C, i = 1, . . . , N (1.3b)

N∑
i=1

αibi = 0. (1.3c)

This problem can be written in the form of (1.1) by letting f represent the
quadratic cost, g the indicator of box [0, C]N , h the indicator of zero, and
L = b> where b = (b1, . . . , bN ). This problem is used in Section 3.5 to compare
the performance of several primal-dual algorithms.
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Total variation denoising is another popular problem encountered in image
processing applications [145, 37, 54]:

minimize
x∈Rn

1
2‖Ax− b‖

2 + λ‖Dx‖1,2

subject to x ∈ C

where D is the discrete gradient operator, ‖·‖1,2 is the `1,2 norm, and C enforces
prior information on the target image, e.g., the pixels being in the range [0, 255].
This problem is written in the form of (1.1) by setting f(x) = 1

2‖Ax− b‖
2, g

the indicator function of the set C, h(x) = ‖ · ‖1,2, and L = D.

Model predictive control (MPC) is another application that can be formulated
as in (1.1); the quadratic cost function may be represented by the smooth
term f , the input and state constraints by g as the indicator function of the
corresponding set, and the linear dynamics by h ◦ L. Therefore, the resulting
algorithm would involve simple matrix-vector products, and projection onto
boxes and points.

Note that in many of the applications considered in this thesis we are interested
in distributed algorithms in a multi-agent setting where a group of “agents”
solve a minimization problem cooperatively. For example, in distributed MPC
one may have several physically separate systems/agents each with its own
dynamics who share a common goal, or in an ERM problem the data may be
stored across multiple machines. A distributed algorithm would entail local
computations by the systems/agents, and exchange of information with other
agents.

Distributed algorithms are often derived by simply formulating a given problem
in the form of (1.1) in such a way that solving it using a proximal algorithm
(e.g., one of the special cases of Algorithm 3.1) results in a desired distributed
implementation. Let us clarify by considering as an example the problem of
minimizing a finite sum problem:

minimize
x∈Rn

N∑
i=1

fi(x),

where fi are convex continuously differentiable functions with Lipschitz-
continuous gradient. In order to solve this problem in a distributed way over a
network of agents, one may consider the equivalent problem

minimize
x1,...,xN∈Rn

N∑
i=1

fi(xi), subject to xi = xj (i, j) ∈ E ,
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where E denotes the edge set of an underlying graph structure. We have effectively
introduced slack variables for each agent in order to decouple the cost. The
two problems are equivalent as long as the graph is connected. This problem
can be written in the form of (1.1) with f(x) =

∑N
i=1 fi(xi), and g ≡ 0, h the

indicator of vector of zeros (of appropriate dimension), and L = B> ⊗ In with
B representing the oriented node-arc incidence matrix (cf. §6.2 for details).
Solving this problem with any of the special cases of Algorithm 3.1 results in
schemes where the ith agent performs gradient operations on fi, as well as some
consensus-type updates using variables that it exchanges with relevant agents
(neighbors). In such an algorithm, fi (which may represent private data) does
not need to be shared with other agents. This type of problem is studied in
detail in Chapter 6.

Our focus so far has been on methods that split the cost function as the sum of
several functions, with iterations that involve gradient or proximal operations on
each function separately. However, in many large-scale applications updating the
variables only after a full gradient or proximal update may be too costly, slow or
physically infeasible. A simple and powerful idea is instead to update a subset
of coordinates at every iteration. These methods are hereafter broadly referred
to as block coordinate (BC) methods. BC methods have a long history and have
been studied under various settings [19, 163, 166, 125, 15, 25, 106, 51, 22, 14].

In the context of multi-agent optimization, randomized BC methods admit
updates that involve random activation of (subsets of) agents to perform local
updates. These are sometimes referred to as asynchronous [88, 22, 134]. In this
sense, occasionally, we also use the terminology synchronous to emphasize that
at each clock tick all agents must perform their tasks and the iteration cannot
proceed if any agent fails to do so. Note that this notion of asynchrony is quite
different from the notions of partial and total asynchrony introduced in [20],
since the information used by each agent must be up to date. We defer further
details about notions of asynchrony and common computational models to
Section 7.1.

Another interesting application of the BC framework is studied in Chapter 8 in
the context of nonconvex optimization. It is shown that BC proximal gradient
updates with a nonseparable nonsmooth term lead to stochastic and incremental
methods for regularized finite sum and sharing problems. The analysis of this
chapter is a departure from previous chapters where monotone operator theory
and Fejér monotonicity made up most of the narrative. The Lyapunov function
typically used in the convergence analysis of the nonconvex proximal gradient
method is the cost function; however, in the BC setting with nonseparable
nonsmooth term even in expectation it does not necessarily decrease along
the trajectories. Instead we show that the forward-backward envelope (FBE)
[132, 158] is a suitable Lyapunov function.
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1.1 Overview of the thesis

We briefly describe the structure and content of the chapters. In Chapter 2
a three term operator splitting method, asymmetric forward-backward-adjoint
splitting (AFBA) is introduced. Its convergence rate is studied under different
assumptions and some prominent special cases are discussed. As depicted in
Figure 1.2 this splitting is instrumental in the developments of the subsequent
five chapters. In particular, as discussed above, in Chapter 3 a general primal-
dual framework is developed (see Fig. 1.1) that relies on solving the primal-dual
optimality conditions using AFBA. Moreover, in Section 3.4.1 linear convergence
is established for all the special cases under mild regularity assumptions for the
cost functions.

Chapters 2 and 3 are based on:

Latafat, P., and Patrinos, P. Asymmetric forward–backward–adjoint splitting
for solving monotone inclusions involving three operators. Computational Opti-
mization and Applications 68, 1 (Sep 2017), 57–93.

Latafat P., Patrinos P., Primal-Dual Proximal Algorithms for Structured Con-
vex Optimization: A Unifying Framework, in Chapter 5 of Large-Scale and
Distributed Optimization, (Giselsson P., and Rantzer A., eds.), vol. 2227 of
Lecture Notes in Mathematics, Springer International Publishing, 2018, pp.
97-120.

In Chapter 4 a randomized block-coordinate primal-dual algorithm is introduced.
The proposed algorithm features linear convergence rate when the functions
involved are either piecewise linear-quadratic, or when they satisfy certain
quadratic growth conditions. The developed algorithm is applied to the problem
of multi-agent optimization on a graph, resulting in novel synchronous and
asynchronous distributed methods. The proposed algorithms are fully distributed
in the sense that the updates and the stepsizes of each agent only depend on local
information. In fact, no (prior) global coordination is required. We showcase
an application of our algorithm in distributed formation control. Moreover, as
another application in Chapter 5 the problem of distributed model predictive
control (DMPC) with coupling in the dynamics of the systems is considered.
The resulting scheme does not require strong convexity, involves one round of
communication at every iteration and allows a plug-and-play implementation
where addition or removal of a subsystem only affects the neighboring nodes
without the need for global coordination.

Chapter 4 is based on:

Latafat, P., Freris, N. M., and Patrinos, P. A new randomized block-coordinate
primal-dual proximal algorithm for distributed optimization. IEEE Transactions
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Chapter 2

Chapter 6Chapter 4

Chapter 5

Chapter 3

Chapter 7

Convex Optimization

Nonconvex Optimization

Chapter 8

Monotone Inclusion

Distributed Applications

Figure 1.2: Overview of the chapters

on Automatic Control 64, 10 (10 2019), 4050–4065.

Chapter 5 is based on:

Latafat, P., Bemporad, A., and Patrinos, P. Plug and play distributed model
predictive control with dynamic coupling: A randomized primal-dual proximal
algorithm. In European Control Conference (ECC) (June 2018), pp. 1160–1165.

Chapter 6 considers a network of agents, each with its own private cost con-
sisting of the sum of two possibly nonsmooth convex functions, one of which is
composed with a linear operator. At every iteration each agent performs local
calculations and can only communicate with its neighbors. The goal is to mini-
mize the aggregate of the private cost functions and reach a consensus over a
graph. A special case of AFBA is used to develop a primal-dual algorithm for
solving this minimization over the communication graph. It is demonstrated
through computational experiments how suitably selecting the parameters of
our algorithm can lead to larger stepsizes and yield better performance.

Chapter 6 is based on:

Latafat, P., Stella, L., and Patrinos, P. New primal-dual proximal algorithm
for distributed optimization. In 55th IEEE Conference on Decision and Control
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(CDC) (Dec 2016), pp. 1959–1964.

Chapter 7 considers primal-dual algorithms over message-passing (multi-agent)
architectures with communication delays. It is assumed that the delay with
respect to each neighbor is bounded but otherwise arbitrary. The global opti-
mization problem is the aggregate of the local cost functions and a common
Lipschitz differentiable function. When the coupling between agents is repre-
sented only through the common function, the primal-dual algorithm proposed
by Vũ and Condat [170, 53] is employed. In the case when the linear maps
introduce additional couplings between agents a new algorithm is developed.
Moreover, a randomized variant of this algorithm is presented that allows
the agents to wake up at random and independently from one another. The
convergence of the proposed algorithms is established under strong convexity
assumptions.

Chapter 7 is based on:

Latafat P. and Patrinos. P. Primal-dual algorithms for multi-agent structured
optimization over message-passing architectures with bounded communication
delays (submitted 2019).

Chapter 8 deals with block-coordinate proximal gradient methods for minimizing
the sum of a separable smooth function and a (nonseparable) nonsmooth func-
tion, both of which are allowed to be nonconvex. The main tool in our analysis
is the forward-backward envelope (FBE), which serves as a particularly suitable
continuous and real-valued Lyapunov function. Global and linear convergence
results are established when the cost function satisfies the Kurdyka-Łojasiewicz
property without imposing convexity requirements on the smooth function. Two
prominent special cases of the investigated setting are regularized finite sum
minimization and the sharing problem; in particular, an immediate byproduct
of our analysis leads to novel convergence results and rates for the popular Fini-
to/MISO algorithm in the nonsmooth and nonconvex setting with very general
sampling strategies.

Chapter 8 is based on:

Latafat P., Themelis A. and Patrinos P. Block-coordinate and incremental
aggregated proximal gradient methods for nonsmooth nonconvex problems.
arXiv:1906.10053 (submitted 2019).
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1.2 Preliminary material

In this section we recap some standard definitions and results that are used
throughout the thesis [143, 13, 144, 18, 14].

The set of real numbers is denoted by R. The set of extended real numbers is
defined as R = R ∪ {∞}. We denote (a, b) := {x | a < x < b} where a, b can
be taken to be ±∞, and square brackets [a, b] when equality is allowed in the
definition. Intervals (a, b] and [a, b) are defined accordingly.

1.2.1 Vector notation

We denote by Rn the standard n-dimensional Euclidean space with inner product
〈·, ·〉 and induced norm ‖ · ‖. For w = (w1, . . . , wN ) ∈ Rn, wi ∈ Rni is used to
denote its i-th (block) coordinate.

The sets of symmetric, symmetric positive semi-definite and symmetric positive
definite n-by-n matrices are denoted by Sn, Sn+ and Sn++, respectively. We
also write P � 0 and P � 0 for P ∈ Sn+ and P ∈ Sn++, respectively. For
P ∈ Sn++ we define the scalar product 〈x, y〉P = 〈x, Py〉 and the induced norm
‖x‖P =

√
〈x, x〉P . The identity matrix is denoted by In ∈ Rn×n; we write I

when no ambiguity occurs.

1.2.2 Sequences

We use the notation (wk)k∈I to denote a sequence with indices in the set I ⊆ N.
Occasionally, when dealing with scalar sequences we use the subscript notation
(γk)k∈I .

Definition 1.1 (Fejér monotonicity). A sequence (wk)k∈N is said to be Fejér
monotone with respect to a nonempty set U ⊆ Rn if for all v ∈ U and all k ∈ N

‖wk+1 − v‖ ≤ ‖wk − v‖.

It is said to be quasi-Fejér monotone with respect to U ⊆ Rn if for all v ∈ U ,
there exists a summable nonnegative sequence (εk)k∈N such that for all k ∈ N

‖wk+1 − v‖2 ≤ ‖wk − v‖2 + εk.
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Moreover, given S ∈ Sn++, we say that a sequence is S-(quasi)-Fejér monotone
with respect to U ⊆ Rn if it is (quasi)-Fejér monotone with respect to U in the
space equipped with 〈·, ·〉S.

We use the following notions of linear convergence:

• A sequence (wk)k∈N is said to converge to a point w? (at least) Q-linearly
(with quotient rate) with Q-factor given by σ ∈ (0, 1), if there exists
k0 ∈ N such that for all k ≥ k0,

‖wk+1 − w?‖ ≤ σ‖wk − x?‖.

• A sequence (wk)k∈N is said to converge to a point w? (at least) R-linearly
(with root rate) if there exists a sequence of nonnegative scalars (vk)k∈N
such that ‖wk − w?‖ ≤ vk and (vk)k∈N converges Q-linearly to zero.

1.2.3 Functions and operators

An operator (or set-valued mapping) F : Rn ⇒ Rd maps each point x ∈ Rn to
a subset Fx of Rd. We denote the domain of F by

domF := {x ∈ Rn | Fx 6= ∅},

its graph by
graF := {(x, y) ∈ Rn × Rd | y ∈ Fx},

the set of its zeros by zerF := {x ∈ Rn | 0 ∈ Fx}, and the set of its fixed
points by fixF := {x | x ∈ Fx}. The inverse of F is defined through its
graph: graF−1 := {(y, x) | (x, y) ∈ graF}. The resolvent of F is defined by
JF := (id + F )−1, where id denotes the identity operator. The mapping F is
called monotone if for all (x, y), (x′, y′) ∈ graF

0 ≤ 〈x− x′, y − y′〉,

and is said to be maximally monotone if its graph is not strictly contained in the
graph of another monotone operator. The mapping F is said to be nonexpansive
if for all (x, y), (x′, y′) ∈ graF

‖y − y′‖ ≤ ‖x− x′‖,

and firmly nonexpansive if

‖y − y′‖2 ≤ ‖x− x′‖2 − ‖(x− y)− (x′ − y′)‖2.
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The resolvent JF is firmly nonexpansive (with dom JF = Rn) if and only if F
is (maximally) monotone [13, Prop. 23.8].

Operator F is outer semicontinuous (osc) at x̄ ∈ domF if

limsup
x→x̄

Fx := {y | ∃xk → x̄,∃yk → y with yk ∈ Fxk} ⊆ Fx̄. (1.4)

Operator F is osc everywhere if and only if its graph is closed in Rn × Rd.

Next, let us define the notion of metric subregularity which is used throughout
the thesis for establishing linear convergence. Metric subregularity is a “one-
point” version of metric regularity. We refer the interested reader to [61, §3]
and [144, §9] for further discussion.

Definition 1.2 (metric subregularity). A set-valued mapping F : Rn ⇒ Rd is
metrically subregular at x̄ for ȳ if (x̄, ȳ) ∈ graF and there exists a positive
constant η together with a neighborhood of subregularity U of x̄ such that

dist(x, F−1ȳ) ≤ η dist(ȳ, Fx) ∀x ∈ U . (1.5)
If the following stronger condition holds

‖x− x̄‖ ≤ η dist(ȳ, Fx) ∀x ∈ U , (1.6)

then F is said to be strongly subregular at x̄ for ȳ.

Moreover, we say that F is globally (strongly) subregular at x̄ for ȳ if (strong)
subregularity holds with U = Rn.

Definition 1.3 (cocoercivity). An operator C : Rp → Rp is said to be cocoercive
with respect to ‖ · ‖V with V ∈ Sp++ if for all z, z′ ∈ Rp

〈Cz − Cz′, z − z′〉 ≥ ‖Cz − Cz′‖2V −1 . (1.7)

For an extended-real-valued function f : Rn → R, its domain is the set

dom f := {x ∈ Rn | f(x) <∞}.

Function f is said to be proper if its domain is a nonempty set. The epigraph
of f is

epi f := {(x, α) ∈ Rn × R | f(x) < α},

and f is said to be closed if epi f is a closed set in Rn+1. For any α ∈ R,
α-(sub)level set of f is

lev≤α f := {x ∈ Rn | f(x) ≤ α}.
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Function f is called lower semicontinuous (lsc) at x̄ ∈ Rn if

f(x̄) ≤ lim inf
x→x̄

f(x).

It is called lsc if it is lsc at all points Rn. For extended-real-valued functions,
lower semicontinuity, closedness, and all level sets being closed are equivalent
[144, Thm 1.6].

The indicator function of a set X ⊆ Rn is given by

δX(x) :=
{

0 if x ∈ X
+∞ if x /∈ X.

The indicator function δX is closed if and only if X is a closed set. The projection
onto and the distance from X with respect to ‖ · ‖V are denoted by

PVX(z) := argmin
w∈X

{‖w − x‖V }, distV (z,X) := inf
x∈X
{‖z − x‖V },

respectively. The absence of super/subscript V implies the same definitions with
respect to the canonical norm.

A set X ⊆ Rn is said to be polyhedral if it can be expressed as the intersection
of finitely many closed half-spaces and/or hyperplanes.

An important class of functions prevalent in optimization is the class of piecewise
linear-quadratic (PLQ) functions, which is closed under scalar multiplication,
addition, conjugation and Moreau envelope [144].

Definition 1.4 (piecewise linear-quadratic). A function f : Rn → R is called
piecewise linear-quadratic (PLQ) if its domain can be represented as the union of
finitely many polyhedral sets, and in each such set f(x) is given by an expression
of the form 1

2 〈x,Qx〉+ 〈d, x〉+ c, for some c ∈ R, d ∈ Rn, and Q ∈ Sn.

1.2.4 Subgradients

Let f : Rn → R be a proper lsc function. Then, v ∈ Rn is a regular subgradient
of f at x̄ if

lim inf
x→x̄
x 6= x̄

f(x)− f(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0.

The set of all regular subgradient of f at x̄ is called the subdifferential of f at
x̄ and is denoted by ∂̂f(x̄). The regular subdifferential is closed and convex.
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A vector v ∈ Rn is a (limiting) subgradient of f at x̄ ∈ dom f if there exists
sequences xk → x̄ with f(xk)→ f(x̄), and vk → v such that vk ∈ ∂̂f(xk). The
set of all subgradients of f at x̄ is called the limiting subdifferential of f at x̄
and is denoted ∂f(x̄). Local minimizers of f are characterized by the following
extension of Fermat’s rule [144, Thm. 10.1].

Lemma 1.5. Let f : Rn → R be a proper lsc function. If f has a local minimum
at x̄, then 0 ∈ ∂̂f(x̄). If f is also convex, then this condition is equivalent to
x̄ ∈ argmin f .

The regular and limiting subdifferentials coincide with the usual notion of
subdifferential for convex functions [144, Prop. 8.12].

Lemma 1.6. Let f : Rn → R be a proper lsc convex function. For any
x ∈ dom f

∂f(x) = ∂̂f(x) = {y ∈ Rn | ∀z ∈ Rn, 〈z − x, y〉+ f(x) ≤ f(z)}.

We conclude by noting that if f is a proper lsc convex function, then ∂f is
maximally monotone [143, Cor. 31.5.2].

1.2.5 Conjugate functions and infimal convolution

The Fenchel conjugate of an extended-real-valued function f : Rn → R, denoted
f∗, is defined by

f∗(v) := sup
x∈Rn
{〈v, x〉 − f(x)}.

The conjugate function f∗ is lsc and convex. The Fenchel-Young inequality
states that for all x, u ∈ Rn

〈x, u〉 ≤ f(x) + f∗(u).

In the special case when f = 1
2‖ · ‖

2
V for some symmetric positive definite matrix

V , this gives:
〈x, u〉 ≤ 1

2‖x‖
2
V + 1

2‖u‖
2
V −1 . (1.8)

The infimal convolution of two proper extended-real-valued functions f, g :
Rn → R is defined by

(f � g)(x) := inf
z∈Rn
{f(z) + g(x− z)},
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and the conjugate of the infimal convolution is given by

(f � g)∗ = f∗ + g∗.

1.2.6 Proximal mappings and Moreau envelopes

For a proper lsc function f : Rn → R and V ∈ Sn++, the V -proximal mapping of
f is defined as the following set-valued mapping

proxVf (x) := argmin
w∈Rn

{f(w) + 1
2‖x− w‖

2
V }.

When V = γ−1In is a multiple of the identity matrix In, the notation proxγf is
typically used and γ is referred to as a stepsize. The value function associated
to the minimization defining the proximal mapping is the Moreau envelope

fV (x) := min
w∈Rn

{
f(w) + 1

2‖w − x‖
2
V

}
.

Function f is called prox-bounded if f + 1
2γ ‖ ·‖

2 is lower bounded for some γ > 0.
The supremum of the set of all such γ is the threshold γf of prox-boundedness
for f .

If f is a proper lsc convex function, then the V -proximal mapping is uniquely
determined by the resolvent of V −1∂f :

proxVf (x) = (id + V −1∂f)−1x,

and the Moreau decomposition is given by

proxV −1

f (x) + V proxVf∗(V −1x) = x.



Chapter 2

Asymmetric forward-backward-adjoint splitting

This chapter is based on:

Latafat, P., and Patrinos, P. Asymmetric forward–backward–adjoint splitting
for solving monotone inclusions involving three operators. Computational Opti-
mization and Applications 68, 1 (Sep 2017), 57–93.

2.1 Introduction

The focus of this chapter is on solving monotone inclusion problems of the form

0 ∈ Ax+Mx+ Cx, (2.1)

where A is a maximally monotone operator, M is a bounded linear operator and
C is cocoercive. The most well known algorithms for solving monotone inclusion
problems are forward-backward (FBS), Douglas-Rachford (DRS) and forward-
backward-forward (FBFS) splittings [118, 108, 49, 130, 29, 162]. The operator
splitting schemes FBS and DRS are not well suited to handle (2.1) since they
are designed for monotone inclusions involving the sum of two operators. The
FBFS can solve (2.1) by consideringM+C as one Lipschitz continuous operator.
However, being blind to the fact that C is cocoercive, it would require two
evaluations of C per iteration. Many other variations of the three main splittings
have been proposed over time that can be seen as intelligent applications of
these classical methods (see for example [30, 38, 31, 170, 53]).

In this chapter a new algorithm called asymmetric-forward-backward-adjoint
splitting (AFBA) to solve the monotone inclusion (2.1), without resorting to
any kind of reformulation of the problem. One important property of AFBA

15
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is that it includes asymmetric preconditioning. This gives great flexibility to
the algorithm, and indeed it is the key for recovering and unifying existing
primal-dual proximal splitting schemes for convex optimization and devising
new ones. More importantly, it can deal with problems involving three operators,
one of which is cocoercive. It is observed that FBS, DRS, and the Proximal
Point Algorithm (PPA) can be derived as special cases of our method. Another
notable special case is the method proposed by Solodov and Tseng for variational
inequalities in [151, Alg. 2.1]. Moreover, when the cocoercive term C is absent
in (2.1), in a yet another special case it coincides with the FBFS when its
Lipschitz operator is skew-adjoint. Recently, a new splitting scheme was proposed
in [58] for solving monotone inclusions involving the sum of three operators, one
of which is cocoercive. This method can be seen as Douglas-Rachford splitting
with an extra forward step for the cocoercive operator. As a special case of
our scheme, we propose an algorithm that also bears heavy resemblance to the
classic Douglas-Rachford splitting with an extra forward step (see Algorithm
2.2). The proposed algorithm differs from that of [58], in that the forward step
precedes the two backward updates.

As another contribution, big-O(1/(k + 1)) and little-o(1/(k + 1)) convergence
rates are derived for AFBA (see Theorem 2.3). It is observed that in many
cases these convergence rates are guaranteed under mild conditions. In addition,
under metric subregularity of the underlying operator, linear convergence is
guaranteed without restrictions on the parameters (see Theorem 2.4). Given
that AFBA generalizes a wide range of algorithms, this analysis provides a
systematic way to deduce convergence rates for many algorithms.

Notation: In this section, we consider real Hilbert spaces. We denote the scalar
product and the induced norm of a Hilbert space by 〈·, ·〉 and ‖ · ‖ respectively.
Let H and G be real Hilbert spaces. We denote by B(H,G) the space of bounded
linear operators from H to G and set B(H) = B(H,H). The space of self-adjoint
operators is denoted by S(H) = {L ∈ B(H)|L = L∗}, where L∗ denotes the
adjoint of L. The Loewner partial ordering on S(H) is denoted by �. Let
τ ∈]0,+∞[ and define the space of τ -strongly positive self-adjoint operators
by Sτ (H) = {U ∈ S(H)|U � τ id}. For U ∈ Sτ (H), define the scalar product
and the norm by 〈x, y〉U = 〈x, Uy〉, and ‖x‖U =

√
〈x, Ux〉. We also define the

Hilbert space HU by endowing H with the scalar product 〈x, y〉U .

All other preliminary definitons and notations in Section 1.2 extend directly to
real Hilbert spaces considered in this chapter.



ASYMMETRIC FORWARD-BACKWARD-ADJOINT SPLITTING 17

2.2 Asymmetric forward-backward-adjoint splitting

Let H be a real Hilbert space and consider the problem of finding z ∈ H such
that

0 ∈ Tz where T := A+M + C, (2.2)

where operators A, M , C satisfy the following assumption:
Assumption 2.I. Throughout the chapter the following hold:

(i) Operator A : H⇒ H is maximally monotone andM ∈ B(H) is monotone.

(ii) Operator C : H → H is β-cocoercive with respect to ‖ · ‖P , where
β ∈]1/4,+∞) and P ∈ Sρ(H) for some ρ ∈ (0,∞), i.e.,

(∀z ∈ H)(∀z′ ∈ H) 〈Cz − Cz′, z − z′〉 ≥ β‖Cz − Cz′‖2P−1 .

It is important to notice that the freedom in choosing P is a crucial part of our
method. In Assumption 2.I(ii) we consider cocoercivity with respect to ‖ · ‖P
with β ∈]1/4,+∞). However, this is by no means a restriction of our setting;
another approach would have been to consider cocoercivity with respect to
the canonical norm ‖ · ‖ with β ∈]0,+∞) but this would lead to statements
involving ‖P‖ and ‖P−1‖. Indeed convergence with respect to ‖ · ‖ and ‖ · ‖P
are equivalent but in using ‖ · ‖P we simplify the notation substantially.

In addition, let S be a strongly positive, self-adjoint operator, K ∈ B(H) a
skew-adjoint operator, i.e., K∗ = −K, H = P +K and (λk)k∈N is a sequence
satisfying (2.5). Then, the algorithm for solving the monotone inclusion described
above is as follows:

Algorithm 2.1 Asymmetric Forward-Backward-Adjoint Splitting (AFBA)
Inputs: z0 ∈ H
for k = 0, 1, . . . , do

z̄k = (H +A)−1(H −M − C)zk

z̃k = z̄k − zk

αk = λk‖z̃k‖2P
‖(H +M∗)z̃k‖2S−1

zk+1 = zk + αkS
−1(H +M∗)z̃k

Before proceeding with the convergence analysis let us define

D = (H +M∗)∗S−1(H +M∗). (2.3)
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Since P ∈ Sρ(H) for some ρ ∈ (0,∞), K is skew-adjoint, and M ∈ B(H) is
monotone, it follows that 〈(H +M∗)z, z〉 ≥ ρ‖z‖2 for all z ∈ H, and we have

(∀z ∈ H) 〈z,Dz〉 = ‖(H +M∗)z‖2S−1 ≥ ρ2‖S‖−1‖z‖2. (2.4)

Hence, D ∈ Sν(H) with ν = ρ2‖S‖−1. Notice that the denominator of αk in
Algorithm 2.1 is equal to the left hand side of (2.4) for z = z̃k and thus it is
bounded below by ρ2‖S‖−1‖z̃k‖2.

2.2.1 Convergence analysis

In this section we analyze convergence and rate of convergence of Algorithm 2.1.
We also consider a special case of the algorithm in which it is possible to relax
strong positivity of P to positivity. We begin by stating our main convergence
result. The proof relies on showing that the sequence (zk)k∈N is Fejér monotone
with respect to zer(A+M +C) in the Hilbert space H equipped with the scalar
product 〈·, ·〉S .

Theorem 2.1. Consider Algorithm 2.1 under Assumption 2.I and assume that
zer(T ) 6= ∅ where T = A+M + C. Let σ ∈ (0,∞), S ∈ Sσ(H), K ∈ B(H) a
skew-adjoint operator, and H = P +K. Let (λk)k∈N be a sequence such that

(λk)k∈N ⊆ [0, δ] with δ = 2− 1
2β , δ > 0, lim inf

k→∞
λk(δ − λk) > 0. (2.5)

Then the following hold:

(i) (zk)k∈N is S-Fejér monotone with respect to zer(T ).

(ii) (z̃k)k∈N converges strongly to zero.

(iii) (zk)k∈N converges weakly to a point in zer(T ).

Furthermore, when C ≡ 0 all of the above statements hold with δ = 2.

Proof. The operators Ã = P−1(A+K) and B̃ = P−1(M+C−K) are monotone
in the Hilbert space HP . We observe that

z̄k = (H +A)−1(H −M − C)zk = (id + Ã)−1(id− B̃)zk.

Therefore zk − B̃zk ∈ z̄k + Ãz̄k, or −z̃k − B̃zk ∈ Ãz̄k. Since −B̃z? ∈ Ãz? for
z? ∈ zer(T ) by monotonicity of Ã on HP we have

〈B̃zk − B̃z? + z̃k, z? − z̄k〉P ≥ 0.
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Then,

0 ≤ 〈B̃zk − B̃z? + z̃k, z? − z̄k〉P

= 〈P−1(M + C −K)zk − P−1(M + C −K)z? + z̃k, z? − z̄k〉P .

= 〈(M −K)(zk − z?) + Czk − Cz? + P z̃k, z? − z̄k〉. (2.6)

On the other hand

〈Czk − Cz?, z? − z̄k〉 = 〈Czk − Cz?, zk − z̄k〉+ 〈Czk − Cz?, z? − zk〉

≤ ε

2‖z̃
k‖2P + 1

2ε‖Cz
k − Cz?‖2P−1

+ 〈Czk − Cz?, z? − zk〉

≤ ε

2‖z̃
k‖2P +

(
1− 1

2εβ

)
〈Czk − Cz?, z? − zk〉.

The first inequality follows from Fenchel-Young inequality for ε
2‖ · ‖

2
P , while the

second from β-cocoercivity of C with respect to ‖ · ‖P . Set ε := 1
2β so that

〈Czk − Cz?, z? − z̄k〉 ≤ 1
4β ‖z̃

k‖2P . (2.7)

In turn, (2.6), (2.7) and monotonicity of M −K, yield

0 ≤ 〈(M −K)(zk − z?) + Czk − Cz? + P z̃k, z? − z̄k〉

≤ 〈(M −K)(zk − z?), z? − zk〉+ 〈(M −K)(zk − z?), zk − z̄k〉

+ 1
4β ‖z̃

k‖2P + 〈P z̃k, z? − zk〉+ 〈P z̃k, zk − z̄k〉

≤ 〈zk − z?, (M∗ +K)(zk − z̄k)〉+ 1
4β ‖z̃

k‖2P + 〈P z̃k, z? − zk〉 − ‖z̃k‖2P

= 〈zk − z?,−(M∗ +H)z̃k〉 −
(

1− 1
4β

)
‖z̃k‖2P ,

or equivalently

〈zk − z?, (M∗ +H)z̃k〉 ≤ −
(

1− 1
4β

)
‖z̃k‖2P . (2.8)
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For notational convenience define δ := 2 − 1
2β . We show that ‖zk − z?‖2S is

decreasing using (2.8) together with step 3 and 4 of Algorithm 2.1:

‖zk+1−z?‖2S = ‖zk − z? + αkS
−1(H +M∗)z̃k‖2S

= ‖zk − z?‖2S + 2αk〈zk − z?, (H +M∗)z̃k〉+ α2
k‖(H +M∗)z̃k‖2S−1

≤ ‖zk − z?‖2S − αkδ‖z̃k‖2P + α2
k‖(H +M∗)z̃k‖2S−1

= ‖zk − z?‖2S − δλk
‖z̃k‖4P

‖(H +M∗)z̃k‖2S−1
+ λ2

k

‖z̃k‖4P
‖(H +M∗)z̃k‖2S−1

= ‖zk − z?‖2S − λk(δ − λk)‖(H +M∗)z̃k‖−2
S−1‖z̃k‖4P (2.9)

= ‖zk − z?‖2S − λk(δ − λk)‖P−1/2S−1/2(H +M∗)z̃k‖−2
P ‖z̃

k‖4P

≤ ‖zk − z?‖2S − λk(δ − λk)‖P−1/2S−1/2(H +M∗)‖−2
P ‖z̃

k‖2P

= ‖zk − z?‖2S − λk(δ − λk)‖S−1/2(H +M∗)P−1/2‖−2‖z̃k‖2P . (2.10)

Furthermore, when C ≡ 0 all the above analysis holds with δ = 2.

(i): Inequality (2.10) and (λk)k∈N ⊆ [0, δ] show that (zk)k∈N is S-Fejér monotone
with respect to zer(T ).

(ii): From (2.10) and lim inf
k→∞

λk(δ − λk) > 0, it follows that z̃k → 0.

(iii): Define
wk := −(H −M)z̃k + Cz̄k − Czk. (2.11)

It follows from (2.11), linearity of H −M , cocoercivity of C and (ii) that

wk → 0. (2.12)

By step 1 of Algorithm 2.1 we have (H−M−C)zk ∈ (H+A)z̄k, which together
with (2.11) yields

wk ∈ T z̄k. (2.13)

Now let z be a weak sequential cluster point of (zk)k∈N , say zkq ⇀ z. It follows
from (ii) that z̄kq ⇀ z, and from (2.12) that wkq → 0. Altogether, by (2.13),
the members of the sequence (z̄kq , wkq )q∈N belong to gra(T ). Additionally, by
[13, Ex. 20.31, 20.34 and Cor. 25.5(i)], T is maximally monotone. Then, an
appeal to [13, Prop. 20.38(ii)] yields (z, 0) ∈ gra(T ). This together with (i) and
[13, Thm. 5.5] completes the proof.
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Remark 2.2. It can be shown based on (2.8) that for a constant λn = λ ∈
]0, δ], the fixed-point mapping behind Algorithm 2.1 is δ−λ

λ -strongly quasi-
nonexpansive (SQNE), in the sense of [35, Def. 2.1.38]. It is well known that an
averaged operator is also SQNE. In fact if an operator is λ

δ -averaged then it is
δ−λ
λ -SQNE. But the converse is not true in general. See [35, Fig. 2.10] for an

overview of the relation between algorithmic operators.

Equation (2.10) implies that the sequence (mini=1...k ‖z̃i‖2P )k∈N, the cumulative
minimum of (‖z̃k‖2P )k∈N, converges sublinearly. Next, we derive big-O(1/(k+1))
and little-o(1/(k+1)) convergence rates for the sequence itself. This is established
below, under further restrictions on (λk)k∈N, by showing that the sequence(
‖z̃k‖2D

)
k∈N is monotonically nonincreasing and summable.

Theorem 2.3 (convergence rates). Consider Algorithm 2.1 under the assump-
tions of Theorem 2.1. Let c1 and c2 be two positive constants satisfying

c1P � D � c2P, (2.14)

with D defined in (2.3). Assume

(λk)k∈N ⊆ ]0, c1δ/c2], (2.15)

where δ is defined in (2.5). Suppose that τ := infk∈N λk(δ − λk) > 0. Then, the
following convergence estimates hold:

‖z̃k‖2D ≤
c22

τ(k + 1)‖z
0 − z?‖2S and ‖z̃k‖2D = o(1/(k + 1)).

Proof. Using the monotonicity of A and Step 1 of Algorithm 2.1

0 ≤ 〈(H −M)(zk − zk+1)−H(z̄k − z̄k+1) + Czk+1 − Czk, z̄k − z̄k+1〉.
(2.16)

On the other hand we have

〈Czk+1 − Czk, z̄k − z̄k+1〉 = 〈Czk+1 − Czk, z̃k − z̃k+1〉

+ 〈Czk+1 − Czk, zk − zk+1〉

≤ ε
2‖z̃

k − z̃k+1‖2P + 1
2ε‖Cz

k+1 − Czk‖2P−1

+ 〈Czk+1 − Czk, zk − zk+1〉

≤ ε
2‖z̃

k − z̃k+1‖2P
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+
(
1− 1

2εβ
)
〈Czk+1 − Czk, zk − zk+1〉.

The first inequality follows from the Fenchel-Young inequality for ε
2‖ · ‖

2
P , and

the second inequality follows from β-cocoercivity of C with respect to ‖ · ‖P .
Set ε = 1

2β so that

〈Czk+1 − Czk, z̄k − z̄k+1〉 ≤ 1
4β ‖z̃

k − z̃k+1‖2P . (2.17)

Using (2.16), (2.17) and monotonicity of M we have

0 ≤ 1
4β ‖z̃

k − z̃k+1‖2P + 〈−M(zk − zk+1)−H(z̃k − z̃k+1), z̄k − z̄k+1〉

= 1
4β ‖z̃

k − z̃k+1‖2P + 〈−M(zk − zk+1)−H(z̃k − z̃k+1), z̃k − z̃k+1〉

+ 〈−M(zk − zk+1)−H(z̃k − z̃k+1), zk − zk+1〉

≤ 1
4β ‖z̃

k − z̃k+1‖2P + 〈−M(zk − zk+1)−H(z̃k − z̃k+1), z̃k − z̃k+1〉

+ 〈−H(z̃k − z̃k+1), zk − zk+1〉 (2.18)

= −
(

1− 1
4β

)
‖z̃k − z̃k+1‖2P − 〈(M +H∗)(zk − zk+1), z̃k − z̃k+1〉. (2.19)

It follows from (2.19) and Step 4 of Algorithm 2.1 that(
1− 1

4β

)
‖z̃k − z̃k+1‖2P ≤ 〈−(M +H∗)(zk − zk+1), z̃k − z̃k+1〉

= 〈αk(H +M∗)∗S−1(H +M∗)z̃k, z̃k − z̃k+1〉

≤ 〈αkDz̃k, z̃k − z̃k+1〉. (2.20)

Let us show that (‖z̃k‖2D)k∈N is monotonically nonincreasing. Using the identity

‖a‖2D − ‖b‖2D = 2〈Da, a− b〉 − ‖a− b‖2D, (2.21)

we have

‖z̃k‖2D − ‖z̃k+1‖2D = 2〈Dz̃k, z̃k − z̃k+1〉 − ‖z̃k − z̃k+1‖2D

≥ 2
αk

(1− 1
4β )‖z̃k − z̃k+1‖2P − ‖z̃k − z̃k+1‖2D

≥ c1δ
λk
‖z̃k − z̃k+1‖2P − ‖z̃k − z̃k+1‖2D
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≥
(
c1δ
c2λk

− 1
)
‖z̃k − z̃k+1‖2D

where the inequalities follow from (2.20), the definition of αk and (2.14). There-
fore ‖z̃k‖2D is nonincreasing as long as (2.15) is satisfied. It follows from (2.9)
and (2.14) that

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − λk(δ − λk)‖(H +M∗)z̃k‖−2
S−1‖z̃k‖4P

= ‖zk − z?‖2S − λk(δ − λk)‖z̃k‖−2
D ‖z̃

k‖4P

≤ ‖zk − z?‖2S − c−2
2 λk(δ − λk)‖z̃k‖2D.

Summing over k yields
∑∞
i=0λ

i(δ−λi)‖z̃i‖2D ≤ c22‖z0− z?‖2S . Therefore we have∑∞
i=0‖z̃i‖2D ≤

c2
2
τ ‖z

0 − z?‖2S . (2.22)

On the other hand, since ‖z̃k‖2D is nonincreasing, it follows that ‖z̃k‖2D ≤
1
k+1

∑k
i=0 ‖z̃i‖2D. Combining this with (2.22) establishes the big-O convergence.

The little-o convergence follows from [57, Lem. 3-(1a)].

Recall the notion of metric subregulariy in Definition 1.2. In Theorem 2.4, we
derive linear convergence rates when the operator T = A+M +C is metrically
subregular at all z? ∈ zer(T ) for 0. Metric subregularity is used in [104] to show
linear convergence of Krasnosel’skǐı-Mann iterations for finding a fixed point of
a nonexpansive mapping (see Lemma 4.12 and the preceding discussion).

Theorem 2.4 (linear convergence). Consider Algorithm 2.1 under the as-
sumptions of Theorem 2.1. Suppose that T is metrically subregular at all
z? ∈ zer(T ) for 0, cf. (1.5). If either H is finite-dimensional or U = H, then
(distS(zk, zer(T )))k∈N converges Q-linearly to zero, (zk)k∈N and (‖z̃k‖P )k∈N
converge R-linearly to some z? ∈ zer(T ) and zero, respectively.

Proof. It follows from metric subregularity of T at all z? ∈ zer(T ) for 0 that

dist(x, zer(T )) ≤ η‖y‖ ∀x ∈ U and y ∈ Tx with ‖y‖ ≤ ν, (2.23)

for some ν ∈ (0,∞) and η ∈ [0,∞) and a neighborhood U of zer(T ). Consider
wk defined in (2.11). It was shown in (2.12) that wk → 0 and if H is a finite-
dimensional Hilbert space, Theorem 2.1(ii)-(iii) yield that z̄k converges to a
point in zer(T ). Then there exists k̄ ∈ N such that for k > k̄ we have ‖wk‖ ≤ ν
and a neighborhood U of zer(T ) exists with z̄k ∈ U (This holds trivially when
U = H). Consequently (2.23) yields dist(z̄k, zer(T )) ≤ η‖wk‖. In addition,
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triangle inequality and Lipschitz continuity of C yield

‖wk‖ = ‖Hz̃k −Mz̃k − Cz̄k + Czk‖ ≤ ‖(H −M)z̃k‖+ ‖Cz̄k − Czk‖

≤
(
‖H −M‖+ 1

β ‖P‖
)
‖z̃k‖.

Consider the projection of z̄k onto zer(T ), Pzer(T )(z̄k). By definition ‖z̄k −
Pzer(T )(z̄k)‖ = dist(z̄k, zer(T )) (the minimum is attained since T is maximally
monotone [13, Proposition 23.39]), and we have

‖zk − Pzer(T )(z̄k)‖ ≤ ‖z̄k − Pzer(T )(z̄k)‖+ ‖z̃k‖ = dist(z̄k, zer(T )) + ‖z̃k‖

≤ ξη‖z̃k‖+ ‖z̃k‖ ≤ (ξη + 1)‖P−1‖1/2‖z̃k‖P , (2.24)

where ξ = ‖H −M‖+ 1
β ‖P‖. It follows from (2.24) that

dist2
S(zk,zer(T ))≤‖zk−Pzer(T )(z̄k)‖2S≤(ξη+1)2‖P−1‖‖S‖‖z̃k‖2P . (2.25)

By definition we have ‖zk − PSzer(T )(zk)‖S = distS(zk, zer(T )), and since
inequality (2.9) holds for all z? ∈ zer(T ), it follows that

dist2
S(zk+1,zer(T ))≤‖zk+1−PSzer(T )(zk)‖2S

≤‖zk−PSzer(T )(zk)‖2S−λk(δ−λk)‖(H+M∗)z̃k‖−2
S−1‖z̃k‖4P

=dist2
S(zk,zer(T ))−λk(δ−λk)‖(H+M∗)z̃k‖−2

S−1‖z̃k‖4P (2.26)

≤dist2
S(zk,zer(T ))−λk(δ−λk)‖S−1/2(H+M∗)P−1/2‖−2‖z̃k‖2P (2.27)

≤dist2
S(zk,zer(T ))− λk(δ−λk)

ς dist2
S(zk,zer(T )),

where ς = (ξη + 1)2‖P−1‖‖S‖‖S−1/2(H +M∗)P−1/2‖2 and in the last in-
equality we used (2.25). It follows from (2.5) that there exists k̃ ∈ N
such that (λk(δ − λk))k>k̃ ⊆ [τ̄ ,∞) for some τ̄ > 0. Hence, the sequence
(distS(zk, zer(T )))k∈N converges Q-linearly to zero. Thus, R-linear convergence
of
(
‖z̃k‖P

)
k∈N follows from (2.27).

Step 4 of Algorithm 2.1 and (2.26) yield

‖zk+1 − zk‖2S = λ2
k‖(H +M∗)z̃k‖−2

S−1‖z̃k‖4P
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≤ δ2

τ̄

(
dist2

S(zk, zer(T ))− dist2
S(zk+1, zer(T ))

)
.

Therefore,
(
‖zk+1 − zk‖S

)
k∈N converges R-linearly to zero. This is equivalent

to saying that there exists c ∈ (0, 1), κ ∈ (0,∞), k ∈ N such that for all k ≥ k,
‖zk+1 − zk‖S ≤ κck holds. Thus, for any j > k ≥ k we have

‖zj − zk‖S ≤
∑j−1
i=k‖zi+1 − zi‖S ≤

∑j−1
i=k κc

i ≤
∑∞
i=k κc

i = κ
1−cc

k. (2.28)

Hence, the sequence (zk)k∈N is a Cauchy sequence, and therefore converges
to some z ∈ H. From uniqueness of weak limit and Theorem 2.1(iii) we have
z ∈ zer(T ). Let j →∞ in (2.28) to obtain R-linear convergence of (zk)k∈N.

In the special case when C ≡ 0, M is skew-adjoint , K = M and S = P ,
the operator P ∈ B(H) can be a self-adjoint, positive operator rather than a
strongly positive operator. Under these assumptions AFBA simplifies to the
following iteration:

z̄k = (H +A)−1Pzk (2.29a)

zk+1 = zk + λk(z̄k − zk). (2.29b)

Notice that if P was strongly positive, this could simply be seen as proximal
point algorithm in a different metric applied to the operator A+M , but we have
relaxed this assumption and only require P to be positive. Before providing
convergence results for this algorithm we begin with the following lemma,
showing that the mapping (H +A)−1 has full domain and is continuous when
H has a block triangular structure with strongly positive diagonal blocks, even
though its symmetric part, P , might not be strongly positive. This lemma
motivates the assumption on continuity of (H + A)−1P in Theorem 2.6. As
an application of this theorem in Proposition 2.7(iii), when P is positive with
a two-by-two block structure (see (2.54a) in the limiting case θ = 2), DRS is
recovered.

Lemma 2.5. Let H = H1 ⊕ · · · ⊕ HN , where H1, · · · ,HN are real Hilbert
spaces. Suppose that A is block separable and H has a conformable lower (upper)
triangular partitioning, i.e.,

A : z 7→ (A1z1, · · · , ANzN ),

H : z 7→ (H11z1, H21z1 +H22z2, · · · ,
N∑
j=1

HNjzj), (2.30)
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where zi ∈ Hi for i = 1, · · · , N , z = (z1, · · · , zN ) ∈ H, and Hij ∈ B(Hj ,Hi)
for i, j = 1, · · · , N . For i = 1, · · · , N , assume that Ai is maximally monotone,
and Hii ∈ Sτi(Hi) with τi ∈]0,∞]. Then, the mapping (H +A)−1 is continuous
and has full domain, i.e., dom((H + A)−1) = H. Furthermore, the update
z̄ = (H +A)−1z is carried out using

z̄i =
{

(H11 +A1)−1
z1, i = 1;

(Hii +Ai)−1
(
zi −

∑i−1
j=1Hij z̄j

)
, i = 2, · · · , N, (2.31)

where z̄ = (z̄1, · · · , z̄N ) ∈ H.

Proof. We consider a block lower triangular H as in (2.30), the analysis for
upper triangular case is identical. The goal is to consider Ai’s separately. Let
z̄ = (H + A)−1z with z̄ = (z̄1, · · · , z̄N ). The block triangular structure of H
in (2.30) yields the equivalent inclusion zi ∈ Aiz̄i+

∑i
j=1Hij z̄j , for i = 1, · · · , N .

This is equivalent to (2.31), in which, each z̄i is evaluated using zi and z̄j for
j < i. For the first block we have z̄1 = (H11 +A1)−1z1. Since A1 is monotone
and H11 is strongly monotone, it follows that H11 +A1 is strongly monotone,
which in turn implies that (H11 + A1)−1 is cocoercive and, as such, at most
single-valued and continuous. Since A1 is maximally monotone and H11 is
strongly positive we have

dom
(
(H11 +A1)−1) = ran(H11 +A1) = ran(id +A1H

−1
11 ) = H1,

where the last equality follows from maximal monotonicity of A1H
−1
11 in the

Hilbert space defined by endowing H1 with the scalar product 〈·, ·〉H−1
11

, and
Minty’s theorem [13, Thm. 21.1]. For the second block in (2.31) we have
z̄2 = (H22 +A2)−1(z2−H21z̄1). Hence, by the same argument used for previous
block, (H22 +A2)−1 is continuous and has full domain. Since (z2 −H21z̄1) and
(H22 +A2)−1 are continuous, so is their composition (H22 +A2)−1(z2 −H21z̄1).
Follow the same argument for the remaining blocks in (2.31) to conclude that
(H +A)−1 is continuous and has full domain.

The next theorem provides convergence and rate of convergence results for
algorithm (2.29a)-(2.29b) in finite-dimensions by employing the same idea used
in [53, Thm. 3.3]. The idea is to consider the operator R = P + id−Q, where
Q is the orthogonal projection onto ran(P ). The proof presented here is for a
general P and it coincides with the one of Condat [53, Thm. 3.3] for a special
choice P ∈ B(K) : (x, y) 7→

(
γ−1x− y,−x+ γy

)
.

Theorem 2.6. Suppose that H is finite-dimensional. Let P ∈ S (H), P � 0,
M ∈ B(H) a skew-adjoint operator and H = P + M . Consider the iteration
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(2.29a)-(2.29b) and assume zer(T ) 6= Ø where T = A+M . Furthermore, assume
that (H+A)−1P is continuous. Let (λk)k∈N be uniformly bounded in the interval
(0, 2). Then,

(i) (zk)k∈N converges to a point in zer(T ).

(ii) Let Q be the orthogonal projection onto ran(P ), and R = P + id − Q.
The following convergence estimates hold:

‖Pzk+1 − Pzk‖2 ≤ ‖P‖
τ(k+1)‖Qz

0 −Qz?‖2R, (2.32)

for some constant τ > 0, and ‖Pzk+1 − Pzk‖2 = o(1/(k + 1)).

Proof. (i): Since P is not strongly positive, it does not define a valid inner
product. Consider R := P + id − Q, where Q is the orthogonal projection
onto ran(P ). We show that by construction R is strongly positive. By the
spectral theorem we can write Pz1 = UΛU∗z1, where U is an orthonormal
basis consisting of eigenvectors of A. Consider two sets: s1 = {i|λi 6= 0} and
s2 = {i|λi = 0}. Denote by U1 the orthonormal basis made up of ui for i ∈ s1.
Then, ran (P ) = ran (U1) and we have Q = U1U

∗
1 . For any z ∈ H, z = z1 + z2

where z1 = Qz and z2 = (id−Q)z. Then, Rz = Pz + z −Qz = Pz1 + z2 and
〈Rz, z〉 = 〈Pz1 + z2, z〉 = 〈Pz1, z1〉 + ‖z2‖2. If z1 = 0 then 〈Rz, z〉 = ‖z2‖2 =
‖z‖2. Suppose that z2 6= 0 and z1 6= 0. Denote by λmin the smallest non zero
eigenvalue of P . We have

〈Rz, z〉 = 〈Pz1, z1〉+ ‖z2‖2 = 〈UΛU∗z1, z1〉+ ‖z2‖2

= 〈ΛU∗z1, U
∗z1〉+ ‖z2‖2 ≥ λmin‖U∗1 z1‖2 + ‖z2‖2

= λmin〈z1, Qz1〉+ ‖z2‖2 = λmin‖z1‖2 + ‖z2‖2

≥ min{1, λmin}‖z‖2.

If z2 = 0 the above analysis holds with z = z1 and result in strong positivity
parameter equal to λmin.

We continue by noting that by definition we have Q ◦ P = P , and symmetry of
P yields P ◦Q = P . Therefore, R ◦Q = P and for z ∈ H we have

〈Pz, z〉 = 〈QPz, z〉 = 〈Pz,Qz〉 = 〈RQz,Qz〉, (2.33)

which will be used throughout this proof. Observe now that for z? ∈ zer(T ) 6= ∅
we have −Mz? ∈ Az?. By monotonicity of A and (2.29a) we have 〈Mz̄k −
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Mz? + P z̃k, z? − z̄k〉 ≥ 0. Then

0 ≤ 〈Mz̄k −Mz? + P z̃k, z? − z̄k〉 = 〈P z̃k, z? − z̄k〉

= 〈P z̃k, Qz? −Qz̄k〉+ 〈RQz̃k, Qz̃k〉 − 〈RQz̃k, Qz̃k〉

= 〈P z̃k, Qz? −Qzk〉 − ‖Qz̃k‖2R, (2.34)

where the equalities follows from skew-symmetricity of M and (2.33). We show
that ‖Qzk −Qz?‖R is decreasing using (2.34):

‖Qzk+1 −Qz?‖2R = ‖Qzk −Qz? + λkQz̃
k‖2R

= ‖Qzk −Qz?‖2R + 2λk〈Qzk −Qz?, P z̃k〉+ λ2
k‖Qz̃k‖2R

≤ ‖Qzk −Qz?‖2R − λk(2− λk)‖Qz̃k‖2R. (2.35)

Let us define the sequence xk = Qzk and x̄k = Qz̄k for every k ∈ N. Then,
since P ◦Q = P the iteration for xk = Qzk is written as

x̄k = Q(H +A)−1P (xk)

xk+1 = xk + λk(x̄k − xk). (2.36)

Let G = (H +A)−1P and G′ = Q ◦G. It follows from H = P +M and (2.29a)
that

0 ∈ T (G(z)) + PG(z)− Pz. (2.37)

Use (2.37) and monotonicity of T at z? ∈ zer(T ) and G(z?) to derive

0 ≤ 〈G(z?)− z?, P z? − PG(z?)〉. (2.38)

In view of (2.38) and positivity of P , we have 〈G(z?)− z?, PG(z?)− Pz?〉 = 0,
and by [13, Cor. 18.18], PG(z?)− Pz? = 0. Hence, since R ◦Q = P , we have
RQG(z?) − RQz? = 0, and strong positivity of R implies Qz? = QG(z?) =
QG(Qz?), where the last equality is due to G ◦ Q = G. Thus, Qz? is a fixed
point of G′ = QG. We showed that if z? ∈ zer(T ) then Qz? ∈ fix(G′), i.e.,

Q zer(T ) ⊆ fix(G′). (2.39)

Furthermore, for any x? ∈ fix(G′) we have Px? = PG′(x?) = PQG(x?) =
PG(x?). Combine this with (2.37) to derive G(x?) ∈ zer(T ). Therefore, x? =
G′(x?) = QG(x?) ∈ Q zer(T ). This shows that if x? ∈ fix(G′), then x? ∈
Q zer(T ), i.e., fix(G′) ⊆ Q zer(T ). Combine this with (2.39) to conclude that the
two sets fix(G′) and Q zer(T ) are the same. On the other hand, we rewrite (2.35)
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for xk and x̄k:

‖xk+1 −Qz?‖2R ≤ ‖xk −Qz?‖2R − λk(2− λk)‖x̄k − xk‖2R. (2.40)

Therefore, (xk)k∈N is R-Fejér monotone with respect to fix(G′). Since (λk)k∈N
is uniformly bounded in (0, 2), it follows that

G′(xk)− xk = x̄k − xk → 0. (2.41)

Let x be a sequential cluster point of (xk)k∈N, say xkq → x. G′ is continuous
since G′ = Q◦G and G is assumed to be continuous. Thus, it follows from (2.41)
that G′(x)− x = 0, i.e., x ∈ fix(G′). This together with Fejér monotonicity of
xk with respect to fix(G′) and [13, Thm. 5.5] yields xk → x ∈ fix(G′).

The proof is completed by first using G ◦Q = G and continuity of G to deduce
that z̄k = G(zk) = G(xk) converges to G(x?) ∈ zer(T ), and then arguing for
convergence of zk. We skip the details here because they are identical to the
last part of the proof in [53, Thm. 3.3]).

(ii): Follow the procedure in the proof of Theorem 2.3 to derive (2.18), except
that in this case the cocoercive term is absent. This yields

0 ≤ 〈−M(zk − zk+1)−H(z̃k − z̃k+1), z̃k − z̃k+1〉 − 〈H(z̃k − z̃k+1), zk − zk+1〉.
(2.42)

Since H = P +M and M is skew-symmetric, (2.42) simplifies to

0 ≤ 〈−P (z̃k − z̃k+1), z̃k − z̃k+1〉+ 〈−P (zk − zk+1), z̃k − z̃k+1〉

= −‖Qz̃k −Qz̃k+1‖2R + λk〈P z̃k, z̃k − z̃k+1〉, (2.43)

where we used (2.33) and (2.29b). Using identity (2.21), we derive

‖Qz̃k‖2R − ‖Qz̃k+1‖2R = 2〈RQz̃k, Qz̃k −Qz̃k+1〉 − ‖Qz̃k −Qz̃k+1‖2R

= 2〈P z̃k, z̃k − z̃k+1〉 − ‖Qz̃k −Qz̃k+1‖2R

≥
(

2
λk
− 1
)
‖Qz̃k −Qz̃k+1‖2R, (2.44)

where we made use of (2.43). Consider (2.35) and sum over k to derive
∞∑
i=0

λi(2− λi)‖Qz̃i‖2R ≤ ‖Qz0 −Qz?‖2R. (2.45)
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Inequality (2.44) shows that ‖Qz̃k‖2R is monotonically nonincreasing. Combined
with (2.45) and uniform boundedness of λk, i.e., (λk)k∈N ⊆ [ε, 2− ε] for some
ε > 0,

‖Qz̃k‖2R ≤
1

(k + 1)ε2 ‖Qz
0 −Qz?‖2R. (2.46)

Furthermore, it follows from (2.36) and definition of xk, x̄k that

‖xk+1 − xk‖2R = λ2
k‖Qz̃k‖2R ≤ (2− ε)2‖Qz̃k‖2R. (2.47)

Combine (2.47) and (2.46) to derive

‖xk − xk+1‖2R ≤
(2− ε)2

(k + 1)ε2 ‖Qz
0 −Qz?‖2R. (2.48)

This establishes big-O convergence for (xk)k∈N. The little-o convergence of
‖Qz̃k‖2R and subsequently ‖xk−xk+1‖2R follows from (2.44), (2.45) and [57, Lem.
3-(1a)]. We derive from (2.33) that ‖xk − xk+1‖2R = 〈zk − zk+1, P (zk − zk+1)〉.
Then, it follows from [13, Cor. 18.18] that

‖Pzk − Pzk+1‖2 ≤ ‖P‖‖xk − xk+1‖2R. (2.49)

Set τ = ε2

(2−ε)2 , and combine (2.49) with (2.48) to yield big-O convergence for
the sequence (Pzk)k∈N. Similarly, little-o convergence follows from that property
of ‖xk − xk+1‖2R.

2.3 Operator splitting schemes as special cases

We are ready to consider some important special cases to illustrate the impor-
tance of parameters S, P and K. Further discussion on other special choices for
the parameters appear in Chapter 3 in the framework of convex optimization
with the understanding that it is straightforward to adapt the same analysis for
the corresponding monotone inclusion problem.

2.3.1 Forward-backward splitting

When H = γ−1id, S = id and M ≡ 0, Algorithm 2.1 reduces to forward-
backward splitting (FBS):

z̄k = (id + γA)−1(id− γC)zk
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zk+1 = zk + λk
(
z̄k − zk

)
.

Let β be the cocoercivity constant of C with respect to the canonical norm
‖ · ‖, then β/γ is the cocoercivity constant with respect to the P norm and
condition (2.5) of Theorem 2.1 becomes

(λk)k∈N ⊆ [0, δ] with δ = 2− γ

2β , γ ∈ (0, 4β), lim inf
k→∞

λk(δ − λk) > 0.
(2.50)

This allows a wider range of parameters than the standard ones found in the
literature. The standard convergence results for FBS are based on the theory
of averaged operators (see [52] and the references therein) and yield the same
conditions as in (2.50) but with γ ∈ (0, 2β] (see also [53, Lem. 4.4] and [13,
Thm. 26.14]). Additionally, if C ≡ 0, FBS reduces to the classical PPA.

The convergence rate for FBS follows directly from Theorem 2.3. Since D =
γ−2id and P = γ−1id, (2.14) holds with c1 = c2 = γ−1. Consequently, if
(λk(δ − λk))k∈N ⊆ [τ,∞) for some τ > 0, we have

‖z̃k‖2 ≤ 1
τ(k + 1)‖z

0 − z?‖2,

and ‖z̃k‖2 = o(1/(k + 1)).

2.3.2 Solodov and Tseng

In Algorithm 2.1, set C ≡ 0, H = id and A = NX where X is a nonempty
closed convex set in H. Then, Algorithm 2.1 reduces to

z̃k = PX(zk −Mzk)− z

zk+1 = zk + αkS
−1(id +M∗)z̃k, αk = λk‖z̃k‖2

/‖(id+M∗)z̃k‖2
S−1 ,

recovering the scheme proposed by Solodov and Tseng [151, Alg. 2.1].

2.3.3 Forward-backward-forward splitting

Consider Algorithm 2.1 whenM is skew-adjoint and set H = γ−1id, S = id. We
can enforce αk = γ by choosing λk = (γ‖(γ−1id+M∗)z̃k‖/‖z̃k‖)2. It remains to
show that the sequence (λk)k∈N satisfies the conditions of Theorem 2.1. SinceM
is skew-adjoint, we have λk = 1 + (γ‖Mz̃k‖/‖z̃k‖)2, and if the stepsize satisfies
γ ∈ (0, ‖M‖−1

√
1− 1/(2β)), then (λk)k∈N is uniformly bounded between 0 and
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δ (in fact it is larger than 1) and thus satisfies (2.5). Under these assumptions
Algorithm 2.1 simplifies to

z̄k = (id + γA)−1(id− γM − γC)zk

zk+1 = z̄k − γM
(
z̄k − zk

)
.

This algorithm resembles the FBFS [162]. Indeed, if C ≡ 0, then the range for
the stepsize simplifies to γ ∈ (0, ‖M‖−1) and yields the FBFS when its Lipschitz
operator is the skew-adjoint operator M .

2.3.4 Douglas-Rachford type with a forward term

We now focus our attention on a choice for P , K and S that lead to a new
Douglas-Rachford type splitting with a forward term. Consider the problem of
finding x ∈ H such that

0 ∈ Dx+ Ex+ Fx, (2.51)

together with the dual inclusion problem of finding y ∈ H such that there exists
x ∈ H, {

0 ∈ Dx+ Fx+ y
0 ∈ E−1y − x. (2.52)

where D : H ⇒ H, E : H ⇒ H are maximally monotone and F : H → H is
η-cocoercive with respect to the canonical norm. Let K be the Hilbert direct
sum K = H⊕H. The pair (x?, y?) ∈ K is called a primal-dual solution to (2.51)
if it satisfies (2.52). Let (x?, y?) ∈ K be a primal-dual solution, then x? solves
the primal problem (2.51) and y? the dual (2.52). In this section, we assume
that there exists x? such that x? ∈ zer (D + E + F ). This assumption yields
that the set of primal-dual solutions is nonempty (see [50, 26] and the references
therein for more discussion).
Reformulate (2.52) in the form of (2.2) by defining

A : K⇒ K : (x, y) 7→ (Dx,E−1y), (2.53a)

M ∈ B(K) : (x, y) 7→ (y,−x), (2.53b)

C : K → K : (x, y) 7→ (Fx, 0). (2.53c)

The operators A and M are maximally monotone [13, Prop. 20.23 and Ex.
20.35]. It is easy to verify, by definition of cocoercivity, that C is cocoercive. Let
γ > 0, θ ∈ [0, 2], (the case of θ = 2 can only be considered in the absence of the
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cocoercive term and results in classic DR, see Proposition 2.7). Set

P ∈ B(K) : (x, y) 7→
(
γ−1x− 1

2θy,−
1
2θx+ γy

)
, (2.54a)

K ∈ B(K) : (x, y) 7→
( 1

2θy,−
1
2θx

)
, (2.54b)

S ∈ B(K) : (x, y) 7→
(
(3− θ)γ−1x− y,−x+ γy

)
. (2.54c)

The operators S and P are strongly positive for θ ∈ [0, 2) [96, Lem. 5.1, 5.3].
The operator H = P +K is given by

H ∈ B(K) : (x, y) 7→ (γ−1x,−θx+ γy). (2.55)

Notice that H has the block triangular structure described in Lemma 2.5. By
using this structure as in (2.31) and substituting (2.54), (2.55) in Algorithm
2.1, after some algebraic manipulations involving Moreau’s identity as well as a
change of variables sk := xk − γyk (see proof of Proposition 2.7 for details), we
derive the following algorithm:

Algorithm 2.2 Douglas-Rachford Type with a Forward Term
Inputs: x0 ∈ H, s0 ∈ H
for k = 0, 1, . . . do

x̄k = JγD(sk − γFxk)
rk = JγE(θx̄k + (2− θ)xk − sk)
sk+1 = sk + ρk(rk − x̄k)
xk+1 = xk + ρk(x̄k − xk)

In the special case when ρk = 1, the last line in Algorithm 2.2 becomes obsolete
and x̄k can be replaced with xk+1. The next proposition provides the convergence
properties for Algorithm 2.2.

Proposition 2.7. Consider the sequences (xk)k∈N and (sk)k∈N generated by
Algorithm 2.2. Let η ∈ (0,+∞) be the cocoercivity constant of F . Suppose that
one of the following holds:

(i) θ ∈ [0, 2), γ ∈ (0, η(4 − θ2)) and the sequence of relaxation parameters
(ρk)k∈N is uniformly bounded in the interval

(ρk)k∈N ⊆
(

0, 4− θ2 − γ/η
(2− θ)(2 +

√
2− θ)

)
. (2.56)
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(ii) F ≡ 0, θ ∈ [0, 2), γ ∈ (0,∞), and sequence (ρk)k∈N uniformly bounded in
the interval

(ρk)k∈N ⊆
(

0, 2−
√

2− θ
)
.

(iii) F ≡ 0, θ = 2, γ ∈ (0,∞), (ρk)k∈N uniformly bounded in the interval
(0, 2), and K is finite-dimensional.

Then, there exists a pair of solutions (x?, y?) ∈ K to (2.52) such that the
sequences (xk)k∈N and (sk)k∈N converge weakly to x? and x?− γy?, respectively.

Proof. (i): Let us start by noting that P and S defined in (2.54) are strongly
positive if θ ∈ [0, 2) [96, Lem. 5.1, 5.3].

Next, consider step 3 of Algorithm 2.1 and Substitute the parameters defined
in (2.54), to derive

αk
λk

= ‖z̃
k‖2P

‖z̃k‖2D
= γ−1‖x̃k‖2 + γ‖ỹk‖2 − θ〈x̃k, ỹk〉
γ−1(θ2 − 3θ + 3)‖x̃k‖2 + γ‖ỹk‖2 + 2(1− θ)〈x̃k, ỹk〉 , (2.57)

where D is defined in (2.3) and by construction is strongly positive. Let λk be
equal to the inverse of the right hand side in (2.57) multiplied by ρk where
(ρk)k∈N ⊆ (0, 2). This would result in αk = ρk and simplify the iterations.
Consider C defined in (2.53c), we have

‖Cz − Cz′‖2P−1 = γ
(
1− 1

4θ
2)−1‖Cz − Cz′‖2.

From here it is easy to see that C is β-cocoercive with respect to P norm, where
β = ηγ−1(1− 1

4θ
2). In order to apply Theorem 2.1, condition (2.5) must hold.

From strong positivity of D, boundedness of P and the fact that ρk is uniformly
bounded above 0 it follows that (λk)k∈N ⊆ (ν1,∞) for some positive ν1. Let ν2
be a positive parameter such that

ν2 < 2− 1
2β −

2ρk(2 +
√

2− θ)
2 + θ

, (2.58)

holds for all k ∈ N. It’s easy to verify that such ν2 exists as long as ρk is uniformly
bounded in the interval (2.56). For brevity, we define β′ such that 1

2β′ = 1
2β +ν2.

Additionally, introduce the notation υ = (2 − 1
2β′ )/ρk, ω1 = υθ + 2(1 − θ),

ω2 = θ2 − 3θ + 3. We proceed by showing that λk is smaller than 2− 1
2β − ν2.

A sufficient condition for this to hold is

ξ = γ−1(υ − ω2)‖x̃k‖2 + γ(υ − 1)‖ỹk‖2 − ω1〈x̃k, ỹk〉 > 0. (2.59)
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Apply the Fenchel-Young inequality for ε
2‖ · ‖

2 to lower bound ξ:

ξ ≥
(
γ−1(υ − ω2)− |ω1| ε2

)
‖x̃k‖2 +

(
γ(υ − 1)− |ω1| 1

2ε
)
‖ỹk‖2, (2.60)

where | · | is the absolute value. It follows from (2.58) that υ > 1 for all k ∈ N.
Let ε = |ω1|

2γ(υ−1) so that the term involving ‖ỹk‖2 in (2.60) disappears. We
obtain

γ−1
(
υ − ω2 − ω2

1
4(υ−1)

)
‖x̃k‖2 > 0, (2.61)

which is sufficient for (2.59) to hold. By substituting ω1 and ω2 and after some
algebraic manipulations we find that the condition (2.58) is sufficient for the
right hand side in (2.61) to be positive. Consequently, Theorem 2.1 completes
the proof of convergence. We showed that we can set αk = ρk by choosing λk
appropriately. Algorithm 2.2 follows by setting αk = ρk, a change of variables
sk = xk − γyk, substituting xk+1 and application of Moreau’s identity.

(ii): Mimic the proof of (i), but use Theorem 2.1 with C ≡ 0, by showing that
λk is uniformly bounded between 0 and 2.

(iii): When θ = 2, we have P ∈ S (K), P � 0. It follows from (2.53a), (2.55)
and Lemma 2.5 that (H + A)−1P is continuous. Therefore, since F ≡ 0, by
appealing to Theorem 2.6 and following the same change of variables as in
previous parts the assertion is proved.

The next proposition provides convergence rate results for Algorithm 2.2 when
θ = 2, based on Theorem 2.6. Similarly, for the case when θ ∈ [0, 2), convergence
rates can be deduced based on Theorem 2.3. Furthermore, when metric subreg-
ulariy assumption in Theorem 2.4 holds, linear convergence follows without any
additional assumptions.

Proposition 2.8 (convergence rate). Let K be finite-dimensional. Consider the
sequences (xk)k∈N and (sk)k∈N generated by Algorithm 2.2. Let F ≡ 0, θ = 2,
γ ∈ (0,∞), and (ρk)k∈N be uniformly bounded in the interval (0, 2). Then

‖sk+1 − sk‖2 ≤ γ
τ(k+1)‖Qz

0 −Qz?‖2R,

and ‖sk+1 − sk‖2 = o(1/(k + 1)) for some constant τ > 0, where Q is the
orthogonal projection onto ran(P ), R = P+id−Q, and zk =

(
xk, γ−1(xk − sk)

)
.

Proof. Following the argument in proof of Proposition 2.7(iii) and Theorem
2.6(ii) yields

‖Pzk+1 − Pzk‖2 ≤ ‖P‖
τ(k+1)‖Qz

0 −Qz?‖2R, (2.62)
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and ‖Pzk+1 − Pzk‖2 = o(1/(k + 1)), where zk =
(
xk, γ−1(xk − sk)

)
. Combine

this with definition of P , (2.54a) with θ = 2, to derive

‖Pzk+1 − Pzk‖2 = (1 + γ−2)‖sk+1 − sk‖2. (2.63)

Furthermore, simple calculation shows that P 2 = (γ + γ−1)P . Hence for all
z ∈ K

‖Pz‖2 = (γ + γ−1)〈z, Pz〉

= (γ + γ−1)
(
γ−1‖x‖2 + γ‖y‖2 − 2〈x, y〉

)
≤ (γ + γ−1)2‖z‖2, (2.64)

where we used Fenchel-Young inequality with ε = γ. It follows from (2.64)
that ‖P‖ ≤ (γ + γ−1). Combining this with (2.62) and (2.63) completes the
proof.

Remark 2.9. Recently, another three operator splitting algorithm was proposed
in [58] which can also be seen as a generalization of Douglas-Rachford method
and allows a third cocoercive operator. In the aforementioned paper, the forward
step takes place after the first backward update, while in Algorithm 2.2 it
precedes the backward update. The parameter range prescribed in [58, Thm.
3.1] is simply γ ∈ (0, 2η) and (ρk)k∈N ⊆ (0, 2 − γ

2η ), while for Algorithm 2.2
it consists of γ ∈ (0, η(4− θ2)) with relaxation parameter uniformly bounded
in the interval (2.56). For θ ∈ [0,

√
2), Algorithm 2.2 can have larger stepsize

but it is important to notice that this might not necessarily be advantageous
in practice because the upper bound for the relaxation parameter in (2.56)
decreases as we reduce θ. For example if we fix ρk = 1, conditions of Proposition
2.7 become θ ∈ (1, 2) and γ/η ∈ (0, (2− θ)(θ−

√
2− θ)). This stepsize is always

smaller that the one of [58]. However, if the relaxation parameter ρk is selected
to be small enough then γ can take values larger than the one allowed in [58]. In
Section 3.5 numerical simulations are performed for the two algorithms which
indicate that on dual support vector machine problem Algorithm 2.2 is slower
presumably due to smaller stepsize.

Remark 2.10. In Algorithm 2.2 the case θ = 2, ρk = 1 with F ≡ 0 (see
Proposition 2.7(iii)) yields the classical DRS [108]. This choice of P is precisely
the one considered in [53, §3.1.1].
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ADMM form

Consider the following problem

minimize
x1,x2,x3

f1(x1) + f2(x2) + f3(x3) (2.65a)

subject to L1x1 + L2x2 + L3x3 = b, (2.65b)

where fi ∈ Γ0(Hi), Li ∈ B(Hi,H4), i = 1, 2, 3, and b ∈ H4 with H1, . . . ,H4
denoting real Hilbert spaces. Additionally, f1 is ξ-strongly convex for some
ξ ∈]0,+∞[. It is well known that the classic Alternating Direction Method of
Multipliers (ADMM) is equivalent to Douglas-Rachford algorithm applied to
the dual problem (see [29] and the references therein). We derive a new 3-block
ADMM iteration in a similar way. Consider the dual problem

minimize
y

d1(y) + d2(y) + d3(y), (2.66)

where d1(y) = f∗1 (−L∗1y), d2(y) = f∗2 (−L∗2y) and d3(y) = f∗3 (−L∗3y) + 〈y, b〉. By
strong convexity of f1 we have that d1 has a ξ−1‖L1‖2-Lipschitz gradient. Form
the augmented Lagrangian

Lγ(x1, x2, x3, y) =
3∑
i=1

fi(xi) +
〈
y,

3∑
i=1

Lixi − b

〉
+ γ

2

∥∥∥∥∥
3∑
i=1

Lixi − b

∥∥∥∥∥
2

.

We apply Algorithm 2.2 with ρk = 1 to the monotone inclusion associated with
(2.66) and after a change of order and some algebraic manipulations we derive
Algorithm 2.3 (the procedure is similar to the one found in [66, §3.5.6] for the
classic ADMM). Our 3-block ADMM can be written as

Algorithm 2.3 3-block ADMM
Inputs: (x0

1, x
0
2, x

0
3) ∈ H1 ×H2 ×H3, (y0, y1) ∈ H4 ×H4

for k = 0, 1, . . . do
ȳk = (θ − 1)yk + (2− θ)yk−1

xk+1
1 = argminx1 L0(x1, x

k
2 , x

k
3 , y

k)
xk+1

2 = argminx2 Lγ(xk1 , x2, x
k
3 , ȳ

k)
xk+1

3 = argminx3 Lγ(xk+1
1 , xk+1

2 , x3, ȳ
k)

yk+1 = ȳk + γ(L1x
k+1
1 + L2x

k+1
2 + L3x

k+1
3 − b)

Proposition 2.11. Let H1, . . . ,H4 be finite-dimensional, fi ∈ Γ0(Hi), b ∈ H4,
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Li ∈ B(Hi,H4) for i = 1, 2, 3 and ker(L2) = {0}, ker(L3) = {0}. Let ξ ∈
]0,+∞[ be the strong convexity constant of f1. Assume that the set of saddle
points of (2.65), denoted by Σ, is nonempty. Let θ ∈]1, 2[ and

γ < ξ(2− θ)(θ −
√

2− θ)/‖L1‖2. (2.67)

Then the sequence (xk1 , xk2 , xk3 , yk)k∈N generated by Algorithm 2.3, converges to
some (x?1, x?2, x?3, y?) ∈ Σ.

Proof. Let (x?1, x?2, x?3, y?) denote a KKT point of (2.65), i.e.,{
0 ∈ ∂fi(x?i ) + L∗i y

?, for i = 1, 2, 3
0 = b− L1x

?
1 − L2x

?
2 − L3x

?
3.

(2.68)

Algorithm 2.3 is an implementation of Algorithm 2.2 for solving (2.66). Hence,
Proposition 2.7 yields yk → y, where y is a solution to (2.66). Let x1 be a point
satisfying −L∗1y ∈ ∂f1(x1). From strong convexity of f1 at x1 and xk+1

1 , we
have

(∀u ∈ ∂f1(xk+1
1 ))(∀v ∈ ∂f1(x1)) ξ‖xk+1

1 − x1‖2 ≤ 〈u− v, xk+1
1 − x1〉.

It follows from the optimality condition for the xk+1
1 update and the definition

of x1 that

ξ‖xk+1
1 − x1‖2 ≤ 〈−L∗1yk + L∗1y, x

k+1
1 − x1〉 ≤ ‖L1‖‖xk+1

1 − x1‖‖yk − y‖.

Combine this with the convergence of (yk)k∈N to derive xk1 → x1. From the
change of variables to derive Algorithm 2.3 we have

sk − yk = −γL1x
k
1 − γL3x

k
3 , (2.69)

which together with the convergence of (sk)k∈N, (yk)k∈N (see Proposition 2.7)
and (x1,n)k∈N imply that (L3x

k
3)k∈N converges to a point. Since ker(L3) = {0},

it follows that (x3,n)k∈N converges to some x3. From the optimality condition
for the xk+1

3 update and the last step in Algorithm 2.3, we have

−L∗3yk+1 = −L∗3ȳk − γL∗3(L1x
k+1
1 + L2x

k+1
2 + L3x

k+1
3 − b) ∈ ∂f3(xk+1

3 ).

Taking the limit and using [13, Prop. 20.38(iii)], we have −L∗3y ∈ ∂f3(x3). On
the other hand, Theorem 2.1(ii) and the last line of Algorithm 2.3 yield

yk+1 − yk → 0, and L1x
k
1 + L2x

k
2 + L3x

k
3 → b. (2.70)

It follows from (2.69), (2.70), and the convergence of (sk)k∈N, (yk)k∈N that
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(L2x
k
2)k∈N converges to a point. We can now argue almost exactly as we did

for (L3x
k
3)k∈N. Since ker(L2) = {0}, we deduce that (x2,n)k∈N converges to

some x2. Combine the optimality condition for the xk+1
2 update and the last

step in Algorithm 2.3 with the convergence of yk, to derive −L∗2y ∈ ∂f2(x2).
Altogether, we showed that the limit points (x1, x2, x3, y), are jointly optimal
by the KKT condition (2.68).

Remark 2.12. The convergence rate of Algorithm 2.3 can be deduced similar
to Algorithm 2.2 from Theorems 2.3, 2.4 and 2.6 with ρk = 1. However, we do
not consider it here.

Remark 2.13. In the case when f1 ≡ 0 we can choose the limiting value
θ = 2 and recover the classical ADMM (see Proposition 2.7(iii)). On the other
hand if f2 or f3 vanish, the Alternating Minimization Method (AMM) [160] is
recovered. Finally, when both f2 and f3 vanish then the dual ascent method is
recovered.

Remark 2.14. In [58, Alg. 8], another 3-block ADMM formulation is presented
by following similar algebraic manipulations (It is derived by applying their
Algorithm 7 to the dual). It should be noted that they do not require rank
assumptions on L2, L3. In contrast to that work in our version (xk1)k∈N and
(xk2)k∈N are updated in parallel which corresponds to the fact that in Algo-
rithm 2.2 the forward step precedes the first prox step. Furthermore, in our
algorithm, (xk2)k∈N and (xk3)k∈N are updated using the augmented Lagrangian at
(θ− 1)yk + (2− θ)yk−1 rather than yk. Moreover, the stepsize in [58, Thm. 2.1]
has to satisfy γ < 2ξ/‖L1‖2. This is always larger than the stepsize in (2.67).
Refer to Remark 2.9 for further discussion, noting that Algorithm 2.3 is derived
by setting the relaxation parameter, ρk, equal to one.

Remark 2.15. Some of the other recent attempts to directly generalize ADMM
for 3 blocks include [33, 42, 81, 103, 107]. In [42], it was shown through a
counterexample that a direct extension of ADMM to more than 2 blocks is not
convergent in general. In order to ensure convergence, additional assumptions
on strong convexity of the functions or rank of Li’s are needed. In [33] the
authors require one function to be strongly convex and L2 and L3 to have full
column rank, while [103] modify the steps with regularization terms and [107]
solves a perturbed problem (see [107] and the references therein for further
discussion). In contrast to these papers, the first minimization step of Algo-
rithm 2.3 consists of minimizing a normal Lagrangian rather than an augmented
one (therefore it can be trivially executed in a distributed fashion in the case
where f1 is block-separable) and it can be performed in parallel to the second
step.
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2.4 Conclusions

In this chapter the operator splitting technique asymmetric-forward-backward-
adjoint splitting (AFBA) was introduced for solving monotone inclusions in-
volving three terms. We discussed how it relates to, unifies and extends classical
splitting methods. Asymmetric preconditioning is the main feature of AFBA
that can lead to several extensions and new algorithmic schemes. We make ex-
tensive use of the results of this chapter in the next five chapters where we
study primal-dual proximal algorithms for distributed applications.

We conclude by noting some recent developments. In Section 2.3.3 it was shown
that a special case of AFBA coincides with the classical forward-backward-
forward splitting (FBFS) when the Lipschitz operator in FBFS is skew-adjoint.
Interesting recent work [78] proposes a four operator splitting that recovers
AFBA as well as the forward-backward-forward splitting (FBFS). Moreover,
several new splittings have been proposed recently that involve Lipschitz con-
tinuous operators but unlike FBFS require only one evaluation of the Lipschitz
operator per iteration [116, 36, 146, 140].



Chapter 3

A unifying framework for primal-dual proximal
algorithms

This chapter is based on:

Latafat, P., and Patrinos, P. Asymmetric forward–backward–adjoint splitting
for solving monotone inclusions involving three operators. Computational Opti-
mization and Applications 68, 1 (Sep 2017), 57–93.

Latafat P., Patrinos P., Primal-dual proximal algorithms for structured convex
optimization: a unifying framework, in Chapter 5 of Large-Scale and Distributed
Optimization, (Giselsson P., and Rantzer A., eds.), vol. 2227 of Lecture Notes
in Mathematics, Springer International Publishing, 2018, pp. 97-120.

3.1 Introduction

In this chapter we revisit the convex optimization problem (1.1). As discussed
in Chapter 1 this model is quite rich and captures a plethora of problems arising
in machine learning, signal processing and control [49, 152, 92].

Here, we present a simple primal-dual framework that relies on the splitting
method introduced in Chapter 2. Recall that this splitting involves a stepsize
parameter αk (cf. Alg. 2.1), which is dynamically computed at each iteration.
We also consider a variant with constant stepsize that serves to simplify the
analysis for primal-dual algorithms discussed in Section 3.2.1. We provide a
general and easy-to-check convergence condition for the stepsizes in Assumption
3.II and Assumption 3.III (for the case with dynamically computed stepsize
parameter). Furthermore, we discuss four mild regularity assumptions on the

41
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functions involved in (1.1) that are sufficient for metric subregularity of the
operator defining the primal-dual optimality conditions (cf. Lem.s 3.8 and 3.11).
Linear convergence rate is then deduced based on the results developed for
AFBA (cf. Thm. 3.5). These results do not impose additional restrictions on the
stepsizes of the algorithms. It is important to note that the provided conditions
are much weaker than strong convexity and in many cases do not imply a unique
primal or dual solution.

It is worth mentioning that another class of primal-dual algorithms was intro-
duced recently that rely on iterative projections onto half-spaces containing the
set of solutions [4, 48]. This class of algorithms is not covered by the analysis of
this chapter.

3.2 A simple framework for primal-dual algorithms

In this section we present a simple framework for primal-dual algorithms. For
this purpose we consider the following extension of (1.1)

minimize
x∈Rn

ϕ(x) = f(x) + g(x) + (h� l)(Lx), (3.1)

where l is a strongly convex function. Notice that when l = δ{0}, the infimal
convolution h� l reduces to h and problem (1.1) is recovered. As it will become
apparent later in the chapter, the framework developed here is not symmetric
with respect to the primal and dual variables. Some known algorithms are
recovered by applying it to the dual problem (where l∗ plays the role of the
smooth term, see (3.2)).

Throughout this chapter the following assumptions hold for (3.1).
Assumption 3.I.

(i) g : Rn → R, h : Rr → R are proper closed convex functions, and
L : Rn → Rr is a linear mapping.

(ii) f : Rn → R is convex, continuously differentiable, and for some βf ∈
[0,∞), ∇f is βf -Lipschitz continuous with respect to the metric induced
by some Q � 0 , i.e., for all x, y ∈ Rn:

‖∇f(x)−∇f(y)‖Q−1 ≤ βf‖x− y‖Q,

(iii) l : Rr → R is proper closed convex, its conjugate l∗ is continuously
differentiable, and for some βl ∈ [0,∞), ∇l∗ is βl-Lipschitz continuous
with respect to the metric induced by some R � 0.
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(iv) The set of solutions to (3.1), denoted by X?, is nonempty.

(v) (Constraint qualification) There exists x ∈ ri dom g such that Lx ∈
ri dom h+ ri dom l.

In Assumption 3.I(ii) the constant βf is not absorbed into the metric Q in order
to be able to treat the case when ∇f is constant in a uniform fashion by setting
βf = 0. The same reasoning applies to Assumption 3.I(iii).

The dual problem is given by

minimize
u∈Rr

(g∗ � f∗)(−L>u) + h∗(u) + l∗(u). (3.2)

Notice the similar structure of the dual problem in which l, f and h, g have
swapped roles. A well-established approach for solving (3.1) is to consider the
associated convex-concave saddle point problem given by

minimize
x∈Rn

maximize
u∈Rr

L(x, u) := f(x) + g(x) + 〈Lx, u〉 − h∗(u)− l∗(u). (3.3)

The primal-dual optimality conditions are{
0 ∈ ∂g(x) +∇f(x) + L>u,
0 ∈ ∂h∗(u) +∇l∗(u)− Lx. (3.4)

Under the constraint qualification condition, the set of solutions for the dual
problem denoted by U? is nonempty, a saddle point exists, and the duality gap
is zero. In fact for any x? ∈ X? and u? ∈ U?, the point (x?, u?) is a primal-dual
solution, see [143, Cor. 31.2.1] and [13, Thm. 19.1].

The right-hand side of the optimality conditions in (3.4) can be split as the sum
of three operators:(

0
0

)
∈
(
∂g(x)
∂h∗(u)

)
︸ ︷︷ ︸

Az

+
(
∇f(x)
∇l∗(u)

)
︸ ︷︷ ︸

Cz

+
(

0 L>

−L 0

)
︸ ︷︷ ︸

M

(
x
u

)
︸︷︷︸
z

. (3.5)

Operator A defined above, is maximally monotone [13, Thm. 21.2, Prop. 20.23],
while operator C, being the gradient of f̃(x, u) = f(x) + l∗(u), is cocoercive
and M is skew-symmetric and as such monotone.

Throughout this section we use T to denote the operator above, i.e.,

0 ∈ Tz := Az + Cz +Mz. (3.6)
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3.2.1 Primal-dual algorithms with constant stepsize

Algorithm 3.1 describes the proposed primal-dual framework for solving (3.1).
This framework is the result of solving the monotone inclusion (3.5) using the
three term splitting AFBA with constant stepsize as described in Section 3.3.
We defer the derivation and convergence analysis of Algorithm 3.1 to Section
3.4.

The proposed framework involves two scalar parameters θ ∈ [0,∞) and µ ∈
[0, 1]. Different primal-dual algorithms correspond to different values for these
parameters. The iterates in Algorithm 3.1 consist of two proximal updates
followed by two correction steps that may or may not be performed depending
on the parameters µ and θ. Below we discuss some values for these parameters
that are most interesting.

Notice that Algorithm 3.1 is not symmetric with respect to the primal and dual
variables; another variant may be obtained by switching their roles (equivalently
by applying the algorithm to the dual problem (3.2)).

Algorithm 3.1 A simple framework for primal-dual algorithms
Require: x0 ∈ Rn, u0 ∈ Rr, algorithm parameters µ ∈ [0, 1], θ ∈ [0,∞).
Initialize: Σ,Γ and λ based on Assumptions 3.II(ii) and 3.II(iii).
for k = 0, 1, . . . do

x̄k = proxΓ−1

g (xk − ΓL>uk − Γ∇f(xk))
ūk = proxΣ−1

h∗ (uk + ΣL((1− θ)xk + θx̄k)− Σ∇l∗(uk))
x̃k = x̄k − xk, ũk = ūk − uk

xk+1 = xk + λ(x̃k − µ(2− θ)ΓL>ũk)
uk+1 = uk + λ(ũk + (1− µ)(2− θ)ΣLx̃k)

In Section 3.4 we show that the sequence (xk, uk)k∈N generated by Algorithm
3.1 converges to a primal-dual solution if Assumption 3.II holds. Practical rules
of thumb for selecting the stepsizes are presented in Section 3.5.

Assumption 3.II (convergence condition for Algorithm 3.1).

(i) (Algorithm parameters) θ ∈ [0,∞), µ ∈ [0, 1].

(ii) (Stepsizes) Γ ∈ Sn++, Σ ∈ Sr++ and (relaxation parameter) λ ∈ (0, 2)
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(iii) The following condition holds(
A B
B> C

)
� 0, (3.7)

where

A = ( 2
λ − 1)Γ−1 − (1− µ)(1− θ)(2− θ)L>ΣL− βf

2λQ,

B =
(
µ− (1− µ)(1− θ)− θ

λ

)
L>,

C = ( 2
λ − 1)Σ−1 − µ(2− θ)LΓL> − βl

2λR.

In Algorithm 3.1 the linear mappings L and L> must be evaluated twice at
every iteration. In the special cases when µ = 0, 1 they may be evaluated only
once per iteration by keeping track of the value computed in the previous
iteration. As is evident from (3.7), the cases where both the algorithm and
the convergence condition simplify are combinations of µ = 0, 1, θ = 0, 1, 2.
Here we briefly discuss some of these special cases to demonstrate how (3.7)
leads to simple conditions that are often less conservative than the conditions
found in the literature. We have dubbed the algorithms based on whether the
two proximal updates can be evaluated in parallel and if a primal or a dual
correction step is performed.

The first algorithm is the result of setting θ = 2 (regardless of µ) and leads
to the algorithm of Condat and Vũ [53, 170] which itself is a generalization of
the Chambolle-Pock algorithm [38]. With this choice of θ, the two proximal
updates are performed sequentially while no correction step is required. In the
box below a general condition is given for its convergence.

SNCA (Sequential No Corrector Algorithm): θ = 2
Substituting θ = 2 in (3.7) and dividing by 2

λ − 1 yields(
Γ−1 − βf

2(2−λ)Q −L>

−L Σ−1 − βl
2(2−λ)R

)
� 0. (3.8)

If Q,R = id and Γ = γid, Σ = σid for some scalars γ, σ, then the
following sufficient condition may be used

σγ‖L‖2 <
(

1− γβf
2(2−λ)

)(
1− σβl

2(2−λ)

)
, λ ∈ (0, 2). (3.9)
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Notice that this condition is less conservative than the condition of [53,
Thm. 3.1] (see [96, Rem. 5.6]).

In the next algorithm proximal updates are evaluated sequentially, followed by
a correction step for the primal variable, hence the name SPCA. Most notable
property of this algorithm is that the generated sequence is S-Fejér monotone
where S is block diagonal. The algorithm introduced in [95] (discussed in Chap-
ter 4) can be seen as an application of SPCA to the dual problem when the
smooth term is zero. Note that SPCA can be transformed into SNCA (when
λ = 1 and f ≡ 0) by a change of order, eliminating the primal variable xk and
keeping the auxiliary primal variable x̄k. Below we comment on algorithms
proposed in [62, 95] emphasizing the close relation between them.

SPCA (Sequential Primal Corrector Algorithm): θ = 1, µ = 1,
λ = 1
In this case the left-hand side in (3.7) is block diagonal. Therefore the
convergence condition simplifies to

Γ−1 − βf
2 Q � 0, Σ−1 − LΓL> − βl

2 R � 0.

If Q = id, R = id, Γ = γid, Σ = σid for some scalars γ, σ, then it is
sufficient to have

γβf < 2, σγ‖L‖2 < 1− σβl
2 . (3.10)

This special case generalizes the recent algorithm proposed in [62]. In
particular we allow a third nonsmooth function g as well as the strongly
convex function l. In addition to this improvement our convergence
condition with l∗ ≡ 0 (set βl = 0 in (3.10)) is less restrictive and doubles
the range of acceptable stepsize γ. The convergence condition in that
work is given in our notation as γβf < 1 and σγ‖L‖2 < 1 [62, Cor. 3.2].

The next algorithm features sequential proximal updates that are followed by a
correction step for the dual variable, for all values of θ ∈ (0,∞). The parallel
variant of this algorithm, referred to as PDCA, is discussed in a separate box
below. We have observed that selecting θ so as to maximize the stepsizes, i.e.,
θ = 1.5, leads to faster convergence [100]. Moreover, if we set Σ = Γ−1, this
choice of µ leads to a three-block ADMM or equivalently a generalization of
DRS to include a third cocoercive operator (see Section 2.3.4).
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SDCA (Sequential Dual Corrector Algorithm): θ ∈ (0,∞), µ = 0,
λ = 1
In this case the convergence condition simplifies to(

Γ−1 − (1− θ)(2− θ)L>ΣL− βf
2 Q −L>

−L Σ−1 − βl
2 R

)
� 0.

If l = δ{0} then βl = 0 and using Schur complement we derive the
following condition

Γ−1 −
(
θ2 − 3θ + 3

)
L>ΣL− βf

2 Q � 0.

If in addition Q = id, and Γ = γid, Σ = σid for some scalars γ, σ, then
we have the following sufficient condition

(θ2 − 3θ + 3)σγ‖L‖2 < 1− γβf
2 .

The next algorithm appears to be new and involves parallel proximal updates
followed by a primal correction step.

PPCA (Parallel Primal Corrector Algorithm): θ = 0, µ = 1
The convergence condition is given by(

( 2
λ − 1)Γ−1 − βf

2λQ L>

L ( 2
λ − 1)Σ−1 − 2LΓL> − βl

2λR

)
� 0.

If f ≡ 0 (set βf = 0) and λ = 1, using Schur complement yields the
following condition

Σ−1 − 3LΓL> − βl
2 R � 0.

If in addition R = id and Γ = γid, Σ = σid for some scalars γ, σ, then
the following sufficient condition may be used

3σγ‖L‖2 < 1− σβl
2 .

The parallel variant of SDCA is considered below. Interestingly, by switching
the order of the proximal updates (since θ = 0), PDCA may be seen as PPCA
applied to the dual problem (3.2).



48 A UNIFYING FRAMEWORK FOR PRIMAL-DUAL PROXIMAL ALGORITHMS

PDCA (Parallel Dual Corrector Algorithm): θ = 0, µ = 0
In this case the convergence condition simplifies to(

( 2
λ − 1)Γ−1 − 2L>ΣL− βf

2λQ −L>
−L ( 2

λ − 1)Σ−1 − βl
2λR

)
� 0.

If l = δ{0} (set βl = 0) and λ = 1, using Schur complement yields the
following condition

Γ−1 − 3L>ΣL− βf
2 Q � 0.

If in addition Q = id, and Γ = γid, Σ = σid for some scalars γ, σ, then
the following sufficient condition may be used

3σγ‖L‖2 < 1− γβf
2 .

The last special case considered here involves sequential proximal updates
followed by correction steps for the primal and dual variables. As noted before
for this choice of µ, the linear mappings L and L> must be evaluated twice at
every iteration.

PPDCA (Parallel Primal and Dual Corrector Algorithm): θ = 0,
µ = 0.5
In this case condition (3.7) reduces to:

Γ−1 − λ
(2−λ)L

>ΣL− βf
2(2−λ)Q � 0, Σ−1 − λ

(2−λ)LΓL> − βl
2(2−λ)R � 0.

If Q = id, R = id, λ = 1 and Γ = γid, Σ = σid for some scalars γ, σ, the
following sufficient condition may be used

σγ‖L‖2 < min{1− γβf
2 , 1− σβl

2 }.

This special case generalizes [31, Alg. (4.8)] with the addition of the
smooth function f and the strongly convex function l.

Remark 3.1. In [180] a new primal-dual algorithm is proposed for solving (3.1)
that recovers the three term splitting of [58] when L = id. It is interesting to
note the relation to our framework. This algorithm is given by [180, Eq. 4a-4c]:

uk+1 = proxσh∗
(
uk + σLx̄k − σ∇l∗(uk)

)
(3.11a)

xk+1 = proxγg
(
xk − γL>uk+1 − γ∇f(xk)

)
(3.11b)
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x̄k+1 = 2xk+1 − xk + γ∇f(xk)− γ∇f(xk+1). (3.11c)

Let us consider SPCA, a special case of Algorithm 3.1 where θ = 1, µ = 1, with
λ = 1, Σ = σid, Γ = γid. Change the order of the updates starting from the
dual update to obtain:

uk+1 = proxσh∗
(
uk + σLx̄k − σ∇l∗(uk)

)
(3.12a)

xk+1 = x̄k − γL>(uk+1 − uk) (3.12b)

x̄k+1 = proxγg
(
xk+1 − γL>uk+1 − γ∇f(xk+1)

)
. (3.12c)

In order to be able to compare the stepsizes of the two algorithms without
algebraic difficulty (see [180, Assumption 1 and Thm. 1]) set l = δ{0} and
Q = id. Using the above parameters in Assumption 3.II(iii) we obtain the
following sufficient condition for (3.12):

γβf < 2, γσ‖L‖2 < 1. (3.13)

This stepsize condition is the same as that of [180]. However, the two algorithms
are quite different in the way the primal variables are updated. In Section 3.5,
simulations are performed for solving dual support vector machine problems,
and the results indicate very similar convergence speed for the two algorithms,
see Figure 3.2.

3.2.2 Primal-dual algorithms with a dynamically updated step-
size

In this section a variant of Algorithm 3.1 is discussed that involves a stepsize
parameter that is computed based on the primal and dual variables at every
iteration, leading to potentially larger stepsizes. This algorithm is the result
of applying AFBA Algorithm 2.1 to solve the monotone inclusion (3.5). The
algorithm converges to a primal-dual solution provided that Assumption 3.III
holds. The analysis is detailed in Section 3.4. As remarked in Section 3.2.1, Al-
gorithm 3.1 is also not symmetric with respect to the primal and dual variables,
and a variant may be obtained by switching their roles.
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Algorithm 3.2 A simple framework for primal-dual algorithms
Require: x0 ∈ Rn, u0 ∈ Rr, algorithm parameters µ ∈ [0, 1], θ ∈ [0,∞).
Initialize: Σ,Γ and λ based on Assumption 3.III.
for k = 0, 1, . . . do

x̄k = proxΓ−1

g (xk − ΓL>uk − Γ∇f(xk))
ūk = proxΣ−1

h∗ (uk + ΣL((1− θ)xk + θx̄k)− Σ∇l∗(uk))
x̃k = x̄k − xk, ũk = ūk − uk

Compute αk according to (3.14)
xk+1 = xk + αk(x̃k − µ(2− θ)ΓL>ũk)
uk+1 = uk + αk(ũk + (1− µ)(2− θ)ΣLx̃k)

In Algorithm 3.2

αk = λ
‖x̃k‖2Γ−1 + ‖ũk‖2Σ−1 − θ〈x̃k, L>ũk〉

V (x̃k, ũk) , (3.14)

where

V (x̃k, ũk) = ‖x̃k‖2Γ−1 + ‖ũk‖2Σ−1 + (1− µ)(1− θ)(2− θ)‖Lx̃k‖2Σ

+ µ(2− θ)‖L>ũk‖2Γ + 2((1− µ)(1− θ)− µ)〈x̃k, L>ũk〉. (3.15)

Note that in many distributed applications the computation for the stepsize in
(3.14) is disadvantageous since it would entail global coordination. Nevertheless,
if this is not a concern, it can lead to larger stepsizes.

In Section 3.4 it is shown that the sequence (xk, uk)k∈N generated by Algorithm
3.1 (resp. Algorithm 3.2) converges to a primal-dual solution if Assumption
3.II (resp. Assumption 3.III) holds. Moreover, linear convergence rates are
established if either one of four mild regularity assumptions hold for functions
f, g, l and h (cf. Cor. 3.12).

Assumption 3.III (convergence condition for Algorithm 3.2). Additionally to
Assumptions 3.II(i) and 3.II(ii) suppose that the following holds(

Γ−1 − 1
2(2−λ)βfQ − θ2L

>

− θ2L Σ−1 − 1
2(2−λ)βlR

)
� 0. (3.16)
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3.3 Simplified asymmetric forward-backward-adjoint
splitting

A new three term splitting technique was introduced in Chapter 2 for the
problem of finding z ∈ Rp such that

0 ∈ Tz := Az + Cz +Mz, (3.17)

where A is maximally monotone, C is cocoercive and M is a monotone linear
mapping. AFBA in its original form includes the stepsize αk, (cf. Alg. 2.1).
Here we simplify the algorithm by considering a constant stepsize (cf. Alg. 3.3).
This variant of AFBA is particularly advantageous in distributed applications
where global coordination may be infeasible. Furthermore, unlike Algorithm
2.1, cocoercivity of the operator C is considered with respect to some norm
independent of the parameters of the algorithm, and the convergence condition
is derived in terms of a matrix inequality. These changes simplify the analysis
for the primal-dual algorithms discussed in Section 3.2. We remind the reader
that Algorithm 3.1 is the result of solving the primal-dual optimality conditions
using AFBA. We defer the derivation and convergence analysis of Algorithm
3.1 until Section 3.4. A basic key inequality that we use is the following.

Lemma 3.2 (three-point inequality). Suppose that C : Rp → Rp is cocoercive
with respect to ‖ · ‖U with U ∈ Sp++, and let V : Rp → Rp be a linear mapping
such that V ◦ C = C (identity is the trivial choice). Then, for any three points
z, z′, z′′ ∈ Rp we have

〈Cz − Cz′, z′ − z′′〉 ≤ 1
4‖V

>(z − z′′)‖2U . (3.18)

Proof. Use the inequality, valid for any a, b ∈ Rp,

〈a, b〉 = 2〈 12U
1
2 a, U−

1
2 b〉 ≤ 1

4‖a‖
2
U + ‖b‖2U−1 , (3.19)

together with (1.7) and V ◦ C = C to derive

〈Cz − Cz′, z′ − z′′〉 = 〈V (Cz − Cz′), z − z′′〉+ 〈Cz − Cz′, z′ − z〉

= 〈Cz − Cz′, V >(z − z′′)〉+ 〈Cz − Cz′, z′ − z〉
3.19
≤ 1

4‖V
>(z − z′′)‖2U + ‖Cz − Cz′‖2U−1

+ 〈Cz − Cz′, z′ − z〉
1.7
≤ 1

4‖V
>(z − z′′)‖2U .
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The main reason for considering V is to avoid conservative bounds in (3.18). For
example, assume that the space is partitioned into two blocks z = (z1, z2) ∈ Rp
with z1 ∈ Rp1 and z2 ∈ Rp2 , and C : Rp → Rp is given by Cz = (C1z1, 0)
where C1 : Rp1 → Rp1 is cocoercive. Using inequality (3.19) without taking
into account the structure of C, i.e., that V ◦ C = C for V = blkdiag(Ip1 , 0p2),
would result in the whole vector appearing in the upper bound in (3.18).

Algorithm 3.3 involves two matrices H and S that are instrumental to its
flexibility. In Section 3.4 we discuss a choice for H and S and demonstrate
how Algorithm 3.1 is derived. Below we summarize the assumptions for the
monotone inclusion (3.17) and the convergence conditions for Algorithm 3.3 (cf.
Thm. 3.4).

Assumption 3.IV.

(i) Assumptions for the monotone inclusion (3.17):

1) The operator A : Rp ⇒ Rp is maximally monotone.
2) The linear mapping M : Rp → Rp is monotone.
3) The operator C : Rp → Rp is cocoercive with respect to ‖ · ‖U with

U ∈ Sp++. In addition, V : Rp → Rp is a linear mapping such that
V ◦ C = C (identity is the trivial choice).

(ii) Convergence conditions for Algorithm 3.3:

1) The matrix H := P +K, where P ∈ Sp++ and K is a skew-symmetric
matrix.

2) The matrix S ∈ Sp++ and the following holds

2P − 1
2V UV

> −D � 0, (3.20)

where
D := (H +M>)>S−1(H +M>). (3.21)

Algorithm 3.3 AFBA with constant stepsize
Require: z0 ∈ Rp

Initialize: set S and H according to Assumption 3.IV(ii).
for k = 0, 1, . . . do

z̄k = (H +A)−1(H −M − C)zk

zk+1 = zk + S−1(H +M>)(z̄k − zk)
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Lemma 3.3. Let Assumption 3.IV hold. Consider the update for z̄ in Algorithm
3.3

z̄ = (H +A)−1(H −M − C)z. (3.22)

For all z? ∈ zerT the following holds

〈z − z?, (H +M>)(z̄ − z)〉 ≤ 1
4‖V

>(z − z̄)‖2U − ‖z − z̄‖2P . (3.23)

Proof. Use (3.22) and the fact that z? ∈ zerT , together with monotonicity of
A at z? and z̄ to derive

0 ≤ 〈−Mz? − Cz? +Mz + Cz +H(z̄ − z), z? − z̄〉. (3.24)

In Lemma 3.2 set z′ = z? and z′′ = z̄

〈Cz − Cz?, z? − z̄〉 ≤ 1
4‖V

>(z − z̄)‖2U . (3.25)

For the remaining terms in (3.24) use skew-symmetry of K (twice) and mono-
tonicity of M :

〈−Mz? +Mz +H(z̄ − z), z? − z̄〉

=〈−Mz? +Mz + P (z̄ − z) +K(z̄ − z) +K(z? − z̄), z? − z̄〉

=〈(M −K)(z − z?) + P (z̄ − z), z? − z̄〉

=〈(M −K)(z − z?) + P (z̄ − z), z? − z〉

+ 〈(M −K)(z − z?) + P (z̄ − z), z − z̄〉

≤〈P (z̄ − z), z? − z〉+ 〈(M −K)(z − z?), z − z̄〉 − ‖z̄ − z‖2P

≤〈z − z?, (M> +H)(z − z̄)〉 − ‖z̄ − z‖2P .

Combining this with (3.24) and (3.25) completes the proof.

Theorem 3.4 (convergence). Let Assumption 3.IV hold. Consider the sequence
(zk)k∈N generated by Algorithm 3.3. Then, the following inequality holds for all
k ∈ N

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − ‖zk − z̄k‖22P− 1
2V UV

>−D
, (3.26)

and (zk)k∈N converges to a point z? ∈ zerT .
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Proof. We show that the generated sequence is S-Fejér monotone with respect
to zerT . For any z? ∈ zerT using the zk+1 update in Algorithm 3.3 we have

‖zk+1 − z?‖2S =‖zk − z?‖2S + ‖S−1(H +M>)(z̄k − zk)‖2S

+ 2〈zk − z?, (H +M>)(z̄k − zk)〉

(3.23)
≤ ‖zk − z?‖2S + ‖S−1(H +M>)(z̄k − zk)‖2S

+ 1
2‖V

>(zk − z̄k)‖2U − 2‖zk − z̄k‖2P

(3.21)
≤ ‖zk − z?‖2S − ‖zk − z̄k‖22P− 1

2V UV
>−D

.

Therefore, the sequence (zk − z̄k)k∈N converges to zero. Convergence of (zk)k∈N
to a point in zerT follows by standard arguments; see the last part of the proof
of Theorem 2.1.

It is shown in Theorem 2.4 that under a metric subregularity assumption for
operator T , (3.17), the sequence generated by AFBA (cf. Alg. 2.1) converges
R-linearly. In the next theorem we show that Algorithm 3.3 also enjoys linear
convergence if either (i) operator T is metrically subregular at all z? ∈ zerT
for 0 or (ii) when the operator id − TAFBA has this property, where TAFBA
denotes the operator that maps zk to zk+1 in Algorithm 3.3. In addition, we
show that the two conditions are equivalent. Note that although not stated,
this equivalence also holds for TAFBA corresponding to Algorithm 2.1 in Chap-
ter 2. In Section 3.4 we exploit the first condition in order to establish linear
convergence based on the properties of the cost functions involved.

Theorem 3.5 (metric subregularity equivalence and linear convergence). Let
Assumption 3.IV hold. The following subregularity assumptions are equivalent.

(i) T = A+M + C is metrically subregular at all z? ∈ zerT for 0.

(ii) Let TAFBA denote the operator that maps zk to zk+1 in Algorithm 3.3,
i.e., zk+1 = TAFBA(zk). The operator id−TAFBA is metrically subregular
at all z? ∈ zerT for 0.

Moreover, if either condition holds then (zk)k∈N generated by Algorithm 3.3
converges R-linearly to some z? ∈ zerT and (distS(zk, zerT ))k∈N converges
Q-linearly to zero.
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Proof. (ii) ⇒ (i): assume that R := id− TAFBA is metrically subregular at z?
for 0. Then, there exists η > 0 and a neighborhood U of z? such that

dist(z,R−10) ≤ η dist(0,Rz) ∀z ∈ U . (3.27)

Using the definition of TAFBA we have that z ∈ fix TAFBA if and only if
(H +A)−1(H −M − C)z = z which is equivalent to z ∈ zerT . Therefore, the
sets R−10 and T−10 are equal. In what follows, we upper bound dist(0,Rz) by
dist(0, T z). Let w ∈ Tz = Az +Mz + Cz and consider z̄ as in (3.22). We have

Hz −Mz − Cz −Hz̄ ∈ Az̄.

Using this together with the monotonicity of A at z and z̄, we obtain:

0 ≤〈z − z̄, (w −Mz − Cz)− (Hz −Mz − Cz −Hz̄)〉

=〈z − z̄, w −Hz +Hz̄〉 = 〈z − z̄, w〉 − ‖z̄ − z‖2P ,

where in the last equality we have used the fact that H = P + K and K is
skew-symmetric.

By the Cauchy–Schwarz inequality

‖z̄ − z‖2P ≤ 〈z − z̄, w〉 ≤ ‖z̄ − z‖P ‖w‖P−1 ,

therefore
‖z̄ − z‖P ≤ ‖w‖P−1 . (3.28)

On the other hand since TAFBAz = z + S−1(H +M>)(z̄ − z),

‖Rz‖ ≤ ‖S−1(H +M>)P−1/2‖‖z̄ − z‖P .

Combine this with (3.27) and (3.28) to obtain

dist(z, T−10) = dist(z,R−10) ≤ η‖Rz‖

≤η‖S−1(H +M>)P−1/2‖‖P−1‖1/2‖w‖.

Since w ∈ Tz was arbitrary, we conclude that T is metrically subregular at z?
for 0 (possibly with a different subregularity modulus).

(i) ⇒ (ii): assume that T is metrically subregular at z? for 0, i.e., there exists
η > 0 and neighborhood U of z? such that

dist(z, T−10) ≤ η dist(0, T z) ∀z ∈ U . (3.29)
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By (3.23) and the Cauchy–Schwarz inequality we infer that

‖z̄ − z‖ ≤ c‖z − z?‖,

for some positive constant c. Hence, there exists a neighborhood Ū ⊂ U of z?
such that if z ∈ Ū then z̄ ∈ U . Fix a point z ∈ Ū so that z̄ ∈ U . By (3.29) it
holds that:

dist(z̄, T−10) ≤ η dist(0, T z̄). (3.30)

Define
v := −(H −M)(z̄ − z) + Cz̄ − Cz.

By the triangle inequality and Lipschitz continuity of C

‖v‖ = ‖(H −M)(z̄ − z)− Cz̄ + Cz‖

≤ ‖(H −M)(z̄ − z)‖+ ‖Cz̄ − Cz‖ ≤ ξ‖z̄ − z‖, (3.31)

for some positive ξ. Moreover, noting that v ∈ T z̄, it follows from (3.30) that

dist(z̄, T−10) ≤ η‖v‖ ≤ ηξ‖z̄ − z‖, (3.32)

where we used (3.31) in the second inequality. Invoking triangle inequality we
have

dist(z,R−10) = dist(z, T−10) ≤ dist(z̄, T−10) + ‖z̄ − z‖

≤(1 + ηξ)‖z̄ − z‖. (3.33)

On the other hand it holds that

‖z̄ − z‖ ≤ ‖(H +M>)−1S‖‖Rz‖.

Combining this with (3.33) yields

dist(z,R−10) ≤ (1 + ηξ)‖(H +M>)−1S‖‖Rz‖ ∀z ∈ Ū ,

i.e., that R is metrically subregular at z? for 0. This completes the proof of
equivalence of (i) and (ii).

The proof of linear convergence based on (i) is identical to Theorem 2.4 and is
therefore omitted.
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3.4 A unified convergence analysis for primal-dual
algorithms

Our goal in this section is to describe how Algorithms 3.1 and 3.2 are derived
and to establish their convergence. The idea is to solve the monotone inclu-
sion corresponding to the primal-dual optimality conditions using asymmetric
forward-backward-adjoint splitting (AFBA) described in Section 3.3. In order to
recover Algorithm 3.1 simply apply Algorithm 3.3 to this monotone inclusion
with the following parameters: let θ ∈ [0,∞) and set H = P +K with

P =
(

Γ−1 − θ2L
>

− θ2L Σ−1

)
, K =

(
0 θ

2L
>

− θ2L 0

)
, (3.34)

and S =
(
λµS−1

1 + λ(1− µ)S−1
2
)−1 where µ ∈ [0, 1], λ ∈ (0, 2) with

S1 =
(

Γ−1 (1− θ)L>
(1−θ)L Σ−1+(1−θ)(2−θ)LΓL>

)
, S2 =

(
Γ−1+(2−θ)L>ΣL −L>

−L Σ−1

)
.

Notice that with P and K set as in (3.34), H has a lower (block) triangular
structure. Therefore the backward step (H + A)−1 in Algorithm 3.3 can be
carried out sequentially, see Lemma 2.5. Algorithm 3.1 is derived by noting this
and substituting S and H defined above. Algorithm 3.2 is obtained similarly by
using Algorithm 2.1 with P , K, M and S as defined in this chapter. Therefore,
convergence of both algorithms follow directly from that of the two variants of
AFBA. This is summarized in the next theorem.

Theorem 3.6 (convergence of Algorithms 3.1 and 3.2). Let Assumption 3.I
hold. Consider the sequence (zk)k∈N = (xk, uk)k∈N generated by Algorithm 3.1
(resp. Algorithm 3.2). Suppose that Assumption 3.II (resp. Assumption 3.III)
holds. Then, (zk)k∈N converges to some point z? ∈ zerT .

Proof. We begin by establishing the claim for Algorithm 3.3. The goal is to
verify that Assumptions 3.I and 3.II are sufficient for Assumption 3.IV to
hold. As noted in Section 3.2, operator A is maximally monotone [13, Thm.
21.2, Prop. 20.33], and the linear mapping M is skew-adjoint and as such
monotone. The operator C is cocoercive with respect to the metric induced
by U = blkdiag(βfQ, βlR). In Assumption 3.IV we use the linear mapping V
in order to avoid conservative requirements. The special cases when f ≡ 0 (or
l∗ ≡ 0) are captured by setting V = blkdiag(0n, Ir) (or V = blkdiag(In, 0r)).
It remains to verify Assumption 3.IV(ii). Evaluating D according to (3.21)
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yields the following D = λµD1 + λ(1− µ)D2 where

D1 =
(

Γ−1 −L>
−L Σ−1 + (2− θ)LΓL>

)
,

D2 =
(

Γ−1 + (1− θ)(2− θ)L>ΣL (1− θ)L>
(1− θ)L Σ−1

)
.

Noting that Γ,Σ � 0, and using Schur complement for D1 and P defined in
(3.34) we have

D1 � 0 ⇔ Σ−1 + (1− θ)LΓL> � 0, Σ−1 − θ2

4 LΓL> � 0 ⇔ P � 0.

Thus, since 1−θ ≥ − θ2

4 for all θ, we have that D1 � 0 if P � 0. It can be shown
that the same argument applies for S1, S2 and D2. The sum of two positive
definite matrices is also positive definite, therefore S,D � 0 if P � 0. Matrix
P is symmetric positive definite if (3.20) holds. The convergence conditions in
Assumption 3.II are the result of replacing D, P , U and V in (3.20).

In order to establish convergence of Algorithm 3.2 we start by adapting the
convergence analysis of Algorithm 2.1 to suit the notation of this chapter. This
amounts to the following condition:

(2− λ)P − 1
2V UV

> � 0, λ ∈ (0, 2). (3.35)

To see this note that using Lemma 3.3, inequality (2.10) is updated as follows:

‖zk+1−z?‖2S≤‖zk−z?‖2S+λ2‖(H+M∗)z̃k‖−2
S−1‖z̃k‖4P

+λ‖(H+M∗)z̃k‖−2
S−1‖z̃k‖2P

(
1
2‖V

>(zk−z̄k)‖2U−2‖zk−z̄k‖2P
)

=‖zk−z?‖2S−‖(H+M∗)z̃k‖−2
S−1‖z̃k‖2P

(
λ‖z̃‖2

2P− 1
2V UV

>−λ
2‖z̃k‖2P

)

=‖zk−z?‖2S−λ‖P−1/2S−1/2(H+M∗)z̃k‖−2
P ‖z̃

k‖2P

(
‖z̃‖2

(2−λ)P− 1
2V UV

>

)
≤‖zk−z?‖2S−λ‖P−1/2S−1/2(H+M∗)‖−2

P ‖z̃‖
2
(2−λ)P− 1

2V UV
>

Therefore, using standard arguments we conclude that if (3.35) holds then the
sequence (zk)k∈N converges to a primal-dual solution. It is straightforward to
see that Assumption 3.III is a restatement of (3.35) with P , U , V defined here.
This completes the proof.
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3.4.1 Linear convergence

In this section we explore sufficient conditions for f, g, h and l under which Al-
gorithm 3.1 and Algorithm 3.2 achieve linear convergence rates. In Lemma 3.8
and Lemma 3.11 we provide four regularity assumptions under which T defining
the primal-dual optimality conditions is metrically subregular at z? ∈ zerT for
0. The linear convergence rate results are then deduced in Corollary 3.12.

Let us first recall the notion of quadratic growth: a proper closed convex function
g is said to have quadratic growth at x̄ for 0 with 0 ∈ ∂g(x̄) if there exists a
neighborhood U of x̄ such that

g(x) ≥ inf g + cdist2(x, ∂g−1(0)), ∀x ∈ U . (3.36)

Metric subregularity of the subdifferential operator and the quadratic growth
condition are known to be equivalent [6, 63]. In particular, ∂g is metrically
subregular at x̄ for ū with ū ∈ ∂g(x̄) if and only if the quadratic growth
condition (3.36) holds for g(·) − 〈ū, ·〉, i.e., there exists a positive constant c
and a neighborhood U of x̄ such that [6, Thm. 3.3]

g(x) ≥ g(x̄) + 〈ū, x− x̄〉+ cdist2(x, ∂g−1(ū)), ∀x ∈ U . (3.37)

Strong subregularity has a similar characterization [6, Thm. 3.5]

g(x) ≥ g(x̄) + 〈ū, x− x̄〉+ c‖x− x̄‖2, ∀x ∈ U . (3.38)

Next, let us define the following general growth condition.

Definition 3.7 (quadratic growth relative to a set). Consider a proper closed
convex function g and a pair (x̄, ū) ∈ gra ∂g. We say that g has quadratic growth
at x̄ for ū relative to a nonempty closed convex set X containing x̄, if there
exists a positive constant c and a neighborhood U of x̄ such that

g(x) ≥ g(x̄) + 〈ū, x− x̄〉+ cdist2(x,X), ∀x ∈ U . (3.39)

From the above definition it is evident that metric subregularity and strong
subregularity characterized in (3.37) and (3.38) are recovered whenX = ∂g−1(ū)
and X = {x̄}, respectively.

Another regularity assumption used in Lemma 3.8 is the notion of local strong
convexity: a proper closed convex function g is said to be locally strongly convex
in a neighborhood of x̄, denoted by U , if there exists a positive constant c such
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that

g(x′) ≥ g(x) + 〈v, x′ − x〉+ c
2‖x
′ − x‖2, ∀x, x′ ∈ U , ∀v ∈ ∂g(x).

Notice that local strong convexity in a neighborhood of x̄ implies (3.38), but
(3.38) is much weaker than local strong convexity since it holds only at x̄ and
only for ū ∈ ∂g(x̄).

In the next lemma we provide three different regularity assumptions that are
sufficient for metric subregularity of the operator defining the primal-dual
optimality conditions. In Lemma 3.8(i) (or Lemma 3.8(ii)) we use local strong
convexity, as well as the quadratic growth condition (3.39) relative to the set of
primal solutions (or dual solutions). Interestingly, this regularity assumption
does not entail a unique primal-dual solution.

Lemma 3.8. Let Assumption 3.I hold. The operator T defining the primal-dual
optimality conditions, cf. (3.6), is metrically subregular at z? = (x?, u?) for 0
with 0 ∈ Tz? if one of the following assumptions holds:

(i) f + g has quadratic growth at x? for −L>u? relative to the set of primal
solutions X?, and h∗ + l∗ is locally strongly convex in a neighborhood of
u?. In this case the set of dual solutions is a singleton, U? = {u?}.

(ii) f + g is locally strongly convex in a neighborhood of x?, and h∗ + l∗ has
quadratic growth at u? for Lx? relative to the set of dual solutions U?. In
this case the set of primal solutions is a singleton, X? = {x?}.

(iii) ∇f +∂g is strongly subregular at x? for −L>u? and ∂h∗+∇l∗ is strongly
subregular at u? for Lx?. In this case the set of primal-dual solutions is a
singleton, zerT = {(x?, u?)}.

Proof. 3.8(i)- Consider the point z? = (x?, u?). By definition of quadratic
growth there exists a neighborhood Ux? and a positive constant c1 such that

(f+g)(x) ≥ (f+g)(x?)+〈−L>u?, x−x?〉+c1 dist2(x,X?), ∀x ∈ Ux? . (3.40)

Let Uu? denote the neighborhood of u? in which the local strong convexity of
h∗+ l∗ holds. Fix a point z = (x, u) ∈ Zz? := Ux?×Uu? . Now take v = (v1, v2) ∈
Tz = Az +Mz + Cz, i.e.,{

v1 ∈ ∂g(x) +∇f(x) + L>u,
v2 ∈ ∂h∗(u) +∇l∗(u)− Lx. (3.41)
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Let z0 = (x0, u0) denote the projection of z onto the set of solutions, zerT . The
subgradient inequality for f + g at x using (3.41) gives

〈v1, x− x0〉 ≥ (f + g)(x)− (f + g)(x0) + 〈L>u, x− x0〉. (3.42)

Noting that 0 ∈ Tz0, by the subgradient inequality for h∗ + l∗ at u0 we have

(h∗ + l∗)(u) ≥ (h∗ + l∗)(u0) + 〈Lx0, u− u0〉. (3.43)

Summing (3.42) and (3.43) yields

〈v1, x− x0〉 ≥ L(x, u)− L(x0, u0) = L(x, u)− L(x?, u?), (3.44)

where L is the Lagrangian defined in (3.3). By local strong convexity of h∗ + l∗

at u ∈ Uu? (for some strong convexity parameter c2):

(h∗ + l∗)(u?) ≥ (h∗ + l∗)(u) + 〈v2 + Lx, u? − u〉+ c2
2 ‖u

? − u‖2.

Sum this inequality with (3.40) to obtain that for z ∈ Zz?

L(x, u)− L(x?, u?) ≥ c1 dist2(x,X?) + 〈v2, u
? − u〉+ c2

2 ‖u
? − u‖2. (3.45)

It follows from (3.44) and (3.45) that

〈v2, u− u?〉+ 〈v1, x− x0〉 ≥ c2
2 ‖u

? − u‖2 + c1 dist2(x,X?)

= c2
2 ‖u

? − u‖2 + c1‖x− x0‖2

≥ c
(
‖u? − u‖2 + ‖x− x0‖2

)
, (3.46)

where c = min{c1, c2
2 }. By the Cauchy-Schwarz inequality

〈v1, x− x0〉+ 〈v2, u− u?〉 ≤ ‖v‖
(
‖u− u?‖2 + ‖x− x0‖2

) 1
2 . (3.47)

Combining (3.46) and (3.47) yields

‖v‖ ≥ c
(
‖u− u?‖2 + ‖x− x0‖2

) 1
2 ≥ c‖z − z0‖ = cd(z, T−10).

Since v ∈ Tz was selected arbitrarily we have that

d(z, T−10) ≤ 1
cd(Tz, 0), ∀z ∈ Zz? .
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This completes the first claim. Next, consider z̄? = (x̄?, ū?) ∈ zerT such that
z̄? ∈ Zz? . Setting z = z̄? in (3.45) yields

0 = L(x̄?, ū?)− L(x?, u?) ≥ c2
2 ‖u

? − ū?‖2.

Therefore, ū? = u? and since zerT is convex we conclude that U? = {u?}.

3.8(ii)- The proof of the second part is similar to part 3.8(i). Therefore, we
outline the proof. Let Ux? ,Uu? be the neighborhoods in the definition of local
strong convexity of f + g and quadratic growth of h∗ + l∗, respectively. Fix
z ∈ Zz? = Ux? × Uu? . Take v = (v1, v2) as in (3.41), and let z0 denote the
projection of z onto zerT . In contrast to the previous part, sum the subgradient
inequalities for f + g at x0 and for h∗ + l∗ at u to derive

〈v2, u− u0〉 ≥ L(x0, u0)− L(x, u) = L(x?, u?)− L(x, u). (3.48)

Use local strong convexity of f + g at x, and the quadratic growth of h∗ + l∗ at
u? for Lx? relative to U? to derive

L(x?, u?)− L(x, u) ≥ c1d(u, U?) + 〈v1, x
? − x〉+ c2

2 ‖x− x
?‖2.

Combining this with (3.48) and arguing as in the previous part completes the
proof.

3.8(iii)- The proof of this part is slightly different. Let Ux? ,Uu? be the neigh-
borhoods in the definitions of the two strong subregularity assumptions. Fix
z ∈ Zz? = Ux? × Uu? . Sum the subgradient inequality for f + g at x and for
h∗ + l∗ at u to derive

〈v, z − z?〉 = 〈v2, u− u?〉+ 〈v1, x− x?〉 ≥ L(x, u?)− L(x?, u) (3.49)

On the other hand by [6, Thm. 3.5], f+g has quadratic growth at x? for −L>u?
relative to {x?} and h∗+ l∗ has quadratic growth at u? for Lx? relative to {u?}.
Summing the two yields

L(x, u?)− L(x?, u) ≥ c2‖u− u?‖2 + c1‖x− x?‖2 (3.50)

Combining this inequality with (3.49) and using the Cauchy-Schwartz inequality
as in previous parts completes the proof. Uniqueness of the solution follows from
(3.50) by setting z = z̄? ∈ zerT such that z̄? ∈ Zz? and using the convexity of
zerT .

The assumptions of Lemma 3.8 are much weaker than strong convexity and do
not always imply a unique primal-dual solution. Here we present two simple
examples for demonstration. Notice that in the next example the assumption of
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Lemma 3.8(i) that f + g has quadratic growth with respect to the set of primal
solutions is equivalent to the metric subregularity assumption.
Example 3.9. Consider the problem

minimize
x∈R

g(x) + h(x) = max{1− x, 0}+ x
2 min{x, 0}

The solution to this problem is not unique and any x? ∈ [1,∞) solves this
problem. The dual problem is given by

minimize
u∈R

g∗(−u) + h∗(u), (3.51)

where g∗(u) = u+ δ[−1,0](u) and h∗(u) = 1
2u

2 + δ≤0(u). It is evident that the
dual problem has the unique solution u? = 0. It is easy to verify that g has
quadratic growth at all the points x? ∈ [1,∞) for 0 with respect to X? = [1,∞).
Moreover, we have ∂g−1(0) = [1,∞), i.e., X? = ∂g−1(0). In other words in
this case the assumption of Lemma 3.8(i) for g is equivalent to the metric
subregularity of ∂g at x? for 0. Notice that ∂g is not strongly subregular at any
point in [1,∞) for 0. Furthermore, h∗ is globally strongly convex given that ∇h
is Lipschitz. Therefore, according to Lemma 3.8(i) one would expect a unique
dual solution but not necessarily a unique primal solution, which is indeed the
case.
Example 3.10. Let c ∈ [−1, 1] and consider

minimize
x∈R

g(x) + h(x) = |x|+ cx.

When c ∈ (−1, 1) the problem attains a unique minimum at x? = 0. When
c = 1 (or c = −1) all x? ∈ (−∞, 0] (or x? ∈ [0,∞)) solves the problem. The
dual problem is given by (3.51) with g∗(u) = δ[−1,1](u) and h∗(u) = δ{c}(u).
The unique dual solution is u? = c. Furthermore, ∂h∗ is strongly subregular
at u? = c for all x? given that x? ∈ ∂h∗(u?). It is easy to verify that ∂g is
metrically subregular at x? = 0 for u? ∈ [−1, 1] but is only strongly subregular
at x? = 0 for u? ∈ (−1, 1). Notice that u? = c, therefore by Lemma 3.8(iii) one
would expect a unique primal-dual solution when u? = c ∈ (−1, 1) which is
indeed the case.

A wide range of functions used in optimization applications belong to the class
of piecewise linear-quadratic (PLQ) functions, Definition 1.4. Some notable
examples include: affine functions, quadratic functions, indicators of polyhedral
sets, polyhedral norms such as `1, and regularizers such as elastic net, Huber loss,
hinge loss, and many more [144, 7]. For a proper closed convex PLQ function g,
∂g is piecewise polyhedral, and therefore metrically subregular at any z for any
z′ provided that z′ ∈ ∂g(z) [144, 61].
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Lemma 3.11. Let Assumption 3.I hold. In addition, assume that f, g, l, and h
are piecewise linear-quadratic. Then, the operator T defining the primal-dual
optimality conditions, cf. (3.6), is metrically subregular with the same constant
at any z for any z′ provided that z′ ∈ Tz.

Proof. The subdifferential ∂g, ∇f , ∂h∗ and ∇l∗ are piecewise polyhedral [144,
Prop. 12.30, Thm. 11.14]. Therefore, A and C are piecewise polyhedral. Further-
more, the graph of M is polyhedral since M is linear. Therefore, the graph of
T = A+M +C is also piecewise polyhedral. The inverse of a piecewise polyhe-
dral mapping is also piecewise polyhedral. Therefore by [61, Prop. 3H.1, 3H.3]
the mapping T is metrically subregular at z for z′ whenever (z, z′) ∈ gra T .

In the next corollary linear convergence results based on the two previous
lemmas and Theorem 3.5 are presented.

Corollary 3.12 (linear convergence for Algorithms 3.1 and 3.2). Let Assump-
tion 3.I hold. Consider the sequence (zk)k∈N = (xk, uk)k∈N generated by Algo-
rithm 3.1 (resp. Algorithm 3.2). Suppose that Assumption 3.II (resp. Assumption
3.III) holds. In addition, suppose that one of the following assumptions holds:

(i) f, g, l, and h are piecewise linear-quadratic.

(ii) f, g, l, and h satisfy at least one of the conditions of Lemma 3.8 at every
z? ∈ zerT (not necessarily the same condition at all the points).

Then, the sequence (zk)k∈N converges R-linearly to some z? ∈ zerT , and
(distS(zk, zerT ))k∈N converges Q-linearly to zero.

3.5 Stepsize selection and simulations

In this section we present some rules of thumb for selecting the stepsizes of the
algorithms introduced in Section 3.2. Note that in applications where function
g (or h) is separable, i.e., g(x) =

∑N
i=1 gi(xi) with x = (x1, x2, . . . , xN ) ∈ Rn,

xi ∈ Rni , using a diagonal matrix Σ = blkdiag(σ1InN , σ2In2 , . . . , σN InN ) results
in the following decomposition of the proximal mapping of g

proxΣ−1

g (x) =
(
proxσ1g1

(x1),proxσ2g2
(x2), . . . ,proxσNgN (xN )

)
,

and leads to larger stepsizes than if we had used Σ = σIn (this would effectively
correspond to σ = mini σi). Below, after discussing stepsize selection and
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practical aspects of termination criteria, numerical simulations are performed
comparing the performance of the algorithms presented in this chapter.

Stepsize selection: For simplicity we discuss some rules of thumb for stepsize
selection when Σ = σid, Γ = γid, R,Q = id and the relaxation parameter
λ = 1. Similar rules can be obtained following the same reasoning for more
general cases such as when diagonal stepsize matrices are used.

While the choice of the stepsizes is application dependent, the choices discussed
below perform reasonably well in our experiments. These are also used as default
parameters in the Julia package ProximalAlgorithms1 for the primal-dual AFBA
solver.

Consider the stepsize condition for the Vũ-Condat algorithm (see (3.9)):

σγ‖L‖2 <
(

1− γβf
2

)(
1− σβl

2

)
. (3.52)

This inequality is always satisfied for

γ = 1
βf
2 +
‖L‖
ν

, σ = 0.99
βl
2 +ν‖L‖

, ν ∈ (0,∞). (3.53)

In our experiments, setting

ν =


ξ2‖L‖/βf if βf > ξ1βl & ξ1βf > ‖L‖
βl/ξ2‖L‖ if βl > ξ1βf & ξ1βl > ‖L‖
1 otherwise,

(3.54)

with ξ1 = 5 and ξ2 = 100 seems to perform best. The idea here is that if βf is
much larger that βl, it is best to select γ as large as possible. If βl and βf are
of the same order, or if ‖L‖ is much larger than both of them, then given the
symmetry in (3.53), stepsizes γ and σ of the same order are used.

In the case of SPCA, the condition is as follows:

γσ‖L‖2 < (1− σβl
2 ), γβf < 2.

In the simulations we set γ = 1.99/βf and σ = 0.99/γ‖L‖2 (since βl = 0).

In the case of SDCA, PDCA, PPDCA when βl = 0 (as is the case in the
simulations) the stepsizes are selected as in (3.53) and (3.54), with ‖L‖ replaced
by η‖L‖ where η = θ2 − 3θ + 3.

In the case of Algorithm 3.2, in order to satisfy Assumption 3.III we set the
stepsizes as follows: if θ 6= 0 then the stepsizes are selected as in (3.53) and

1https://github.com/kul-forbes/ProximalAlgorithms.jl

https://github.com/kul-forbes/ProximalAlgorithms.jl
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(3.54), with ‖L‖ replaced by θ
2‖L‖. If θ = 0 then γ = 1.99/βf and σ = 1.99/βl.

Since in the example below βl = 0, σ can be any positive number and is selected
by trial for best performance.

Termination criteria: Another practical matter is to have a criterion for
termination and performance comparisons of primal-dual algorithms. Consider
v = (v1, v2) ∈ Tz, i.e.,{

v1 ∈ ∂g(x) +∇f(x) + L>u,
v2 ∈ ∂h∗(u) +∇l∗(u)− Lx.

This inclusion is satisfied with v = 0 at any primal-dual solution (x, u). Therefore,
the norm of v is an appropriate measure of optimality. Consider the primal and
dual updates in Algorithms 3.1 and 3.2 with Σ = σid and Γ = γid. Using the
definition of proximal mapping we have

γ−1(xk−x̄k)−L>(uk−ūk)+∇f(x̄k)−∇f(xk)∈L>ūk+∂g(x̄k)+∇f(x̄k),

σ−1(uk−ūk)+(1−θ)L(xk−x̄k)+∇l∗(ūk)−∇l∗(uk)∈∂h∗(ūk)+∇l∗(ūk)−Lx̄k.

Therefore, we use O(zk, z̄k) given by

O(zk, z̄k) := ‖γ−1(xk − x̄k)− L>(uk − ūk) +∇f(x̄k)−∇f(xk)‖2

+ ‖σ−1(uk − ūk) + (1− θ)L(xk − x̄k) +∇l∗(ūk)−∇l∗(uk)‖2

as a measure of optimality in the simulations. Note that computing O(zk, z̄k)
does not always require additional gradient evaluations. This is the case for
several of the special cases discussed in Section 3.2.1 for which xk+1 = x̄k,
such as SNCA with λ = 1, or SDCA, PDCA and dual of SPCA when l = δ{0}
and λ = 1. Although in other cases additional gradient evaluations may be
unavoidable, O(zk, z̄k) is used here for performance comparisons anyway. We
also remark that in practice one may use the sum of residuals ‖x̄k − xk‖/γ and
‖ūk − uk‖/σ as the termination criteria.

Simulations: We evaluate the performance of the algorithms with the above
stepsizes on the dual support vector machine problem (1.3) with C = 1/10. In
our simulations we used two processed datasets, iris (first two classes) and a1a
from the LIBSVM dataset [40].

We formulate the problem in the form of (3.1) by setting f equal to the
quadratic cost, g the indicator of the box [0, C]N , h = δ{0} and L = b>

where b = (b1, . . . , bN ). The results are presented in Figure 3.1 where we
have only included some representative algorithms. Other variants have similar
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Figure 3.1: Dual SVM on iris, a1a: (left column) variants of Algorithm 3.1
(right column) variants of Algorithm 3.2

performances and are excluded for the sake of clarity of the plot. The stepsizes for
SPCA can take larger values compared to other variants. Consequently, we often
observe faster convergence for SPCA; however, it is observed that in general the
algorithms have similar performance and the trajectories are very close to each
other. Note that other than PPDCA the other five algorithms depicted require
only two matrix-vector products excluding the gradient evaluation (PPDCA
requires four). Moreover, for this problem the performance gain by using Algo-
rithm 3.2 is not significant enough to justify the extra computation required for
computing νk in (3.14).

Next, SPCA is compared with PD3O [180] discussed in Remark 3.1. We use
the same formulation for both algorithms. The stepsize condition for PD3O is
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Figure 3.2: Performance comparisons for SPCA and PD3O [180] for classifying
a1a dataset
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Figure 3.3: Performance comparisons for SPCA, Alg. 2.2 and Davis-Yin algo-
rithm for classifying a1a dataset

identical to SPCA, and therefore we use the same rule of thumb described above
for best performance. Note that the iterates are not necessarily feasible. In order
to have a fair comparison, for both algorithms we use the primal variable that
belongs to the domain of g, i.e., xk+1 in (3.11) and x̄k+1 in (3.12). Figure 3.2
(left) shows the distance of the quadratic cost from the optimal cost and (right)
plots |Lx| (recall the constraint Lx = 0). It is observed that both algorithms
have very similar performances.

In Chapter 2 a DRS-type algorithm was introduced, Algorithm 2.2, which in
the optimization framework can be derived from Algorithm 3.1 with µ = 0,
by setting l = δ{0}, L = id, and γ = σ−1 after a change of variable. As
noted in Remark 2.9, we compare its performance against the three term
splitting of Davis and Yin [58]. For this set of simulations, problem (1.3) is
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formulated as before with the difference that h is set to be the indicator of the
set {x ∈ RN |

∑N
i=1 xibi = 0} (and L = id). Note that the proximal mapping

of h can be computed efficiently. The stepsizes of Algorithm 2.2 were selected
according to Proposition 2.7 with θ = 1.5, γ = 0.5(4 − θ2)/βf and ρk set to
the maximum permitted value in (3.37). It is observed in Figure 3.3 that for
this problem Algorithm 2.2 is slower, which is due to limiting the stepsizes to
γ = σ−1. We also plotted the result of SPCA with this formulation and observe
that its trajectories are quite close to those of the Davis-Yin algorithm.

3.6 Conclusions

This section introduced a simple primal-dual framework for solving structured
convex optimization problems. Depending on the value of two parameters,
(extension of) known as well as many new primal-dual algorithms are obtained.
Owing to this unified framework linear convergence rates were obtained for
all the special cases of our framework provided that some mild regularity
conditions for the cost functions are satisfied. Moreover, numerical simulations
were performed on dual SVM where we discussed practical issues such as rules
of thumb for stepsize selection and termination criteria.



Chapter 4

A randomized block-coordinate primal-dual
proximal algorithm

This chapter is based on:

Latafat, P., Freris, N. M., and Patrinos, P. A new randomized block-coordinate
primal-dual proximal algorithm for distributed optimization. IEEE Transactions
on Automatic Control 64, 10 (10 2019), 4050–4065.

4.1 Introduction

In this chapter we revisit the optimization problem

minimize
x∈Rn

f(x) + g(x) + h(Lx), (4.1)

where L is a linear mapping, h and g are proper, closed, convex functions
(possibly nonsmooth), and f is convex, continuously differentiable with Lipschitz
continuous gradient. We further assume that the proximal mappings associated
with h and g are efficiently computable [49]. This setup is quite general and
captures a wide range of applications in signal processing, machine learning and
control.

In problem (4.1), it is typically assumed that the gradient of the smooth term
f is βf -Lipschitz for some nonnegative constant βf . We consider Lipschitz
continuity of ∇f with respect to ‖ · ‖Q with Q � 0 in place of the canonical
norm (cf. (4.2)). This is because in many applications of practical interest, a
scalar Lipschitz constant fails to accurately capture the Lipschitz continuity of
∇f . A prominent example lies in distributed optimization, where f is separable,

70
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i.e., f(x) =
∑m
i=1 fi(xi). In this case, the metric Q is taken block-diagonal

with blocks containing the Lipschitz constants of the ∇fi’s. Notice that in
such settings considering a scalar Lipschitz constant results in using the largest
of the Lipschitz constants, which leads to conservative stepsize selection and
consequently slower convergence rates.

This chapter presents a primal-dual algorithm TriPD (Alg. 4.1), that consists
of two proximal evaluations (corresponding to the two nonsmooth terms g and
h), one gradient evaluation (for the smooth term f), and one correction step
(cf. Alg. 4.1). We adopt the general Lipschitz continuity assumption (4.2) in
our convergence analysis, which is essential for avoiding conservative stepsize
conditions that depend on the global scalar Lipschitz constant.

In Section 4.2, it is shown that the sequence generated by TriPD (Alg. 4.1)
is S-Fejér monotone (with respect to the set of primal-dual solutions), where
S is a block diagonal positive definite matrix. This key property is exploited
in Section 4.3 to develop a block-coordinate version of the algorithm with a
general randomized activation scheme.

The connections of TriPD to other related primal-dual algorithms in the litera-
ture are discussed in Section 4.2.1. Most notably, TriPD transforms into the
algorithm of Vũ and Condat [170, 53] by a change of order and elimination of
the dual variable (refer to Section 4.2.1). Convergence of the Vũ-Condat scheme
was established independently by Vũ [170] and Condat [53], by casting it in the
form of the forward-backward splitting. In the original analysis a scalar constant
is used to capture the Lipschitz continuity of the gradient of f , thus resulting in
potentially smaller stepsizes (and slower convergence in practice). In [47], the
authors assume the more general Lipschitz continuity property (4.2) by using a
preconditioned variable metric forward-backward iteration. Nevertheless, the
stepsize matrix is restricted to be proportional to Q−1.

Block-coordinate (BC) minimization is a simple approach for tackling large-scale
optimization problems. At each iteration, a subset of the coordinates is updated
while others are held fixed. Randomized BC algorithms are of particular interest,
and can be divided into two main categories:

Type a) comprises algorithms in which only one coordinate is randomly ac-
tivated and updated at each iteration. The BC versions of gradient [125] and
proximal gradient methods [139] belong in this category. A distinctive attribute
of the aforementioned algorithms is the fact that the stepsizes are selected
to be inversely proportional to the coordinate-wise Lipschitz constant of the
smooth term rather than the global one. This results in applying larger step-
sizes in directions with smaller Lipschitz constant, and therefore leads to faster
convergence.
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Type b) contains methods where more than one coordinate may be randomly
activated and simultaneously updated [22, 51]. Note that this class may also
capture the single active coordinate (type a) as a special case. The convergence
condition for this class of BC algorithms is typically the same as in the full algo-
rithm. In [22, 51] random BC is applied to α-averaged operators by establishing
stochastic Fejér monotonicity, while [51] also considers quasi-nonexpansive oper-
ators. In [134, 22] the authors obtain randomized BC algorithms based on the
primal-dual scheme of Vũ and Condat; the main drawback is that, just as in
the full version of these algorithms, the use of conservative stepsize conditions
leads to slower convergence in practice.

The BC version of TriPD (Alg. 4.1) falls into the second class, i.e., it allows for
a general randomized activation scheme (cf. Alg. 4.2). The proposed scheme
converges under the same stepsize conditions as the full algorithm. As a conse-
quence, in view of the characterization of Lipschitz continuity of ∇f in (4.2),
when f is separable, i.e., f(x) =

∑m
i=1 fi(xi), our approach leads to algorithms

that depend on the local Lipschitz constants (of ∇fi’s) rather than the global
constant, thus assimilating the benefits of both categories. Notice that when f is
separable, the coordinate-wise Lipschitz continuity assumption of [125, 139, 70]
is equivalent to (4.2) with βf = 1 and Q = blkdiag(β1In1 , . . . , βmInm), where
m denotes the number of coordinate blocks, ni denotes the dimension of the
i-th coordinate block, and βi denotes the Lipschitz constant of fi. In the gen-
eral setting, [125, Lem. 2] can be invoked to establish the connection between
the metric Q and the coordinate-wise Lipschitz assumption. However, in many
cases (most notably the separable case) this lemma is conservative.

In [70], the authors propose a randomized BC version of the Vũ-Condat scheme.
Their analysis does not require the cost functions to be separable and utilizes
a different Lyapunov function for establishing convergence. Notice that the
block-coordinate scheme of [70] updates a single coordinate at every iteration
(i.e., it is a type a) algorithm) as opposed to the more general random sweeping
of the coordinates. Additionally, in the case of f being separable, our proposed
method (cf. Alg. 4.2) assigns a block stepsize that is inversely proportional
to βi

2 (where βi denotes the Lipschitz constant for fi), in place of βi required
by [70, Assumption 1(e)]: larger stepsizes are typically associated with faster
convergence in primal-dual proximal algorithms.

In Section 3.4.1 linear convergence rates were obtain for a large class of primal-
dual algorithms (special cases of Algorithms 3.1 and 3.2). In Section 4.4 we
further explicate the required conditions for TriPD in terms of the objective
functions, with two special cases of prevalent interest: a) when f , g and h satisfy
a quadratic growth condition (cf. Lem. 4.8) (which is much weaker than strong
convexity) or b) when f , g and h are piecewise linear-quadratic (cf. Lem. 4.9),
a common scenario in many applications such as LPs, QPs, SVM and fitting



INTRODUCTION 73

problems for a wide range of regularization functions; e.g. `1 norm, elastic nets,
Huber loss and many more. Specifically, for the BC version of TriPD, linear
conveergence rate is established under slightly stronger conditions (cf. Thm.
4.11).

Finally, as an important application, we consider a distributed structured
optimization problem over a network of agents. In this context, each agent has
its own private cost function of the form (4.1), while the communication among
agents is captured by an undirected graph G = (V, E):

minimize
x1,...,xm

m∑
i=1

fi(xi) + gi(xi) + hi(Lixi)

subject to Aijxi +Ajixj = b(i,j) (i, j) ∈ E .

We use (i, j) to denote the unordered pair of agents i, j, and ij to denote the
ordered pair. The goal is to solve the global optimization problem through local
exchange of information. Notice that the linear constraints on the edges of the
graph prescribe relations between neighboring agents’ variables. This type of
edge constraints was also considered in [182]. It is worthwhile noting that for
the special case of two agents i = 1, 2, with fi, hi ≡ 0, one recovers the setup for
the celebrated alternating direction method of multipliers (ADMM) algorithm.
Another special case of particular interest is consensus optimization, when Aij =
I, Aji = −I and b(i,j) = 0. A primal-dual algorithm for consensus optimization
was introduced in [100] for the case of fi ≡ 0, where a transformation was used
to replace the edge variables with node variables.

This multi-agent optimization problem arises in many contexts such as sensor
networks, power systems, transportation networks, robotics, water networks,
distributed data-sharing, etc. [28, 89, 136]. In most of these applications, there
are computation, communication and/or physical limitations on the system
that render centralized management infeasible. This motivates the fully dis-
tributed synchronous and asynchronous algorithms developed in Section 4.5.
Both versions are fully distributed in the sense that not only the iterations are
performed locally, but also the stepsizes of each agent are selected based on
local information without any prior global coordination (cf. Assumption 4.VI).
The asynchronous variant of the algorithm is based on an instance of the ran-
domized block-coordinate algorithm in Section 4.3. The protocol is as follows:
at each iteration, a) agents are activated at random, and independently from
one another, b) active agents perform local updates, c) they communicate the
required updated values to their neighbors and d) return to an idle state.
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4.2 Triangularly preconditioned primal-dual algo-
rithm

In this section we present a primal-dual algorithm for problem (4.1). We adhere
to the following assumptions throughout sections 4.2 to 4.4:
Assumption 4.I.

(i) g : Rn → R, h : Rr → R are proper, closed, convex functions, and
L : Rn → Rr is a linear mapping.

(ii) f : Rn → R is convex, continuously differentiable, and for some βf ∈
[0,∞), ∇f is βf -Lipschitz continuous with respect to the metric induced
by Q � 0 , i.e.,

‖∇f(x)−∇f(y)‖Q−1≤βf‖x− y‖Q ∀x, y ∈ Rn. (4.2)

(iii) The set of solutions to (4.1) is nonempty. Moreover, there exists x ∈
ri dom g such that Lx ∈ ri dom h.

In Assumption 4.I(ii), the constant βf ≥ 0 is not absorbed into the metric Q in
order to also incorporate the case when ∇f is a constant (by setting βf = 0).

The dual problem is to

minimize
u∈Rr

(g + f)∗(−L>u) + h∗(u). (4.3)

With a slight abuse of terminology, we say that (u?, x?) is a primal-dual solution
(in place of dual-primal) if u? solves the dual problem (4.3) and x? solves
the primal problem (4.1). We denote the set of primal-dual solutions by S.
Assumption 4.I(iii) guarantees that the set of solutions to the dual problem is
nonempty and the duality gap is zero [143, Corollary 31.2.1]. Furthermore, the
pair (u?, x?) is a primal-dual solution if and only if it satisfies:{

0 ∈ ∂h∗(u)− Lx,
0 ∈ ∂g(x) +∇f(x) + L>u.

(4.4)

We proceed to present the new primal-dual scheme TriPD (Alg. 4.1). The
motivation behind the name becomes apparent in the sequel after equation
(4.12). The algorithm involves two proximal evaluations (respective to the non-
smooth terms g, h), and one gradient evaluation (for the Lipschitz differentiable
term f). The stepsizes in TriPD (Alg. 4.1) are chosen so as to satisfy the
following assumption:
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Assumption 4.II (stepsize selection). Both the dual stepsize matrix Σ ∈
Rr×r, and the primal stepsize matrix Γ ∈ Rn×n are symmetric positive definite.
In addition, they satisfy:

Γ−1 − βf
2 Q− L

>ΣL � 0. (4.5)

Selecting scalar primal and dual stepsizes, along with the standard definition of
Lipschitz continuity, as is prevalent in the literature [170, 53], can plainly be
treated by setting Σ = σIr, Γ = γIn, and Q = In, whence from (4.5) we require
that

γ <
1

βf
2 + σ‖L‖2

.

Algorithm 4.1 Triangularly Preconditioned Primal-Dual algorithm (TriPD)

Inputs: x0 ∈ Rn, u0 ∈ Rr

for k = 0, 1, . . . do
ūk = proxΣ−1

h∗ (uk + ΣLxk)
xk+1 = proxΓ−1

g (xk − Γ∇f(xk)− ΓL>ūk)
uk+1 = ūk + ΣL(xk+1 − xk)

Remark 4.1. Each iteration of TriPD (Alg. 4.1) requires one application of
L and one of L> (even though it appears to require two applications of L).
The reason is that, at iteration k, only L>ūk, Lxk+1 need to be evaluated
since L(xk+1 − xk) = Lxk+1 −Lxk and Lxk was computed during the previous
iteration.

TriPD (Alg. 4.1) can be compactly written as:

zk+1 = Tzk,

where zk := (uk, xk), and the operator T is given by:

ū = proxΣ−1

h∗ (u+ ΣLx) (4.6a)

x̄ = proxΓ−1

g (x− Γ∇f(x)− ΓL>ū) (4.6b)

Tz = (ū+ ΣL(x̄− x), x̄). (4.6c)
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Remark 4.2 (relaxed iterations). It is also possible to devise a relaxed version
of TriPD (Alg. 4.1) as follows:

zk+1 = zk + Λ(Tzk − zk),

where Λ is a positive definite matrix and Λ ≺ 2In+r. For ease of exposition, we
present the convergence analysis for the original version (i.e., for Λ = In+r).
Note that the analysis carries through with minor modifications for relaxed
iterations.

For compactness of exposition, we define the following operators:

A : (u, x) 7→ (∂h∗(u), ∂g(x)), (4.7a)

M : (u, x) 7→ (−Lx,L>u), (4.7b)

C : (u, x) 7→ (0,∇f(x)). (4.7c)

The optimality condition (4.4) can then be written in the equivalent form of
the monotone inclusion:

0 ∈ Az +Mz + Cz =: Fz, (4.8)

where z = (u, x). Observe that the linear operator M is monotone since it is
skew-symmetric, i.e., M> = −M . It is also easy to verify that the operator A
is maximally monotone [13, Thm. 21.2 and Prop. 20.23], while operator C is
cocoercive, being the gradient of f̃(u, x) = f(x), and in light of Assumption
4.I(ii) and [13, Cor. 18.17].

We further define

P =
(

Σ−1 1
2L1

2L
> Γ−1

)
, K =

(
0 − 1

2L1
2L
> 0

)
, (4.9)

and set H = P + K. It is plain to check that condition (4.5) implies that
the symmetric matrix P is positive definite (by a standard Schur complement
argument). In addition, we set

S = blkdiag(Σ−1,Γ−1). (4.10)

Using these definitions, the operator T defined in (4.6) can be written as:

Tz := z + S−1(H +M>)(z̄ − z), (4.11)
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where
z̄ = (H +A)−1(H −M − C)z. (4.12)

This compact representation simplifies the convergence analysis. A key consid-
eration for choosing P and K as in (4.9) is to ensure that H = P +K is lower
block-triangular. Notice that when M ≡ 0, (4.11) can be viewed as a triangu-
larly preconditioned forward-backward update, followed by a correction step.
This motivates the name TriPD: Triangularly Preconditioned Primal-Dual al-
gorithm. Due to the triangular structure of H, the backward step (H +A)−1 in
(4.12) can be carried out sequentially: an updated dual vector ū is computed
(through proximal mapping) using (u, x) and, subsequently, the primal vector x̄
is computed using ū and x, cf. (4.6). Furthermore, it follows from (4.11) that
this choice makes H +M> upper block-triangular which, alongside the diagonal
structure of S, yields the efficiently computable update (4.6c) in view of:

S−1(H +M>) =
(
I ΣL
0 I

)
. (4.13)

Remark 4.3. Note that potentially larger stepsize parameter as in Section
3.2.2 can be considered here. Although this can potentially improve the rate
of convergence in practice, we opt not to: the reason is that in the context of
multi-agent optimization (that we especially target in this chapter) such design
choice would require global coordination, that is contradictory to our objective
of devising distributed algorithms.

We proceed by showing that the set of primal-dual solutions coincides with the
set of fixed points of T , fix T :

S = {z | 0 ∈ Az +Mz + Cz} = fix T. (4.14)

To see this note that from (4.11) and (4.12) we have:

z ∈ fix T ⇐⇒ z = Tz ⇐⇒ z̄ = z

⇐⇒ (H +A)−1(H −M − C)z = z

⇐⇒ Hz −Mz − Cz ∈ Hz +Az ⇐⇒ z ∈ S,

where in the second equivalence we used the fact that S is positive definite and
〈(H + M>)z, z〉 ≥ ‖z‖2P for all z ∈ Rn+r (since K is skew-adjoint and M is
monotone).

Next, let us define

P̃ :=
(

Σ−1 − 1
2L

− 1
2L
> Γ−1 − βf

4 Q

)
. (4.15)
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Observe that (from Schur complement) Assumption 4.II is necessary and suffi-
cient for 2P̃ − S to be symmetric positive definite (cf. the convergence result in
Thm. 4.5). In particular, P̃ is positive definite since S is positive definite.

The next lemma establishes the key property of the operator T that is instru-
mental in our convergence analysis:

Lemma 4.4. Let Assumptions 4.I and 4.II hold. Consider the operator T
in (4.6) (equivalently (4.11)). Then, for any z? ∈ S and any z ∈ Rn+r we have

‖Tz − z‖2
P̃
≤ 〈z − z?, z − Tz〉S . (4.16)

Proof. Consider the operator T as in (4.11). By monotonicity of A at z? and z̄
along with (4.12) we have

0 ≤ 〈−Mz? − Cz? +Mz + Cz −Hz +Hz̄, z? − z̄〉. (4.17)

For βf > 0, assumption 4.I(ii) is equivalent to ∇f being cocoercive [13, Thm.
18.17], i.e., for all x, y ∈ Rn:

1
βf
‖∇f(x)−∇f(y)‖2Q−1 ≤ 〈∇f(x)−∇f(y), x− y〉. (4.18)

On the other hand, for βf > 0 we have

〈Cz − Cz?, z? − z̄〉 = 〈∇f(x)−∇f(x?), x? − x̄〉

= 〈∇f(x)−∇f(x?), x− x̄〉+ 〈∇f(x)−∇f(x?), x? − x〉

≤ 1
βf
‖∇f(x)−∇f(x?)‖2

Q−1 + βf
4 ‖x− x̄‖

2
Q + 〈∇f(x)−∇f(x?), x? − x〉

≤ 〈∇f(x)−∇f(x?), x− x?〉+ βf
4 ‖x− x̄‖

2
Q + 〈∇f(x)−∇f(x?), x? − x〉,

= βf
4 ‖x− x̄‖

2
Q, (4.19)

where we have used (1.8) (with V = 2
βf
Q−1) in the first inequality, and (4.18)

in the second inequality, respectively. Notice that if βf = 0 then inequality
(4.19) holds trivially with equality.

Using (4.19) in (4.17), along with skew-symmetry of K and M , we have

0 ≤〈−Mz? − Cz? +Mz + Cz −Hz +Hz̄, z? − z̄〉

≤〈(M −K)(z − z?) + P (z̄ − z), z? − z̄〉+ βf
4 ‖x− x̄‖

2
Q
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=〈(M −K)(z − z?) + P (z̄ − z), z? − z〉+ βf
4 ‖x− x̄‖

2
Q

+ 〈(M −K)(z − z?) + P (z̄ − z), z − z̄〉

=〈P (z̄ − z), z? − z〉+ βf
4 ‖x− x̄‖

2
Q − ‖z̄ − z‖2P + 〈(M −K)(z − z?), z − z̄〉

=〈z − z?, (H +M>)(z − z̄)〉+ βf
4 ‖x− x̄‖

2
Q − ‖z̄ − z‖2P . (4.20)

By definition, S−1(H +M>)(z̄ − z) = Tz − z. Thus

〈z − z?, (H +M>)(z − z̄)〉 = 〈z − z?, z − Tz〉S . (4.21)

On the other hand, we have z̄− z = (H +M>)−1S(Tz− z). Using (4.9), (4.13)
and (4.6c) we conclude

‖z̄ − z‖2P −
βf
4 ‖x̄− x‖

2
Q = ‖Tz − z‖2

P̃
, (4.22)

where P̃ is defined in (4.15). Combining (4.20), (4.21) and (4.22) completes the
proof.

The main convergence result for TriPD (Alg. 4.1) is established in the next
theorem. In specific, it is shown that the generated sequence is S-Fejér monotone.
We emphasize that the diagonal structure of S is the key property used in
developing the block-coordinate version of the algorithm in Section 4.3.

Theorem 4.5. Let Assumptions 4.I and 4.II hold. Consider the sequence
(zk)k∈N generated by TriPD (Alg. 4.1). The following Fejér-type inequality holds
for all z? ∈ S:

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − ‖zk+1 − zk‖22P̃−S . (4.23)

Consequently, (zk)k∈N converges to some z? ∈ S.

Proof. We establish convergence by showing that the sequence (zk)k∈N is S-Fejér
monotone with respect to S = fix T . We have

‖zk+1 − z?‖2S =‖Tzk − zk + zk − z?‖2S

= ‖zk − z?‖2S + ‖Tzk − zk‖2S + 2〈zk − z?, T zk − zk〉S

≤ ‖zk − z?‖2S − ‖Tzk − zk‖22P̃−S , (4.24)
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where the inequality follows from Lemma 4.4. Note that 2P̃ − S is symmetric
positive-definite if and only if assumption 4.II holds. Therefore, by (4.24) the
sequence (zk)k∈N is Fejér monotone in the space equipped with inner product
〈·, ·〉S ; in particular, (zk)k∈N is bounded. Furthermore, it follows from (4.24)
and the fact that 2P̃ − S is positive-definite that

‖Tzk − zk‖ → 0. (4.25)

The operator T is continuous (since it involves proximal and linear mappings that
are continuous, and since ∇f is assumed continuous). Let zc be a cluster point
of (zk)k∈N. It follows from the continuity of T and (4.25) that Tzc− zc = 0, i.e.,
zc ∈ fix T . The result follows from Fejér monotonicity of (zk)k∈N with respect
to S = fix T and [13, Thm. 5.5].

4.2.1 Related primal-dual algorithms

In this section we elaborate on the relation between TriPD (Alg. 4.1) and other
primal-dual algorithms. In Section 3.2 six main special cases of Algorithm 3.1
were discussed. The algorithm considered in this chapter, TriPD (Alg. 4.1), can
be seen as SPCA (sequential primal corrector algorithm) applied to the dual
problem when the smooth term is zero (see Section 3.2). Note that it is possible
to derive and analyze a variant of TriPD (Alg. 4.1) for (3.1). However, we do not
pursue this in this chapter and focus on problem (4.1) for clarity of exposition.

A closely related algorithm was proposed in [62] called PAPC (proximal alter-
nating predictor-corrector) for solving saddle point problem (3.3) with g ≡ 0
and l ≡ δ{0}. Refer to the explanation for SPCA in Section 3.2 for more details.
Another closely related primal-dual algorithms is the algorithm of Vũ and Con-
dat [53, 170]. In fact TriPD (Alg. 4.1) transforms into this algorithm with a
change of order (by starting from the primal update) and elimination of the
dual variable uk while keeping the axillary dual variable ūk. Another connec-
tion with [53, 170] can be drawn by seeing it as a special case of Algorithm 3.1
as discussed in Section 3.2 under the name SNCA. One can verify that the op-
erator defining the fixed-point iterations in the Vũ-Condat algorithm is given
by (4.11) with H = P +K and S defined as follows:

S =
(

Σ−1 L
L> Γ−1

)
, (4.26)

P =
(

Σ−1 L
L> Γ−1

)
, K =

(
0 −L
L> 0

)
.
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For such selection of S, P , K, it holds that S−1(H + M>) = I, whence in
proximal form, the operator defined in (4.11) becomes:

ū = proxΣ−1

h∗ (u− Σ∇l∗(u) + ΣLx)

x̄ = proxΓ−1

g (x− Γ∇f(x)− ΓL>(2ū− u))

Tz = (ū, x̄).

Observe the non-diagonal structure of S for the Vũ-Condat algorithm in (4.26),
in contrast with the one for TriPD (Alg. 4.1) in (4.10). For the sake of comparison
with [53, 170] we consider the relaxed iteration zk+1 = zk + λ(Tzk − zk) for
some λ ∈ (0, 2) and problem (3.1) with l satisfying Assumption 3.I(iii) in this
subsection (which we opted to exclude from TriPD (Alg. 4.1) solely for the
purpose of simplicity).

The analysis in Theorem 4.5 can be further used to establish convergence of the
Vũ-Condat scheme for problem (3.1) under the sufficient conditions (3.8) (in
place of Assumption 4.II). Notice that when l = δ{0} (i.e., for problem (4.1)),
l∗ ≡ 0 whence βl = 0, and the condition simplifies to:

Γ−1 − βf
2(2−λ)Q− L

>ΣL � 0.

Given the stepsize condition (3.1) the following Fejér-type inequality holds.

‖zk+1 − z?‖2S ≤ ‖zk − z?‖2S − λ‖zk+1 − zk‖22P̂−λS , (4.27)

with S defined in (4.26) and P̂ given by:

P̂ :=
(

Σ−1 − βl
4 R L

L> Γ−1 − βf
4 Q

)
.

This generalizes the result in [53, Thm. 3.1], [170, Cor. 4.2] and [96, Prop. 5.1]
where Q = I and the stepsizes are assumed to be scalar.

Our main goal here was to demonstrate the non-diagonal structure of S for the
Vũ-Condat algorithm. In the sequel, we highlight that our analysis additionally
leads to less conservative conditions as compared to [170, 53, 47]. Notice that
the proofs in the aforementioned papers are based on casting the algorithm in
the form of forward-backward iterations. Consequently, the stepsize condition
obtained ensures that the underlying operator is averaged. In contradistinction,
the sufficient condition in (3.1) only ensures that the Fejér-type inequality (4.27)
holds, which is sufficient for convergence. Therefore, even in the case of scalar
stepsizes (as in [170, 53]) condition (3.1) allows for larger stepsizes compared to



82 A RANDOMIZED BLOCK-COORDINATE PRIMAL-DUAL PROXIMAL ALGORITHM

[170, 53].

In [47, 134] the authors propose a variable metric version of the algorithm
with a preconditioning that accounts for the general Lipschitz metric. This is
accomplished by fixing the stepsize matrix to be a constant times the inverse of
the Lipschitz metric, and obtaining a condition on the constant. Our approach
does not assume this restrictive form for the stepsize matrix; even when such a
restriction is imposed it allows for larger stepsizes, thus achieving generally faster
convergence. As an illustrative example, let us set Γ = µQ−1 and Σ = νR−1 for
some µ, ν > 0. For simplicity and without loss of generality, let βl = 1, βf = 1.
Then, (3.1) simplifies to:

(µ−1 − 1
2(2−λ) )(ν−1 − 1

2(2−λ) )Q− L>R−1L � 0, (4.28)

whereas the condition required in [47, 134] is λ ∈ (0, 1] and

δ

1 + δ
>

max{µ, ν}
2 with δ = 1√

νµ‖G
−1/2LQ−1/2‖−1 − 1. (4.29)

It is not difficult to check that condition, (4.28), is always less restrictive
than (4.29). For instance, let R−1/2LQ−1/2 = I and set µ = 1.5, then (4.28)
requires that ν < 1

6.5 whereas (4.29) necessitates that ν < 1
24 .

4.3 A randomized block-coordinate algorithm

In this section, we describe a randomized block-coordinate variant of TriPD (Alg.
4.1) and discuss important special cases pertaining to the randomized coordi-
nate activation mechanism. The convergence analysis is based on establishing
stochastic Fejér monotonicity [51] of the generated sequence. In addition, we es-
tablish linear convergence of the method under further assumptions in Section
4.4.

First, let us define a partitioning of the vector of primal-dual variables into m
blocks of coordinates. Notice that each block might include a subset of primal
or dual variables, or a combination of both. Respectively, let Ui ∈ R(n+r)×(n+r),
for i = 1, . . . ,m, be a diagonal matrix with 0-1 diagonal entries that is used to
select a subset of the coordinates (selected coordinates correspond to diagonal
entries equal to 1). We call such matrix an activation matrix, as it is used to
activate/select a subset of coordinates to update.

Let Φ = {0, 1}m denote the set of binary strings of length m (with the elements
considered as column vectors of dimension m). At the k-th iteration, the
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algorithm draws a Φ-valued random activation vector εk+1 which determines
which blocks of coordinates will be updated. The i-th element of the vector εk+1

is denoted as εk+1
i : the i-th block is updated at iteration k if εk+1

i = 1. Notice
that in general multiple blocks of coordinates may be concurrently updated.
The conditional expectation E[· | Fk] is abbreviated by Ek[·], where Fk is the
filtration generated by (ε1, . . . , εk). The following assumption summarizes the
setup of the randomized coordinate selection.

Assumption 4.III.

(i) {Ui}mi=1 are 0-1 diagonal matrices and
∑m
i=1 Ui = I.

(ii) (εk)k∈N is a sequence of i.i.d. Φ-valued random vectors with

pi := P(ε1i = 1) > 0 i = 1, . . . ,m. (4.30)

(iii) The stepsize matrices Σ,Γ are diagonal.

The first condition implies that the activation matrices define a partition of the
coordinates, while the second that each partition is activated with a positive
probability.

We further define the (diagonal) coordinate activation probability matrix Π as
follows:

Π :=
m∑
i=1

piUi. (4.31)

For ε = (ε1, . . . , εm) we define the operator T̂ (ε) by:

T̂ (ε)z := z +
m∑
i=1

εiUi(Tz − z),

where T was defined in (4.6) (equivalently (4.11)). Observe that this is a compact
notation for the update of only the selected blocks. The randomized scheme is
then written as an iterative application of T̂ (εk+1) for k = 0, 1, . . . (this operator
updates the active blocks of coordinates and leaves the others unchanged, i.e.,
equal to their previous iterate values). The randomized block-coordinate scheme
is summarized below.
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Algorithm 4.2 Block-coordinate TriPD algorithm
Inputs: x0 ∈ Rn, u0 ∈ Rr

for k = 0, 1, . . . do
Select Φ-valued r.v. εk+1

zk+1 = T̂ (εk+1)zk

We emphasize that the randomized model that we adopt here is capable of
capturing many stationary randomized activation mechanisms. To illustrate
this, consider the following activation mechanisms (of specific interest in the
realm of distributed multi-agent optimization cf. §4.5):

• Multiple coordinate activation: at each iteration, the j-th coordinate block
is randomly activated with probability pj > 0 independent of other coordi-
nates blocks. This corresponds to the case that the sample space is equal to
Φ = {0, 1}m. The general distributed algorithm of Section 4.5 assumes this
mechanism.

• Single coordinate activation: at each iteration, one coordinate block is selected,
i.e., the sample space is

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0) . . . , (0, . . . , 0, 1)}. (4.32)

We assign probability pi to the event εi = 1 (and εj = 0 for j 6= i), whence
the probabilities must satisfy

∑m
i=1 pi = 1.

The next lemma establishes stochastic Fejér monotonicity for the generated
sequence, by directly exploiting the diagonal structure of S. The proof technique
is adapted from [22, Thm. 3] (see also [88, Thm. 2], [51, Thm. 2.5]), and is
based on the Robbins-Siegmund lemma [142].

Theorem 4.6. Let Assumptions 4.I–4.III hold. Consider the sequence (zk)k∈N
generated by TriPD-BC (Alg. 4.2). The following Fejér-type inequality holds for
all z? ∈ S:

Ek
[
‖zk+1 − z?‖2Π−1S

]
≤ ‖zk − z?‖2Π−1S − ‖Tz

k − zk‖22P̃−S . (4.33)

Consequently, (zk)k∈N converges a.s. to some z? ∈ S.

Proof. Let us define the operator Ek :=
∑m
i=1 ε

k
i Ui that maps the elements

of (Rn+r,Fk−1) to (Rn+r,Fk). The iterations of TriPD-BC (Alg. 4.2) can be
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written as zk+1 = zk + Ek+1(Tzk − zk). We have

Ek ◦ Ek+1 =
∑
ε∈Ψ

P(εk+1 = ε)
m∑
j=1

εjUj =
m∑
j=1

∑
ε∈Ψ

P(εk+1 = ε)εjUj

=
m∑
j=1

∑
ε∈Ψ,εj=1

P(εk+1 = ε)Uj =
m∑
j=1

pjUj = Π, (4.34)

where we used Assumptions 4.III(i) and 4.III(ii). Therefore, we have

Ek
[
‖zk+1 − z?‖2Π−1S

]
= Ek

[
‖zk + Ek+1(Tzk − zk)− z?‖2Π−1S

]
= ‖zk − z?‖2Π−1S + 2〈zk − z?,Ek

[
Ek+1(Tzk − zk)

]
〉Π−1S

+ Ek
[
〈Ek+1(Tzk − zk), Ek+1(Tzk − zk)〉Π−1S

]
= ‖zk − z?‖2Π−1S + ‖Tzk − zk‖2S + 2〈zk − z?, T zk − zk〉S

where we used (4.34) and the fact Ek is self-adjoint and idempotent (since Ui are
0-1 matrices) in the last equality. Inequality (4.33) follows by using (4.16). The
convergence of the sequence follows from (4.33) using the Robbins-Siegmund
lemma [142] and arguing as in [22, Thm. 3] and [51, Prop. 2.3].

It is important to emphasize that a naive implementation of TriPD-BC (Alg.
4.2) (with regards to the partitioning of primal-dual variables) may involve
wasteful computations. As an example, consider a BC algorithm in which, at
every iteration, either all primal or all dual variables are updated. In such a
case, if at iteration k the dual vector is to be updated, both xk+1, uk+1 are
computed (cf. Alg. 4.1), whereas only uk+1 is updated. This phenomenon is
common to all primal-dual algorithms, and is due to the fact that the primal
and dual updates need to be performed sequentially in the full version of the
algorithm. As a consequence, the blocks of coordinates must be partitioned in
such a way that computations are not discarded, so that the iteration cost of
a BC algorithm is (substantially) smaller than computing the full operator T .
This choice relies entirely on the structure of the optimization problem under
consideration. A canonical example of prominent practical interest is the setting
of multi-agent optimization in a network (cf. §4.5), where L is not diagonal, f
and g are separable, and additional coupling between (primal) coordinates is
present through h, see (4.51). In this example, the primal and dual coordinates
are partitioned in such a way that no computation is discarded (cf. §4.5 for
more details).
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We proceed with another example where the coordinates may be grouped such
that the BC algorithm does not incur any wasteful computations: consider prob-
lem (4.1) with Lx = blkdiag(L1x1, . . . , Lmxm), and g, h separable functions
i.e.,

minimize
x∈Rn

f(x) +
m∑
i=1

(
gi(xi) + hi(Lixi)

)
.

In this problem, the coupling between the (primal) coordinates is carried via
function f . For each i = 1, . . . ,m, we can choose Ui such that it selects the i-th
primal-dual coordinate block (ui, xi). Under such partitioning of coordinates,
one may use TriPD-BC (Alg. 4.2) with any random activation pattern satisfying
Assumption 4.III. For example, for the case of multiple independently activated
coordinates, as discussed above, at iteration k the following is performed

• each block (ui, xi) is activated with probability pi > 0
• for active block(s) i compute:
ūki = proxσh∗

i
(uki + σLix

k
i )

xk+1
i = proxγgi(xki − γ∇if(xk)− γL>i ūki )
uk+1
i = ūki + σLi(xk+1

i − xki ).

More generally, when g and h are separable in problem (4.1), and L is such that
either each (block) row only has one nonzero element or each (block) column
has one nonzero element, then the coordinates can be grouped together in such
a way that no wasteful computations occur: in the first case the primal vector
xi and all dual vectors uj that are required for its computation are selected by
Ui (with the role of primal and dual reversed in the second case).

Remark 4.7. Note that in TriPD-BC (Alg. 4.2) the probabilities pi are taken
fixed, i.e., the matrix Π is constant throughout the iterations. This is a non-
restrictive assumption and can be relaxed by considering iteration-varying
probabilities pki in (4.30) and modifying TriPD-BC (Alg. 4.2) by setting:

zk+1 = zk +
m∑
i=1

εk+1
i

mpk+1
i

Ui(Tzk − zk).

Let Πk denote the probability matrix defined as in (4.31) using pki . Then, by
arguing as in Theorem 4.6, it can be shown that the following stochastic Fejér
monotonicity holds for the modified sequence:

Ek
[
‖zk+1 − z?‖2S

]
≤ ‖zk − z?‖2S − ‖Tzk − zk‖22

mP̃− 1
m2 S(Πk+1)−1

.
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4.4 Linear convergence

In this section, we establish linear convergence of Algorithms 4.1 and 4.2 under
additional conditions on the cost functions f , g and h. To this end, we show
that linear convergence is attained if the monotone operator F = A+M + C
defining the primal-dual optimality conditions (cf. (4.8)) is metrically subregular
(globally metrically subregular in the case of TriPD-BC (Alg. 4.2)). A notable
consequence of our analysis is the fact that linear convergence is attained when
the cost functions either a) belong in the class of piecewise linear-quadratic
(PLQ) convex functions or b) when they satisfy a certain quadratic growth
condition (which is much weaker than strong convexity). Moreover, notice that
in the case of PLQ the solution need not be unique (cf. Thm.s 4.10 and 4.11).

Recall the notion of metric subregularity in Definition 1.2. Metric subregularity
of the subdifferential operator has been studied thoroughly and is equivalent to
the quadratic growth condition [6, 63] defined next. In particular, for a proper
closed convex function f , the subdifferential ∂f is metrically subregular at x̄
for ȳ with (x̄, ȳ) ∈ gra ∂f if and only if there exists a positive constant c and a
neighborhood U of x̄ such that the following growth condition holds [6, Thm.
3.3]:

f(x) ≥ f(x̄) + 〈ȳ, x− x̄〉+ cd2(x, (∂f)−1(ȳ)) ∀x ∈ U

Furthermore, ∂f is strongly subregular at x̄ for ȳ with (x̄, ȳ) ∈ gra ∂f , if and
only if there exists a positive constant c and a neighborhood U of x̄ such that
[6, Thm. 3.5]:

f(x) ≥ f(x̄) + 〈ȳ, x− x̄〉+ c‖x− x̄‖2 ∀x ∈ U (4.35)

Note that strongly convex functions satisfy (4.35), but (4.35) is much weaker
than strong convexity, as it is a local condition: it only holds in a neighborhood
of x̄, and also only for ȳ.

The lemma below provides a sufficient condition for metric subregularity of the
monotone operator A+M +C, in terms of strong subregularity of ∇f + ∂g and
∂h∗ (equivalently the quadratic growth of f + g and h∗, cf. (4.35)) as stated in
the following assumption:

Assumption 4.IV (strong subregularity of ∇f + ∂g and ∂h∗). There exists
z? = (u?, x?) ∈ S satisfying:

(i) ∇f + ∂g is strongly subregular at x? for −L>u?,

(ii) ∂h∗ is strongly subregular at u? for Lx?.



88 A RANDOMIZED BLOCK-COORDINATE PRIMAL-DUAL PROXIMAL ALGORITHM

We say that f , g and h satisfy this assumption globally if the strong subregularity
assumption of ∇f + ∂g and ∂h∗ both hold globally (cf. Def. 1.2).

In particular, Assumption 4.IV holds globally if either f or g (or both) are
strongly convex and h is continuously differentiable with Lipschitz continuous
gradient, i.e., h∗ is strongly convex.

Lemma 4.8. Let Assumptions 4.I and 4.IV hold. Then, F = A + M + C
(cf. (4.7)) is strongly subregular at z? for 0. Moreover, if f , g and h satisfy
Assumption 4.IV globally, then F is globally strongly subregular at z? for 0. In
both cases the set of primal-dual solutions is a singleton, S = {z?}.

Proof. From the equivalent characterization of strong subregularity in (4.35)
we have that there exists a neighborhood Ux? of x? such that for all x ∈ Ux?

(f + g)(x) ≥(f + g)(x?) + 〈−L>u?, x− x?〉

+ c1‖x− x?‖2, (4.36)

and a neighborhood Uu? of u? such that for all u ∈ Uu?

h∗(u) ≥ h∗(u?) + 〈Lx?, u− u?〉+ c2‖u− u?‖2. (4.37)

Fix z = (u, x) with u ∈ Uu? and x ∈ Ux? . Consider v = (v1, v2) ∈ Fz :=
Az +Mz + Cz. By definition (cf. (4.7)) we have{

v1 ∈ ∂h∗(u)− Lx,
v2 ∈ ∂g(x) +∇f(x) + L>u.

Using this together with the definition of subdifferential yields:

〈v1 + Lx, u− u?〉 ≥ h∗(u)− h∗(u?), (4.38)

〈v2 − L>u, x− x?〉 ≥ (f + g)(x)− (f + g)(x?). (4.39)

Combining (4.38), (4.39) with (4.36), (4.37) and noting that

〈L>(u? − u), x− x?〉+ 〈L(x− x?), u− u?〉 = 0,

yields:

〈v, z − z?〉 = 〈v1, u− u?〉+ 〈v2, x− x?〉

≥ c2‖u− u?‖2 + c1‖x− x?‖2 ≥ c‖z − z?‖2,
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where c = min{c1, c2}. Therefore, by the Cauchy-Schwarz inequality ‖v‖ ≥
c‖z − z?‖. Since ‖z − z?‖ ≥ dist(z, F−10), and v ∈ Fz was selected arbitrarily,
we have

dist(z, F−10) ≤ 1
c dist(0, Fz) ∀z ∈ Uu? × Ux? . (4.40)

Thus F is metrically subregular at z? for 0.

To establish uniqueness of the primal-dual solution consider:

L(u, x) := (f + g)(x) + 〈Lx, u〉 − h∗(u).

Adding (4.36) and (4.37) yields

L(u?, x)− L(u, x?) ≥ c‖z − z?‖2 ∀z ∈ Uu? × Ux? (4.41)

Let z̄? = (ū?, x̄?) ∈ S such that z̄? ∈ Uu? × Ux? . Since z̄? is also a primal-dual
solution we have L(ū?, x?)− L(u?, x̄?) ≥ 0. Therefore, using (4.41) at z̄? yields
z̄? = z?. Since S is convex, we conclude that it is a singleton, i.e., S = {z?}.
Consequently it follows from (4.40) that F is strongly subregular at z? for 0.

The second part is a direct consequence of the first part and the fact that
if Assumption 4.IV holds globally then also the quadratic growth conditions
(4.36) and (4.37) hold globally, i.e., Ux? = Rn, Uu? ∈ Rr. This can be shown by
adapting the proof of [6, Thm. 3.3].

Lemma 4.9 establishes metric subregularity of the operator A+M +C when the
functions f , g and h are piecewise linear-quadratic (PLQ) (see Definition 1.4).
The claim follows directly from Lemma 3.11. Note that this assumption does not
imply that the set of solutions S is a singleton, nevertheless, linear convergence
can still be established. The class of PLQ functions is closed under scalar
multiplication, addition, conjugation and Moreau envelope [144]. A wide range
of functions used in optimization applications belong to this class, for example:
affine functions, quadratic forms, indicators of polyhedral sets, polyhedral norms
(e.g., the `1-norm), and regularizing functions such as elastic net, Huber loss,
hinge loss, to name a few.

Lemma 4.9. Let Assumption 4.I hold. In addition, assume that f , g and h
are piecewise linear-quadratic. Then F = A+M + C (cf. (4.7)) is metrically
subregular with the same constant η at any z for any v with (z, v) ∈ graF .

Our main convergence rate results are provided in Theorems 4.10 and 4.11. In
this context, Lemmas 4.8 and 4.9 are used to establish sufficient conditions in
terms of the cost functions. We omit the proof of Theorem 4.10; it is similar to
that of Theorem 4.11, the main difference being that in Theorem 4.10 local (as
opposed to global) metric subregularity is used: due to the Fejér-type inequality
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(4.23), z̄k will eventually be contained in a neighborhood of metric subregularity,
where inequality (4.46) applies.

Theorem 4.10 (linear convergence of Alg. 4.1). Consider TriPD (Alg. 4.1)
under the assumptions of Theorem 4.5. Suppose that F = A+M+C is metrically
subregular at all z? ∈ S for 0. Then, (distS(zk,S))k∈N converges Q-linearly to
zero, and (zk)k∈IN converges R-linearly to some z? ∈ S.

In particular, the metric subregularity assumption holds and the result follows
if either one of the following holds:

(i) either f , g and h are PLQ,

(ii) or f , g and h satisfy Assumption 4.IV, in which case the solution is
unique.

Theorem 4.11 (linear convergence of Alg. 4.2). Consider TriPD-BC (Alg. 4.2)
under the assumptions of Theorem 4.6. Suppose that F = A+M +C is globally
metrically subregular for 0 (cf. Def. 1.2), i.e., there exists η > 0 such that

dist(z, F−10) ≤ η dist(0, Fz) ∀z ∈ Rn+r.

Then (E
[
d2

Π−1S(zk,S)
]
)k∈N converges Q-linearly to zero.

In particular, this result holds if

(i) either f, g, h are PLQ and there exists a compact set C such that (zk)k∈N ⊆
C (as is the case if dom g and dom h∗ are compact),

(ii) or f , g and h satisfy Assumption 4.IV globally, in which case the solution
is unique.

Proof. For notational convenience let S̄ = Π−1S and note that S = zerF
(cf. (4.14)). By definition we have ‖zk − P S̄S(zk)‖S̄ = distS̄(zk,S) (where the
minimum is attained since S is a closed convex set). Consequently, it follows
from (4.33) that

Ek
[
d2
S̄

(zk+1,S)
]
≤ Ek

[
‖zk+1 − P S̄S(zk)‖2

S̄

]
≤ ‖zk − P S̄S(zk)‖2

S̄
− ‖Tzk − zk‖22P̃−S

= dist2
S̄(zk,S)− ‖Tzk − zk‖22P̃−S . (4.42)
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By definition (4.11), we have

‖z̄k − zk‖2 = ‖(H +M>)−1S(Tzk − zk)‖2

≤ ‖(H +M>)−1S‖2‖(2P̃ − S)−1‖‖Tzk − zk‖22P̃−S , (4.43)

where z̄k is defined by (4.12) applied at z = zk. Consider the projection of z̄k
onto S, PS(z̄k). By definition ‖z̄k − PS(z̄k)‖ = dist(z̄k,S), and we have

dist2
S̄(zk,S) ≤ ‖zk − PS(z̄k)‖2

S̄
≤ ‖S̄‖‖zk − PS(z̄k)‖2

≤ ‖S̄‖
(
‖z̄k − PS(z̄k)‖+ ‖z̄k − zk‖

)2
= ‖S̄‖

(
dist(z̄k,S) + ‖z̄k − zk‖

)2
. (4.44)

In what follows we bound dist(z̄k,S) by ‖z̄k − zk‖. Define

vk := −(H −M)(z̄k − zk) + Cz̄k − Czk. (4.45)

It follows from (4.12) that (H −M −C)zk ∈ (H +D)z̄k, which in turn implies

vk ∈ F z̄k = (A+M + C)z̄k.

Consequently, using (global) metric subregularity of F yields

dist(z̄k,S) ≤ η‖vk‖. (4.46)

By the triangle inequality and Lipschitz continuity of C,

‖vk‖ = ‖(H −M)(z̄k − zk)− Cz̄k + Czk‖

≤ ‖(H −M)(z̄k − zk)‖+ ‖Cz̄k − Czk‖ ≤ ξ‖z̄k − zk‖, (4.47)

where ξ = ‖H−M‖+ βf‖Q‖. By (4.46) and (4.47) we have

dist(z̄k,S) ≤ ξη‖z̄k − zk‖.

Combine this with (4.43) and (4.44) to derive

dist2
S̄(zk,S) ≤ φ‖Tzk − zk‖22P̃−S , (4.48)
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where φ = (ξη + 1)2‖(H + M>)−1S‖2‖(2P̃ − S)−1‖‖S̄‖. Therefore, by (4.42)
and (4.48) we have

Ek
[
d2
S̄

(zk+1,S)
]
≤ dist2

S̄(zk,S)− 1
φ dist2

S̄(zk,S).

Taking expectation in both sides concludes the proof. For the case of PLQ
functions, let Uz? denote an open subregularity neighborhood around z? ∈ S,
and set U? := ∪z?∈SUz? . By Lemma 4.9 there exists a positive η such that
dist(z, F−10) ≤ η dist(Fz, 0) for z ∈ U?. Moreover, since (zk)k∈N ⊆ C up to
possibly enlarging C we have (z̄k)k∈N ⊆ C. Note that since (zk)k∈N ⊆ C and C is
closed, C ∩ S 6= ∅ and C ∩ U? 6= ∅. It is sufficient to show that dist(z, F−10) ≤
η dist(0, F z) for z ∈ C. Let us define D(z) := dist(0, Fz). Since graF is closed,
D(z) is lower semicontinuous [144, Thm. 5.7, Prop. 5.11(a)]. By [144, Cor. 1.10]
D(z) attains a minimum over the compact set C \U?: cC := minz∈C\U? D(z) > 0
where the strict inequality is due to the fact that the minmizer belongs to
C \ U?. Moreover, cC := supz∈C dist(z, F−10) < ∞ due to the fact that C is
bounded. Hence dist(z, F−10) ≤ cC ≤ cC

cd
dist(Fz, 0) for z ∈ C \ U?. Therefore,

by combining the two cases we obtain dist(z, F−10) ≤ max{ cCcd , η}dist(Fz, 0)
for z ∈ C as claimed. The second sufficient condition follows from Lemma
4.8.

In the recent work [104] the authors establish linear convergence in the framework
of non-expansive operators under the assumption that the residual mapping
defined by R = id−T is metrically subregular. However, such a condition is not
easily verifiable in terms of conditions on the cost functions. In the next lemma,
we show that R is metrically subregular if and only if the monotone operator
F is metrically subregular. This result connects the two assumptions and is
interesting in its own right. More importantly, it enables the use of Lemmas 4.8
and 4.9 for establishing linear convergence for a wide array of problems.

Lemma 4.12. Let Assumptions 4.I and 4.II hold. Consider the operator T
defined in (4.11) and a point z? ∈ S. Then, F = A + M + C (cf. (4.7)) is
metrically subregular at z? for 0 if and only if the residual mapping R := id− T
is metrically subregular at z? for 0.

4.5 Distributed optimization

In this section, we consider a general formulation for multi-agent optimization
over a network, and leverage Algorithms 4.1 and 4.2 to devise both synchronous
and randomized asynchronous distributed primal-dual algorithms. The setting
is as follows. We consider an undirected graph G = (V, E) over a vertex set
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V = {1, . . . ,m} with edge set E ⊂ V × V. Each vertex is associated with a cor-
responding agent, which is assumed to have a local memory and computational
unit, and can only communicate with its neighbors. We define the neighborhood
of agent i by Ni := {j|(i, j) ∈ E}. We use the terms vertex, agent, and node
interchangeably. The goal is to solve the following global optimization problem
in a distributed fashion:

minimize
x1,...,xm

m∑
i=1

fi(xi) + gi(xi) + hi(Lixi) (4.49a)

subject to Aijxi +Ajixj = b(i,j) (i, j) ∈ E , (4.49b)

where xi ∈ Rni . The cost functions fi, gi, hi◦Li are taken private to agent/node
i ∈ V , i.e., our distributed methods operate solely by exchanging local variables
among neighboring nodes that are unaware of each other’s objectives. The
coupling in the problem is represented through the edge constraints (4.49b).

Throughout this section the following assumptions hold:

Assumption 4.V. For each i = 1, . . . ,m:

(i) For j ∈ Ni, b(i,j) ∈ Rl(i,j) and Aij ∈ Rni → Rl(i,j) is a linear mapping.

(ii) gi : Rni → R, hi : Rri → R are proper closed convex functions, and
Li : Rni → Rri is a linear mapping.

(iii) fi : Rni → R is convex, continuously differentiable, and for some βi ∈
[0,∞), ∇fi is βi-Lipschitz continuous with respect to the metric Qi � 0,
i.e.,

‖∇fi(x)−∇fi(y)‖Q−1
i
≤ βi‖x− y‖Qi x, y ∈ Rni .

(iv) The graph G is connected.

(v) The set of solutions of (4.49) is nonempty. Moreover, there exists xi ∈
ri dom gi such that Lixi ∈ ri dom hi, for i = 1, . . . ,m, and Aijxi +
Ajixj = b(i,j) for (i, j) ∈ E .

Each agent i ∈ V maintains its own local primal variable xi ∈ Rni and dual
variables yi ∈ Rri , and w(i,j),i ∈ Rl(i,j) (for each j ∈ Ni), where the former is
related to the linear mapping Li, and the latter is the local dual variable of agent
i corresponding to the edge-constraint (4.49b). It is important to note that the
updates in TriPD-Dist (Alg. 4.3) are performed locally through communication
with neighbors: the only information that agent i shares with its neighbor j ∈ Ni
is the quantity Aijxi, along with edge variable w(i,j),i, while all other variables
are kept private.
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Algorithm 4.3 Synchronous & asynchronous versions of TriPD-Dist algorithm
Inputs: x0

i ∈ Rni , y0
i ∈ Rri , for i = 1, . . . ,m, and w(i,j),i ∈ Rl(i,j) for j ∈ Ni.

for k = 0, 1, . . . do
I: Synchronous version

for all agents i = 1, . . . ,m do

II: Asynchronous version
Each agent i = 1. . . . ,m is activated indepen-
dently with probability pi > 0
for all active agents do

Local updates:
w̄k(i,j),i=

1
2
(
wk(i,j),i +wk(i,j),j

)
+ κ(i,j)

2
(
Aijx

k
i +Ajix

k
j − b(i,j)

)
, ∀j ∈ Ni

ȳki = proxσihi?
(
yki + σiLix

k
i

)
xk+1
i = proxτigi

(
xki − τiL>i ȳki − τi

∑
j∈Ni A

>
ijw̄

k
(i,j),i − τi∇fi(xki )

)
yk+1
i = ȳki + σiLi(xk+1

i − xki )
wk+1

(i,j),i= w̄k(i,j),i + κ(i,j)Aij(xk+1
i − xki ), ∀j ∈ Ni

Transmission of information:
Send Aijxk+1

i , wk+1
(i,j),i to agent j, ∀j ∈ Ni

The proposed distributed protocol features both a synchronous as well as an
asynchronous implementation. In the synchronous version, at every iteration,
all the agents update their variables. In the randomized asynchronous imple-
mentation, only a subset of randomly activated agents perform updates, at each
iteration, and they do so using their local variables as well as information previ-
ously communicated to them by their neighbors. After an update is performed,
in both cases, updated values are communicated to neighboring agents. Notice
that the asynchronous scheme corresponds to the case of multiple coordinate
blocks activation in TriPD-BC (Alg. 4.2). Other activation schemes can also be
considered, and our convergence analysis plainly carries over; notably, the single
agent activation which corresponds to the asynchronous model of [169, 74, 186]
in which agents are assumed to ‘wake-up’ based on independent exponentially
distributed tick-down timers.

Furthermore, in TriPD-Dist (Alg. 4.3) each agent i keeps positive local stepsizes
σi, τi and

(
κ(i,j)

)
j∈Ni

. The edge weights/stepsizes κ(i,j) may alternatively be
interpreted as inherent parameters of the communication graph. For example,
they may be used to capture edge’s ‘fidelity,’ e.g., the channel quality in a
communication link. The stepsizes are assumed to satisfy the following local
assumption that is sufficient for the convergence of the algorithm (cf. Thm.s
4.13 and 4.14).

Assumption 4.VI (stepsizes of TriPD-Dist (Alg. 4.3)).
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(i) (node stepsizes) Each agent i keeps two positive stepsizes σi, τi.

(ii) (edge stepsizes) A positive stepsize κ(i,j) is associated with edge (i, j) ∈ E ,
and is shared between agents i, j.

(iii) (convergence condition) The stepsizes satisfy the following local condition

τi <
1

βi‖Qi‖
2 + ‖σiL>i Li +

∑
j∈Ni κ(i,j)A

>
ijAij‖

.

According to Assumption 4.VI(iii) the stepsizes τi, σi for each agent only depend
on the local parameters βi, ‖Qi‖, the edge weights, κ(i,j) and the linear mappings
Li, and Aij , which are all known to agent i; therefore the stepsizes can be selected
locally, in a decentralized fashion.

We proceed by casting the multi-agent optimization problem (4.49) in the form
of the structured optimization problem (4.1). In doing so, we describe how
TriPD-Dist (Alg. 4.3) is derived as an instance of Algorithms 4.1 and 4.2.

Define the linear operator

N(i,j) : x 7→ (Aijxi, Ajixj),

and N ∈ R2
∑

(i,j)∈E
l(i,j)×

∑m

i=1
ni by stacking N(i,j):

N : x 7→ (N(i,j)x)(i,j)∈E .

Its transpose is given by:

N> : (w(i,j))(i,j)∈E 7→ x̃ =
∑

(i,j)∈E

N>(i,j)w(i,j),

with x̃i =
∑
j∈Ni A

>
ijw(i,j),i. We have set w(i,j) = (w(i,j),i, w(i,j),j), i.e., we

consider two dual variables (of dimension l(i,j)) for each edge constraint, where
w(i,j),i is maintained by agent i and w(i,j),j by agent j.

Consider the set

C(i,j) = {(z1, z2) ∈ Rl(i,j) × Rl(i,j) | z1 + z2 = b(i,j)}.

Then problem (4.49) can then be re-written as:

minimize
m∑
i=1

fi(xi) + gi(xi) + hi(Lixi) +
∑

(i,j)∈E

δC(i,j)(N(i,j)x) (4.50)
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Let C =×(i,j)∈E C(i,j), L = blkdiag(L1, . . . , Lm), and Lx = (Lx,Nx) =:
(ỹ, w̃) ∈ Rnd with nd = 2

∑
(i,j)∈E l(i,j) +

∑m
i=1 ri, and rewrite (4.50) in the

following compact form:

minimize f(x) + g(x) + h̃(Lx), (4.51)

where f(x) =
∑m
i=1 fi(xi), g(x) =

∑m
i=1 gi(xi), h̃(ỹ, w̃) = h(ỹ) + δC(w̃), h(ỹ) =∑m

i=1 hi(ỹi).

In what follows, S refers to the set of primal-dual solutions of (4.51). As in
Section 4.2, the primal-dual optimality conditions can be written in the form of
monotone inclusion (4.8) with

A :(y,w, x) 7→ (∂h∗(y), ∂δ∗C(w), ∂g(x)),

M :(y,w, x) 7→ (−Lx,−Nx, L>y + N>w),

C :(y,w, x) 7→ (0, 0,∇f(x)),

where u = (y,w) represents the dual vector.

We define the edge weight matrix as follows

W = blkdiag
(
(κ(i,j)I2l(i,j))(i,j)∈E

)
,

where the weights κ(i,j) are repeated twice (for each of the two neighboring
agents). Furthermore, we set

Σ = blkdiag(σ1Ir1 , . . . , σmIrm ,W ),

Γ = blkdiag(τ1In1 , . . . , τmInm),

Q = blkdiag(β1Q1, . . . , βmQm).

Since proxh̃?(y,w) = (proxh?(y),w − PC(w)) (using proxδC (·) = PC(·) along
with Moreau decomposition [13, Thm. 14.3]) the proximal updates of TriPD (Alg.
4.1), cf. (4.6), become:

ȳi = proxσihi?(yi + σiLixi),

w̄(i,j)= w(i,j)+κ(i,j)(N(i,j)x − PC(i,j)(κ
−1
(i,j)w(i,j) +N(i,j)x)),

x̄i = proxτigi(xi − τiL>i ȳi − τi(N>w̄)i − τi∇f(xi)).
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Note that for w1, w2 ∈ Rl(i,j) the projection onto C(i,j) is

PC(i,j)(w1, w2) = 1
2
(
w1 − w2 + b(i,j),−w1 + w2 + b(i,j)

)
.

By assigning to agent i the primal coordinate xi and dual coordinate yi and
w(i,j),i for all j ∈ Ni, TriPD-Dist (Alg. 4.3) is obtained. Note that this assignment
entails non-overlapping sets of coordinates, i.e., Assumption 4.III(i) is satisfied.

The convergence results of TriPD-Dist (Alg. 4.3) are provided separately for the
synchronous and asynchronous schemes in the next two theorems, along with
a sufficient condition for linear convergence. The proofs follow directly from
Theorems 4.10 and 4.11.

Theorem 4.13 (convergence of Algorithm 3-I). Let Assumptions 4.V and
4.VI hold. The sequence (zk)k∈N = (yk,wk, xk)k∈N generated by Algorithm 3-
I converges to some z? ∈ S. Furthermore, if fi, gi and hi, i = 1, . . . ,m are
PLQ, then (distS(zk,S))k∈N converges Q-linearly to zero, and (zk)k∈N converges
R-linearly to z? ∈ S.

Theorem 4.14 (convergence of Algorithm 3-II). Let Assumptions 4.V and
4.VI hold. The sequence (zk)k∈N = (yk,wk, xk)k∈N generated by Algorithm
3-II converges almost surely to some z? ∈ S. Furthermore, if fi, gi and
hi, i = 1, . . . ,m are PLQ and (zk)k∈N ⊆ C where C is a compact set, then
(E
[
dist2

Π−1S(zk,S)
]
)k∈N converges Q-linearly to zero.

4.6 Application: formation control

In this section we consider the problem of formation control of a group of robots
[136, 148], where each robot/agent has its own local dynamics and cost function
and the goal is to achieve a specific formation by communicating only with
neighboring agents.

For simplicity of visualization we consider a 2D problem. Each subsystem
(corresponding to a robot) has four states xi = (pxi , pyi , vxi , vyi), where (pxi , pyi)
and (vxi , vyi) denote the position and the velocity vectors, respectively. The
input for each system is given by ui = (vuxi , v

u
yi). The discrete-time LTI model

of each system is given by

xi(k + 1) = Φixi(k) + ∆iui(k), k = 0, 1, . . . .
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The state and input transition matrices are as follows

Φi =


I 0 X1 0
0 I 0 X1
0 0 X2 0
0 0 0 X2

, ∆i =


X3 0
0 X3
X1 0
0 X1

,
where the parameters are given by X1 = −td(e

− 1
td − 1), X2 = e

− 1
td and

X3 = t2d(e
− 1
td − 1 + 1

td
) with time constant td = 5 (s). This discrete-time model

was derived from the continuous-time model of [148] using exact discretization
with step length ∆T = 1.

Let N denote the horizon length. Consider the stacked state and input vectors
xi ∈ R4N ,ui ∈ R2N :

xi := (xi(1), . . . , xi(N)), ui := (ui(0), . . . , ui(N − 1)).

Then the dynamics of each agent can be represented as Aixi + Biui = bi
where Ai, Bi are appropriate matrices and bi depends on the initial state.
The state and input constraints of each agent are represented by the sets Xi,
Ui and are assumed to be easy to project onto, e.g., boxes, halfspaces, norm
balls, etc. Moreover, we assume that each agent has its own private objective
captured by input and state cost matrices Qi and Ri, and vectors qi, ti. The
specific formation between agents is enforced using another quadratic term that
penalizes deviation of two neighbors from the desired relative position. The
optimization problem is described as follows:

minimize
xi,ui

m∑
i=1

1
2‖Qixi − qi‖

2 + 1
2‖Riui − ti‖

2

+
m∑
i=1

∑
j∈Ni

λi
2 ‖C(xi − xj)− dij‖

2

subject to Aixi + Biui = bi, xi ∈ Xi, ui ∈ Ui
i = 1, . . . ,m

(4.52)

The relative desired distance of agent i from its neighbor j is given by dij , C is
an appropriate linear mapping that selects the position variables, and λi is a
scalar weight to penalize deviation.

For each system that communicates with i, i.e., j ∈ Ni, we introduce a local
variable xij , that can be seen as the estimate of xj kept locally by agent i. In
order to be consistent hereafter the self variables xi,ui are denoted by xii,uii.



APPLICATION: FORMATION CONTROL 99

For each agent i = 1, . . . ,m define the stacked vector

zNi =
(
(xij)j∈Ni∪{i},uii

)
∈ Rni ,

where ni = 4N(|Ni|+ 1) + 2N .

Let Ei be a linear mapping such that EizNi = Aixii + Biuii. Hence, the set of
points satisfying the dynamics are given by Di = {z ∈ Rni |Eiz = bi}. Consider
the linear mapping Li such that LizNi = (xii,uii) and denote Zi := Xi × Ui.
Moreover, let hi := δZi , gi := δDi and

fi(zNi) := 1
2‖Qixii − qi‖

2 + 1
2‖Riuii − ti‖

2 + λi
2
∑
j∈Ni ‖C(xii − xij)− dij‖

2.

With these definitions problem (4.52) is cast in the form of problem (4.49) (min-
imizing over zNi , i = 1, . . . ,m) where the linear mapping Aij , for j ∈ Ni, is such
that AijzNi = (xii,−xij) if i < j and AijzNi = (−xij ,xii) otherwise. There-
fore, we can readily apply TriPD-Dist (Alg. 4.3) to solve the problem in a fully
distributed fashion yielding both synchronous and randomized asynchronous
implementations.

In our simulations we used horizon length N = 3. For the input and state
constraints of all agents we used box constraints: the positions pxi and pyi are
assumed to be between 0 and 20 (m). The velocities vxi and vyi and inputs vuxi
and vuyi are assumed to be between between 0 and 15 (m/s) (for all agents). The
local state cost matrices are set Qi = 0.1I for all i. The local input cost matrices
are set Ri = I for half of the agents and Ri = 2I for the rest. Moreover, the
vectors qi, ti are set equal to zero, and the penalty parameter λi = 10 is used
for all the agents.

The stepsizes of TriPD-Dist (Alg. 4.3) were selected as follows: i) (edge stepsizes)
κ(i,j) = 1 for all (i, j) ∈ E , ii) (node stepsizes) σi = βi/4 and τi = 0.99/(βi2 +
σi +

∑
j∈Ni κ(i,j)) for all i, where we used

βi = max{‖Q>i Qi‖+ λi(|Ni|+ 1), ‖R>i Ri‖},

which is an upper bound for the Lipschitz constant of ∇fi. It is plain to see
that the above choice of stepsizes for the agents satisfy Assumption 4.VI(iii).
Note that the stepsize selection only requires local parameters Ri, Qi, λi and
the number of neighbors |Ni|, i.e., the algorithm can be implemented without
any global coordination.

In our simulations, we considered m robots initially in a polygon configuration
and enforced an arrow formation by appropriate selection of dij in (4.52). This
scenario is depicted for m = 5 in Figure 4.2. The neighborhood relation in
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Figure 4.1: Comparison for the convergence of the algorithms for m = 5 (left),
and m = 50 (right).

this case is taken to be the same arrow configuration, i.e., all agents have two
neighbors apart from two agents with only one neighbor.

For comparison we considered the dual decomposition approach of [136] (based
on the subgradient method). Notice that dual decomposition with gradient
or accelerated gradient methods can not be applied to this problem since
fi’s are convex but not strongly convex. Recently, TriPD-Dist (Alg. 4.3) was
compared against the dual accelerated proximal gradient method, in the context
of distributed model predictive control (with strongly convex quadratic cost)
[94].

In the simulations for Figure 4.1, we used the stepsize 10/k (as tuned for achiev-
ing better performance) for the dual decomposition method where k is the
number of iterations. Notice that the dual decomposition approach for this
problem can not achieve a full splitting of the operators involved: at every itera-
tion agents need to solve an inner minimization (we used MATLAB’s quadprog
to perform this step), the result of which must be communicated to the neigh-
bors for their computation, and is followed by another communication round.
This extra need for synchronization would further slow down the algorithm in
practice [73].

Figure 4.1 demonstrates the superior performance of both the synchronous and
asynchronous versions of TriPD-Dist (Alg. 4.3) compared to the dual decompo-
sition approach. The y-axis is the distance of vk := (xk11,u

k
11, . . . ,x

k
mm,u

k
mm)

from the solution (v? was computed by solving (4.52) in a centralized fashion).
The x-axis denotes the total number of local transmissions between agents. In
the asynchronous implementation we used independent activation probabilities
pi = 0.5 for all agents. It is observed that the total number of local iterations is
similar to that of the synchronous implementation. Finally, as evident in Figure
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Figure 4.2: Five agents reorganizing from a polygon to an arrow configuration.

4.1 both versions of TriPD-Dist (Alg. 4.3) achieve linear convergence rate as
predicted by Theorems 4.13 and 4.14 (the functions fi, gi and hi are PLQ).

4.7 Conclusions

The primal-dual algorithm considered in this chapter enjoys several structural
properties that distinguish it from other related methods in the literature. A key
property, that has been instrumental in developing a block-coordinate version of
the algorithm, is the fact that the generated sequence is S-Fejér monotone, where
S is a block diagonal positive definite matrix. It is shown that the algorithm
attains linear convergence under a metric subregularity assumption that holds
for a wide range of cost functions that are not necessarily strongly convex. The
block-coordinate version of the developed algorithm is exploited to devise a novel
fully distributed asynchronous method for multi-agent optimization over graphs.
Our future work includes designing a block-coordinate version of the SuperMann
scheme of [157] that applies to quasi-nonexpansive operators. In light of the
fact that this method enjoys superlinear convergence rates, such extension is
especially attractive for multi-agent optimization yielding schemes with faster
convergence and fewer communication rounds. Other research directions enlist
investigating extensions to account for directed and time-varying topologies,
communication delays, and designing efficient strategies for selecting activation
probabilities and stepsizes.



Chapter 5

Plug and play distributed model predictive
control

This chapter is based on:

Latafat, P., Bemporad, A., and Patrinos, P. Plug and play distributed model
predictive control with dynamic coupling: A randomized primal-dual proximal
algorithm. In European Control Conference (ECC) (June 2018), pp. 1160–1165.

5.1 Introduction

This chapter considers distributed model predictive control (DMPC) of a network
of m dynamically coupled linear systems. For i = 1, . . . ,m, the dynamics of
system i is of the form

xi(k + 1) =
m∑
j=1

Φijxj(k) + ∆ijuj(k),

with xi(k) ∈ IRsi , ui(k) ∈ IRti , subject to local state and input constraints.
The structure of the network is defined by the coupling of the dynamics through
matrices Φij and ∆ij . System j affects i if either one of Φij , ∆ij is nonzero. It
is natural to assume that two systems can communicate if either one of them
affects the dynamics of the other, in which case we say that they are neighbors.
However, the systems need not be aware of the global structure of the network,
or even existence of systems beyond their neighbors.

DMPC formulations considered in the literature vary depending on the nature
of the coupling and can be grouped in two general categories. In applications

102
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such as formation control where the systems are physically separate but share a
common goal the DMPC problem involves coupling cost or constraints without
dynamic coupling [171, 65, 173]. The second category involves DMPC problems
with dynamic coupling with applications ranging from smart grids, sensor
networks, water networks to transportation systems, and has been studied by
many authors [79, 16, 77, 86, 69, 159]. This chapter is focused on the second
category. We note that in our setting it is straightforward to extend the proposed
setup to include coupling in cost and constraint between neighbors, however,
this leads to complicated notation and has been avoided for the sake of clarity.
Furthermore, this chapter is not concerned with the stability of the closed-loop
system and looks at the DMPC problem from the optimization point of view.

A popular approach for solving the DMPC problem is to derive distributed
algorithms using dual decomposition. Many authors have considered solving
the dual problem using the proximal gradient method, the alternating direction
method of multipliers (ADMM) or their variants [124, 77, 69, 86, 79]. These
approaches are preferred to subgradient methods given that they allow constant
stepsizes. Algorithms that are based on proximal gradient or its accelerated
variants require the cost function to be strongly convex. Another common issue is
the need for centralized computations for selecting the stepsizes. This is a major
drawback that can hinder the implementation especially in applications where
the network structure is subject to change. For example, applying proximal
gradient requires the stepsize to be bounded by the inverse of the Lipschitz
constant associated to the dual function [79]. In [76] a metric for Lipschitz
continuity is used which requires solving a semidefinite program (SDP) globally.
In [77] the authors provide a distributed method for selecting the metric that
involves solving a series of local SDPs. Another recent work that involves
distributed stepsize selection is [86] where the Lagrangian minimization step
is modified with regularization terms. Each iteration in [77] and [86] involve a
local inner minimization step the result of which is required by the neighbors,
i.e., each iteration involves two rounds of communication.

The main contributions are summarized below:

• The new algorithm is fully-distributed, involves simple computations for each
subsystem without any inner loops, and requires one round of communication
per update. At every iteration active subsystems perform local updates,
communicate the necessary vectors to their neighbors, and go idle. The
algorithm is presented in two forms: The synchronous case where all of
the systems are active at every iteration, and the asynchronous case where
subsystems are activated at random independently of one another.

• The stepsize of each subsystem is selected locally through a simple rule (cf.
Assumption 5.II(iii)). Therefore, any modification to the network structure
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would only affect the neighboring subsystems.

• The cost function must be convex but not necessarily strongly convex.

• The algorithm possesses linear convergence rate when the local input and
state constraints are polyhedral sets, a common scenario.

5.2 Problem setup

We consider a distributed model predictive control problem with m dynamically
coupled subsystems. We use an undirected graph G = (V, E) to model the
interaction between subsystems/agents. Each node i ∈ V is associated with a
subsystem, maintains its own local variables, and can communicate with its
neighbors. The goal is to solve the global model predictive control problem with
only local exchange of information between neighbors.

Let Φij and ∆ij denote the state transition and input matrices from subsystem
j to i. For all i ∈ V, the in-neighbor and out-neighbor sets are defined by

N in
i ={j ∈ V \ {i}|Φij 6= 0 or ∆ij 6= 0},

N out
i ={j ∈ V \ {i}|Φji 6= 0 or ∆ji 6= 0},

and the neighborhood set is defined by Ni = N out
i ∪N in

i , i.e., the edge (i, j) ∈ E
exists if j ∈ Ni. The DMPC problem is written in the following standard form:

minimize 1
2

m∑
i=1

( N∑
k=1

xi(k)>Qki xi(k) +
N−1∑
k=0

ui(k)>Rki ui(k)
)

subject to xi(k + 1) =
∑

j∈N in
i
∪{i}

Φijxj(k) + ∆ijuj(k) (5.1a)

ui(k) ∈ Ui, for k = 0, . . . , N − 1,

xi(k) ∈ Xi, for k = 1, . . . , N − 1,

xi(N) ∈ X fi

for all i = 1, . . . ,m

where xi(0) is given, xi(k) ∈ IRsi and ui(k) ∈ IRti denote the state and input
variables of subsystem i at time k.
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Note that the separable quadratic cost function is used for clarity of exposition.
It may be replaced by any Lipschitz differentiable function without requiring
the subsystems to solve inner minimizations (cf. Rem. 5.1). Furthermore, it is
straightforward to modify our analysis to allow coupling between neighbors.

Throughout the chapter the following assumptions hold:

Assumption 5.I. For i = 1, . . . ,m:

(i) Input and state constraint sets Xi,X fi ⊆ IRsi and Ui ⊆ IRti are nonempty,
closed, and convex.

(ii) The cost matrices Qki and Rki are positive semidefinite.

(iii) The graph G is connected.

(iv) The DMPC problem admits a solution. Moreover, for i = 1, . . . ,m there
exists xi(k) ∈ riXi for k = 1, . . . , N − 1, xi(N) ∈ riX fi , and ui(k) ∈ riUi
for k = 0, . . . , N − 1 such that the linear dynamics (5.1a) are satisfied.

The strict feasibility enforced in Assumption 5.I(iv) ensures that strong duality
holds, and can be dropped whenever the constraint sets are polyhedral [143,
Corollary 31.2.1].

For i = 1, . . . ,m define

zi =
(
xi(1), · · · , xi(N), ui(0), · · · , ui(N − 1)

)
∈ IRri ,

where ri = N(si + ti). The quadratic cost function can be written as
1
2
∑m
i=1 z

>
i Gizi where Gi = blkdiag(Q1

i , . . . , Q
N
i , R

0
i , . . . , R

N−1
i ). The dynamics

can be expressed as:∑
j∈N in

i
∪{i}

Lijzj =
∑

j∈N in
i
∪{i}

bijxj(0), for i = 1, · · · ,m,

where Lij and bij are appropriate linear mappings [76]. With these definitions
the distributed MPC problem becomes

minimize 1
2

m∑
i=1

z>i Gizi (5.2a)

subject to
∑

j∈N in
i
∪{i}

Lijzj = bi, i = 1, · · · ,m (5.2b)

zi ∈ Zi, i = 1, · · · ,m (5.2c)
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where bi =
∑
j∈N in

i
∪{i} bijxj(0), and the constraint sets Zi denote the product

of local input and state constraint sets:

Zi = Xi × . . .×Xi︸ ︷︷ ︸
N−1

×X fi × Ui × . . .× Ui︸ ︷︷ ︸
N

.

5.3 A primal-dual algorithm for DMPC

Our goal is to solve (5.2) in a fully distributed fashion while keeping the number
of communications to a minimum. For each subsystem that affects i, i.e.,
j ∈ N in

i , we introduce a local variable zij , that can be seen as the estimate of zj
kept locally by agent i. For notation consistency, self-variables zi are hereafter
denoted by zii. We write the equivalent optimization problem:

minimize 1
2

m∑
i=1

z>iiGizii (5.3a)

subject to
∑

j∈N in
i
∪{i}

Lijzij = bi, i = 1, . . . ,m (5.3b)

zii ∈ Zi, i = 1, . . . ,m (5.3c)

zij = zjj , i = 1, . . . ,m and j ∈ N in
i (5.3d)

For i ∈ V, let ni =
∑
j∈N in

i
∪{i} rj and define:

zNi = (zij)j∈N in
i
∪{i}∈IRni , Li = [Lij ]j∈N in

i
∪{i}∈IRNsi×ni

The set of points satisfying the linear constraint is given by:

Di = {z ∈ IRni |Liz = bi}.

We note that the variables are stacked in ascending order (index-wise). For
example, consider the neighborhood relation described in Figure 5.1. Subsystem
1 is affected by subsystems 2 and 4, therefore, zN1 = (z11, z12, z14). Our proposed
algorithm is a primal-dual scheme. Therefore, in addition to primal variables
each system holds dual variables. For each i ∈ V we introduce two sets of dual
variables: the node variable yi ∈ IRri and the edge variables wij,i ∈ IRri for
j ∈ N out

i , and wji,i ∈ IRrj for j ∈ N in
i . The first argument of the subscript

denotes the edge relation and the second the ownership of the variable, i.e., if
system i affects j, then i and j will keep wij,i and wij,j respectively.
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Figure 5.1: Dynamic coupling in the DMPC problem

Let Ei ∈ IRri×ni be a linear mapping such that EizNi = zii. Define

gi(zNi) = δDi(zNi) + 1
2z
>
NiE

>
i GiEizNi , hi = δZi , (5.4)

where δX denotes the indicator function of a closed nonempty convex set, X.
Problem (5.3) becomes

minimize
m∑
i=1

gi(zNi) + hi(EizNi) (5.5a)

subject to AijzNi +AjizNj = 0 (i, j) ∈ E (5.5b)

where Aij ∈ IRl(i,j)×ni is defined based on the neighborhood relation as follows

AijzNi =

zii j /∈ N in
i , j ∈ N out

i

−zij j ∈ N in
i , j /∈ N out

i

(zii,−zij) j ∈ N in
i , j ∈ N out

i .
(5.6)

Notice that depending on the neighborhood relation l(i,j) is either equal to ri,
rj or ri + rj .

A primal-dual algorithm was introduced in [100] (see Chapter 6) for problems of
the form (5.5) with consensus constraint. However, a consensus constraint can
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not capture the coupling in the DMPC problem depicted in Figure 5.1. Another
drawback of the aforementioned work is that the stepsize selection requires
global coordination. Our analysis here is different from that work and is based
on [95] (see Chapter 4). In Section 5.4 we describe how TriPD-Dist (Alg. 4.3) is
applied to the DMPC problem to derive Algorithm 5.1.

Our proposed distributed scheme is summarized in Algorithm 5.1. It involves
two versions. In the synchronous case at each iteration all systems perform
their local updates and broadcast the result to the relevant neighbors. In
the asynchronous case each system wakes up randomly independent of other
systems, i.e., there may be several active systems at each iteration. The stepsizes
appearing in Algorithm 5.1 should satisfy the following:

Assumption 5.II (stepsizes in Algorithm 5.1).

(i) (node stepsizes) Subsystem i keeps two positive stepsizes σi, τi associated
to hi and gi, respectively.

(ii) (edge stepsizes) For each edge (i, j) ∈ E we associate a positive stepsize
κ(i,j) that is shared between system i and j.

(iii) (convergence condition) The stepsizes satisfy the following local condition
consensus

τi <
1

max{∑j∈N out
i
κ(i,j) + σi, (κ(i,j))j∈N in

i
}
. (5.7)

The dual updates for yi in Algorithm 5.1 require projection onto the set Zi
which can often be performed efficiently, e.g. for boxes, halfspaces, norm balls.
The primal updates are compactly written as zNi = proxτigi(c) where c =
(cij)j∈N in

i
∪{i} is given by

cii = zii − τi
(
ȳi +

∑
j∈N out

i

w̄ij,i
)
, (5.8a)

cij = zij + τiw̄ji,i, for all j ∈ N in
i . (5.8b)

The proximal mapping proxτigi(c) involves the minimization of a strongly
convex quadratic function over an affine subspace:

minimize
z

1
2z
>(E>i GiEi + 1

τi
Ini)z − 1

τi
c>z (5.9a)

subject to Liz = bi, (5.9b)
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Algorithm 5.1 Synchronous & asynchronous distributed primal-dual algorithm
for DMPC

Inputs: σi > 0, τi > 0 for i = 1, . . . ,m, and κ(i,j) > 0 for (i, j) ∈ E
for k = 0, 1, . . . do

I: Synchronous version

for all systems i = 1, . . . ,m do

II: Asynchronous version
draw r.v. εki according to P(ε0i = 1) = pi > 0
for all systems i with εki = 1 do

Local updates:
w̄kij,i = 1

2
(
wkij,i + wkij,j

)
+ κ(i,j)

2
(
zkii − zkji

)
,∀j ∈ N out

i

w̄kji,i = 1
2
(
wkji,i + wkji,j

)
+ κ(i,j)

2
(
zkjj − zkij

)
,∀j ∈ N in

i

ȳki = yki + σiz
k
ii − σi PZi

(
σ−1
i yki + zkii

)
zk+1
Ni = proxτigi(c) is given by (5.8) and (5.9).
yk+1
i = ȳki + σi(zk+1

ii − zkii)
wk+1
ij,i = w̄kij,i + κ(i,j)(zk+1

ii − zkii), for all j ∈ N out
i

wk+1
ji,i = w̄kji,i − κ(i,j)(zk+1

ij − zkij), for all j ∈ N in
i

Broadcast of information:
Send zk+1

ii , wk+1
ij,i to j ∈ N out

i , and zk+1
ij , wk+1

ji,i to j ∈ N in
i

and can be evaluated efficiently through solving the linear system defining its
KKT optimality conditions. We stress that the matrix of the linear system is
constant throughout iterations, and needs to be factored only once. Consequently,
the evaluation of the primal step at every iteration amounts to forward and
backward substitution steps [129, §III.C].

5.4 Deriving the algorithm and convergence results

In this section we detail the steps of applying Algorithms 4.1 and 4.2 to the
DMPC problem.

Let z = (zN1 , . . . , zNm) and define the linear operator

N(i,j) : z 7→ (AijzNi , AjizNj ).

The edge constraints (5.5b) can be equivalently formulated in the cost as∑m
i=1 δC(i,j)

(
N(i,j)z

)
, where C(i,j) = {(z1, z2) ∈ IR2l(i,j) | z1 + z2 = 0}. Conse-
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quently, (5.5) can be formulated in the form of unconstrained optimization:

minimize
m∑
i=1

(
gi(zNi) + hi(EizNi)

)
+
∑

(i,j)∈E

δC(i,j)

(
N(i,j)z

)
In order to formulate the dual problem we introduce two sets of dual variables,
yi ∈ IRri and w(i,j) ∈ IR2l(i,j) . The former corresponds to node and the latter
to edge constraints. The edge variable w(i,j) consists of two blocks, w(i,j) =
(w(i,j),i, w(i,j),j), i.e., we consider two dual variables for each constraint, where
w(i,j),i ∈ IRl(i,j) is maintained by agent i and w(j,i),j ∈ IRl(i,j) by agent j.
Notice that the edge variable w(i,j),i itself consists of either one or two blocks:
w(i,j),i = (wij,i, wji,i), where wij,i and wji,i are present when j ∈ N out

i and
j ∈ N in

i , respectively.

For clarity of exposition we rewrite the problem with compact notation. We use
N without any subscript to denote the stacked linear mapping N = (N(i,j))(i,j)∈E ,
and C =×(i,j)∈E C(i,j). The transpose of N is given by

N> : (w(i,j))(i,j)∈E 7→ z̃ =
∑

(i,j)∈E

N>(i,j)w(i,j),

with z̃i =
∑
j∈Ni A

>
ijw(i,j),i. Furthermore, set E = blkdiag(E1, . . . , Em) and

define Lz = (Ez,Nz) =: (ỹ, w̃) ∈ IRnd , where nd =
∑

(i,j)∈E 2l(i,j) +
∑m
i=1 ri.

Set g(z) =
∑m
i=1 gi(zNi), h(ỹ, w̃) = h̃(ỹ) + δC(w̃), where h̃(ỹ) =

∑m
i=1 hi(ỹi).

Then, problem (5.5) can be casted as

minimize g(z) + h(Lz). (5.10)

Problem (5.10) may be solved by a range of primal-dual algorithms resulting
in the full splitting of the nonsmooth functions and the linear mapping, see
Chapter 3. Our goal is to derive algorithms in which: i) both the iterates and
the stepsizes are computed locally, ii) involve one round of communication
per iteration, iii) allow block coordinate updates. An ideal candidate for this
purpose is the primal-dual algorithm introduced in [95, Alg. 1], see Chapter
4. In particular, the sequence generated by the algorithm is S-Fejér monotone
where S is a block diagonal positive definite matrix.

Remark 5.1. In (5.4) the quadratic terms were captured by nonsmooth func-
tions gi. Our scheme requires calculating the proximal mapping of gi which
translates to solving the quadratic over affine minimization (5.9). Alternatively,
one can model the quadratic cost functions using a third smooth term in (5.10)
(see TriPD (Alg. 4.1)). This would result in a gradient step and a projection
onto the set Di in place of a quadratic over affine minimization. Hence, it is
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possible to use general convex Lipschitz differentiable functions as cost in the
DMPC problem. In that case the Lipschitz constant of the smooth term would
affect the stepsizes.

In order to represent the algorithm compactly we define the following set of
diagonal matrices:

W = blkdiag
(
(κ(i,j)I2l(i,j))(i,j)∈E

)
,

Σ = blkdiag(σ1Ir1 , . . . , σmIrm),

Γ = blkdiag(τ1In1 , . . . , τmInm).

Notice that κ(i,j) is repeated twice, i.e., once for every node sharing the edge.

Let v = (y, w, z), and define the operator T

Tv = (ȳ + ΣE(z̄ − z), w̄ +WN(z̄ − z), z̄),

where

ȳ = proxΣ−1

h̃∗
(y + ΣEz) (5.11a)

w̄ = proxW−1

δ∗
C

(w +WNz) (5.11b)

z̄ = proxΓ−1

g (z − ΓE>ȳ − ΓN>w̄). (5.11c)

Then TriPD (Alg. 4.1) can be represented as the fixed-point iteration vk+1 = Tvk.
This iteration is amenable to block coordinate (BC) updates. A general BC
scheme was proposed in TriPD-BC (Alg. 4.2). Our focus here is on the case
where each coordinate has an independent probability to be active. Briefly put,
the BC scheme is represented as

zk+1 =
m∑
i=1

εki Ui(Tzk),

where Ui are diagonal matrices with zero and one diagonal elements, and are used
to select the coordinates, while εki ∈ {0, 1}m encodes if a coordinate i is updated
at iteration k. The matrices Ui are assumed to be disjoint and

∑m
i=1 Ui = I,

where I is the identity matrix of appropriate dimensions. The partitioning
described in this section satisfies these requirements, i.e., for i = 1, . . . ,m, the
matrix Ui selects zNi , yi and w(i,j),i for j ∈ Ni.



112 PLUG AND PLAY DISTRIBUTED MODEL PREDICTIVE CONTROL

Since h̃ in (5.11a) is separable, using (5.4) and the Moreau identity [13], we
have that for i = 1, . . . ,m

ȳi = yi + σizii − PZi(yi + σizii),

and the projection onto C(i,j) is given by

PC(i,j)(w1, w2) = 1
2 (w1 − w2,−w1 + w2).

Therefore, (5.11b) yields the updates for the edge variables in Algorithm 5.1.
The z̄ in (5.11c) can be evaluated as follows: For each i ∈ V

z̄Ni = proxτigi
(
zNi − τiE>i ȳi − τi

∑
j∈Ni

A>ijw̄(i,j),i

)
.

Therefore, the primal update is carried out by solving (5.9) where c is given by
(5.8). Finally, evaluation of the operator T requires matrix-vector products and
straightforward substitution of the involved matrices yields Algorithm 5.1.

The next theorem summarizes the convergence results for Algorithm 5.1. The
proof is omitted here and the interested reader is referred to Chapter 4.

Theorem 5.2. Let Assumptions 5.I and 5.II hold. Consider the stacked vectors
z = (zN1 , . . . , zNm), y = (y1, . . . , ym), w = (w(i,j))(i,j)∈E . Then, in the case
of synchronous updates, (vk)k∈N = (yk, wk, zk)k∈N generated by Algorithm 5.1
converges to some v?, and in the case of asynchronous updates it converges
almost surely to some v?-valued random variable, where v? is a primal-dual
solution to (5.5). In particular, (zk11, . . . , z

k
mm)k∈N converge to a solution of the

DMPC problem (5.1). If in addition, Xi,X f and Ui are polyhedral sets then in
the synchronous case the distance from the primal-dual solution set converges
Q-linearly to zero.

5.5 Numerical simulations

In this section, as a benchmark example we consider the problem of frequency
control in power networks [141]. The network consists of power generation areas
with the goal of maintaining nominal frequency levels despite changes in load
and network configuration. The approach in [141] is based on modeling the
dynamic coupling as disturbance. Clearly, this could lead to conservative control
actions. In contrast our method solves the exact global optimization constrained
by the dynamics through distributed computation and communication with the
neighbors.
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Each system consists of four states xi = (∆θi,∆ωi,∆Pmi
,∆Pvi) and one control

input ui = ∆Prefi . The continuous-time LTI model of each system is given by

ẋi =
∑

j∈N in
i
∪{i}

Aijxj +Biui.

Notice that the inputs are not coupled. The objective for each system is to
track xri = (0, 0,∆PLi ,∆PLi) and uri = ∆PLi , where ∆PLi denotes the local
power load. In our simulations we used five systems as described in Figure
5.2. The local constraints for each system are as follows: ∆θi ∈ [−0.1, 0.1] for
all i, and ∆PL1 ,∆PL5 ∈ [−0.5, 0.5], ∆PL2 ,∆PL3 ∈ [−0.65, 0.65], and ∆PL4 ∈
[−0.55, 0.55]. Furthermore, the quadratic costs Qi = 4Isi and Ri = Iti are used
for all systems along the horizon. We have omitted the details on the system
dynamics here. The reader is referred to [141] and the references therein for
details and parameter values. We used Euler’s method for discretization of the
dynamics with step length of 1 sec. This discretization has the advantage of
maintaining the sparsity patterns of the transition matrices. In all our simulation
we used horizon length N = 20.

In Algorithm 5.1 the stepsizes for each system must be selected in accordance to
the simple condition of Assumption 5.II(iii). Typically, in primal-dual proximal
algorithms larger stepsizes yield faster convergence. However, there is a trade-off
between edge parameters κ(i,j) and node parameters, σi, τi. We selected these
values empirically as follows: i) κ(i,j) = 10 for all (i, j) ∈ E , ii) σi = 1 if dout

i = 1,
and 10|dout

i − 1| otherwise, iii) τi = 0.99
max{10dout

i
+σi,10} , where d

out
i denotes the

cardinality of N out
i . Notice that due to this simple local rule, removal or addition

of a node only affects the neighboring nodes through dout
i .

Our simulations consist of two scenarios:

Scenario 1: In the first scenario we demonstrate the plug and play capability
of our algorithm, i.e., removal and addition of a new system only affects the
network locally without the need for any global coordination. We consider
systems 1, . . . , 4 with the dynamic coupling depicted in Figure 5.2. We assume
that at time t = 20 system 5 is connected to systems 2 and 4. Furthermore,
system 4 is disconnected from the network at time t = 50. Table 5.1 summarizes
the load of power and network modification at given time steps. Figure 5.3
highlights the frequency deviation (the second state variable) for systems one
and four. It is observed that the frequency control is achieved despite the load
and configuration changes.

Scenario 2: In the second scenario, we considered a static network structure
with 5 systems and load ∆PL1 = 0.10 with the same neighborhood structure and
constraints as in the previous scenario. We compared our algorithm (referred
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Figure 5.2: Network structure in the DMPC problem for scenario 1: system 5
is added at t = 20 and system 4 is disconnected at t = 50.
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Figure 5.3: Frequency deviation for systems one and four

Table 5.1: loads of power and network structure for Scenario 1

time 5 5 20 20 35 35 50
system 1 4 2 5 5 3 4
∆PLi 0.10 -0.12 0.08 added 0.05 -0.10 removed

here as PDDMPC) to [77, Alg. 3] (DGFG) that is based on applying the fast
gradient method to the dual problem. The aforementioned paper proposes
solving a series of convex semidefinite program (SDP) locally at the nodes in
order to select the parameters of the algorithm in a distributed fashion. In
order to have a fair comparison we solved the global optimization problem using
MOSEK [5]. Figure 5.4 demonstrates the superior performance of our scheme.
The y-axis is the error defined as the norm of the difference between current
primal variables and the solution in both algorithms. The x-axis denotes the
total number of local iterations. Notice that DGFG requires two rounds of
communication at every iteration. Furthermore, we used the randomized version
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Figure 5.4: Total number of local iterations: comparing synchronous PDDMPC,
randomized PDDMPC and DGFG.

of the algorithm where each system is activated independently with probability
pi = 0.5. It is observed that the random activation of nodes result in roughly
the same number of total local iterations as the synchronous case.

5.6 Conclusions

This chapter introduced a fully distributed primal-dual proximal algorithm for
the DMPC problem that includes both synchronous and randomized versions.
In addition to simple local iterations, the stepsizes of the new algorithm are
selected locally without any global coordination. Therefore, any changes to the
network structure only affects the neighboring nodes. In addition, our algorithm
enjoys a linear convergence rate under mild assumptions on the input and state
constraints. Future works include devising efficient strategies for selecting the
edge weights, and extending the algorithm for the case of lossy communications.



Chapter 6

A primal-dual proximal algorithm for
distributed optimization over graphs

This chapter is based on:

Latafat, P., Stella, L., and Patrinos, P. New primal-dual proximal algorithm
for distributed optimization. In 55th IEEE Conference on Decision and Control
(CDC) (Dec 2016), pp. 1959–1964.

6.1 Introduction

In this chapter we deal with the distributed solution of the following optimization
problem:

minimize
x∈IRn

N∑
i=1

gi(x) + hi(Cix) (6.1)

where for i = 1, . . . , N , Ci is a linear operator, gi and hi are proper closed
convex and possibly nonsmooth functions. We further assume that the proximal
mappings associated with gi and hi are efficiently computable [49]. In a more
general case we can include another continuously differentiable term with
Lipschitz continuous gradient in (6.1) as in Chapter 3 but we opted not for
clarity of exposition.

In machine learning and statistics the Ci are feature matrices and functions
hi measures the fitting of a predicted model with the observed data, while the
gi are regularization terms that enforce some prior knowledge in the solution
(such as sparsity, or belonging to a certain constraint set). For example if hi
is the so-called hinge loss and gi = λ

2 ‖ · ‖
2
2, for some λ > 0, then one recovers

116
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the standard SVM model. If instead gi = λ‖ · ‖1 then one recovers the `1-norm
SVM problem [185].

Problem (6.1) may be solved in a centralized fashion, when all the data of the
problem (functions gi, hi and matrices Ci, for all i ∈ {1, . . . , N}) are available
at one computing node. However, such a centralized approach is not realistic in
many scenarios. For example, suppose that hi(Cix) models least-squares terms
and C1, . . . , CN are very large features matrices. Then, collecting C1, . . . , CN
into a single computer may be infeasible due to communication costs, or even
worse they may not fit into the computer’s memory. Furthermore, the exchange
of such information may not be possible at all due to privacy issues.

Our goal is therefore to solve problem (6.1) in a distributed fashion. Specifically,
we consider a connected network of N computing agents, where the i-th agent
is able to compute the proximal mappings of gi, hi, and matrix-vector products
with Ci (and its adjoint operator). We want all the agents to iteratively converge
to a consensus solution to (6.1), and to do so by only exchanging variables
among neighbouring nodes, i.e, no centralized computations (i.e., existence of a
fusion center) are needed during the iterations.

To do so, we will propose a solution based on Asymmetric Forward-Backward-
Adjoint (AFBA) splitting method, Algorithm 2.1. This splitting technique solves
monotone inclusion problems involving three operators, however, in this chapter
we will focus on a special case that involves two terms. Specifically, we develop
a distributed algorithm which is based on a special case of AFBA applied to the
monotone inclusion corresponding to the primal-dual optimality conditions of a
suitable graph splitting of (6.1). Our algorithm involves a nonnegative parameter
θ which serves as a tuning knob that allows to recover different algorithms. In
particular, the algorithm of [38] is recovered in the special case when θ = 2. We
demonstrate how tuning this parameter affects the stepsizes and ultimately the
convergence rate of the algorithm.

Other algorithms have been proposed for solving problems similar to (6.1) in a
distributed way. As a reference framework, all algorithms aim at solving in a
distributed way the problem

minimize
x∈IRn

N∑
i=1

Fi(x).

In [122] a distributed subgradient method is proposed, and in [64] this idea is
extended to the projected subgradient method. More recently, several works
focused on the use of ADMM for distributed optimization. In [29] the generic
ADMM for consensus-type problems is illustrated. A drawback of this approach
is that at every iteration the agents must solve a complicated subproblem that
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might require an inner iterative procedure. In [131] another formulation is given
for the case where Fi = gi + hi, and only proximal mappings with respect
to gi and hi are separately computed in each node. Still, when either gi or
hi is not separable (such as when they are composed with linear operators)
these are not trivial to compute and may require inner iterative procedures,
or factorization of the data matrices involved. Moreover, in both [29, 131] a
central node is required for accumulating each agents variables at every iteration,
therefore these formulations lead to parallel algorithms rather than distributed.
In [153] the optimal parameter selection for ADMM is discussed in the case of
distributed quadratic programming problems. In [174, 175, 115], fully distributed
algorithms based on ADMM proposed, assuming that the proximal mapping of
Fi is computable, which is impractical in many cases. In [21] the authors propose
a variation of the Vũ-Condat algorithm [53, 170], having ADMM as a special
case, and show its application to distributed optimization where Fi = gi + hi,
but no composition with a linear operator is involved. Only proximal operations
with respect to gi and hi and local exchange of variables (i.e., among neighboring
nodes) is required, and the method is analyzed in an asynchronous setting.

In this chapter we deal with the more general problem as in (6.1). The main
features of our approach, that distinguish it from the related works mentioned
above, are:

1) We deal with Fi that is the sum of two possibly nonsmooth functions one
of which is composed with a linear operator.

2) Our algorithm only require local exchange of information, i.e., only neigh-
boring nodes need to exchange local variables for the algorithms to proceed.

3) The iterations involve direct operations on the objective terms. Only
evaluations of proxgi , proxh?

i
and matrix-vector products with Ci and

CTi are involved. In particular, no inner subproblem needs to be solved
iteratively by the computing agents, and no matrix inversions are required.

6.2 Problem formulation

Consider problem (6.1) under the following assumptions:

Assumption 6.I. For i = 1, . . . , N :

(i) Ci : IRn → IRri are linear operators.

(ii) gi : IRn → R, hi : IRri → R are proper closed convex functions.
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(iii) The set of minimizers of (6.1), denoted by S?, is nonempty.

We are interested in solving problem (6.1) in a distributed fashion. Specifically,
let G = (V,E) be an undirected graph over the vertex set V = {1, . . . , N} with
edge set E ⊂ V × V . It is assumed that each node i ∈ V is associated with a
separate agent, and each agent maintains its own cost components gi, hi, Ci
which are assumed to be private, and its own opinion of the solution xi ∈ IRn.
The graph imposes communication constraints over agents. In particular, agent i
can communicate directly only with its neighbors j ∈ Ni = {j ∈ V | (i, j) ∈ E}.
We make the following assumption.
Assumption 6.II. Graph G is connected.

With this assumption, we reformulate the problem as

minimize
x∈IRNn

N∑
i=1

gi(xi) + hi(Cixi)

subject to xi = xj (i, j) ∈ E

where x = (x1, . . . , xN ). Associate any orientation to the unordered edge set
E. Let M = |E| and B ∈ IRN×M be the oriented node-arc incidence matrix,
where each column is associated with an edge (i, j) ∈ E and has +1 and −1 in
the i-th and j-th entry, respectively. Notice that the sum of each column of B
is equal to 0. Let di denote the degree of a given vertex, that is, the number of
vertices that are adjacent to it. We have BB> = L ∈ IRN×N , where L is the
graph Laplacian of G, i.e.,

Lij =

di if i = j,
−1 if i 6= j and node i is adjacent to node j,
0 otherwise.

Constraints xi = xj , (i, j) ∈ E can be written in compact form as Ax = 0,
where A = B> ⊗ In ∈ IRMn×Nn. Therefore, the problem is expressed as

minimize
x∈IRNn

N∑
i=1

gi(xi) + hi(Cixi) + δ{0}(Ax). (6.2)

The dual problem is:

minimize
yi∈IRri

w∈IRMn

N∑
i=1

g∗i (−A>i w − C>i yi) + h∗i (yi), (6.3)
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where Ai ∈ IRMn×n is the i-th (block) column of A. The primal-dual optimality
conditions are 

0 ∈ ∂gi(xi) + C>i yi +A>i w,i = 1, . . . , N
Cixi ∈ ∂h∗i (yi) i = 1, . . . , N∑N
i=1Aixi = 0,

(6.4)

where w ∈ IRMn, yi ∈ IRri , for i = 1, . . . , N . The following condition is assumed
to hold throughout this chapter.

Assumption 6.III. There exist xi ∈ ri dom gi such that Cixi ∈ ri dom hi,
i = 1, . . . , N and

∑N
i=1Aixi = 0.

This assumption implies that the set of solutions to (6.4) is nonempty (see [50,
Prop. 4.3(iii)]). If (x?,y?,w?) is a solution to (6.4), then x? is a solution to the
primal problem (6.2) and (y?,w?) to its dual (6.3).

6.3 Distributed primal-dual algorithms

In this section we provide the main distributed algorithm that is based on Asym-
metric Forward-Backward-Adjoint (AFBA) [96] (see Chapter 2). The developed
algorithm belongs to the class of primal-dual algorithms. The convergence results
include both primal and dual variables. However, the convergence analysis here
focuses on the primal variables for clarity of exposition, with the understanding
that similar claims holds for the dual variables.

Our distributed algorithm consists of two phases, a local phase and the phase
in which each agent interacts with its neighbors according to the constraints
imposed by the communication graph. Each iteration has the advantage of only
requiring local matrix-vector products and proximal updates. Specifically, each
agent performs 2 matrix-vector products per iteration and transmits a vector of
dimension n to its neighbors.

Let u = (x,v) where v = (y,w) and y = (y1, . . . , yN ). The optimality condi-
tions in (6.4), can be written in the form of the following monotone inclusion:

0 ∈ Du+Mu (6.5)

with

M =

 0 C> A>

−C 0 0
−A 0 0

, D(x,y,w) = (∂g(x), ∂h∗(y), 0),
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where g(x) =
∑N
i=1 gi(xi) , h∗(y) =

∑N
i=1 h

∗
i (yi), C = blkdiag(C1, . . . , CN ).

Notice that Ax =
∑N
i=1Aixi, A>w = (A>1 w, . . . , A>Nw). The operator D +M

is maximally monotone [13, Prop. 20.23, Cor. 25.5].

Monotone inclusion (6.5) which is a restatement of the primal-dual optimality
conditions (6.4) is solved by applying [96, Alg. 6]. This results in the following
iteration:

xk+1 = proxΣ−1

g (xk − ΣC>yk − ΣA>wk) (6.6a)

ȳk = proxΓ−1

h∗ (yk + ΓC(θxk+1 + (1− θ)xk)) (6.6b)

w̄k = wk + ΠA(θxk+1 + (1− θ)xk) (6.6c)

yk+1 = ȳk + (2− θ)ΓC(xk+1 − xk) (6.6d)

wk+1 = w̄k + (2− θ)ΠA(xk+1 − xk) (6.6e)

where matrices Σ,Γ,Π play the rule of stepsizes and are assumed to be positive
definite. The iteration (6.6) can not be implemented in a distributed fashion
because the dual vector w consists of M blocks corresponding to the edges. The
key idea that allows distributed computations is to introduce the sequence

(ρki )k∈IN = (A>i wk)k∈IN, for i = 1, . . . , N. (6.7)

This transformation replaces the stacked edge vector wk with corresponding
node vectors ρi. More compactly, letting ρk = (ρk1 , . . . , ρkN ), it follows from (6.6c)
and (6.6e) that

ρk+1 = ρk +A>ΠA(2xk+1 − xk), (6.8)

where A>ΠA is the weighted graph Laplacian. Since wk in (6.6a) appear as
A>wk we can rewrite the iteration:

xk+1 = proxΣ−1

g (xk − ΣC>yk − Σρk)

ȳk = proxΓ−1

h∗ (yk + ΓC(θxk+1 + (1− θ)xk))

yk+1 = ȳk + (2− θ)ΓC(xk+1 − xk)

ρk+1 = ρk +A>ΠA(2xk+1 − xk)

Set

Σ = blkdiag (σ1In, . . . , σNIn),
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Γ = blkdiag (τ1Ir1 , . . . , τNIrN ),

Π = blkdiag (π1In, . . . , πMIn),

where σi > 0, τi > 0 for i = 1, . . . , N and πl > 0 for l = 1, . . . ,M . Consider a
bijective mapping between l = 1, . . . ,M and unordered pairs (i, j) ∈ E such that
κi,j = κj,i = πl. Notice that πl for l = 1, . . . ,M are stepsizes to be selected by
the algorithm and can be viewed as weights for the edges. Thus, iteration (6.6)
gives rise to our distributed algorithm:

Algorithm 6.1
Inputs: σi > 0, τi > 0, κi,j > 0 for j ∈ Ni, i = 1, . . . , N , θ ∈ [0,∞), initial
values x0

i ∈ IRn, y0
i ∈ IRri , ρ0

i ∈ IRn.
for k = 0, 1, . . . do

for each agent i = 1, . . . , N do
Local steps:
xk+1
i = proxσigi(xki − σiρki − σiC>i yki )
ȳki = proxτih∗i (yki + τiCi(θxk+1

i + (1− θ)xki ))
yk+1
i = ȳki + τi(2− θ)Ci(xk+1

i − xki )
uki = 2xk+1

i − xki
Exchange of information with neighbors:
ρk+1
i = ρki +

∑
j∈Ni κi,j(u

k
i − ukj )

Notice that each agent i only requires ukj ∈ IRn for j ∈ Ni during the com-
munication phase. Before proceeding with convergence results, we define the
following for simplicity of notation:

σ̄ = max{σ1, . . . , σN},

τ̄ = max{τ1, . . . , τN , π1, . . . , πM},

L = L ⊗ In +C>C, where L is the graph Laplacian.

It must be noted that the results in this section only provide choices of parameters
that are sufficient for convergence. They can be selected much less conservatively
by formulating and solving sufficient conditions that they must satisfy as linear
matrix inequalities (LMIs).
Theorem 6.1. Let Assumptions 6.II and 6.III hold true. Consider the sequence
(xk)k∈IN = (xk1 , . . . , xkN )k∈IN generated by Algorithm 6.1. Assume the maximum
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stepsizes, i.e., σ̄ and τ̄ defined above, are positive and satisfy

σ̄−1 − τ̄(θ2 − 3θ + 3)‖L‖ > 0, (6.9)

for a fixed value of θ ∈ [0,∞). Then, the sequence (xk)k∈IN converges to
(x?, . . . , x?) for some x? ∈ S?. Furthermore, if θ = 2 the strict inequality (6.9)
is replaced with σ̄−1 − τ̄‖L‖ ≥ 0.

Proof. Algorithm 6.1 is an implementation of [96, Alg. 6]. Thus convergence
of (xk)k∈IN to a solution of (6.2) is implied by [96, Prop. 5.4]. Combining this
with Assumption 6.II yields the result. Notice that in that work the stepsizes
are assumed to be scalars for simplicity. It is straightforward to adapt the result
to the case of diagonal matrices.

In Algorithm 6.1 when θ = 2, we recover the algorithm of Chambolle and
Pock [38]. One important observation is that the term θ2 − 3θ + 3 in (6.9) is
always positive and achieves its minimum at θ = 1.5. This is a choice of interest
for us since it results in larger stepsizes, σi, τi, κi,j , and consequently better
performance as we observe in numerical simulations.

Theorem 6.2 establishes linear convergence for the algorithm whenever gi and
hi are piecewise linear-quadratic (PLQ), see Definition 1.4. The class of PLQ
functions has been studied extensively and has many desirable properties (see
[144, §10 and §11]). Many practical applications involve PLQ functions such
as quadratic function, ‖ · ‖1, indicator of polyhedral sets, hinge loss, etc. Thus,
the R-linear convergence rate that we establish in Theorem 6.2 holds for a
wide range of problems encountered in control, machine learning and signal
processing.

Theorem 6.2. Consider Algorithm 6.1 under the assumptions of Theorem 6.1.
Assume gi and hi for i = 1, . . . , N , are piecewise linear-quadratic functions.
Then the set valued mapping T = D + M is metrically subregular at any z
for any z′ provided that (z, z′) ∈ gra T . Furthermore, the sequence (xk)k∈IN
converges R-linearly to (x?, . . . , x?) for some x? ∈ S?.

Proof. The proof of the first claim is similar to Lemma 3.11 and is omitted.
The second part of the proof follows directly by noting that [96, Alg. 6] used to
derive Algorithm 6.1 is a special case of Algorithm 3.1 (with µ = 0 and λ = 1).
Therefore, linear convergence follows from Corollary 3.12(i). The aforementioned
theorem guarantees linear convergence for the stacked vector u in (6.5), however,
here we consider the primal variables only.
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6.3.1 Special case

Consider the following problem

minimize
x∈IRn

N∑
i=1

gi(x), (6.10)

where gi : IRn → R for i = 1, . . . , N are proper closed convex functions. This
is a special case of (6.1) when hi ◦ Ci ≡ 0. Since functions hi are absent, the
dual variables yi in Algorithm 6.1 vanish and for any choice of θ the algorithm
reduces to:

xk+1
i = proxσigi(xki − σiρki )

uki = 2xk+1
i − xki

ρk+1
i = ρki +

∑
j∈Ni

κi,j(uki − ukj ).

Thus setting θ = 1.5 in (6.9) to maximize the stepsizes yields σ̄−1 − 3τ̄
4 ‖L‖ > 0,

where L is the graph Laplacian.

6.4 Numerical simulations

We now illustrate experimental results obtained by applying the proposed
algorithm to the following problem:

minimize λ‖x‖1 +
N∑
i=1

1
2‖Dix− di‖22 (6.11)

for a positive parameter λ. This is the `1 regularized least-squares problem.
Problem (6.11) is of the form (6.1) if we set for i = 1, . . . , N

gi(x) = λ
N ‖x‖1, hi(z) = 1

2‖z − di‖
2
2, Ci = Di, (6.12)

where Di ∈ IRmi×n, di ∈ IRmi . For the experiments we used graphs of N = 50
computing agents, generated randomly according to the Erdős-Renyi model,
with parameter p = 0.05. In the experiments we used n = 500 and generated Di

randomly with normally distributed entries, with mi = 50 for all i = 1, . . . , N .
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Figure 6.1: Convergence of the relative error for the algorithms, in one of the
considered instances.
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Figure 6.2: Distribution of the number of communication rounds required by the
algorithms to achieve a relative error of 10−6, for fixed data and 200 randomly
generated Erdős-Renyi graphs, with parameter p = 0.05.

Then we generated vector di starting from a known solution for the problem
and ensuring λ < 0.1‖

∑N
i D

>
i di‖∞.
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For the stepsize parameters we set σi = σ̄, τi = τ̄ , for all i = 1, . . . , N , and
κi,j = κj,i = τ̄ for all edges (i, j) ∈ E, such that (6.9) is satisfied. In order to
have a fair comparison we selected σ̄ = α/‖L‖ and τ̄ = 0.99/(α(θ2 − 3θ + 3))
with α = 20 which was set empirically based on better performance of all the
algorithms.

The results are illustrated in Figure 6.2, for several values of θ, where the
distribution of the number of communication rounds required by the algorithms
to reach a relative error of 10−6 is reported. In Figure 6.1 the convergence of
algorithms is illustrated in one of the instances. It should be noted that the
algorithm of Chambolle and Pock, that corresponds to θ = 2, is generally slower
than the case θ = 1.5. This is mainly due to the larger stepsize parameters
guaranteed by Theorem 6.1.



Chapter 7

Multi-agent structured optimization with
bounded communication delays

This chapter is based on:

P. Latafat and P. Patrinos. Primal-dual algorithms for multi-agent structured
optimization over message-passing architectures with bounded communication
delays (submitted 2019).

7.1 Introduction

In this chapter we consider a class of structured optimization problems that
can be represented as follows:

minimize
x∈Rn

f(x) +
m∑
i=1

(
gi(xi) + hi(Nix)

)
, (7.1)

where x = (x1, . . . , xm), Ni is a linear mapping, hi, gi are proper closed convex
(possibly) nonsmooth functions, gi are in addition strongly convex, and f is
convex, continuously differentiable with Lipschitz continuous gradient. The goal
is to solve (7.1) over a network of agents through local communications. Each
agent is assumed to maintain its own private cost functions gi and hi, while
f and (possibly) the linear mappings Ni represent the coupling between the
agents. In practice local communications between agents are subject to delays
and/or dropouts which constitutes an important challenge addressed here.

127
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Figure 7.1: The main two memory models; (left) agents cooperating to perform
a task, (right) processors updating a global memory

Most iterative algorithms for convex optimization can be written as

zk+1 = zk − Tzk, (7.2)

where the mapping id− T (id is the identity operator) has some contractive
property resulting in the convergence of the sequence to a zero of T . In distributed
optimization the goal is to devise algorithms where a group of agents/processors
distributively update certain coordinates of z while guaranteeing convergence
to a zero of T .

There are two main computational models in distributed optimization (depicted
in Fig. 7.1) with a range of hybrid models in between [20, §1]. These models
are conceptually different and require different analysis. The model considered
here is the local/private-memory model. Let us first describe the two models.

Shared-memory model: This model is characterized by the access of all
agents/processors to a shared memory. A large body of literature exists for
parallel coordinate descent algorithms for this problem. Typically, coordinate
descent algorithms would require a memory lock to ensure consistent reading.
Interesting recent works allow inconsistent reads [109, 133]. In this model, for
the fixed point iteration (7.2), each processor reads the global memory and
proceeds to choose a random coordinate i ∈ {1, . . . ,m} and to perform

zk+1
i = zki − Tiẑk,

where ẑk denotes the data loaded from the global memory to the local storage at
the clock tick k, and Ti represents the operator that updates the i-th coordinate.
This form of updates are asynchronous in the sense that the processors update
the global memory simultaneously resulting in possibly inconsistent local copy
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ẑk due to other processors modifying the global memory during a read. The
analysis of such algorithms would in general rely on either using the properties
of the operator that updates the i-th coordinate when possible (coordinate-wise
Lipschitz continuity in the case of the gradient [109]), or the properties of the
global operator (see [133] for nonexpansive operators). A crucial point in the
convergence analysis of such methods is the fact that for a given processor, the
index of the coordinate to be updated is selected at random, but no matter
which coordinate is selected the same local data ẑk is used for the update. Let
T̂iz := (0, . . . , 0, Tiz, 0 . . . , 0). Then, in a randomized scheme T̂i can be summed
over i:

m∑
i=1

T̂iẑ
k = T ẑk,

allowing one to use the properties known for the global operator (see the proof
of [133, Lem. 7]). This type of argument is also used in [176] in the context
of decentralized consensus optimization. See [34] for a detailed discussion on
the assumptions that are often imposed in this model. As we discuss below,
the difficulty in the local-memory model is precisely due to the fact that this
summation no longer holds.

Local/private-memory model: In this model each agent/processor has its
own private local memory. The agents can send and receive information to other
agents as needed, and agent i can only update zi. This model is also referred to
as message-passing model [20].

In the absence of delay between agents, randomized block-coordinate updates
may be used to develop distributed asynchronous algorithms. Such schemes
would typically involve random independent activation of agents to perform
their local updates, and are in this sense also referred to as asynchronous
[88, 22, 95, 134]. Note that in these schemes while the agents may wake up to
perform their updates at different times, the information used by each agent is
assumed to be up to date, i.e., synchronization is required.

In accordance with the notation of the seminal work [20, §7] we define the
following local (outdated) version of the generic vector zk = (zk1 , . . . , zkm) used
by agent i:

zk[i] :=
(
z
τ i1(k)
1 , . . . , z

τ im(k)
m

)
, (7.3)

where τ ij (k) is the latest time at which the value of zj is transmitted to agent i
by agent j. In our setting the delay is assumed to be bounded:

Assumption 7.I. There exists an integer B such that for all k ≥ 0 the following
holds

(∀i, j) 0 ≤ k − τ ij(k) ≤ B, and τ ii (k) = k.
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The fact that each agent knows its own local variable without delay is projected
in the assumption τ ii (k) = k. This is a natural assumption and is satisfied in
practice. Notice that for ease of notation we defined the complete outdated vector
while in practice each agent would only keep a local copy of the coordinates
that are required for its computation, see Fig. 7.1. The directions of the arrows
in Fig. 7.1 signify the nature of the coupling between two agents. For example,
the arrow from A4 to A3 indicates that agent A3 requires z4 for its computation.
Such a relation between agents is dependent on the formulation and the nature
of coupling between agents. For instance, in (7.1) the coupling is represented
through f and possibly Ni. As we shall see in §7.2 the coupling through f may
be one sided since agent i may require information from agent j for computing
∇if (the partial derivative of f with respect to i-th coordinate) without the
reverse relation being true.

In summary, each agent controls only one block of coordinates and updates
according to

zk+1
i = zki − Tizk[i],

the result of which will be sent (possibly with different delay) to the agents that
require it in their computations. The difficulty in this model comes from the
impossibility of summing Tizk[i] over all i given that zk[i] is different for each i.

In addition to the above described delay, the partially asynchronous (PA)
protocol considered in [20, §7] involves a second assumption: each agent must
perform an update at least once during any time interval of length B. In [20,
§7.5] a PA variant of the gradient method is studied. This analysis is further
extended to the projected-gradient method in the convex case. In [161] a periodic
linear convergence rate is established for the projected-gradient method. The
recent work [184] extends this analysis to the proximal-gradient method.

The aforementioned primal methods are not well equipped for problems with
more complex structures as in (7.1). An efficient way to tackle such problems is
to employ a class of first-order methods, referred to as primal-dual algorithms.
This approach leads to fully split algorithms eliminating the need for invert-
ing matrices or solving inner loops. Developing PA schemes for primal-dual
algorithms is not addressed here and remains a challenge. It it worth noting
that [80] considers a primal-dual framework under a different asynchronous pro-
tocol where the primal variables follow a totally asynchronous model [20, §6].
However, the dual variables are required to be synchronized across agents.

It is worth noting that finite sum minimization over graphs is another popular
problem that has been considered by many authors [122, 64, 150, 110, 90, 100].
Several asynchronous algorithms have been studied for this popular problem
over master-worker architectures [1, 12, 71, 41, 183]. Moreover, asynchronous
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subgradient type methods have been studied extensively for finite sum problems
[121, 168, 154, 172, 105]. In contrast, in this work general optimization prob-
lem (7.1) is considered. This framework can be used to develop asynchronous
distributed proximal algorithms for general finite sum minimization of the form

minimize
x∈Rn

m∑
i=1

Ψi(x) +Θi(x) + Φi(Cix),

where Φi is smooth, Θi and Φi are (possibly) nonsmooth extended-real-valued
and Ci is a linear mapping. This problem can be reformulated as (7.1) using a
consensus reformulation according to the communication graph. However, this
is deferred to future work.

7.1.1 Motivating examples

Consider the regularized logistic regression problem

minimize
w∈Rn

m∑
i=1

∑
j∈Ii

log
(
1 + exp

(
−y(j)〈x(j), w〉

))
+ λ‖w‖2, (7.4)

where w = (w1, . . . , wm) ∈ Rn is the regression vector, λ is a positive constant,
and the data is distributed between m machines; the pair (x(j), y(j))j∈Ii rep-
resents the data stored at the i-th machine. The goal is to solve the global
minimization via local communications which may be subject to communication
delays. Clearly (7.4) fits into the form of (7.1): let g represent the separable
regularizer, hi(v) =

∑
j∈Ii log((1 + exp(−y(j)vj)) the loss function, f ≡ 0 and

the rows of Ni consisting of x>(j) for j ∈ Ii. In this formulation the coupling
is through the linear terms (cf. §7.5). Distributed elastic net problem is an-
other such example with hi representing the squared loss, Ni the locally stored
data, g the elastic net regularizer and f ≡ 0. Note that in both examples gi is
strongly convex and hi is continuously differentiable with Lipschitz continuous
gradient, satisfying the requirements of §7.5 for the cost functions.

Another notable example is the problem of formation control [136], where each
agent (vehicle) has its own private dynamics and cost function and the goal
is to achieve a specific formation while communicating only with a selected
number of agents. Let wi = (ξi, vi) where ξi and vi denote the local state
and input sequences. The location of agent i is given by yi = Cξi and the set
of its neighbors is denoted by Ai. The linear dynamics of each agent over a
control horizon is represented by the constraints Eiwi = bi. In order to enforce a
formation between agents i and j the quadratic cost function ‖C(ξi− ξj)−dij‖2
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is used where dij is the target relative distance between them (refer to [136] for
details). Hence, the formation control problem is formulated as the following
constrained minimization:

minimize
m∑
i=1

λi
2

∑
j∈Ai

‖C(ξi − ξj)− dij‖2 + 1
2

m∑
i=1

w>i Qiwi (7.5a)

subject to Eiwi = bi, wi ∈ Wi, i = 1, . . . ,m (7.5b)

This problem can be easily cast in the form of (7.1) by setting f equal to
the first term, gi equal to the quadratic local cost, while hi ◦ Li captures the
dynamics and input and state constraints (see Section 7.6 for more details).
Therefore, the objective is to enforce a formation between agents by solving
this optimization problem in presence of communication delays by allowing
the agents to use outdated information. Notice that in this case the coupling
between agents is enforced only through f . This special case of (7.1) is studied
in §7.4.

7.1.2 Main contributions

• To the best of our knowledge this is the first work that considers the delay
described in (7.3) in a message-passing model for primal-dual algorithms. Unlike
primal methods (gradient or proximal-gradient), the proposed algorithms are
applicable to problems with complex structures as in (7.1) without the need to
solve inner loops or to invert matrices.

• The analysis of [20, 161, 184] rely on the use of the cost as the Lyapunov
function. In contrast, we show that quasi-Fejér monotonicity is an effective tool
in the analysis of bounded delays in our setting. While this paper focuses on
two particular primal-dual algorithms, a similar analysis should be applicable
to others such as those proposed in [50, 31, 62, 96, 95, 98].

• Two primal-dual algorithms are presented: (i) when the coupling between
agents is enforced only through f , the algorithm of [53, 170] is considered (cf.
§7.4), (ii) when the coupling is through f and the linear term, a new modified
algorithm is developed (cf. §7.5). In addition, linear convergence rates are
established with explicit convergence factors.

• In §7.5.2 an asynchronous protocol is considered; at every iteration agents are
activated at random, and independently from one another, while performing
their updates using outdated information. In practice, random activation can
model the discrepancies in the speed of different agents.
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7.2 Problem setup

Throughout this chapter the primal and dual vectors, denoted x and u, are
assumed to be composed of m blocks as follows

x = (x1, . . . , xm) ∈ Rn, u = (u1, . . . , um) ∈ Rr,

where xi ∈ Rni and ui ∈ Rri . Moreover, we denote the stacked primal and dual
variable as z = (x, u).

Consider a linear mapping L : Rn → Rr that is partitioned as follows:

L =

L11 · · · L1m
... . . . ...

Lm1 · · · Lmm

, (7.6)

where Lij : Rni → Rrj . Furthermore, the i-th (block) row of L is denoted by
Li• : Rn → Rri and the i-th (block) column by L•i : Rni → Rr, i.e.,

L =

L1•
...

Lm•

 =
(
L•1 · · · L•m

)
.

The following holds

〈Lx, u〉 =
m∑
i=1
〈Li•x, ui〉 =

m∑
i=1
〈xi, L>•iu〉. (7.7)

Consider the structured optimization problem (7.1) where the linear mapping
Ni has been replaced by Li• defined above in order to clarify the structure of
the mapping:

minimize
x∈Rn

f(x) +
m∑
i=1

(
gi(xi) + hi(Li•x)

)
. (7.8)

The cost functions gi and hi ◦ Li• are private functions belonging to agent i.
The coupling between agents is through the smooth term f and the linear term
Li•x. An agent i is assumed to have access to the information required for its
computation, be it outdated, cf. Algorithms 7.1 and 7.2.

Let the following assumptions hold
Assumption 7.II.
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(i) For i = 1, . . . ,m, hi : Rri → R is proper closed convex function, and
Li• : Rn → Rri is a linear mapping.

(ii) (strong convexity) For i = 1, . . . ,m, gi : Rni → R is proper closed
µig-strongly convex for some µig > 0.

(iii) f : Rn → R is convex, continuously differentiable, and for some β ∈ [0,∞),
∇f is β-Lipschitz continuous:

‖∇f(x)−∇f(x′)‖ ≤ β‖x− x′‖, ∀x, x′ ∈ Rn.

(iv) For every i = 1, . . . ,m there exists a nonnegative constant β̄i such that
for all x, x′ ∈ Rn satisfying xi = x′i:

‖∇if(x)−∇if(x′)‖ ≤ β̄i‖x− x′‖. (7.9)

(v) The set of solutions to (7.8) is nonempty. Moreover, there exists xi ∈
ri dom gi, for i = 1, . . . ,m such that Lj•x ∈ ri dom hj , for j = 1, . . . ,m.

Assumption 7.II(iv) quantifies the strength of the coupling (through f) between
agents [20, §7.5]. In particular, if f is separable, i.e., f(x) =

∑m
i=1 fi(xi), then

there is no coupling and β̄i = 0.

Problem (7.8) can be compactly represented as

minimize
x∈Rn

f(x) + g(x) + h(Lx),

where g(x) =
∑m
i=1 gi(xi), h(u) =

∑m
i=1 hi(ui), and L is as in (7.6). The dual

problem is given by

minimize
u∈Rr

(g + f)∗(−L>u) + h∗(u).

By Assumption 7.II(ii) the set of solutions to (7.8) is nonempty and unique.
Under the constraint qualification of Assumption 7.II(v), the set of solutions to
the dual problem is nonempty (not necessarily a singleton) and the duality gap
is zero [143, Cor. 31.2.1]. Furthermore, x? is a primal solution and u? is a dual
solution if and only if the pair (x?, u?) satisfies{

0 ∈ ∂g(x?) +∇f(x?) + L>u?,
0 ∈ ∂h∗(u?)− Lx?. (7.10)

Such a point is called a primal-dual solution and the set of all primal-dual
solutions is denoted by S.



PROBLEM SETUP 135

For each agent i ∈ {1, . . . ,m} define positive stepsizes γi, σi associated with
the primal and the dual variables, respectively. Let us also define the following
parameters

β̄ :=
(
β̄1, . . . , β̄m

)
,

Γ := blkdiag (γ1In1 , . . . , γmInm),

Σ := blkdiag (σ1Ir1 , . . . , σmIrm),

D = blkdiag(Γ−1,Σ−1). (7.11)

The algorithm of Vũ and Condat [170, 53] for solving (7.8) is given by the
following updates for agent i at iteration k:

xk+1
i = proxγigi

(
xki − γiL>•iuk − γi∇if(xk)

)
(7.12a)

uk+1
i = proxσih∗i

(
uki + σiLi•(2xk+1 − xk)

)
. (7.12b)

In a synchronous implementation of the algorithm, each agent requires the latest
variables xk, xk+1 and uk in the above updates, which may not be available
due to communication delays. In the case when L is block-diagonal the coupling
between agents is enforced only through the smooth function f (in (7.12) agent
i requires the primal variables that are required for computing ∇if). We refer
to this type of coupling as partial coupling. In Section 7.4 the updates in (7.12)
are considered for the case of partial coupling (cf. Alg. 7.2).

More generally when L is not block-diagonal, the coupling between agents is
enacted through the linear mapping L (the linear operations L>•i and Li• in
(7.12b) require additional communication between agents) and possibly the
smooth function f . We refer to this type of coupling as total coupling. This case
is considered in Section 7.5 where an Arrow-Hurwicz-Uzawa type [8] (referred
hereafter as AHU-type) primal-dual algorithm is proposed in place of (7.12).
The synchronous iterations of the AHU-type algorithm for agent i at iteration
k is given by:

xk+1
i = proxγigi

(
xki − γiL>•iuk − γi∇if(xk)

)
(7.13a)

uk+1
i = proxσih∗i

(
uki + σiLi•x

k
)
. (7.13b)

Differently from (7.12), in the dual update linear operator is applied to xk in
place of 2xk+1 − xk. When operating under the bounded delay assumption, the
AHU-type primal-dual algorithm, (7.13), allows for larger stepsizes compared
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to (7.12).

It is worth noting that (7.13) can be seen as a forward-backward iteration:

zk+1 = (D + T2)−1(D − T1)zk,

where T2 = (∂g, ∂h∗), T1 : (x, u) 7→ (∇f(x) + L>u,−Lx), and D as defined in
(7.11). Even in the synchronous case this algorithm is not in general convergent.
The convergence may be established when g and h∗ are strongly convex [43,
Assumption A]. Moreover, when g is the indicator of a set and h is the support
of a set, the AHU-type algorithm resembles another primal-dual AHU-type
algorithm considered in [123, 80] for solving saddle-point problems.

7.3 Notation and preliminary results

This section is devoted to establishing some preliminary results and notation.

Lemma 7.1. Let q : Rn → R be a proper closed µ-convex function for some
µ ≥ 0. For all r ∈ Rn, ω ∈ Rn and ωρ := proxρq(ω) the following holds

q(r)− q(ωρ) ≥ 1
ρ 〈ω − ωρ, r − ωρ〉+ µ

2 ‖r − ωρ‖
2. (7.14)

Proof. The inequality follows immediately from the definition of strong convexity
and the characterization of proximal mapping [13, Prop. 16.44].

For all a, b, c ∈ Rn and all positive definite matrices V ∈ Rn×n the following
elementary equality holds.

2〈a− b, c− b〉V = ‖a− b‖2V + ‖c− b‖2V − ‖a− c‖2V . (7.15)

We also make use (1.8) with V = εIn:

〈x, y〉 ≤ ε
2‖x‖

2 + 1
2ε‖y‖

2, ∀x, y ∈ Rn, ε > 0. (7.16)

Lemma 7.2 provides a basic inequality which is crucial in our analysis. Refer to
[20, §7.5] and [184, Lem. 4] for the proof.

Lemma 7.2. Let Assumption 7.I hold. Consider a vector wk = (wk1 , . . . , wkm)
and its outdated version wk[i], cf. (7.3). Then, the following inequality holds

‖wk − wk[i]‖ ≤
k−1∑

τ=[k−B]+

‖wτ+1 − wτ‖. (7.17)
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Let l and d be two nonnegative scalars. For a given sequence (wt)t∈N we define
the following for simplicity of notation:

Sdl (wt)t≤k :=
k−d∑

τ=[k−B+1−l]+

‖wτ+1 − wτ‖2.

Summing Sdl (wt)t≤k over k from 0 to p > 0 and noting that each term is
repeated at most B + l − d times we obtain:

p∑
k=0

Sdl (wt)t≤k ≤ (B + l − d)
p−d∑

k=[1−B−l]+

‖wk+1 − wk‖2

≤ (B + l − d)
p∑
k=0
‖wk+1 − wk‖2. (7.18)

This inequality will be used in the convergence analysis.

Lemma 7.3. Suppose that µih, µig > 0, i = 1, . . . ,m, and in the case of Lem.
7.3(i) let Assumption 7.II(iv) hold. Then, the following hold for any positive
constants ε1, ε2, ε3, nonnegative integer q and generic vectors v = (v1, . . . , vm),
y = (y1, . . . , ym) with vi ∈ Rni and yi ∈ Rri :

(i)
∑m
i=1〈∇if(xk[i])−∇if(xk), x?i−vi〉≤ ε1

2 ‖v−x
?‖2Mg

+ B
2ε1
‖β̄‖2

M−1
g
S1

1(xt)t≤k

(ii)
∑m
i=1〈L>•i

(
uk[i]− uk+q), x?i − vi〉 ≤ ε2

2 ‖v − x
?‖2Mg

+ Cs(B+q)
2ε2

S1−q
1 (ut)t≤k

(iii)
∑m
i=1〈Li•(xk[i]− xk+q), yi − u?i 〉 ≤ ε3

2 ‖y − u
?‖2Mh

+ Rs(B+q)
2ε3

S1−q
1 (xt)t≤k

where Rs, Cs are defined in (7.30), Mg,Mh in (7.20) and (7.31a).

Proof. We provide the proof for the first inequality and omit the rest noting
that they are derived following a similar argument. Using the Cauchy–Schwarz
inequality we have
m∑
i=1

〈x?i − vi,∇if(xk[i])−∇if(xk)〉 ≤
m∑
i=1

‖vi − x?i ‖‖∇if(xk)−∇if(xk[i])‖

(7.9)
≤

m∑
i=1

β̄i‖vi − x?i ‖‖x
k − xk[i]‖

(7.17)
≤

m∑
i=1

β̄i‖vi − x?i ‖
( k−1∑
τ=[k−B]+

‖xτ+1 − xτ‖
)
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=
m∑
i=1

k−1∑
τ=[k−B]+

β̄i‖vi − x?i ‖‖x
τ+1 − xτ‖

((7.16) with ε = µigε1
B

) ≤ 1
2

m∑
i=1

k−1∑
τ=[k−B]+

(
µigε1
B
‖vi− x?i ‖

2+ β̄2
iB

µigε1
‖xτ+1− xτ‖2

)

≤ ε1
2 ‖v − x

?‖2Mg + B
2ε1
‖β̄‖2

M−1
g

k−1∑
τ=[k−B]+

‖xτ+1 − xτ‖2,

proving the claim.

7.4 The case of partial coupling

Throughout this section we consider the optimization problem (7.8) with partial
coupling (when L has a block-diagonal structure). In this case, the coupling
between agents is enacted only through the smooth function f (and not through
L). The example of formation control in Section 7.1.1 can be cast in this form.

Under this setting problem (7.8) becomes

minimize
x∈Rn

f(x) +
m∑
i=1

(
gi(xi) + hi(Liixi)

)
,

where Lii is the i-th diagonal block of L, see (7.6). In order to solve this problem
with the iterates in (7.12), agent i must receive those xj ’s that are required for
the computation of ∇if and all other operations are local. Let us define two
sets of indices: those that are required to send their variables to i:

N in
i := {j | ∇if depends on xj},

and those that i must send xi to as N out
i := {j | i ∈ N in

j }.

Algorithm 7.1 summarizes the proposed scheme. At every iteration each agent
i performs the updates described in (7.12) using the last information it has
received from agents j ∈ N in

i . It then transmits the updated xk+1
i to the agents

that require it (possibly with different delay). Note that xk[i] was defined as the
outdated version of the full vector xk for simplicity of notation, and in practical
implementation it would only involve the coordinates that are required for the
computation of ∇if .
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Algorithm 7.1 Vũ-Condat algorithm with bounded delays
Initialize: x0

i ∈ Rni , u0
i ∈ Rri for i ∈ {1, . . . ,m}.

For k = 0, 1, . . . do
For each agent i = 1, . . . ,m do
% Local updates

perform the local updates using the last received information, i.e., the locally

stored vector xk[i] as defined in (7.3):
1: xk+1

i = proxγigi
(
xki − γiL>iiuki − γi∇if(xk[i])

)
2: uk+1

i = proxσih∗i
(
uki + σiLii(2xk+1

i − xki )
)

% Broadcasting to neighbors

3: send xk+1
i to all j ∈ N out

i (possibly with different delays)

As shown in Theorem 7.4, for small enough stepsizes the generated sequence
converges to a primal-dual solution under the bounded delay assumption, and
provided that functions gi are strongly convex. Such needed requirements are
summarized below:

Assumption 7.III. (stepsize condition) For i = 1, . . . ,m, the stepsizes σi, γi >
0 satisfy the following assumption:

γi <
1

σi‖Lii‖2 + β + B2

2 ‖β̄‖
2
M−1
g

, (7.19)

where
Mg = blkdiag

(
µ1
gIn1 , . . . , µ

m
g Inm

)
. (7.20)

According to Assumption 7.III a one time global communication of ‖β̄‖M−1
g

and β is required when initiating the algorithm.

According to (7.19) as the upper bound on delay, B, and coupling constants β̄i
(as defined in (7.9)) increase, smaller stepsizes should be used. This is intuitive
given that in either case the agents have a lower confidence in the currently stored
vectors and thus should take smaller steps. Moreover, the higher the modulus
of strong convexity, the larger steps agents are allowed to take, countering the
effect of the delay.

In the case when the smooth term is separable, the problem is decoupled (β̄i = 0
for all i) and the stepsize condition for each agent does not depend on the
delay. The same stepsize condition would be required in the case of synchronous
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updates (B = 0). Note that, in this case (7.19) is still more conservative than
the classical results which would require γi < 1/(σi‖Lii‖2 + β/2) (the difference
being a β appearing in place of β/2).

Before proceeding with the convergence results, let us define the following

P :=
(

Γ−1 −L>
−L Σ−1

)
. (7.21)

Noting that Σ,Γ are positive definite, and using Schur complement we have that
P is positive definite if and only if Γ−1 − L>ΣL is positive definite, a condition
that holds if (7.19) is satisfied (since L has a block-diagonal structure).

Our analysis in Theorem 7.4 relies on showing that the generated sequence is
quasi-Fejér monotone with respect to the set of primal-dual solutions in the space
equipped with the inner product 〈·, ·〉P . Notice that without communication
delays (B ≡ 0), this analysis leads to the usual Fejér monotonicity of the
sequence. The use of outdated information introduces additional error terms
that are shown to be tolerated by the algorithm if the stepsizes are small enough
and the functions gi are strongly convex.

Theorem 7.4. Suppose that Assumptions 7.I–7.III are satisfied. Then, the
sequence (zk)k∈N = (xk, uk)k∈N generated by Algorithm 7.1 is P -quasi-Fejér
monotone with respect to S. Furthermore, (zk)k∈N converges to some z? ∈ S.

Proof. In order to establish convergence we first derive the following intermediate
result.

Lemma 7.5. Suppose that Assumption 7.I, 7.II and 7.II(ii) are satisfied.
Consider the sequence generated by Algorithm 7.1. Then, for any (x?, u?) ∈ S
the following hold:

‖xk+1 − x?‖22Mg+Γ−1 − ‖xk − x?‖2Γ−1 + ‖xk − xk+1‖2Γ−1−βI

≤ 2
m∑
i=1
〈∇if(xk[i])−∇if(xk), x?i − xk+1

i 〉+ 2〈L>(uk − u?), x? − xk+1〉,

(7.22)

and

‖uk+1−u?‖2Σ−1−‖uk−u?‖2Σ−1+‖uk−uk+1‖2Σ−1≤2〈L(2xk+1−xk−x?), uk+1−u?〉.
(7.23)
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Proof. To derive the first inequality use (7.14) with q = gi, r = x?i , ωρ = xk+1
i

and ω = xki −γiL>iiuk[i]−γi∇if(xk[i]) (using the update for the primal variable
xk+1
i in the algorithm):

gi(x?i )− gi(xk+1
i ) ≥ 〈∇if(xk[i]) + L>iiu

k
i , x

k+1
i − x?i 〉

+ 1
γi
〈xki − xk+1

i , x?i − xk+1
i 〉+ µig

2 ‖x
?
i − xk+1

i ‖2. (7.24)

Let f? := f(x?), and fk := f(xk). By convexity of f :

fk − f? ≤ 〈∇f(xk), xk − x?〉,

and by Lipschitz continuity of ∇f we have

fk+1 ≤ fk + 〈∇f(xk), xk+1 − xk〉+ β
2 ‖x

k+1 − xk‖2.

Summing the two yields

fk+1−f? ≤〈∇f(xk), xk+1 − x?〉+ β
2 ‖x

k+1 − xk‖2. (7.25)

For notational convenience we use F := f + g and F ? := F (x?), F k := F (xk).
Noting that g is separable, sum (7.24) over i, add (7.25) and use (7.15) (with
V = Γ−1, a = xk, b = xk+1, c = x?) to obtain

F ? − F k+1 ≥ 1
2‖x

k − xk+1‖2Γ−1−βI + 1
2‖x

k+1 − x?‖2Γ−1+Mg

− 1
2‖x

k − x?‖2Γ−1 +
m∑
i=1
〈−L>iiuki , x?i − xk+1

i 〉

+
m∑
i=1
〈∇if(xk)−∇if(xk[i]), x?i − xk+1

i 〉.

On the other hand by convexity of f , strong convexity of gi and (7.10) we have

F k+1 − F ? ≥ 〈−L>u?, xk+1 − x?〉+ 1
2‖x

k+1 − x?‖2Mg
.

Summing the last two inequalities, multiplying by 2 and a simple rearrangement
yields (7.22).

For the second inequality, consider the update for uk+1
i and use (7.14):

h∗i (u?i )− h∗i (uk+1
i ) ≥ 〈Lii

(
2xk+1

i − xki
)
, u?i − uk+1

i 〉

+ 1
σi
〈uki − uk+1

i , u?i − uk+1
i 〉. (7.26)
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Furthermore, by convexity of hi and using (7.10):

h∗(uk+1)− h∗(u?) ≥ 〈Lx?, uk+1 − u?〉.

Sum (7.26) over all i, add the last inequality, and use (7.15) to derive the
inequality.

Adding (7.22) and (7.23) we obtain

‖xk+1 − x?‖22Mg+Γ−1 − ‖xk − x?‖2Γ−1 + ‖xk − xk+1‖2Γ−1

+ ‖uk+1 − u?‖2Σ−1 − ‖uk − u?‖2Σ−1 + ‖uk − uk+1‖2Σ−1

≤ 2
m∑
i=1
〈x?i − xk+1

i ,∇if(xk[i])−∇if(xk)〉+ β‖xk − xk+1‖2

+ 2〈L(2xk+1 − xk − x?), uk+1 − u?〉+ 2〈L>(uk − u?), x? − xk+1〉. (7.27)

The last two inner products can be rearranged as

2〈L(xk+1−xk),uk+1−uk〉−2〈L(xk−x?),uk−u?〉+2〈L(xk+1−x?),uk+1−u?〉.

Replacing this term and using Lemma 7.3(i) (with ε1 = 2 and v = xk+1) in
(7.27) yields (with P defined in (7.21)):

‖zk+1 − z?‖2P − ‖zk − z?‖2P + ‖zk+1 − zk‖2P

≤ β‖xk − xk+1‖2 + B
2 ‖β̄‖

2
M−1
g
S1

1(xt)t≤k. (7.28)

Sum inequality (7.28) over k from 0 to p > 0 to obtain:

‖zp+1 − z?‖2P − ‖z0 − z?‖2P +
p∑
k=0
‖zk+1 − zk‖2P

≤ β
p∑
k=0
‖xk − xk+1‖2 + B

2 ‖β̄‖
2
M−1
g

p∑
k=0

S1
1(xt)t≤k. (7.29)

Let us define

P̃ =
(

Γ−1 − B2

2 ‖β̄‖
2
M−1
g
− β −L>

−L Σ−1

)
.
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Since Σ is positive definite (σi > 0), by Schur complement P̃ is positive definite
provided that (7.19) holds (recall that L has a block-diagonal structure).

Use (7.18) (with l = d = 1) in (7.29) to derive

‖zp+1 − z?‖2P +
p∑
k=0
‖zk+1 − zk‖2

P̃
≤ ‖z0 − z?‖2P .

Therefore, by letting p to infinity we obtain
∑∞
k=0 ‖zk+1 − zk‖2

P̃
<∞. Hence,

using (7.18) for the right-hand side in (7.28) we have
∞∑
k=0

(
B
2 ‖β̄‖

2
M−1
g
S1

1(xt)t≤k + β‖xk − xk+1‖2
)
<∞.

Therefore, in view of (7.28) we conclude that (zk)k∈N is P -quasi-Fejér monotone
with respect to S.

Consequently, the sequence (xk, uk)k∈N is bounded [46, Lem. 3.1]. Let (xc, uc)
be a cluster point of (xk, uk)k∈N, i.e., (xkn , ukn)→ (xc, uc). Using Lemma 7.2
also xkn [i]→ xc. Noting that the proximal and linear maps as well as ∇f are
continuous, for all i = 1, . . . ,m we have

xci = proxγigi
(
xci − γi∇if(xc)− γiL>iiuci

)
uci = proxσih?i (uci + σiLiix

c
i ),

which implies (xc, uc) ∈ S. The convergence of the sequence follows [46, Thm.
3.8].

In the case of total coupling (when L is not block-diagonal), it is no longer
possible to establish quasi-Fejér monotonicity of the Vũ-Condat generated
sequence in the space equipped with 〈·, ·〉P . This is because the coupling linear
mapping L, is operating on outdated vectors. In the next section we propose an
AHU-type primal-dual algorithm that is better suited for problems with total
coupling.

7.5 The case of total coupling

In this section we consider problem (7.8) with total coupling. That is, we assume
that the coupling between agents is enforced through the linear maps (L is not
block-diagonal), and possibly through the smooth term f .
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7.5.1 An AHU-type primal-dual algorithm

We consider the primal-dual algorithm (7.13). Compared to (7.12), in the dual
update the linear map Li• operates on xk[i] in place of 2xk+1[i]− xk[i]. This
modification results in the possibility of using larger stepsizes since the terms
2xk+1[i]− xk[i] would introduce additional sources of error.

Let us define the following two sets of indices:

Mp
i := {j | Lji 6= 0}, Md

i := {j | Lij 6= 0},

where 0 denotes a zero matrix of appropriate dimensions. In Algorithm 7.2,
due to the additional coupling through the linear maps, the primal vector of
agent i must be transmitted to all j ∈Mp

i ∪N out
i while the dual vector is to be

transmitted to all j ∈Md
i . Notice that the outdated primal and dual vectors

xk[i] and uk[i], need not have the same delay pattern and are arbitrary as long
as Assumption 7.I is satisfied, i.e., agent i may use the primal vector xk1

j and
the dual vector uk2

j that were the variables of agent j at times k1 and k2.

Algorithm 7.2 An AHU-type primal-dual algorithm with bounded delays
Initialize: x0

i ∈ Rni , u0
i ∈ Rri for i ∈ {1, . . . ,m}.

For k = 0, 1, . . . do
For each agent i = 1, . . . ,m do
% Local updates

perform the local updates using the last received information, i.e., the locally

stored vectors xk[i] and uk[i] as defined in (7.3):
1: xk+1

i = proxγigi
(
xki − γiL>•iuk[i]− γi∇if(xk[i])

)
2: uk+1

i = proxσih?i
(
uki + σiLi•x

k[i]
)

% Broadcasting to neighbors

3: send xk+1
i to all j ∈ N out

i ∪ Mp
i , and uk+1

i to all j ∈ Md
i

(possibly with different delays)

In Theorem 7.6 convergence is established for Algorithm 7.2 when the stepsizes
are small enough, under the assumption that the functions gi are strongly convex
and hi are continuously differentiable with Lipschitz continuous gradient. Note
that under this extra assumption the set of primal-dual solutions is a singleton,
S = {z?}. We summarize these requirements below:

Assumption 7.IV. For all i = 1, . . . ,m:
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(i) (Lipschitz continuity) hi is continuously differentiable, and ∇hi is 1
µi
h

-
Lipschitz continuous for some µih > 0. Equivalently, h∗i is µih-strongly
convex.

(ii) (stepsize condition) The stepsizes σi, γi > 0 satisfy the following inequali-
ties

σi <
1

Cs(B + 1)2 , γi <
1

β + 1
2Rs(B + 1)2 +B2‖β̄‖2

M−1
g

,

where
Rs :=

m∑
i=1

1
µi
h

‖Li•‖2, Cs :=
m∑
i=1

1
µig
‖L>•i‖2. (7.30)

Throughout this section we make use of the following positive definite matrices.

Mh := blkdiag(µ1
hIr1 , . . . , µ

m
h Irm), (7.31a)

M := blkdiag(Mg,Mh). (7.31b)

Note that according to Assumption 7.IV(ii) a one time global communication
of Rs, Cs, β and ‖β̄‖M−1

g
is required.

The stepsize condition in Assumption 7.IV(ii) is more stringent than the condi-
tion derived in Section 7.4 for the case of partial coupling. This is due to the
fact that Li• and L•i are operating on delayed vectors. It is shown in Theorem
7.6 that for the case of total coupling with AHU-type algorithm quasi-Fejér
monotonicity holds in the space equipped with 〈·, ·〉D (with D defined as in
(7.11)).

We proceed with the convergence results for Algorithm 7.2.

Theorem 7.6. Suppose that Assumptions 7.I, 7.II and 7.IV are satisfied. Then,
the sequence (zk)k∈N = (xk, uk)k∈N generated by Algorithm 7.2 is D-quasi-Fejér
monotone with respect to S = {z?}, and converges to z?.

Proof. The proof is similar to that of Theorem 7.4. In this case, the presence
of coupling through the linear maps results in additional error terms. First we
establish a key result for Algorithm 7.2.

Lemma 7.7. Suppose that Assumption 7.I, 7.II and 7.IV(i) are satisfied.
Consider the sequence generated by Algorithm 7.2. Then, for any (x?, u?) ∈ S
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the following hold:

‖xk+1 − x?‖22Mg+Γ−1 − ‖xk − x?‖2Γ−1 + ‖xk − xk+1‖2Γ−1−βI

≤ 2
m∑
i=1
〈∇if(xk[i])−∇if(xk) + L>•i(uk[i]− u?), x?i − xk+1

i 〉, (7.32)

‖uk+1 − u?‖22Mh+Σ−1 − ‖uk − u?‖2Σ−1 + ‖uk − uk+1‖2Σ−1

≤ 2
m∑
i=1
〈Li•xk[i], uk+1

i − u?i 〉+ 2〈Lx?, u? − uk+1〉. (7.33)

Proof. The proof of the lemma is similar to that of Lemma 7.5 and is therefore
omitted.

Add (7.32) and (7.33), and rearrange the inner products using (7.7) to derive
(with D defined in (7.11))

‖zk+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − zk+1‖2D

− β‖xk − xk+1‖2 + ‖xk+1 − x?‖22Mg
+ ‖uk+1 − u?‖22Mh

≤ 2
m∑
i=1
〈∇if(xk[i])−∇if(xk) + L>•i(uk[i]− uk+1), x?i − xk+1

i 〉

+ 2
m∑
i=1
〈Li•(xk[i]− xk+1), uk+1

i − u?i 〉 (7.34)

Using the inequalities in Lemma 7.3 with q = 1, ε1 = ε2 = 1, ε3 = 2, v = xk+1

and y = uk+1 yields:

‖zk+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − zk+1‖2D

≤ B‖β̄‖2
M−1
g
S1

1(xt)t≤k + 1
2Rs(B + 1)S0

1(xt)t≤k

+ Cs(B + 1)S0
1(ut)t≤k + β‖xk − xk+1‖2. (7.35)
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Sum over k from 0 to p > 0, to derive

‖zp+1 − z?‖2D − ‖z0 − z?‖2D +
p∑
k=0
‖zk − zk+1‖2D

≤ B‖β̄‖2
M−1
g

p∑
k=0

S1
1(xt)t≤k + Rs(B+1)

2

p∑
k=0

S0
1(xt)t≤k

+ β

p∑
k=0
‖xk − xk+1‖2 + Cs(B + 1)

p∑
k=0

S0
1(ut)t≤k. (7.36)

By repeated use of (7.18) in (7.36) we obtain

‖zp+1 − z?‖2D − ‖z0 − z?‖2D +
p∑
k=0
‖zk − zk+1‖2D

≤
(
B2‖β̄‖2

M−1
g

+ 1
2Rs(B + 1)2 + β

) p∑
k=0
‖xk − xk+1‖2

+ Cs(B + 1)2
p∑
k=0
‖uk − uk+1‖2.

If the stepsizes are small enough to satisfy Assumption 7.IV(ii), letting p to
infinity yields

∑∞
k=0 ‖zk+1 − zk‖2 <∞. Therefore, it follows from (7.35) (using

(7.18)) that (zk)k∈N is D-quasi-Fejér monotone with respect to S. Arguing as
in Theorem 7.4 completes the proof.

The next theorem provides a sufficient condition for the stepsizes under which
linear convergence is attained.

Theorem 7.8 (linear convergence). Suppose that Assumption 7.I, 7.II and
7.IV(i) are satisfied. Consider the sequence (zk)k∈N generated by Algorithm
7.2. Let c be a positive scalar and set γi = c

µig
, σi = c

µi
h

for i = 1, . . . ,m. Let
µmin
g = min{µ1

g, . . . , µ
m
g }, µmin

h = min{µ1
h, . . . , µ

m
h }. Then, the following linear

convergence rate holds

‖zk − z?‖2D ≤
( 1

1+c
)k‖z0 − z?‖2D,
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provided that c ≤ (1 + c2)
1

B+1 − 1 where

c2 = min

 µmin
g

2B‖β̄‖2
M−1
g

+Rs(B + 1) + β
,

µmin
h

2Cs(B + 1)

.
Proof. In Theorem 7.6 the strong convexity assumption was leveraged to coun-
teract the error terms. In order to prove linear convergence we retain some of
the strong convexity terms. Using the inequalities of Lemma 7.3 with q = 1,
ε1 = ε2 = 0.5, ε3 = 1, v = xk+1 and y = uk+1 in (7.34) yields

‖zk+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − zk+1‖2D

+ ‖xk+1 − x?‖2Mg
+ ‖uk+1 − u?‖2Mh

≤
(

2B‖β̄‖2
M−1
g

+Rs(B + 1)
)
S0

1(xt)t≤k

+ 2Cs(B + 1)S0
1(ut)t≤k + β‖xk − xk+1‖2. (7.37)

Note that one may set these constants differently and obtain a different valid
bound on the stepsizes.

Since we set γi = c
µig

, σi = c
µi
h

, we have D = blkdiag(Γ−1,Σ−1) =
1
c blkdiag(Mg,Mh), which together with (7.37) yields

(1 + c)‖zk+1 − z?‖2D − ‖zk − z?‖2D ≤
(

2B‖β̄‖2
M−1
g

+Rs(B + 1) + β
)
S0

1(xt)t≤k

+ 2Cs(B + 1)S0
1(ut)t≤k − ‖zk+1 − zk‖2D,

(7.38)

where we used the conservative bound β‖xk+1 − xk‖2 ≤ βS0
1(xt)t≤k in order to

avoid algebraic difficulties. The result follows by multiplying (7.38) by (1 + c)k
and summing over k from 0 to p, see [12, Lem. 1].

7.5.2 Randomized variant

In this subsection we propose a randomized variant of Algorithm 7.2 where
agents are activated randomly according to independent probabilities, i.e., at
every iteration several agents may be active. Unlike the partially asynchronous
protocol [20], in this scheme the agents are not required to perform at least
one update in any interval of length B. In the randomized setting of Algorithm



THE CASE OF TOTAL COUPLING 149

Algorithm 7.3 A randomized variant of Algorithm 7.2
Initialize: x0

i ∈ Rni , u0
i ∈ Rri for i ∈ {1, . . . ,m}.

For k = 0, 1, . . . do
each agent i = 1, . . . ,m is activated independantly with probability pi > 0.
For active agents do
% Local updates

perform the local updates using the last received information, i.e., the locally

stored vectors xk[i] and uk[i] as defined in (7.3):
1: xk+1

i = proxγigi
(
xki − γiL>•iuk[i]− γi∇if(xk[i])

)
2: uk+1

i = proxσih?i
(
uki + σiLi•x

k[i]
)

% Broadcasting to neighbors

3: send xk+1
i to all j ∈ N out

i ∪ Mp
i , and uk+1

i to all j ∈ Md
i

(possibly with different delays)

7.3, the stepsize condition in Assumption 7.IV(ii) is replaced by the following
stepsize condition.

Assumption 7.V. (stepsize condition) For all i = 1, . . . ,m, independent
probabilities pi > 0 and stepsizes σi, γi > 0 satisfy the following inequalities

σi <
1

2Cs(B2pi + 1) , γi <
1

β +Rs(B2pi + 1) + ‖β̄‖2
M−1
g
B2pi

.

Notice that compared to the non-randomized version, according to Assumption
7.V, an agent is allowed to take larger steps if its probability of activation is
smaller.

Theorem 7.9. Suppose that Assumption 7.I, 7.II, 7.IV(i) and 7.V are satisfied.
Then the sequence (zk)k∈N = (xk, uk)k∈N generated by Algorithm 7.3 converges
almost surely to z?.

Proof. Let z̄k+1
i = (x̄k+1

i , ūk+1
i ) denote the updated vector belonging to agent i

if that agent was to perform an update at iteration k. That is, in Algorithm 7.3,
zk+1
i = z̄k+1

i if agent i is activated and zk+1
i = zki if it remains idle. Let us define

the global vector z̄k+1 = (z̄k+1
1 , . . . , z̄k+1

m ) which corresponds to a deterministic
update of all agents at iteration k. Using Lemma 7.7 as in (7.34) we have

‖z̄k+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − z̄k+1‖2D
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− β‖xk − x̄k+1‖2 + ‖x̄k+1 − x?‖22Mg
+ ‖ūk+1 − u?‖22Mh

≤ 2
m∑
i=1
〈∇if(xk[i])−∇if(xk) + L>•i(uk[i]− ūk+1), x?i − x̄k+1

i 〉

+ 2
m∑
i=1
〈Li•(xk[i]− x̄k+1), ūk+1

i − u?i 〉 (7.39)

Using Lemma 7.3(ii) with q = 0, v = x̄k+1, and (7.16) (with ε = ε2µ
i
g for each

term in the summation) we have
m∑
i=1
〈L>•i(uk[i]− uk + uk − ūk+1), x?i − x̄k+1

i 〉

≤ ε2
2 ‖x

? − x̄k+1‖2Mg
+ BCs

2ε2
S1

1(ut)t≤k

+
m∑
i=1

(
‖L>•i‖2 1

2ε2µig
‖uk − ūk+1‖2 + ε2µ

i
g

2 ‖x
?
i − x̄k+1

i ‖2
)

= ε2‖x? − x̄k+1‖2Mg
+ Cs

2ε2
‖ūk+1 − uk‖2 + BCs

2ε2
S1

1(ut)t≤k. (7.40)

Similarly, using Lemma 7.3(iii) with q = 0, y = ūk+1 and (7.16) (with ε = ε3µ
i
h

for each term in the summation) we obtain:
m∑
i=1
〈Li•(xk[i]− x̄k+1), ūk+1

i − u?i 〉 ≤ ε3‖ūk+1 − u?‖2Mh
+ Rs

2ε3
‖xk − x̄k+1‖2

+ BRs
2ε3

S1
1(xt)t≤k. (7.41)

Using (7.40), (7.41) with ε2 = 0.5 and ε3 = 1 together with Lemma 7.3(i) with
ε1 = 1, v = x̄k+1 in (7.39) yields

‖z̄k+1 − z?‖2D − ‖zk − z?‖2D + ‖zk − z̄k+1‖2D

≤ aS1
1(xt)t≤k + bS1

1(ut)t≤k + (β +Rs)‖xk − x̄k+1‖2 + 2Cs‖ūk+1 − uk‖2,
(7.42)

where a :=
(
BRs +B‖β̄‖2

M−1
g

)
and b := 2BCs.

Let Ek[·] denote the expectation conditioned on the knowledge until time k.
Moreover, for notational convenience let us define the diagonal probability
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matrix

Π = blkdiag(p1In1 , . . . , pmInm , p1Ir1 , . . . , pmIrm),

Di = blkdiag(γ−1
i Iniσ−1

i Iri),

zki = (xki , uki ) and z?i = (x?i , u?i ). Consequently, using the fact that D is diagonal
we have

Ek
{
‖zk+1 − z?‖2Π−1D

}
= Ek

[
m∑
i=1

p−1
i ‖z

k+1
i − z?i ‖2Di

]

=
m∑
i=1

p−1
i

(
pi‖z̄k+1

i − z?i ‖2Di + (1− pi)‖zki − z?i ‖2Di
)

=
m∑
i=1

(
‖z̄k+1
i − z?i ‖2Di + (1−pi)

pi
‖zki − z?i ‖2Di

)
= ‖z̄k+1 − z?‖2D + ‖zk − z?‖2Π−1D − ‖z

k − z?‖2D.
(7.43)

Therefore, using (7.42) we obtain

Ek
{
‖zk+1 − z?‖2Π−1D

}
≤ ‖zk − z?‖2Π−1D − ‖z

k − z̄k+1‖2D + 2Cs‖ūk+1 − uk‖2

+ aS1
1(xt)t≤k + bS1

1(ut)t≤k + (β +Rs)‖xk − x̄k+1‖2.
(7.44)

Let us define Xk :=
∑k−1
τ=[k−B]+ (τ − (k −B) + 1)‖xτ+1 − xτ‖2 and Uk :=∑k−1

τ=[k−B]+ (τ − (k −B) + 1)‖uτ+1 − uτ‖2. It is easy to see that

Xk+1 = Xk −
k−1∑

τ=[k−B]+

‖xτ+1 − xτ‖2 +B‖xk − xk+1‖2.

Arguing as in (7.43) we have

Ek
{
‖xk+1 − xk‖2

}
=

m∑
i=1

pi‖x̄k+1
i − xki ‖2.
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Therefore

Ek
{
Xk+1} ≤ Xk −

k−1∑
τ=[k−B]+

‖xτ+1 − xτ‖2 +B

m∑
i=1

pi‖x̄k+1
i − xki ‖2, (7.45)

Similarly for the dual variables we have

Ek
{
Uk+1} ≤ Uk − k−1∑

τ=[k−B]+

‖uτ+1 − uτ‖2 +B

m∑
i=1

pi‖ūk+1
i − uki ‖2. (7.46)

Consider the following Lyapunov function:

vk := ‖zk − z?‖2Π−1D + aXk + bUk.

Then using (7.44), (7.45) and (7.46) we obtain

Ek
{
vk+1} ≤ vk − ‖zk − z̄k+1‖2D

+ aB

m∑
i=1

pi‖x̄k+1
i − xki ‖2 + bB

m∑
i=1

pi‖ūk+1
i − uki ‖2

+ (β +Rs)‖xk − x̄k+1‖2 + 2Cs‖ūk+1 − uk‖2.

Therefore, if Assumption 7.V holds then there exists c̄ > 0 such that

Ek
{
vk+1} ≤ vk − c̄‖zk − z̄k+1‖2.

Since ‖zk − zk+1‖ ≤ ‖zk − z̄k+1‖, we conclude by the Robbins-Siegmund
lemma [142] that almost surely ‖zk− zk+1‖ converges to zero, and consequently
by Lemma 7.2 so does ‖zk − zk[i]‖. Moreover, as a second consequence of the
Robbins-Siegmund lemma we have that (vk)k∈N and in particular ‖zk−z?‖Π−1D

converges to some [0,∞)-valued variable. The convergence result follows by
standard arguments as in [22, Thm. 3] and [51, Prop. 2.3] and using continuity
of the proximal operator.

In the next theorem we establish linear convergence for Algorithm 7.3 and
provide an explicit convergence rate.

Theorem 7.10. Suppose that Assumption 7.I, 7.II and 7.IV(i) are satisfied.
Let c < min{p1, . . . , pm} be a positive scalar and set γi = 1

(pi/c−1)µig
and
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σi = 1
(pi/c−1)µi

h

for i = 1, . . . ,m. Moreover, let

δ1 = 1
2B‖β̄‖2

M−1
g

+ 2BRs + 2Rs + β
min
i
{(pi − c)µig},

δ2 = 1
4Cs(1 +B) min

i
{(pi − c)µih}.

Suppose that c is such that the following inequality is satisfied (such c always
exist close enough to zero)

1
(1− c)B + c ≤1 + min{δ1, δ2}.

Then, the following holds for the sequence (zk)k∈N generated by Algorithm 7.3:

E{‖zk − z?‖2M} ≤ (1− c)k‖z0 − z?‖2M .

Proof. As in the deterministic case in Theorem 7.8, in order to show linear
convergence we retain some of the strong convexity terms. Consider (7.39) and
use Lemma 7.3(i) with ε1 = 0.5, v = x̄k+1, (7.40) and (7.41) with ε2 = 0.25,
ε3 = 0.5 to derive:

‖z̄k+1 − z?‖2D+M − ‖zk − z?‖2D + ‖z̄k+1 − zk‖2D

≤ 2B
(
‖β̄‖2

M−1
g

+Rs

)
S1

1(xt)t≤k + 4BCsS1
1(ut)t≤k

+ (2Rs + β)‖x̄k+1 − xk‖2 + 4Cs‖ūk+1 − uk‖2, (7.47)

where M := blkdiag(Mg,Mh). Given the choice of stepsizes we have D =
blkdiag(Γ−1,Σ−1) =

( 1
cΠ− I

)
M . Using this and arguing as in (7.43) we have:

Ek
{
‖zk+1 − z?‖2M

}
= ‖z̄k+1 − z?‖2ΠM + ‖zk − z?‖2M − ‖zk − z?‖2ΠM

= c‖z̄k+1 − z?‖2D+M + ‖zk − z?‖2M − c‖zk − z?‖2D+M .

Combining this with (7.47) yields

Ek
{
‖zk+1 − z?‖2M

}
≤ (1− c)‖zk − z?‖2M − c‖z̄k+1 − zk‖2D
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+ 2cB
(
‖β̄‖2

M−1
g

+Rs

)
S1

1(xt)t≤k + 4cBCsS1
1(ut)t≤k

+ c(2Rs + β)‖x̄k+1 − xk‖2 + 4cCs‖ūk+1 − uk‖2. (7.48)

Next, note that by definition of z̄k = (x̄k, ūk) we have

S1
1(xt)t≤k ≤

k−1∑
τ=[k−B]+

‖x̄τ+1 − xτ‖2 ≤
k∑

τ=[k−B]+

‖x̄τ+1 − xτ‖2,

and similarly for the dual vector. Using this in (7.48) yields:

Ek
{
‖zk+1 − z?‖2M

}
≤ (1− c)‖zk − z?‖2M − c‖z̄k+1 − zk‖2D

+ c
(

2B‖β̄‖2
M−1
g

+ 2BRs + 2Rs + β
) k∑
τ=[k−B]+

‖x̄τ+1 − xτ‖2

+ 4cCs(1 +B)
k∑

τ=[k−B]+

‖ūτ+1 − uτ‖2.

The result follows by taking total expectation from both sides, dividing by
(1− c)k+1 and summing over k from 0 to p, see [12, Lem. 1].

Note that owing to the diagonal metric used in the proofs of Theorems 7.9 and
7.10, the independent activation pattern in Algorithm 7.3 can be replaced with
the more general random sweeping strategy as in [22, 95].

7.6 Numerical simulations

In this section we revisit the formation control example defined in (7.5). For
the dynamics of each agent/robot we used the model of [148] with exact
discretization of steplength ∆T = 1. The state and input cost matrices and the
constraints sets Wi are as in Section 4.6.

Let Ĉ be a linear mapping such that Ĉwi = Cξi and Li• be such that
Li•w = (Eiwi, wi). Minimization (7.5) can be formulated as an instance of (7.8)
by setting f(w) =

∑m
i=1

λi
2
∑
j∈Ai ‖Ĉ(wi − wj) − dij‖2, gi(wi) = 1

2w
>
i Qiwi,

hi(yi, vi) = δbi(yi) + δWi
(vi). Therefore, implementation of the algorithms pre-
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sented in this paper would only require simple operations such as matrix-vector
products, projections onto points and projections onto setsWi (which are simple
boxes).

In our simulations, horizon length 3 was used. The delays between agents are
randomly generated integers in the interval [0, B]. We consider two numerical
simulations. In the first one we set m = 5, B = 1 with initial polygon config-
uration and enforce an arrow formation by appropriate selection of dij . The
interested reader may refer to Section 4.6 for additional details of the formation
setup. As discussed in the introduction, minimization (7.5) is an example of
partial coupling and Algorithm 7.1 is the suitable choice. In the first numerical
experiment, depicted in Figure 7.2 (left), we use the theoretical stepsize bound
in (7.19). For comparison, we also considered the dual decomposition approach
of [136] that is based on the subgradient method (although this algorithm is
not studied with communication delays). For comparison, Algorithms 7.2 and
7.3 are also plotted even though they are not designed for this type of problem.
Algorithm 7.3 is used with probabilities of activation pi set to 0.2 and 0.8. It is
observed that the convergence rate of the proposed algorithms are linear.

In the second numerical experiment, depicted in Figure 7.2 (right), we considered
a larger problem with m = 50 and the maximum delay B = 10. We simulated
the algorithms with nominal stepsizes. It is observed that Algorithm 7.2 and the
dual decomposition approach struggle to reach a high precision. Interestingly,
the randomized algorithm Algorithm 7.3 is able to overcome this. Moreover, even
with larger delays the algorithms are convergent with nominal stepsizes while
the theoretical stepsize may become too small resulting in slow convergence in
practice. Therefore, it would be interesting to study if the stepsize conditions
presented in this paper can be relaxed for the special case when hi are indicator
functions and gi are quadratic.

7.7 Conclusions

In this chapter we considered the application of primal-dual algorithms for
solving structured optimization problems over message-passing architectures.
The coupling between agents was classified as total and partial coupling. For each
case a separate algorithm was studied and it was shown that the communication
delay is tolerated provided that the stepsizes are small enough, and that some
strong convexity assumption holds. In addition, in the case of total coupling
a variant of the proposed algorithm was studied that allows random and
independent activation of the agents. Future work consists of extending the
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Figure 7.2: Comparison for the convergence of the algorithms for m = 5, B = 1
(left) and m = 50, B = 10 (right).

convergence analysis to the partially asynchronous framework and exploring
different Lyapunov functions that allow for nonconvex cost functions.



Chapter 8

Block-coordinate and incremental aggregated
proximal gradient methods

This chapter is based on:

P. Latafat, A. Themelis and P. Patrinos. Block-coordinate and incremen-
tal aggregated proximal gradient methods for nonsmooth nonconvex problems.
arXiv:1906.10053 (submitted 2019).

8.1 Introduction

This chapter addresses block-coordinate (BC) proximal gradient methods for
problems of the form

minimize
x=(x1,...,xN )∈R

∑
ini

Φ(x) := F (x) +G(x), where F (x) := 1
N

∑N
i=1 fi(xi),

(8.1)
in the following setting.
Assumption 8.I (problem setting). In problem (8.1) the following hold:

a1 function fi is Lfi-smooth (Lipschitz differentiable with modulus Lfi), i ∈
[N ];

a2 function G is proper and lower semicontinuous (lsc);

a3 a solution exists: argmin Φ 6= ∅.

Unlike typical cases analyzed in the literature where G is separable [163, 166,
125, 15, 25, 139, 106, 44, 85, 179], we here consider the complementary case

157
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where it is only the smooth term F that is assumed to be separable. The
main challenge in analyzing convergence of BC schemes for (8.1) especially in
the nonconvex setting is the fact that even in expectation the cost does not
necessarily decrease along the trajectories. Instead, we demonstrate that the
forward-backward envelope (FBE) [132, 158] is a suitable Lyapunov function
for such problems.

Several BC-type algorithms that allow for a nonseparable nonsmooth term have
been considered in the literature, however, all in convex settings. In [165, 167] a
class of convex composite problems is studied that involves a linear constraint as
the nonsmooth nonseparable term. A BC algorithm with a Gauss-Southwell-type
rule is proposed and the convergence is established using the cost as Lyapunov
function by exploiting linearity of the constraint to ensure feasibility. A refined
analysis in [119, 120] extends this to a random coordinate selection strategy.
Another approach in the convex case is to consider randomized BC updates
applied to general averaged operators. Although this approach can allow for fully
nonseparable problems, usually separable nonsmooth functions are considered in
the literature. The convergence analysis of such methods relies on establishing
quasi-Fejér monotonicity [88, 51, 134, 22, 133, 95]. In a primal-dual setting in
[70] a combination of Bregman and Euclidean distance is employed as Lyapunov
function. In [82] a BC algorithm is proposed for strongly convex algorithms
that involves coordinate updates for the gradient followed by a full proximal
step, and the distance from the (unique) solution is used as Lyapunov function.
The analysis and the Lyapunov functions in all of the above mentioned works
rely heavily on convexity and are not suitable for nonconvex settings.

Thanks to the nonconvexity and nonseparability of G, many machine learning
problems can be formulated as in (8.1), a primary example being constrained
and/or regularized finite sum problems [17, 149, 60, 59, 114, 138, 137, 147]

minimize x∈Rn ϕ(x) := 1
N

∑N
i=1 fi(x) + g(x), (8.2)

where fi : Rn → R are smooth functions and g : Rn → R is possibly nonsmooth,
and everything here can be nonconvex. In fact, one way to cast (8.2) into the
form of problem (8.1) is by setting

G(x) := 1
N

∑N
i=1 g(xi) + δC(x), (8.3)

where C :=
{
x ∈ RnN | x1 = x2 = · · · = xN

}
is the consensus set, and δC is

the indicator function of set C. Since the nonsmooth term g is allowed to be
nonconvex, formulation (8.2) can account for nonconvex constraints such as
rank constraints or zero norm balls, and nonconvex regularizers such as `p with
p ∈ [0, 1), [87].
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Another prominent example in distributed applications is the “sharing” problem
[29]:

minimize
x∈RnN

Φ(x) := 1
N

∑N
i=1 fi(xi) + g

(∑N
i=1 xi

)
. (8.4)

where fi : Rn → R are smooth functions and g : Rn → R is nonsmooth, and
all are possibly nonconvex. The sharing problem is cast as in (8.1) by setting
G := g ◦A, where A := [In . . . In] ∈ Rn×nN .

8.1.1 The main block-coordinate algorithm

While gradient evaluations are the building blocks of smooth minimization,
a fundamental tool to deal with a nonsmooth lsc term ψ : Rr → R is its
V -proximal mapping

proxVψ (x) := argmin
w∈Rr

{
ψ(w) + 1

2‖w − x‖
2
V

}
, (8.5)

where V is a symmetric and positive definite matrix and ‖·‖V indicates the norm
induced by the scalar product (x, y) 7→ 〈x, V y〉. It is common to take V = t−1Ir
as a multiple of the r × r identity matrix Ir, in which case the notation proxtψ
is typically used and t is referred to as a stepsize. While this operator enjoys
nice regularity properties when g is convex, such as (single valuedness and)
Lipschitz continuity, for nonconvex g it may fail to be a well-defined function
and rather has to be intended as a point-to-set mapping proxVψ : Rr ⇒ Rr.
Nevertheless, the value function associated to the minimization problem in the
definition (8.5), namely the Moreau envelope

ψV (x) := min
w∈Rr

{
ψ(w) + 1

2‖w − x‖
2
V

}
, (8.6)

is a well-defined real-valued function, in fact locally Lipschitz continuous, that
lower bounds ψ and shares with ψ infima and minimizers. The proximal mapping
is available in closed form for many useful functions, many of which are widely
used regularizers in machine learning; for instance, the proximal mapping of
the `0 and `1 regularizers amount to hard and soft thresholding operators.

In many applications the cost to be minimized is structured as the sum of a
smooth term h and a proximable (i.e., with easily computable proximal mapping)
term ψ. In these cases, the proximal gradient method [75, 11] constitutes a
cornerstone iterative method that interleaves gradient descent steps on the
smooth function and proximal operations on the nonsmooth function, resulting
in iterations of the form x+ ∈ proxγψ(x− γ∇h(x)) for some suitable stepsize
γ.
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Our proposed scheme to address problem (8.1) is a BC variant of the proximal
gradient method, in the sense that only some coordinates are updated according
to the proximal gradient rule, while the others are left unchanged. This concept is
synopsized in Algorithm 8.1, which constitutes the general algorithm addressed
in this chapter.

Algorithm 8.1 General forward-backward block-coordinate scheme
Require x0 ∈ R

∑
ini , γi ∈ (0,N/Lfi), i ∈ [N ]

Γ = blkdiag(γ1In1 , . . . , γN InN ), k = 0
Repeat until convergence
1: zk ∈ proxΓ−1

G

(
xk − Γ∇F (xk)

)
2: select a set of indices Ik+1 ⊆ [N ]
3: update xk+1

i = zki for i ∈ Ik+1 and xk+1
i = xki for i /∈ Ik+1, k ← k+ 1

Return zk

Although seemingly wasteful, in many cases one can efficiently compute individ-
ual blocks without the need of full operations. In fact BC Algorithm 8.1 bridges
the gap between a BC framework and a class of incremental methods where a
global computation typically involving the full gradient is carried out incremen-
tally via performing computations only for a subset of coordinates. Two such
broad applications, problems (8.2) and (8.4), are discussed in the dedicated Sec-
tions 8.3 and 8.4, where among other things we will show that Algorithm 8.1
leads to the well known Finito/MISO algorithm [60, 114].

8.1.2 Contributions

1)To the best of our knowledge this is the first analysis of BC schemes with a
nonseparable nonsmooth term and in the fully nonconvex setting. While the
original cost Φ cannot serve as a Lyapunov function, we show that the forward-
backward envelope (FBE) [132, 158] decreases surely, not only in expectation
(Lemma 8.5).

2)This allows for a quite general convergence analysis for different sampling
criteria. This chapter in particular covers randomized strategies (Section 8.2.3)
where at each iteration one or more coordinates are sampled with possibly
time-varying probabilities, as well as essentially cyclic (and in particular cyclic
and shuffled) strategies in case the nonsmooth term is convex (Section 8.2.4).

3)We exploit the Kurdyka-Łojasiewicz (KL) property to show global (as opposed
to subsequential) and linear convergence when the sampling is essentially cyclic
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and the nonsmooth function is convex, without imposing convexity requirements
on the smooth functions (Theorem 8.11).

4)As immediate byproducts of our analysis we obtain (a) an incremental
algorithm for the sharing problem [29] that to the best of our knowledge is
novel (Section 8.4), and (b) the Finito/MISO algorithm [60, 114] leading to a
much simpler and more general analysis than available in the literature with
new convergence results both for randomized sampling strategies in the fully
nonconvex setting and for essentially cyclic samplings when the nonsmooth
term is convex (Section 8.3).

8.1.3 Organization

This chapter is organized as follows. The core of the chapter lies in the conver-
gence analysis of Algorithm 8.1 detailed in Section 8.2: Section 8.2.1 introduces
the FBE, fundamental tool of our methodology and lists some of its properties
followed by other ancillary results documented in Section 8.7.1. The algorithmic
analysis begins in Section 8.2.2 with a collection of facts that hold indepen-
dently of the chosen sampling strategy, and later specializes to randomized
and essentially cyclic samplings in the dedicated Sections 8.2.3 and 8.2.4. Sec-
tions 8.3 and 8.4 discuss two particular instances of the investigated algorithmic
framework, namely (a generalization of) the Finito/MISO algorithm for finite
sum minimization and an incremental scheme for the sharing problem, both for
fully nonconvex and nonsmooth formulations. Convergence results are imme-
diately inferred from those of the more general BC Algorithm 8.1. Section 8.6
concludes this chapter.

8.2 Convergence analysis

We begin by observing that Assumption 8.I is enough to guarantee the well
definedness of the forward-backward operator in Algorithm 8.1, which for
notational convenience will be henceforth denoted as Tfb

Γ (x). Namely, Tfb
Γ :

R
∑
ini ⇒ R

∑
ini is the point-to-set mapping

Tfb
Γ (x) := proxΓ−1

G (x− Γ∇F (x))

= argmin
w∈R

∑
ini

{
F (x) + 〈∇F (x),w − x〉+G(w) + 1

2‖w − x‖
2
Γ−1

}
.

(8.7)
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Lemma 8.1. Suppose that Assumption 8.I holds, and for γi ∈ (0,N/Lfi),
i ∈ [N ] let Γ := blkdiag(γ1In1 , . . . , γN InN ). Then, proxΓ−1

G and Tfb
Γ are locally

bounded, outer semicontinuous (osc), nonempty- and compact-valued mappings.

Proof. For x? ∈ argmin Φ it follows from (8.41) that

min Φ ≤ F (x) +G(x) ≤ G(x) + F (x?) + 〈∇F (x?),x− x?〉+ 1
2‖x

? − x‖2ΛF .

Therefore, G is lower bounded by a quadratic function with quadratic term
− 1

2‖ · ‖
2
ΛF , and thus is prox-bounded in the sense of [144, Def. 1.23]. The claim

then follows from [144, Thm. 1.25 and Ex. 5.23(b)] and the continuity of the
forward mapping id− Γ∇F .

8.2.1 The forward-backward envelope

The fundamental challenge in the analysis of (8.1) is the fact that, without
separability of G, descent on the cost function cannot be established even
in expectation. Instead, we show that the forward-backward envelope (FBE)
[132, 158] can be used as Lyapunov function. This subsection formally introduces
the FBE, here generalized to account for a matrix-valued stepsize parameter Γ,
and lists some of its basic properties needed for the convergence analysis of Al-
gorithm 8.1. Although easy adaptations of the similar results in [132, 158, 156],
for the sake of self-inclusiveness the proofs are included here.

Definition 8.2 (forward-backward envelope). In problem (8.1), let fi be dif-
ferentiable functions, i ∈ [N ], and let Γ = blkdiag(γ1In1 , . . . , γN InN ) for
γ1, . . . , γN > 0. The forward-backward envelope (FBE) associated to (8.1) with
stepsize Γ is the function Φfb

Γ : R
∑
ini → [−∞,∞) defined as

Φfb
Γ (x) := inf

w∈R
∑
ini

{
F (x) + 〈∇F (x),w − x〉+G(w) + 1

2‖w − x‖
2
Γ−1

}
.

(8.8a)

Definition 8.2 highlights an important symmetry between the Moreau envelope
and the FBE: similarly to the relation between the Moreau envelope (8.6) and
the proximal mapping (8.5), the FBE (8.8a) is the value function associated with
the proximal gradient mapping (8.7). By replacing any minimizer z ∈ Tfb

Γ (x) in
the right-hand side of (8.8a) one obtains yet another interesting interpretation
of the FBE in terms of the Γ−1-augmented Lagrangian associated to (8.1)

LΓ−1(x, z,y) := F (x) +G(z) + 〈y,x− z〉+ 1
2‖x− z‖

2
Γ−1 ,
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namely,
Φfb

Γ (x) = F (x) + 〈∇F (x), z − x〉+G(z) + 1
2‖z − x‖

2
Γ−1 (8.8b)

= LΓ−1(x, z,−∇F (x)). (8.8c)
Lastly, by rearranging the terms it can easily be seen that

Φfb
Γ (x) = F (x)− 1

2‖∇F (x)‖2Γ +GΓ−1
(x− Γ∇F (x)), (8.8d)

hence in particular that the FBE inherits regularity properties of GΓ−1 and ∇F ,
some of which are summarized in the next result.

Lemma 8.3 (FBE: fundamental inequalities). Suppose that Assumption 8.I is
satisfied and let γi ∈ (0,N/Lfi), i ∈ [N ]. Then, the FBE Φfb

Γ is a (real-valued
and) locally Lipschitz continuous function. Moreover, the following hold for any
x ∈ R

∑
ini :

(i) Φfb
Γ (x) ≤ Φ(x).

(ii) 1
2‖z−x‖

2
Γ−1−ΛF ≤ Φfb

Γ (x)−Φ(z) ≤ 1
2‖z−x‖

2
Γ−1+ΛF for any z ∈ Tfb

Γ (x),
where ΛF := 1

N blkdiag
(
Lf1In1 , . . . , LfnInN

)
.

(iii) If in addition each fi is µfi-strongly convex and G is convex, then for
every x ∈ R

∑
ini

1
2‖z − x

?‖2µF ≤ Φfb
Γ (x)−min Φ

where x? := argmin Φ, µF := 1
N blkdiag

(
µf1In1 , . . . , µfN InN

)
, and z =

Tfb
Γ (x).

Proof. Local Lipschitz continuity of the FBE follows from (8.8d) in light of
Lemma 8.1 and [144, Ex. 10.32].

♠ 8.3(i) Follows by replacing w = x in (8.8a).
♠ 8.3(ii) Directly follows from (8.42) and the identity Φfb

Γ (x) =MΓ(z,x) for
z ∈ Tfb

Γ (x).
♠ 8.3(iii) By strong convexity, denoting Φ? := min Φ, we have

Φ? ≤ Φ(z)− 1
2‖z − x

?‖2µF ≤ Φfb
Γ (x)− 1

2‖z − x
?‖2µF

where the second inequality follows from Lemma 8.3(ii).

Another key property that the FBE shares with the Moreau envelope is that
minimizing the extended-real-valued function Φ is equivalent to minimizing the
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continuous function Φfb
Γ . Moreover, the former is level bounded iff so is the

latter. This fact will be particularly useful for the analysis of Algorithm 8.1,
as it will be shown in Lemma 8.5 that the FBE (surely) decreases along its
iterates. As a consequence, despite the fact that the same does not hold for Φ
(in fact, iterates may even be infeasible), coercivity of Φ is enough to guarantee
boundedness of (xk)k∈N and (zk)k∈N.

Lemma 8.4 (FBE: minimization equivalence). Suppose that Assumption 8.I is
satisfied and that γi ∈ (0,N/Li), i ∈ [N ]. Then, the following hold:

(i) min Φfb
Γ = min Φ;

(ii) argmin Φfb
Γ = argmin Φ;

(iii) Φfb
Γ is level bounded iff so is Φ.

Proof.

♠ 8.4(i) and 8.4(ii) It follows from Lemma 8.3(i) that inf Φfb
Γ ≤ min Φ.

Conversely, let (xk)k∈N be such that Φfb
Γ (xk) → inf Φfb

Γ as k → ∞, and for
each k let zk ∈ Tfb

Γ (xk). It then follows from Lemmas 8.3(i) and 8.3(ii) that

inf Φfb
Γ ≤ min Φ ≤ lim inf

k→∞
Φ(zk) ≤ lim inf

k→∞
Φfb

Γ (xk) = inf Φfb
Γ ,

hence min Φ = inf Φfb
Γ . Suppose now that x ∈ argmin Φ (which exists by

Assumption 8.I); then it follows from Lemma 8.3(ii) that Tfb
Γ (x) = {x} (for

otherwise another element would belong to a lower level set of Φ). Combining
with Lemma 8.3(i) with z = x we then have

min Φ = Φ(z) ≤ Φfb
Γ (x) ≤ Φ(x) = min Φ.

Since min Φ = inf Φfb
Γ , we conclude that x ∈ argmin Φfb

Γ , and that in particular
inf Φfb

Γ = min Φfb
Γ . Conversely, suppose x ∈ argmin Φfb

Γ and let z ∈ Tfb
Γ (x).

By combining Lemmas 8.3(i) and 8.3(ii) we have that z = x, that is, that
Tfb

Γ (x) = {x}. It then follows from Lemma 8.3(ii) and assertion 8.4(i) that

Φ(x) = Φ(z) ≤ Φfb
Γ (x) = min Φfb

Γ = min Φ,

hence x ∈ argmin Φ.

♠ 8.4(iii) Due to Lemma 8.3(i), if Φfb
Γ is level bounded clearly so is

Φ. Conversely, suppose that Φfb
Γ is not level bounded. Then, there exist

α ∈ R and (xk)k∈N ⊆ lev≤α Φfb
Γ such that ‖xk‖ → ∞ as k → ∞. Let

λ = mini
{
γ−1
i − LfiN−1} > 0, and for each k ∈ N let zk ∈ Tfb

Γ (xk). It
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then follows from Lemma 8.3(ii) that

min Φ ≤ Φ(zk) ≤ Φfb
Γ (xk)− λ

2 ‖x
k − zk‖2 ≤ α− λ

2 ‖x
k − zk‖2,

hence (zk)k∈N ⊆ lev≤α Φ and ‖xk − zk‖2 ≤ 2
λ (α−min Φ). Consequently, also

the sequence (zk)k∈N ⊆ lev≤α Φ is unbounded, proving that Φ is not level
bounded.

We remark that the kinship of Φfb
Γ and Φ extends also to local minimality; the

interested reader is referred to [155, Thm. 3.6] for details.

8.2.2 A sure descent lemma

We now proceed to the theoretical analysis of Algorithm 8.1. Clearly, some
assumptions on the index selection criterion are needed in order to establish
reasonable convergence results, for little can be guaranteed if, for instance, one
of the indices is never selected. Nevertheless, for the sake of a general analysis
it is instrumental to first investigate which properties hold independently of
such criteria. After listing some of these facts in Lemma 8.5, in Sections 8.2.3
and 8.2.4 we will specialize the results to randomized and (essentially) cyclic
sampling strategies.

Lemma 8.5 (sure descent). Suppose that Assumption 8.I is satisfied. Then,
the following hold for the iterates generated by Algorithm 8.1:

(i) Φfb
Γ (xk+1) ≤ Φfb

Γ (xk) −
∑
i∈Ik+1

ξi
2γi ‖z

k
i − xki ‖2, where ξi := N−γiLfi

N ,
i ∈ [N ], are strictly positive;

(ii) (Φfb
Γ (xk))k∈N monotonically decreases to a finite value Φ? ≥ min Φ;

(iii) Φfb
Γ is constant (and equals Φ? as above) on the set of accumulation points

of (xk)k∈N;

(iv) the sequence (‖xk+1 − xk‖2)k∈N has finite sum (and in particular van-
ishes);

(v) if Φ is coercive, then (xk)k∈N and (zk)k∈N are bounded.

Proof.

♠ 8.5(i) To ease notation, let ΛF := 1
N blkdiag

(
Lf1In1 , . . . , LfnInN

)
and

for w ∈ R
∑
ini let wI ∈ R

∑
ini denote the slice (wi)i∈I , and let ΛFI ,ΓI ∈
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R
∑
i∈Ini×

∑
i∈Ini be defined accordingly. Start by observing that, since zk+1 ∈

proxΓ−1

G (xk+1−Γ∇F (xk+1)), from the proximal inequality on G it follows that
G(zk+1)−G(zk) ≤ 1

2‖z
k − xk+1 + Γ∇F (xk+1)‖2Γ−1 − 1

2‖z
k+1 − xk+1 + Γ∇F (xk+1)‖2Γ−1

= 1
2‖z

k − xk+1‖2Γ−1 − 1
2‖z

k+1 − xk+1‖2Γ−1 + 〈∇F (xk+1), zk − zk+1〉.
(8.9)

We have
Φfb

Γ (xk+1)− Φfb
Γ (xk) = F (xk+1) + 〈∇F (xk+1), zk+1 − xk+1〉+G(zk+1)

+ 1
2‖z

k+1 − xk+1‖2Γ−1

−
(
F (xk) + 〈∇F (xk), zk − xk〉+G(zk) + 1

2‖z
k − xk‖2Γ−1

)
apply the upper bound in (8.41) with w = xk+1 and the proximal inequality (8.9)

≤ 〈∇F (xk),xk+1 − zk〉+ 1
2‖x

k+1 − xk‖2ΛF + 〈∇F (xk+1), zk − xk+1〉

− 1
2‖z

k − xk‖2Γ−1 + 1
2‖z

k − xk+1‖2Γ−1 .

To conclude, notice that the `-th block of ∇F (xk) − ∇F (xk+1) is zero for
` /∈ I, and that the `-th block of xk+1 − zk is zero if ` ∈ I. Hence, the scalar
product vanishes. For similar reasons, one has ‖zk−xk+1‖2Γ−1−‖zk−xk‖2Γ−1 =
− ‖zkI − xkI‖2Γ−1

I

and ‖xk+1 − xk‖2ΛF = ‖zkI − xkI‖2ΛFI , yielding the claimed
expression.

♠ 8.5(ii) Monotonic decrease of (Φfb
Γ (xk))k∈N is a direct consequence of asser-

tion 8.5(i). This ensures that the sequence converges to some value Φ?, bounded
below by min Φ in light of Lemma 8.4(i).

♠ 8.5(iii) Directly follows from assertion 8.5(ii) together with the continuity
of Φfb

Γ , see Lemma 8.3.

♠ 8.5(iv) Denoting ξmin := mini∈[N ] {ξi} which is a strictly positive constant,
it follows from assertion 8.5(i) that for each k ∈ N it holds that

Φfb
Γ (xk+1)− Φfb

Γ (xk) ≤ −
∑

i∈Ik+1

ξi
2γi ‖z

k
i − xki ‖2

≤ − ξmin
2

∑
i∈Ik+1

γ−1
i ‖z

k
i − xki ‖2

= − ξmin
2 ‖x

k+1 − xk‖2Γ−1 . (8.10)

By summing for k ∈ N and using the positive definiteness of Γ−1 together with
the fact that min Φfb

Γ = min Φ >∞ as ensured by Lemma 8.4(i) and 8.Ia3, we
obtain that

∑
k∈N ‖xk+1 − xk‖2 <∞.
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♠ 8.5(v) It follows from assertion 8.5(ii) that the entire sequence (xk)k∈N
is contained in the sublevel set

{
w | Φfb

Γ (w) ≤ Φfb
Γ (x0)

}
, which is bounded

provided that Φ is coercive as shown in Lemma 8.4(iii). In turn, boundedness
of (zk)k∈N then follows from local boundedness of Tfb

Γ , cf. Lemma 8.1.

8.2.3 Randomized sampling

In this section we provide convergence results for Algorithm 8.1 where the index
selection criterion complies with the following requirement.

Assumption 8.II (randomized sampling requirements). There exist constants
p1, . . . , pN > 0 such that, at any iteration and independently of the past, each
i ∈ [N ] is sampled with probability at least pi.

Our notion of randomization is general enough to allow for time-varying prob-
abilities and mini-batch selections. The role of parameters pi in Assumption
8.II is to prevent that an index is sampled with arbitrarily small probability.
In more rigorous terms, Pk[i ∈ Ik+1] ≥ pi shall hold for all i ∈ [N ], where Pk
represents the probability conditional to the knowledge at iteration k. Notice
that we do not require the pi’s to sum up to one, as multiple index selections
are allowed, similar to the setting of [22, 95] in the convex case.

Due to the possible nonconvexity of problem (8.1), unless additional assumptions
are made not much can be said about convergence of the iterates to a unique
point. Nevertheless, the following result shows that any accumulation point x? of
sequences (xk)k∈N and (zk)k∈N generated by Algorithm 8.1 is a stationary point,
in the sense that it satisfies the necessary condition for minimality 0 ∈ ∂̂Φ(x?),
where ∂̂ denotes the (regular) nonconvex subdifferential, see [144, Thm. 10.1].

Theorem 8.6 (randomized sampling: subsequential convergence). Suppose that
Assumptions 8.I and 8.II are satisfied. Then, the following hold almost surely
for the iterates generated by Algorithm 8.1:

(i) the sequence (‖xk − zk‖2)k∈N has finite sum (and in particular vanishes);

(ii) the sequence (Φ(zk))k∈N converges to Φ? as in Lemma 8.5(ii);

(iii) (xk)k∈N and (zk)k∈N have same cluster points, all stationary and on
which Φ and Φfb

Γ equal Φ?.

Proof. In what follows, Ek denotes the expectation conditional to the knowledge
at iteration k.
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♠ 8.6(i) Let ξi := N−γiLfi
N > 0, i ∈ [N ], be as in Lemma 8.5(i). We have

Ek
[
Φfb

Γ (xk+1)
]8.5(i)
≤ Ek

Φfb
Γ (xk)−

∑
i∈Ik+1

ξi
2γi ‖z

k
i − xki ‖2


= Φfb

Γ (xk)−
∑
I∈Ω

Pk
[
Ik+1 = I

]∑
i∈I

ξi
2γi ‖z

k
i − xki ‖2

= Φfb
Γ (xk)−

N∑
i=1

∑
I∈Ω,I3i

Pk
[
Ik+1 = I

]
ξi

2γi ‖z
k
i − xki ‖2

≤ Φfb
Γ (xk)−

N∑
i=1

piξi
2γi ‖z

k
i − xki ‖2, (8.11)

where Ω ⊆ 2[N ] is the sample space (2[N ] denotes the power set of [N ]). Therefore,

Ek
[
Φfb

Γ (xk+1)
]
≤ Φfb

Γ (xk)− σ
2 ‖x

k − zk‖2Γ−1 where σ := min
i=1...N

piξi > 0.
(8.12)

The claim follows from the Robbins-Siegmund supermartingale theorem, see
e.g., [142] or [17, Prop. 2].

♠ 8.6(ii) Observe that Φfb
Γ (xk) − ‖zk − xk‖2Γ−1+ΛF ≤ Φ(zk) ≤ Φfb

Γ (xk) −
‖zk − xk‖2Γ−1−ΛF holds (surely) for k ∈ N in light of Lemma 8.3(ii). The claim
then follows by invoking Lemma 8.5(ii) and assertion 8.6(i).

♠ 8.6(iii) In the rest of the proof, for conciseness the “almost sure” nature of
the results will be implied without mention. It follows from assertion 8.6(i) that
a subsequence (xk)k∈K converges to some point x? iff so does the subsequence
(zk)k∈K . Since Tfb

Γ (xk) 3 zk and both xk and zk converge to x? asK 3 k →∞,
the inclusion 0 ∈ ∂̂Φ(x?) follows from Lemma 8.21. Since the full sequences
(Φfb

Γ (xk))k∈N and (Φ(zk))k∈N converge to the same value Φ? (cf. Lem. 8.5(ii)
and assertion 8.6(ii)), due to continuity of Φfb

Γ (Lemma 8.3) it holds that
Φfb

Γ (x?) = Φ?, and in turn the bounds in Lemma 8.3(ii) together with assertion
8.6(i) ensure that Φ(x?) = Φ? too.

When G is convex and F is strongly convex (that is, each of the functions fi is
strongly convex), the FBE decreases Q-linearly in expectation along the iterates
generated by the randomized BC-Algorithm 8.1.

Theorem 8.7 (randomized sampling: linear convergence under strong convex-
ity). Additionally to Assumptions 8.I and 8.II, suppose that G is convex and
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that each fi is µfi-strongly convex. Then, for all k the following hold for the
iterates generated by Algorithm 8.1:

Ek
[
Φfb

Γ (xk+1)−min Φ
]
≤ (1− c)

(
Φfb

Γ (xk)−min Φ
)

(8.13a)

E
[
Φ(zk)−min Φ

]
≤
(
Φ(x0)−min Φ

)
(1− c)k (8.13b)

1
2E
[
‖zk − x?‖2µF

]
≤
(
Φ(x0)−min Φ

)
(1− c)k (8.13c)

where x? := argmin Φ, µF := 1
N blkdiag

(
µf1In1 , . . . µfnInN

)
, and denoting

ξi = N−γiLfi
N , i ∈ [N ],

c = min
i∈[N ]

{
ξipi
γi

}/
max
i∈[N ]

{
N−γiµfi
γ2
i
µfi

}
. (8.14)

Moreover, by setting the stepsizes γi and minimum sampling probabilities pi as

γi = N
µfi

(
1−

√
1− 1/κi

)
and pi =

(√
κi +

√
κi − 1

)2∑N
j=1

(√
κj +

√
κj − 1

)2 (8.15)

with κi := Lfi
µfi

, i ∈ [N ], then the constant c in (8.13) can be tightened to

c = 1∑N

i=1 (√κi+√κi−1)2 . (8.16)

Proof. Since zk is a minimizer in (8.8a), the necessary stationarity condition
reads Γ−1(xk − zk)−∇F (xk) ∈ ∂G(zk). Convexity of G then implies

G(x?) ≥ G(zk) + 〈Γ−1(xk − zk)−∇F (xk),x? − zk〉,

whereas from strong convexity of F we have

F (x?) ≥ F (xk) + 〈∇F (xk),x? − xk〉+ 1
2‖x

k − x?‖2µF .

By combining these inequalities into (8.8b), and denoting Φ? := min Φ =
min Φfb

Γ (cf. Lem. 8.4(i)), we have

Φfb
Γ (xk)−Φ?≤ 1

2‖z
k−xk‖2Γ−1− 1

2‖x
?−xk‖2µF +〈Γ−1(zk−xk),x?−zk〉

= 1
2‖z

k−xk‖2Γ−1−µF +〈(Γ−1−µF )(zk−xk),x?−zk〉− 1
2‖x

?−zk‖2µF .
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Next, by using the inequality 〈a, b〉 ≤ 1
2‖a‖

2
µF + 1

2‖b‖
2
µ−1
F

to cancel out the last
term, we obtain

Φfb
Γ (xk)− Φ? ≤ 1

2‖z
k − xk‖2Γ−1−µF + 1

2‖(Γ
−1 − µF )(xk − zk)‖2

µ−1
F

= 1
2‖z

k − xk‖2Γ−2µ−1
F

(I−ΓµF ), (8.17)

where the last identity uses the fact that the matrices are diagonal. Combined
with (8.11) the claimed Q-linear convergence (8.13a) with factor c as in (8.14)
is obtained. The R-linear rates in terms of the cost function and distance
from the solution are obtained by repeated application of (8.13a) after taking
(unconditional) expectation from both sides and using Lemma 8.3.

To obtain the tighter estimate (8.16), observe that (8.11) with the choice

pi := 1
γiµfi

N−γiµfi
N−γiLfi

(∑
j

1
γjµfj

N−γjµfj
N−γjLfj

)−1
,

which equals the one in (8.15) with γi as prescribed, yields

Ek
[
Φfb

Γ (xk+1)−Φ?
]
≤Φfb

Γ (xk)−Φ?−
(

2N
∑

j
1

γjµj

N−γjµj
N−γjLj

)−1 N∑
i=1

N−γiµfi
γ2
i
µfi
‖zki −xki ‖2

=Φfb
Γ (xk)−Φ?−

(
2N
∑

j
1

γjµj

N−γjµj
N−γjLj

)−1
‖zk−xk‖2Γ−1µ−1

F
(Γ−1−µF ).

The result now follows by combining this with (8.17) and replacing the values
of γi as proposed in (8.15).

Notice that as κi’s approach 1 the linear rate tends to 1− 1/N.

8.2.4 Cyclic, shuffled and essentially cyclic samplings

In this section we analyze the convergence of the BC-Algorithm 8.1 when a
cyclic, shuffled cyclic or (more generally) an essentially cyclic sampling [164,
163, 85, 45, 179] is used. As formalized in the following standing assumption,
an additional convexity requirement for the nonsmooth term G is needed.

Assumption 8.III (essentially cyclic sampling requirements). In problem (8.1),
function G is convex. Moreover, there exists T ≥ 1 such that in Algorithm 8.1
each index is selected at least once within any interval of T iterations.
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Note that having T < N is possible because of our general sampling strategy
where sets of indices can be sampled within the same iteration. For instance,
T = 1 corresponds to Ik+1 = [N ] for all k, in which case Algorithm 8.1 would
reduce to a (full) proximal gradient scheme.

Two notable special cases of single index selection rules are the cyclic and
shuffled cyclic sampling strategies.

Shuffled cyclic sampling: corresponds to setting

Ik+1 =
{
πbk/Nc

(
mod(k,N) + 1

)}
for all k ∈ N, (8.18)

where π0, π1, . . . are permutations of the set of indices [N ] (chosen randomly or
deterministically).
Cyclic sampling: corresponds to the case (8.18) with πbk/Nc = id, i.e.,

Ik+1 = {mod(k,N) + 1} for all k ∈ N. (8.19)

Consistently with the deterministic nature of the essentially cyclic sampling, all
results of the previous section hold surely, as opposed to almost surely.

Theorem 8.8 (essentially cyclic sampling: subsequential convergence). Suppose
that Assumptions 8.I and 8.III are satisfied. Then, all the assertions of Theorem
8.6 hold surely.

Proof. We first establish an important descent inequality for Φfb
Γ after every

T iterations, cf. (8.26). Convexity of G, entailing proxΓ−1

G being Lipschitz
continuous (cf. Lem. 8.22(i)), allows the employment of techniques similar to
those in [15, Lem. 3.3]. Since all indices are updated at least once every T
iterations, one has that

tν(i) := min {t ∈ [T ] | i is sampled at iteration Tν + t− 1} (8.20)

is well defined for each index i ∈ [N ] and ν ∈ N. Since i is sampled at iteration
Tν + tν(i) − 1 and xTνi = xTν+1

i = · · · = x
Tν+tν(i)−1
i by definition of tν(i), it

holds that

x
Tν+tν(i)
i = x

Tν+tν(i)−1
i + U>i

(
Tfb

Γ (xTν+tν(i)−1)− xTν+tν(i)−1
)

= xTνi + U>i

(
Tfb

Γ (xTν+tν(i)−1)− xTν+tν(i)−1
)
, (8.21)
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where Ui ∈ R
∑
jnj×ni denotes the i-th block column of the identity matrix so

that for a vector v ∈ Rni

Uiv = (0, . . . , 0,
i-th
v, 0, . . . , 0)>. (8.22)

For all t ∈ [T ] the following holds

Φfb
Γ (xT (ν+1))− Φfb

Γ (xTν) =
T∑
τ=1

(
Φfb

Γ (xTν+τ )− Φfb
Γ (xTν+τ−1)

)
≤ Φfb

Γ (xTν+t)− Φfb
Γ (xTν+t−1)

≤ − ξmin
2 ‖x

Tν+t − xTν+t−1‖2Γ−1 , (8.23)

where ξi := N−γiLfi
N as in Lemma 8.5(i), ξmin := mini∈[N ] {ξi}, and the two

inequalities follow from Lemma 8.5(i). Moreover, using triangular inequality for
i ∈ [N ] yields

‖xTν+tν(i)−1 − xTν‖Γ−1 ≤
tν(i)−1∑
τ=1

‖xTν+τ − xTν+τ−1‖Γ−1

≤ T√
ξmin/2

(
Φfb

Γ (xTν)− Φfb
Γ (xT (ν+1))

)1/2

, (8.24)

where the second inequality follows from (8.23) together with the fact that
tν(i) ≤ T . For all i ∈ [N ], from the triangular inequality and the LT-Lipschitz
continuity of Tfb

Γ (Lemma 8.22(iv)) we have

γ
−1/2
i ‖U>i (xTν −Tfb

Γ (xTν))‖ ≤ γ−1/2
i ‖U>i

(
xTν −Tfb

Γ (xTν+tν(i)−1)
)
‖

+ γ
−1/2
i ‖U>i

(
Tfb

Γ (xTν+tν(i)−1)−Tfb
Γ (xTν)

)
‖

≤ γ−1/2
i ‖xTν+tν(i)−1

i − xTν+tν(i)
i ‖

+ ‖Tfb
Γ (xTν+tν(i)−1)−Tfb

Γ (xTν)‖Γ−1

≤ ‖xTν+tν(i)−1 − xTν+tν(i)‖Γ−1

+ LT‖xTν+tν(i)−1 − xTν‖Γ−1

(8.23), (8.24)
≤ 1+TLT√

ξmin/2

(
Φfb

Γ (xTν)− Φfb
Γ (xT (ν+1))

)1/2

. (8.25)
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By squaring and summing over i ∈ [N ], we obtain

Φfb
Γ (xT (ν+1))− Φfb

Γ (xTν) ≤ − ξmin
2N(1+TLT)2 ‖zTν − xTν‖2Γ−1 . (8.26)

By telescoping the inequality and using the fact that min Φfb
Γ = min Φ shown

in Lemma 8.4(i), we obtain that (‖zTν − xTν‖2Γ−1)ν∈N has finite sum, and in
particular vanishes. Clearly, by suitably shifting, for every t ∈ [T ] the same
can be said for the sequence (‖zTν+t − xTν+t‖2Γ−1)ν∈N. The whole sequence
(‖zk − xk‖2)k∈N is thus summable, and we may now infer the claim as done in
the proof of Theorem 8.6.

In the next theorem explicit linear convergence rates are derived under the
additional strong convexity assumption for the smooth functions. The cyclic and
shuffled cyclic cases are treated separately, as tighter bounds can be obtained
by leveraging the fact that within cycles of N iterations every index is updated
exactly once.

Theorem 8.9 (essentially cyclic sampling: linear convergence under strong
convexity). Additionally to Assumptions 8.I and 8.III, suppose that each function
fi is µfi-strongly convex. Then, denoting δ := mini∈[N ]

{γiµfi
N

}
and ∆ :=

maxi∈[N ]

{
γiLfi
N

}
, for all ν ∈ N the following hold for the iterates generated

by Algorithm 8.1:

Φfb
Γ (xT (ν+1))−min Φ ≤ (1− c)

(
Φfb

Γ (xTν)−min Φ
)

(8.27a)

Φ(zTν)−min Φ ≤
(
Φ(x0)−min Φ

)
(1− c)ν (8.27b)

1
2‖z

Tν − x?‖2µF ≤
(
Φ(x0)−min Φ

)
(1− c)ν (8.27c)

where x? := argmin Φ, µF := 1
N blkdiag

(
µf1In1 , . . . µfnInN

)
, and

c = δ(1−∆)
N
(
1 + T (1− δ)

)2(1− δ)
. (8.28)

In the case of shuffled cyclic (8.18) or cyclic (8.19) sampling, the inequalities
can be tightened by replacing T with N and with

c = δ(1−∆)
N(2− δ)2(1− δ)

. (8.29)

Proof.
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♠ The general essentially cyclic case. Since Tfb
Γ is LT-Lipschitz continuous

with LT = 1− δ as shown in Lemma 8.22(iv), inequality (8.26) becomes

Φfb
Γ (xT (ν+1))− Φfb

Γ (xTν) ≤ − 1−∆
2N(1+T (1−δ))2 ‖zTν − xTν‖2Γ−1 .

Moreover, it follows from (8.17) that

Φfb
Γ (xTν)− Φ? ≤ 1

2 (δ−1 − 1)‖zTν − xTν‖2Γ−1 . (8.30)

By combining the two inequalities the claimed Q-linear convergence (8.27a)
with factor c as in (8.28) is obtained. In turn, the R-linear rates (8.27b) and
(8.27c) follow from Lemma 8.3.

♠ The shuffled cyclic case. Let us now suppose that the sampling strategy
follows a shuffled rule as in (8.18) with permutations π0, π1, . . . (hence in the
cyclic case πν = id for all ν ∈ N). Let Ui be as in (8.22) and ξmin as in the
proof of Theorem 8.8. Observe that tν(i) = π−1

ν (i) ≤ N for tν(i) as defined in
(8.20). For all t ∈ [N ]

Φfb
Γ (xN(ν+1))− Φfb

Γ (xNν) ≤ Φfb
Γ (xNν+t−1)− Φfb

Γ (xNν)

≤ − ξmin
2

t−1∑
τ=1
‖xNν+τ − xNν+τ−1‖2Γ−1

= − ξmin
2 ‖x

Nν+t−1 − xNν‖2Γ−1 , (8.31)

where the equality follows from the fact that at every iteration a different
coordinate is updated (and that Γ is diagonal), and the inequalities from
Lemma 8.5(i). Similarly, (8.23) holds with T replaced by N (despite the fact
that T is not necessarily N , but is rather bounded as T ≤ 2N − 1). By using
(8.31) in place of (8.24), inequality (8.25) is tightened as follows

γ
−1/2
i ‖U>i (xNν −Tfb

Γ (xNν))‖ ≤ 1+LT√
ξmin/2

(
Φfb

Γ (xNν)− Φfb
Γ (xN(ν+1))

)1/2

.

By squaring and summing for i ∈ [N ] we obtain

Φfb
Γ (xN(ν+1))−Φfb

Γ (xNν) ≤ − ξmin
2N(1+LT)2 ‖zNν−xNν‖2Γ−1 = −(1−∆)

2N(1+LT)2 ‖zNν−xNν‖2Γ−1 ,

(8.32)
where LT = 1 − δ as discussed above. By combining this and (8.30) (with T
replaced by N) the improved coefficient (8.29) is obtained.

Note that if one sets γi = αN/Lfi for some α ∈ (0, 1), then δ =
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αmini∈[N ] {µfi/Lfi} and ∆ = α. With this selection, as the condition num-
ber approaches 1 the rate in (8.29) tends to 1− α

N(2−α)2 .

8.2.5 Global and linear convergence with KL inequality

The convergence analyses of the randomized and essentially cyclic cases both rely
on a descent property on the FBE that quantifies the progress in the minization
of Φfb

Γ in terms of the squared forward-backward residual ‖x− z‖2. A subtle
but important difference, however, is that the inequality (8.12) in the former
case involves a conditional expectation, whereas (8.26) in the latter does not.
The sure descent property occurring for essentially cyclic sampling strategies is
the key for establishing global (as opposed to subsequential) convergence based
on the Kurdyka-Łojasiewicz (KL) property [111, 112, 93]. A similar result is
achieved in [179], which however considers the complementary case to problem
(8.1) where the nonsmooth function G is assumed to be separable, and thus the
cost function itself can serve as Lyapunov function.

Definition 8.10 (KL property with exponent θ). A proper lsc function h :
Rn → R is said to have the Kurdyka-Łojasiewicz (KL) property with exponent
θ ∈ (0, 1) at w̄ ∈ dom h if there exist ε, η, % > 0 such that

ψ′(h(w)− h(w̄)) dist(0, ∂h(w)) ≥ 1

holds for all w such that ‖w − w̄‖ < ε and h(w̄) < h(w) < h(w̄) + η, where
ψ(s) := %s1−θ. We say that h satisfies the KL property with exponent θ (without
mention of w̄) if it satisfies the KL property with exponent θ at any w̄ ∈ dom ∂h.

Semialgebraic functions comprise a wide class of functions that enjoy this
property [24, 23], which has been extensively exploited to provide convergence
rates of optimization algorithms [9, 10, 11, 25, 72, 128, 102, 178]. Based on this,
in the next result we provide sufficient conditions ensuring global and R-linear
convergence of Algorithm 8.1 with essentially cyclic sampling.

Theorem 8.11 (essentially cyclic sampling: global and linear convergence).
Additionally to Assumptions 8.I and 8.III, suppose that Φ has the KL property
with exponent θ ∈ (0, 1) (as is the case when fi and G are semialgebraic),
and is coercive. Then, any sequences (xk)k∈N and (zk)k∈N generated by Algo-
rithm 8.1 converge to (the same) stationary point x?. Moreover, if θ ≤ 1/2 then
(‖zk − xk‖)k∈N, (xk)k∈N and (zk)k∈N converge at R-linear rate.

Proof. Let (xk)k∈N and (zk)k∈N be sequences generated by Algorithm 8.1 with
essentially cyclic sampling, and let Φ? be the limit of the sequence (Φfb

Γ (xk))k∈N
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as in Lemma 8.5(ii). To avoid trivialities, we may assume that Φfb
Γ (xk) 	 Φ?

for all k, for otherwise the sequence (xk)k∈N is asymptotically constant, and
thus so is (zk)k∈N. Let Ω be the set of accumulation points of (xk)k∈N, which
is compact and such that Φfb

Γ ≡ Φ? on Ω, as ensured by Theorem 8.8. It follows
from Lemma 8.23 and [9, Lem. 1(ii)] that Φfb

Γ enjoys a uniform KL property on
Ω; in particular, ψ′(Φfb

Γ (xk) − Φ?) dist(0, ∂Φfb
Γ (xk)) ≥ 1 holds for all k large

enough such that xk is sufficiently close to Ω and Φfb
Γ (xk) is sufficiently close

to Φ?, where ψ(s) = %s1−θ′ for some % > 0 and θ′ = max {θ, 1/2}. Combined
with Lemma 8.22(iii), for all k large enough we thus have

ψ′(Φfb
Γ (xk)− Φ?) ≥

c

‖xk − zk‖Γ−1
, (8.33)

where c := N mini {√γi}
N+maxi {γiLfi}

> 0. Let ∆k := ψ(Φfb
Γ (xk) − Φ?). By combining

(8.33) and (8.26) we have that there exists a constant c′ > 0 such that

∆(ν+1)T−∆νT ≤ ψ′(Φfb
Γ (xνT )−Φ?)

(
Φfb

Γ (x(ν+1)T )− Φfb
Γ (xνT )

)
≤ −c′‖xνT−zνT ‖Γ−1

(8.34)
holds for all ν ∈ N large enough (the first inequality uses concavity of ψ).
By summing over ν (sure) summability of the sequence (‖xνT − zνT ‖)ν∈N is
obtained. By suitably shifting, for every t ∈ [T ] the same can be said for the
sequence (‖zTν+t − xTν+t‖)ν∈N, and since T is finite we conclude that the
whole sequence (‖zk − xk‖)k∈N is summable. Since ‖xk+1 − xk‖ ≤ ‖zk − xk‖
we conclude that (xk)k∈N has finite length and is thus convergent (to a single
point), and consequently so is (zk)k∈N.

Suppose now that θ ≤ 1/2, so that ψ(s) = %
√
s. Then,

‖xνT − zνT ‖Γ−1

(8.33)
≥ 2c

%

√
Φfb

Γ (xνT )− Φ? = 2c
%2ψ(Φfb

Γ (xνT )− Φ?) = 2c
%2 ∆νT .

Combined with (8.34) it follows that (∆νT )ν∈N conveges Q-linearly. By rear-
ranging (8.34) as

c′‖xνT − zνT ‖Γ−1 ≤ ∆νT −∆(ν+1)T ≤ ∆νT ,

R-linear convergence of (‖xνT − zνT ‖)ν∈N follows. By suitably shifting, for
every t ∈ [T ] the same can be said for the sequence (‖zTν+t − xTν+t‖)ν∈N,
and since T is finite we conclude that the whole sequence (‖zk − xk‖)k∈N
converges R-linearly. On the other hand, since ‖xk+1 − xk‖ ≤ ‖zk − xk‖, also
(‖xk+1 − xk‖)k∈N converges R-linearly, hence so does (xk)k∈N. By combining
the two, we conclude that also (zk)k∈N converges R-linearly.
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8.3 Nonconvex finite sum problems: the Finito/MISO
algorithm

As mentioned in Section 8.1, if G is of the form (8.3) then problem (8.1) reduces
to the finite sum minimization presented in (8.2). Most importantly, the proximal
mapping of the original nonsmooth function G can be easily expressed in terms
of that of the small function g in the reduced finite sum reformulation, as shown
in the next lemma.

Lemma 8.12. Given γi > 0, i ∈ [N ], let Γ := blkdiag(γ1In, . . . , γNIn) and
γ̂ :=

(∑N
i=1 γ

−1
i

)−1. Then, for G as in (8.3) and any u ∈ RNn

proxΓ−1

G (u) =
{

(v̂, . . . , v̂) | v̂ ∈ proxγ̂g(û)
}

where û := γ̂
∑N
i=1 γ

−1
i ui.

Proof. Observe first that for every w ∈ Rn one has∑
i
γ−1
i ‖w−ui‖

2=
∑

i
γ−1
i ‖û−ui‖

2+
∑

i
γ−1
i ‖w−û‖

2+

=0︷ ︸︸ ︷
2
∑

i
γ−1
i 〈û−ui,w−û〉

=
∑

i
γ−1
i ‖û−ui‖

2+γ̂−1‖w−û‖2. (8.35)

Next, observe that since domG ⊆ C (the consensus set),

proxΓ−1

G (u) = argmin
w∈RNn

{
G(w) +

∑N
i=1

1
2γi ‖wi − ui‖

2
}

= argmin
w∈RNn

{
G(w) +

∑N
i=1

1
2γi ‖wi − ui‖

2 | w1 = · · · = wN

}
= argmin

(w,...,w)

{
g(w) +

∑N
i=1

1
2γi ‖w − ui‖

2
}

(8.35)
= argmin

(w,...,w)

{
g(w) + 1

2γ̂ ‖w − û‖
2
}

=
{

(v̂, . . . , v̂) | v̂ ∈ proxγ̂g(û)
}

as claimed.

If all stepsizes are set to a same value γ, so that Γ = γINn, then the forward-
backward step reduces to

z ∈ proxΓ−1

G (x− Γ∇F (x)) ⇔ z = (z̄, . . . , z̄),

z̄ ∈ proxγg/N
(

1
N

∑N
j=1
(
xj − γ

N∇fj(xj)
))
.

(8.36)
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The argument of proxγg/N is the (unweighted) average of the forward operator.
By applying Algorithm 8.1 with (8.36), Finito/MISO [60, 114] is recovered.
Differently from the existing convergence analyses, ours covers fully nonconvex
and nonsmooth problems, more general sampling strategies and the possibility
to select different stepsizes γi for each block, which can have a significant impact
on the performance compared to the case where all stepsizes are equal. Moreover,
to the best of our knowledge this is the first work that shows global convergence
and linear rates even when the smooth functions are nonconvex. The resulting
scheme is presented in Algorithm 8.2. We remark that the consensus formulation
to recover Finito/MISO (although from a different umbrella algorithm) was also
observed in [56] in the convex case. Moreover, the Finito/MISO algorithm with
cyclic sampling is also studied in [117] when g ≡ 0 and fi are strongly convex
functions; consistently with Assumption 8.III, our analysis covers the more
general essentially cyclic sampling even in the presence of a nonsmooth convex
term g and allowing the smooth functions fi to be nonconvex. Randomized
Finito/MISO with g ≡ 0 is also studied in the recent work [135]; although their
analysis is limited to a single stepsize, in the convex case it is allowed to be
larger than our worst-case stepsize mini γi.

Algorithm 8.2 Nonconvex proximal Finito/MISO for problem (8.2)
Require xinit ∈ Rn; γi ∈ (0,N/Lfi), i ∈ [N ]

Initialize γ̂ :=
(∑N

i=1 γ
−1
i

)−1; s0
i = xinit − γi

N∇fi(xinit), i ∈ [N ]; ŝ0 =∑N
i=1

γ̂
γi
s0
i

Repeat for k = 0, 1, . . . until convergence
1: zk ∈ proxγ̂g(ŝk)
2: select a set of indices Ik ⊆ [N ], set ŝk+1 = ŝk and sk+1

i = ski , i /∈ Ik

3: for i ∈ Ik do
4: sk+1

i ← zk − γi
N∇fi(zk) . buffer update

5: ŝk+1 ← ŝk+1 + γ̂
γi

(sk+1
i − ski ) . average update

Return zk

The convergence results from Section 8.2 are immediately translated to this
setting by noting that the bold variable zk corresponds to (zk, . . . , zk). Therefore,
Φ(zk) = ϕ(zk) where ϕ is the cost function for the finite sum problem.

Corollary 8.13 (subsequential convergence of Algorithm 8.2). In the finite
sum problem (8.2) suppose that argminϕ is nonempty, g is proper and lsc, and
each fi is Lfi-Lipschitz differentiable, i ∈ [N ]. Then, the following hold almost
surely (resp. surely) for the sequence (zk)k∈N generated by Algorithm 8.2 with
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randomized sampling strategy as in Assumption 8.II (resp. with any essentially
cyclic sampling strategy and g convex as required in Assumption 8.III):

(i) the sequence (ϕ(zk))k∈N converges to a finite value ϕ? ≤ ϕ(xinit);

(ii) all cluster points of the sequence (zk)k∈N are stationary and on which ϕ
equals ϕ?.

If, additionally, ϕ is coercive, then the following also hold:

(iii) (zk)k∈N is bounded (in fact, this holds surely for arbitrary sampling crite-
ria).

Corollary 8.14 (linear convergence of Algorithm 8.2 under strong convexity).
Additionally to the assumptions of Corollary 8.13, suppose that g is convex and
that each fi is µfi-strongly convex. The following hold for the iterates generated
by Algorithm 8.2:

Randomized sampling: under Assumption 8.II,

E
[
ϕ(zk)−minϕ

]
≤ (ϕ(xinit)−minϕ)(1− c)k

1
2E
[
‖zk − x?‖2

]
≤ N(ϕ(xinit)−minϕ)∑

i µfi
(1− c)k

holds for all k ∈ N, where c is as in (8.14) and x? := argminϕ. If the
stepsizes γi and the sampling probabilities pi are set as in Theorem 8.7, then
the tighter constant c as in (8.16) is obtained.

Shuffled cyclic or cyclic sampling: under either sampling strategy (8.18)
or (8.19),

ϕ(zνN )−minϕ ≤ (ϕ(xinit)−minϕ)(1− c)ν

1
2E
[
‖zνN − x?‖2

]
≤ N(ϕ(xinit)−minϕ)∑

i µfi
(1− c)ν

holds surely for all ν ∈ N, where c is as in (8.29).

The next result follows from Theorem 8.11 once the needed properties of Φ as
in the umbrella formulation (8.1) are shown to hold.

Corollary 8.15 (global convergence of Algorithm 8.2). In the finite sum
problem (8.2), suppose that ϕ has the KL property with exponent θ ∈ (0, 1) (as
is the case when fi and g are semialgebraic) and coercive, g is proper convex
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and lsc, and each fi is Lfi-Lipschitz differentiable, i ∈ [N ]. Then, the sequence
(zk)k∈N generated by Algorithm 8.2 with any essentially cyclic sampling strategy
as in Assumption 8.III converges surely to a stationary point for ϕ. Moreover,
if θ ≤ 1/2 then it converges at R-linear rate.

Proof. Function Φ = F + G be as in (8.3) clearly is coercive and satisfies
Assumption 8.I. In order to invoke Theorem 8.11 is suffices to show that there
exists a constant c > 0 such that

dist(0, ∂Φ(x)) ≥ cdist(0, ∂ϕ(x)) for all x ∈ Rn and x = (x, . . . , x), (8.37)

as this will ensure that Φ enjoys the KL property at x? = (x?, . . . , x?) with
same desingularizing function (up to a positive scaling). Notice that for x ∈ Rn
and x = (x, . . . , x), one has v ∈ ∂G(x) iff 1

N

∑N
i=1 vi ∈ ∂g(x). Since ∂Φ(x) =

1
N ×

N
i=1∇fi(xi) + ∂G(x) and ∂ϕ(x) = 1

N

∑N
i=1∇fi(x) + ∂g(x), see [144, Ex.

8.8(c) and Prop. 10.5], for x ∈ Rn and denoting x = (x, . . . , x) we have

dist(0, ∂ϕ(x)) ≤ inf
v∈∂G(x)

∥∥∥ 1
N

∑N
i=1∇fi(x) + 1

N

∑N
i=1 vi

∥∥∥
≤ 1

N inf
v∈∂G(x)

∑N
i=1 ‖∇fi(x) + vi‖ = 1

N inf
u∈∂Φ(x)

|||u|||,

where ||| · ||| is the norm in RNn given by |||w||| =
∑N
i=1 ‖wi‖. Inequality (8.37)

then follows by observing that infu∈∂Φ(x) |||u||| is the distance of 0 from ∂Φ(x)
in the norm ||| · |||, hence that ||| · ||| ≤ c′‖ · ‖ for some c′ > 0.

8.3.1 A low memory variant

The main drawback of the Finito/MISO algorithm is the high memory require-
ment. Implementing Algorithm 8.2 requires keeping a table of si’s in the memory,
which can be prohibitively large in some applications. In this section we present
Algorithm 8.3 (L-Finito), a low memory variant of Algorithm 8.2, that is in-
spired by stochastic variance reduced gradient method (SVRG) [91, 177]. SVRG
is designed for strongly convex problems. In [3] a variant of SVRG is studied
that allows fi to be nonconvex while requiring their sum as well as g to be con-
vex. In [137] SVRG is studied under a different stepsize condition for nonconvex
fi, and with g = 0. This analysis is extended for proxSVRG in [138] with convex
g. In contrast, while Algorithm 8.3 (L-Finito) enjoys the low memory require-
ments of SVRG, it covers fully nonconvex regularized finite sum problems with
simple-to-choose constant stepsizes.
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The proposed algorithm involves a full proximal gradient update followed by a
(shuffled) cyclic sweeping of indices. Note that in the inner loop any sweeping
strategy may be used as long as no index is selected twice. This is unlike SVRG
which allows for an index to be selected (at random) more than once in the
inner loop. The idea here is that after the full update step, the common point zk
is used for the update of the average ŝ, thus eliminating the need for storing si’s.
The reduction in memory requirements comes at the cost of repeated gradient
evaluations ∇fi(zk) within the inner loop. Just as is the case for SVRG [91]
this can be avoided by storing a table of gradients which can be maintained
cheaply in applications such as logistic regression and least squares.

Algorithm 8.3 Nonconvex low-memory Finito/MISO (L-Finito) for problem
(8.2)
Require xinit ∈ Rn; γi ∈ (0,N/Lfi), i ∈ [N ]

Initialize γ̂ :=
(∑N

i=1 γ
−1
i

)−1; average ŝ0 = xinit − γ̂
N

∑N
i=1∇fi(xinit)

Repeat for k = 0, 1, . . . until convergence
1: zk ∈ proxγ̂g(ŝk)
2: ŝk+1 = zk − γ̂

N

∑N
i=1∇fi(zk) . full update

3: Select `k sets of disjoint indices Ik1 , . . . , Ik`k ⊆ [N ]
4: for j = 1, . . . , `k do . inner loop
5: ztemp ∈ proxγ̂g(ŝk+1)
6: for i ∈ Ikj do
7: ŝk+1 ← ŝk+1 + γ̂

γi
(ztemp − zk)− γ̂

N (∇fi(ztemp)−∇fi(zk))

Return zk

The convergence of Alg. 8.3 is a consequence of the sure descent property and
is summarized below. We omit convergence rate results for the strongly convex
case.

Corollary 8.16 (convergence of Algorithm 8.3). In the finite sum problem
(8.2) suppose that argminϕ is nonempty, g is proper and lsc, and each fi is
Lfi-Lipschitz differentiable, i ∈ [N ]. Then, the assertions in Cor.s 8.13(i) and
8.13(ii) hold surely for the sequence (zk)k∈N generated by Algorithm 8.3. If in
addition ϕ has the KL property with exponent θ ∈ (0, 1) (as is the case when
fi and g are semialgebraic) and is coercive, then (zk)k∈N converges surely to a
stationary point for ϕ. Moreover, if θ ≤ 1/2 then it converges at R-linear rate.
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8.4 Nonconvex sharing problem

In this section we consider the sharing problem (8.4). As discussed in Section
8.1, (8.4) fits into the problem framework (8.1) by simply letting G := g ◦ A,
where A := [In . . . In] ∈ Rn×nN . By arguing as in [14, Thm. 6.15] it can be
shown that, when A has full row rank, the proximal mapping of G = g ◦A is
given by

proxΓ−1

G (u) = u+ ΓA>(AΓA>)−1
(
prox(AΓA>)−1

g (Au)−Au
)
. (8.38)

Since AΓA>=
∑N
i=1 γi for the sharing problem (8.4),

v ∈ proxΓ−1

G (u) ⇔ v = (u1 + γ1w, . . . , uN + γNw)

w ∈ γ̃−1(proxγ̃g(ũ)− ũ
)
, γ̃ :=

∑N
i=1 γi, ũ :=

∑N
i=1 ui.

Consequently, the general BC Algorithm 8.1 when applied to the sharing problem
(8.4) reduces to Algorithm 8.4.

Algorithm 8.4 Block-coordinate method for nonconvex sharing problem
Require xinit

i ∈ Rn, γi ∈ (0,N/Lfi), i ∈ [N ]

Initialize γ̃ :=
∑N
i=1 γi, s0

i = xinit
i − γi

N∇fi(xinit
i ) i ∈ [N ], s̃0 =

∑N
i=1 s

0
i

Repeat for k = 0, 1, . . . until convergence
1: wk ← γ̃−1(proxγ̃g(s̃k)− s̃k)
2: select a set of indices Ik ⊆ [N ], set ŝk+1 = ŝk and sk+1

i = ski , i /∈ Ik

3: for i ∈ Ik do
4: sk+1

i ← ski + γiw
k − γi

N∇fi(ski + γiw
k) . update buffer

5: s̃k+1 ← s̃k+1 + (sk+1
i − ski ) . update sum

Return zk = (sk1 + γ1w
k, . . . , skN + γNw

k)

Remark 8.17 (generalized sharing constraint). Another notable instance of
G = g ◦A well suited for the BC framework of Algorithm 8.1 is when g = δ{0}
and A = [A1 . . . AN ], Ai ∈ Rn×ni such that A is full row rank. This models
the generalized sharing problem

minimize
x∈R

∑
ini

1
N

∑N
i=1 fi(xi) subject to ∑N

i=1Aixi = 0.
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In this case (8.38) simplifies to

(
proxΓ−1

G (u)
)
i

= ui − γiA>iA−1
N∑
i=1

Aiui,

where A := AΓA> can be factored offline and
∑N
i=1Aixi can be updated in an

incremental fashion in the same spirit of Algorithm 8.4.

The convergence results for Algorithm 8.4 summarized below fall as special
cases of those in Section 8.2.

Corollary 8.18 (convergence of Algorithm 8.4). In the sharing problem (8.4),
suppose that argmin Φ is nonempty, g is proper and lsc, and each fi is Lfi-
Lipschitz differentiable, i ∈ [N ]. Consider the sequences (wk)k∈N and (sk)k∈N
generated by Algorithm 8.4 and let (zk)k∈N = (sk1 + γ1w

k, . . . , skN + γNw
k)k∈N.

Then, the following hold almost surely (resp. surely) with randomized sampling
strategy as in Assumption 8.II (resp. with any essentially cyclic sampling strategy
and g convex as required in Assumption 8.III):

(i) the sequence (Φ(zk))k∈N converges to a finite value Φ? ≤ Φ(xinit);

(ii) all cluster points of the sequence (zk)k∈N are stationary and on which Φ
equals Φ?.

If, additionally, Φ is coercive, then the following also hold:

(iii) (zk)k∈N is bounded (in fact, this holds surely for arbitrary sampling
criteria).

Corollary 8.19 (linear convergence of Algorithm 8.4 under strong convexity).
Additionally to the assumptions of Corollary 8.18, suppose that g is convex and
that each fi is µfi-strongly convex. The following hold:

Randomized sampling: under Assumption 8.II,

E
[
Φ(zk)−min Φ

]
≤
(
Φ(xinit)−min Φ

)
(1− c)k

1
2E
[
‖zk − x?‖2µF

]
≤
(
Φ(xinit)−min Φ

)
(1− c)k

holds for all k ∈ N, where x? := argmin Φ, c is as in (8.14) and
µF := 1

N blkdiag
(
µf1In1 , . . . µfnInN

)
. If the stepsizes γi and the sampling

probabilities pi are set as in Theorem 8.7, then the tighter constant c as in
(8.16) is obtained.
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Shuffled cyclic or cyclic sampling: under either (8.18) or (8.19),

Φ(zNν)−min Φ ≤
(
Φ(xinit)−min Φ

)
(1− c)ν

1
2‖z

Nν − x?‖2µF ≤
(
Φ(xinit)−min Φ

)
(1− c)ν

holds surely for all ν ∈ N, where c is as in (8.29).

We conclude with an immediate consequence of Theorem 8.11 that shows that
(strong) convexity is in fact not necessary for global or linear convergence to
hold.

Corollary 8.20 (global and linear convergence of Algorithm 8.4). In problem
(8.4), suppose that Φ has the KL property with exponent θ ∈ (0, 1) (as is the
case when g and fi are semialgebraic) and is coercive, g is proper convex lsc,
and each fi is Lfi-Lipschitz differentiable, i ∈ [N ]. Then, the sequence (zk)k∈N
as defined in Corollary 8.18 with any essentially cyclic sampling strategy as
in Assumption 8.III converges surely to a stationary point for Φ. Moreover, if
θ ≤ 1/2 it converges with R-linear rate.

8.5 Numerical simulations for the regularized finite
sum problem

In this section we evaluate the performance of Algorithms 8.2 and 8.3 with
two sets of experiments on `1-regularized and `0-norm ball constrained least
squares problems. The simulations are performed using the open-source julia
package CIAOAlgorithms1. In all of our simulations, stepsizes γi = 0.99N/Lfi
are used (independent of minibatch size). Whenever a single stepsize is used,
i.e., γ = mini γi, this is indicated in the legend by adding -γ to the algorithm’s
name. For Algorithm 8.3 (L-Finito), we used Iki = {i} and `k = N , i.e., a
cyclical inner loop. In the figures, each iteration of Algorithm 8.3 is counted as
3 passes through the data due to the repeated ∇fi(zk) update in the inner loop.

Lasso: Consider the regularized least squares problem

minimize
x∈Rn

1
N

N∑
i=1

1
2 (〈ai, x〉 − bi)2︸ ︷︷ ︸

fi(x)

+‖x‖1, (8.39)

1https://github.com/kul-forbes/CIAOAlgorithms

https://github.com/kul-forbes/CIAOAlgorithms
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where the pair (ai, bi) represents the ith data. In our simulations we used
N = 1000, n = 5000 and the sparsity parameter for the solution was set to
p = 0.01. The data for our simulations were randomly generated according to
the procedure described in [126, §6]. In order to evaluate the performance of the
algorithms we generated the matrix B in [126, §6] with two different condition
numbers cond(B) = 20 and cond(B) = 2.5 and normalized its columns. This
leads to maxi Lfi/mini Lfi equal to 144 and 3.3. The simulations are provided
in Figure 8.1 with two different initializations. See our discussion at the end of
the section.

Figure 8.2 depicts the behavior of the algorithms for different batch sizes. We
only plot the result for cyclical sampling with different batch sizes b, since it
outperformed randomized and shuffled variants. It is observed that lower batch
sizes result in faster convergence. This effect was less pronounced in the low
memory variant which is due to the presence of a full proximal gradient update
within each iteration.

Sparsity constrained least squares: Consider the `0-norm ball constrained
least squares problem

minimize
x∈Rn

1
N

∑N
i=1

1
2 (〈ai, x〉 − bi)2

, subject to ‖x‖0 ≤ l. (8.40)

For this example we used the same data as described in the previous section. In
the simulation l = 50 was used. The results are depicted in Figure 8.3. Note
that all algorithms converged to the same cost ϕ?. Hence, the distance of the
cost from ϕ? is used to measure their performance.

We make the following observations:

• The cyclical variant consistently outperforms the shuffled and randomized
variants.

• The low memory variant, Algorithm 8.3 (L-Finito), has comparable per-
formance to randomized variant of Algorithm 8.2.

• When using a single stepsize the speed of the algorithms is dictated by
the largest Lfi , and as expected, it can be much slower when the data is
not uniform in the sense that maxi Lfi/mini Lfi is large.

• The choice of initial point affects the convergence rate on nonstrongly
convex problems.
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Figure 8.1: Performance comparisons for Algorithms 8.2 and 8.3 for problem
(8.39) with different initial points: (left) xinit = 0n, (right) xinit = 1n. Algorithm
names ending with -γ indicate the use of a single stepsize γ = mini γi.

8.6 Conclusions

We presented a general block-coordinate forward-backward algorithm for mini-
mizing the sum of a separable smooth and a nonseparable nonsmooth function,
both allowed to be nonconvex. The framework is general enough to encom-
pass regularized finite sum minimization and sharing problems, and leads to (a
generalization of) the Finito/MISO algorithm [60, 114] with new convergence
results, and to another novel incremental algorithm (for the sharing problem).
The forward-backward envelope is shown to be a particularly suitable Lyapunov
function for establishing convergence: additionally to enjoying favorable conti-
nuity properties, sure descent (as opposed to in expectation) occurs along the
iterates. Possible future developments include extending the framework to ac-
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Figure 8.2: (left) Algorithm 8.2 and (right) Algorithm 8.3 (L-Finito) with
cyclical sampling and different batch sizes for solving problem (8.39).

count for a nonseparable smooth term, for instance by “quantifying the strength
of coupling” between blocks of variables as in [20, §7.5].

8.7 The key tool: the forward-backward envelope

This appendix contains some proofs and auxiliary results omitted in the main
body. We begin by observing that, since F and −F are 1-smooth in the metric
induced by ΛF := 1

N blkdiag(Lf1In1 , . . . , LfN InN ), one has

F (x)+〈∇F (x),w−x〉− 1
2‖w−x‖

2
ΛF ≤ F (w) ≤ F (x)+〈∇F (x),w−x〉+ 1

2‖w−x‖
2
ΛF

(8.41)
for all x,w ∈ R

∑
ini , see [19, Prop. A.24]. Let us denote

MΓ(w,x) := F (x) + 〈∇F (x),w − x〉+G(w) + 1
2‖w − x‖

2
Γ−1

the quantity being minimized (with respect to w) in the definition (8.8a) of the
FBE. It follows from (8.41) that

Φ(w) + 1
2‖w − x‖

2
Γ−1−ΛF ≤MΓ(w,x) ≤ Φ(w) + 1

2‖w − x‖
2
Γ−1+ΛF (8.42)

holds for all x,w ∈ R
∑
ini . In particular,MΓ is a majorizing model for Φ, in the

sense thatMΓ(x,x) = Φ(x) andMΓ(w,x) ≥ Φ(w) for all x,w ∈ R
∑
ini . In

fact, as explained in Section 8.2.1, while a Γ-forward-backward step z ∈ Tfb
Γ (x)

amounts to evaluating a minimizer ofMΓ( · ,x), the FBE is defined instead as
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Figure 8.3: Performance comparisons for Algorithms 8.2 and 8.3 for problem
(8.40) with different initial points: (left) xinit = 0n, (right) xinit = 1n. Algorithm
names ending with -γ indicate the use of a single stepsize γ = mini γi

the minimization value, namely Φfb
Γ (x) =MΓ(z,x) where z is any element of

Tfb
Γ (x).

8.7.1 Further results

This section contains a list of auxiliary results invoked in the main proofs of
Section 8.2.

Lemma 8.21. Suppose that Assumption 8.I holds, and let two sequences
(uk)k∈N and (vk)k∈N satisfy vk ∈ Tfb

Γ (uk) for all k and be such that both
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converge to a point u? as k → ∞. Then, u? ∈ Tfb
Γ (u?), and in particular

0 ∈ ∂̂Φ(u?).

Proof. Since ∇F is continuous, it holds that uk − Γ∇F (uk)→ u? − Γ∇F (u?)
as k → ∞. From outer semicontinuity of proxΓ−1

G [144, Ex. 5.23(b)] it then
follows that

u? = lim
k→∞

vk ∈ limsup
k→∞

proxΓ−1

G (uk − Γ∇F (uk))

⊆ proxΓ−1

G (u? − Γ∇F (u?)) = Tfb
Γ (u?),

where the limit superior is meant in the Painlevé-Kuratowski sense, cf. [144,
Def. 4.1]. The optimality conditions defining proxΓ−1

G [144, Thm. 10.1] then
read

0 ∈ ∂̂
(
G+ 1

2‖ · − (u? − Γ∇F (u?))‖2Γ−1

)
(u?)

= ∂̂G(u?) + Γ−1(u? − (u? − Γ∇F (u?)))

= ∂̂G(u?) +∇F (u?) = ∂̂Φ(u?),

where the first and last equalities follow from [144, Ex. 8.8(c)].

Lemma 8.22. Suppose that Assumption 8.I holds and that function G is convex.
Then, the following hold:

(i) proxΓ−1

G is (single-valued and) firmly nonexpansive (FNE) in the metric
‖ · ‖Γ−1 ; namely, for all u, v

‖proxΓ−1

G (u)− proxΓ−1

G (v)‖2Γ−1 ≤ 〈proxΓ−1

G (u)− proxΓ−1

G (v),Γ−1(u− v)〉

≤ ‖u− v‖2Γ−1 ; (8.43)

(ii) the Moreau envelope GΓ−1 is differentiable: ∇GΓ−1 = Γ−1(id−proxΓ−1

G );

(iii) for every x ∈ R
∑
ini it holds that

dist(0, ∂Φfb
Γ (x)) ≤ N+maxi {γiLfi}

N mini {√γi} ‖x−Tfb
Γ (x)‖Γ−1 ;

(iv) Tfb
Γ is LT-Lipschitz continuous in the metric ‖ · ‖Γ−1 for some LT ≥ 0;

if in addition fi is µfi-strongly convex, i ∈ [N ], then LT ≤ 1 − δ for
δ = 1

N mini∈[N ] {γiµfi}.
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Proof.

♠ 8.22(i) and 8.22(ii) See [13, Prop.s 12.28 and 12.30].
♠ 8.22(iii) Let D ⊆ R

∑
ini be the set of points at which ∇F is differentiable.

From the chain rule of differentiation applied to the expression (8.8d) and using
assertion 8.22(ii), we have that Φfb

Γ is differentiable on D with gradient

∇Φfb
Γ (x) =

[
I− Γ∇2F (x)

]
Γ−1[x−Tfb

Γ (x)
]
∀x ∈ D.

Since D is dense in R
∑
ini owing to Lipschitz continuity of ∇F , we may invoke

[144, Thm. 9.61] to infer that ∂Φfb
Γ (x) is nonempty for every x ∈ R

∑
ini and

∂Φfb
Γ (x) ⊇ ∂BΦfb

Γ (x) =
[
I− Γ∂B∇F (x)

]
Γ−1[x−Tfb

Γ (x)
]

=
[
Γ−1 − ∂B∇F (x)

][
x−Tfb

Γ (x)
]
,

where ∂B denotes the (set-valued) Bouligand differential [68, §7.1]. The claim
now follows by observing that each element of ∂B∇fi(xi) has norm bounded by
Lfi and ∂B∇F (x) = 1

N blkdiag(∂B∇f1(x1), . . . , ∂B∇fN (xN )).
♠ 8.22(iv) Lipschitz continuity follows from assertion 8.22(i) together with the
fact that Lipschitz continuity is preserved by composition. Suppose now that fi
is µfi-strongly convex, i ∈ [N ]. By [127, Thm 2.1.12] for all xi, yi ∈ Rni

〈∇fi(xi)−∇fi(yi), xi− yi〉 ≥
µfiLfi
µfi+Lfi

‖xi− yi‖2 + 1
µfi+Lfi

‖∇fi(xi)−∇fi(yi)‖2.
(8.44)

For the forward operator we have

‖(id− γi
N∇fi)(xi)−(id− γi

N∇fi)(yi)‖
2

=‖xi−yi‖2+ γ2
i

N2 ‖∇fi(xi)−∇fi(yi)‖2− 2γi
N 〈xi−yi,∇fi(xi)−∇fi(yi)〉

(8.44)
≤
(

1− γ2
i µfiLfi
N2

)
‖xi−yi‖2− γi

N

(
2− γi

N (µfi+Lfi)
)
〈∇fi(xi)−∇fi(yi),xi−yi〉

≤
(

1− γ2
i µfiLfi
N2

)
‖xi−yi‖2−

γiµfi
N

(
2− γi

N (µfi+Lfi)
)
‖xi−yi‖2

=
(
1− γiµfi

N

)2‖xi−yi‖2,
where strong convexity and the fact that γi < N/Lfi ≤ 2N/(µfi+Lfi ) was used in
the second inequality. Multiplying by γ−1

i and summing over i shows that id−
Γ∇F is (1−δ)-contractive in the metric ‖ ·‖Γ−1 , and so is Tfb

Γ = proxΓ−1

G ◦(id−
Γ∇F ) as it follows from assertion 8.22(i).
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The next result recaps an important property that the FBE inherits from the
cost function Φ that is instrumental for establishing global convergence and
asymptotic linear rates for the BC-Algorithm 8.1. The result falls as special
case of [181, Thm. 5.2] after observing that

Φfb
Γ (x) = inf

w
{Φ(w) +DH(w,x)},

where DH(w,x) = H(w)−H(x)− 〈∇H(x),w − x〉 is the Bregman distance
with kernel H = 1

2‖ · ‖
2
Γ−1 − F .

Lemma 8.23 ([181, Thm. 5.2]). Suppose that Assumption 8.I holds and for
γi ∈ (0,N/Lfi), i ∈ [N ], let Γ = blkdiag(γ1In1 , . . . , γN InN ). If Φ has the KL
property with exponent θ ∈ (0, 1) (as is the case when fi and G are semialgebraic),
then so does Φfb

Γ with exponent max {1/2, θ}.



Conclusions

In this thesis a new three term splitting was proposed that solves monotone
inclusions involving the sum of maximally monotone, cocoercive and monotone
linear operators. Classical methods such as forward-backward and Douglas-
Rachford splittings are special cases of the new splitting. This new splitting is
leveraged for developing a unifying framework for primal-dual algorithms. It is
shown that, by selecting different parameters, (extensions to) known algorithms
as well as novel primal-dual methods are obtained. Moreover, owing to this
unified analysis linear convergence is deduced for many primal-dual algorithms
based on mild regularity conditions for the cost functions. Most notably, said
algorithms achieve linear convergence when the cost functions are piecewise
linear-quadratic.

A randomized block-coordinate primal-dual algorithm was developed that is
particularly suitable for distributed applications. It is shown that it leads to
asynchronous (randomized) distributed algorithms where both the updates and
stepsizes only depend on local information. This is of great practical importance,
not only because it allows plug-and-play implementations but also because it
leads to larger stepsizes that depend on local Lipschitz constants rather than on
the global one. Our computational tests have shown its superior performance in
distributed model predictive control with dynamic coupling.

In the context of structured finite sum minimization over graphs, we have seen
that solving the corresponding monotone inclusion with AFBA leads to novel
distributed algorithms. In the context of general structured optimization over
message-passing architectures, we have seen that bounded communication delays
are tolerated provided that some strong convexity assumptions hold.

This thesis has also studied a block-coordinate (BC) variant of proximal gradient
method for nonconvex problems. In the nonconvex setting neither the distance
from the solution nor the cost function are viable Lyapunov function candi-
dates. We have shown that forward-backward envelope is a particularly suitable
candidate in this setting. A sure descent is established for the block-coordinate
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scheme and convergence is analyzed under very general sampling strategies.
When applied to regularized finite sum minimization, the proposed BC scheme
leads to a generalization of the Finitio/MISO algorithm. As another prominent
example, when applied to the regularized sharing problem it results in a novel
incremental aggregated method.

Future directions

Several future research directions were discussed in each of the individual
chapters. Here, we outline some other general ideas for future research.

The algorithms considered in this thesis comprise of simple fixed point iterations,
employ constant stepsizes, scale well, and are suitable for distributed and
parallel computations. However, like other first-order methods they struggle
in reaching high precision, and are sensitive to ill conditioning, which can
result in deterioration of performance. Therefore, an important future research
direction is to develop synchronous and asynchronous distributed Newton-type
algorithms.

Another important future research direction relates to incremental aggregated
algorithms. While several such algorithms have been proposed over the years,
their convergence analyses are typically rather complicated and/or are limited to
the strongly convex case. In Chapter 8 a connection was established between (a
class of) such algorithms and a block-coordinate proximal gradient method in the
fully nonconvex case. However, there are several other incremental algorithms
that are not covered by this analysis. In addition to this, in Chapter 8 it was
shown that the forward-backward envelope is a particularly suitable Lyapunov
function for the nonconvex BC proximal gradient algorithm. Based on this,
ongoing research is investigating a linesearch strategy that extends that of [158]
to the block-coordinate case. This in turn opens up the possibility of developing
Newton-type incremental aggregated algorithms. Another important extension
is to study the Bregman variants by exploiting Bregman forward-backward
envelope [2] which would greatly expand the scope of the algorithms.
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