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Abstract—The decomposition of tensors into simple rank-1
terms is key in a variety of applications in signal process-
ing, data analysis and machine learning. While this canonical
polyadic decomposition (CPD) is unique under mild conditions,
including prior knowledge such as nonnegativity can facilitate
interpretation of the components. Inspired by the effectiveness
and efficiency of Gauss–Newton (GN) for unconstrained CPD,
we derive a proximal, semismooth GN type algorithm for non-
negative tensor factorization. Global convergence to local minima
is achieved via backtracking on the forward-backward envelope
function. If the algorithm converges to a global optimum, we
show that Q-quadratic rates are obtained in the exact case. Such
fast rates are verified experimentally, and we illustrate that using
the GN step significantly reduces number of (expensive) gradient
computations compared to proximal gradient descent.

Index Terms—nonnegative tensor factorization, canonical
polyadic decomposition, proximal methods, Gauss–Newton

I. Introduction
The canonical polyadic decomposition (CPD) expresses an

Nth-order tensor T as a minimal number of R rank-1 terms,
each of which is the outer product, denoted by ⊗, of N nonzero
vectors, with R the tensor rank. Mathematically, we have

T =

R∑
r=1

a(1)
r ⊗ · · · ⊗ a(N)

r C
q

A(1), . . . ,A(N)y , (1)

in which factor matrix A(n) has a(n)
r as its columns. (Element-

wise, we have ti1,i2,...,iN =
∑R

r=1 a(1)
i1ra(2)

i2r · · · a
(N)
iN r .) The CPD is

essentially unique under mild conditions, which is an attractive
property often exploited in, e.g., data analysis, signal process-
ing and machine learning [1,2]. To improve interpretability of
the components and to mitigate ill-posedness, nonnegativity
constraints can be imposed on the factor vectors [1,2], i.e.,
a(n)

r ≥ 0, ∀n, r, where the inequality is meant elementwise.
The CPD can be cast as the following nonlinear least

squares problem (NLS):

minimize
x∈�d

f (x) with f (x) B 1
2‖F(x)‖2,

where F(x) is a vector-valued polynomial (multilinear) func-
tion. The Gauss–Newton method (GN) is a powerful tool to
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address this kind of problems, as despite requiring only first-
order information of F(x) it can exhibit up to quadratic rates
of convergence. The idea behind GN is using the Gramian
JF(x)>JF(x) as a surrogate for ∇2 f (x), which well ap-
proximates the true Hessian around solutions x? whenever
F(x?) = 0. One iteration x 7→ x+ of GN amounts to solving
the linear system(

JF(x)>JF(x)
)
(x+ − x) = − JF(x)>F(x),

in which JF(x)>F(x) is the gradient of f (x). Thanks to the
multilinear structure of the problem, the linear system can be
solved efficiently using iterative methods [3,4].

As is typical for higher-order methods, GN converges only
if the starting point is already close enough to a local solution,
whence the need of a globalization strategy ensuring that the
iterates eventually enter a basin of (fast) local convergence.
Thanks to the smoothness of the cost function f (x), many line-
search or trust region approaches can efficiently be employed
for the purpose; see, e.g. [3,4]. However, the nonsmoothness
arising from the constraints makes the approach not applicable
to nonnegative CPD problems, namely

minimize
x∈�d

1
2‖F(x)‖2 subject to x ≥ 0. (2)

In this paper we leverage the globalization technique of [5,6]
to obtain a globally and quadratically convergent algorithm
for NCPD directly addressing the constrained formulation
(2). Convergence is global in the sense that convergence
holds regardless of the initialization, albeit possibly to a
local solution. Nevertheless, to further reduce the number of
singularities and nonoptimal stationary points, we impose an
additional nonconvex constraint that singles out ambiguities in
the tensor decomposition arising because of its equivalence up
to scaling factors. We defer the details to Section II.

A. Related work

A number of alternating least squares or block coordinate
descent (BCD) type methods have been proposed to solve (2).
In these algorithms, one factor matrix or one row or column
is fixed at every iteration, after which a linear least squares
subproblem with nonnegativity constraints is solved [7,8] by,
e.g., using multiplicative updates [9], active set methods [10],
or the alternating direction method of multipliers (ADMM)
[11]. To compute a nonnegative CPD, other cost functions
based on divergences can be used as well; see, e.g., [7,9,12].
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While these BCD methods are often easy to implement,
their convergence is slow. Therefore, a few algorithms based
on GN or Levenberg–Marquardt (LM) have been proposed.
Nonnegativity constraints can then be enforced using logarith-
mic penalty functions [13] or active set methods [3,4,14,15].
By change of variable, e.g., by replacing xi with x2

i , (2) can
be converted to an unconstrained problem [16,17], which may
lead to a prohibitive increase of nonoptimal stationary points.
For nonnegative matrix factorization, a proximal LM type
algorithm which solves an optimization problem using ADMM
in every iteration has been proposed [18].

B. Notation

Scalars, vectors, matrices are denoted by lower case, e.g.,
a, bold lower case, e.g., a and bold upper case, e.g., A,
respectively. Calligraphic letters are used for a tensor T ,
a constraint set C, or the uniform distribution U(a, b). Sets
are indexed by superscripts within parentheses, e.g., A(n),
n = 1, . . . ,N. The Kronecker and Khatri–Rao (column-wise
Kronecker) products are denoted by ⊗ and �, respectively.
The notation blkdiag({x(n)

r }R,N
r,n=1) is used for a block-diagonal

matrix with blocks x(1)
1 ,x(1)

2 , . . . ,x(1)
R ,x(2)

1 , . . . ,x(N)
R . The iden-

tity matrix is denoted by I, the column-wise concatenation of
a and b by [a; b], and the closed ε-ball around x by B(x, ε).

II. A semismooth Gauss–Newton method

We derive a GN method to compute the nonnegative CPD
of an I1 × I2 × · · · × IN tensor T . By requiring each vector
to have unit norm, (N − 1)R degrees of freedom associated
with the scaling ambiguity are removed. The magnitudes λr

of each term in the sum are scalar quantities that we collect in
a vector λ ∈ �R, resulting in the normalized decomposition

T =
∑R

r=1 λr · a(1)
r ⊗ · · · ⊗ a(N)

r with ‖a(n)
r ‖ = 1, ∀n, r.

The normalized version of problem (2) thus becomes

minimize
a∈�d ,λ∈�R

1
2‖F(a,λ)‖2 subject to

{
a,λ ≥ 0,
‖a(n)

r ‖ = 1,
(3)

in which F(a,λ) =
∑R

r=1 λr · a(1)
r ⊗ · · · ⊗ a(N)

r − T , a =

[a(1)
1 ;a(1)

2 ; . . . ;a(1)
R ;a(2)

1 ; . . . ;a(N)
R ], and d = R

∑N
n=1 In. The

feasible set C B {(a,λ) ∈ �d ×�R | a,λ ≥ 0, ‖a(n)
r ‖ = 1} is

nonconvex, but projecting onto it is a simple block-separable
operation: one has ΠC(a,λ) = (ã, λ̃) where

ã(n)
r = ΠS

(
ΠO+

(a(n)
r )

)
=

[a(n)
r ]+

‖[a(n)
r ]+‖

and λ̃ = [λ]+. (4)

Here, S and O+ denote the unit sphere and the positive
orthant of suitable size, respectively, and [ · ]+ = max{0, · }
elementwise; in case ‖[a(n)

r ]+‖ = 0, the (set-valued) projection
is easily seen to equal ã(n)

r = {ei | i ∈ arg max j a
(n)
r, j} where

ei is the vector whose ith entry is 1 and is 0 elsewhere. First-
order necessary condition for optimality in this constrained
minimization setting can be cast as the nonlinear equation
Rγ(x) = 0, with x B (a,λ) as optimization variable and

Rγ(x) B x− ΠC
(
x− γJF(x)>F(x)

)
(5)

is the projected-gradient residual mapping. This map is every-
where piecewise smooth (up to a negligible set of points that
we may disregard, as shown in the proof of Theorem 1). As
such, its Clarke Jacobian JRγ [19, §7.1] furnishes a first-order
approximation. The chain rule [19, Prop. 7.1.11(a)] gives

JRγ(x)=I−JΠC(w)·
[
I−γJF(x)>JF(x)−γ∑i Fi(x)∇2Fi(x)

]
,

where Fi(x) is the ith element of vector F(x),

w = x− γJF(x)>F(x) (6)

is a gradient descent step at x, and J ΠC(w) is a (set of)
(d + R) × (d + R) block-diagonal matrices. In order to avoid
Hessian evaluations, in the same spirit of (unconstrained) GN
we replace JRγ with

ĴRγ(x) B I− J ΠC(w) ·
[
I− γJF(x)>JF(x)

]
, (7)

which is O(‖x−x?‖)-close to JRγ(x) around a solution x? of
(3) provided that F(x?) = 0, as is apparent from the bracketed
term in the expression of JRγ(x). Since the feasible set C
is the product of small dimensional sets S+ B S ∩ O+ and
O+, J ΠC is a structured set of block-diagonal matrices whose
computation can be easily carried out using the chain rule
J ΠS+

(w) = J ΠS([w]+)J ΠO+
(w) and the formulas

J ΠS([w]+) =
I− zz>

‖[w]+‖
,with z B ΠS([w]+) =

[w]+

‖[w]+‖
, (8)

and (see [20, §15.6.2d])

J ΠO+
(w)i, j


= 1 if i = j ∧ wi > 0
∈ [0, 1] if i = j ∧ wi = 0
= 0 otherwise.

(9)

Theorem 1 (Local quadratic convergence). Let x? be such
that F(x?) = 0, and suppose that all matrices in ĴRγ(x?) are
nonsingular. Then there exists ε > 0 such that the iterationsx0 ∈ B(x?, ε)

xk+1 = xk + dk,
where Ĥkd

k = −Rγ(xk) (10)

with Ĥk being any element of ĴRγ(xk), are Q-quadratically
convergent to x?.

Proof. We start by remarking that the projection onto the
(product of) sphere(s) is C∞ wherever it is well defined.
Since x? is optimal, it follows from [5, Thm. 3.4(iii)] that
Rγ(x?) = {0}, and that consequently the projection onto the
spheres it entails, cf. (4), is well defined and is thus C∞ in a
neighborhood. Combined with the strong semismoothness of
the projection onto the positive orthant, see [19, Prop. 7.4.7],
by invoking [19, Prop. 7.4.4] we conclude that Rγ is strongly
semismooth around x?.

Next, observe that Hk B Ĥk + ∆(xk) ∈ JRγ(xk), for some
∆(x) ∈ J ΠC(w)

∑
i Fi(x)∇2Fi(x) (with w as in (6)) is a

locally bounded quantity such that ∆(x) → 0 as x → x?.
Therefore, denoting dk B xk+1 − xk,

‖(Rγ(xk) + Hk)dk‖ = ‖∆(xk)dk‖ ≤ ‖∆(xk)‖‖Ĥ−1
k ‖‖Rγ(xk)‖.



We have that supĤ∈ĴRγ(x) ‖Ĥ−1‖ is bounded by a same
quantity cε for all x ∈ B(x?, ε) when ε is small enough,
as it follows from [19, Lem. 7.5.2]. Consequently, for ε
small enough [19, Thm. 7.5.5] guarantees that xk → x? Q-
linearly. In turn, this implies that ∆(xk)→ 0, hence invoking
again the same result, the claimed Q-quadratic convergence is
obtained. �

Theorem 1 requires that all matrices in ĴRγ(x?) in (7) are
nonsingular. In Theorem 3, we show that this is the case for the
exact decomposition problem if the Gramian JF(x)>JF(x)
has an NR-dimensional null space (which is usually true for
a unique CPD). This null space is derived in the next lemma.

Lemma 2 (Kernel of Gramian). The Gramian of the un-
constrained problem JF(x)>JF(x) has at least NR zero
eigenvalues, and a basis K for the subspace corresponding
to these NR zero eigenvalues is given by

K = blkdiag
({diag(k(n))�A(n)}n, diag(k(N+1))�λ>), (11)

for k(n) ∈ �R, n = 1, . . . ,N + 1, and
∑N+1

n=1 k
(n) = 0.

Proof. It suffices to check that JF(x)K = 0 and that the
dimension of K is NR. Using the expressions for JF(x) (see,
e.g., [4]) and multilinear identities, we have

JF(x)K =

(
N
�

n=1
A(n)�λ>

) N+1∑
n=1

k(n) = 0. (12)

As
(
�n A(n)�λ>

)
usually has full column rank for an essen-

tially unique decomposition defined by x, we need
∑N+1

n=1 k
(n) =

0. Since k =
[
k(1); . . . ;k(N+1)

]
∈ �(N+1)R and the summation

imposes R linearly independent constraints, the columns of K
span an NR-dimensional subspace. �

Theorem 3. Let Ĥ ∈ ĴRγ(x?) and F(x?) = 0. If the Gramian
JF(x?)>JF(x?) has NR zero eigenvalues, Ĥ is nonsingular.

Proof. In the global optimum x?, JF(x?)>F(x?) = 0 and
x? ∈ C, hence JΠC(w) = JΠC(x?). Let P ∈ JΠC(x?), and
G = JF(x?)>JF(x?). Before proving that Ĥ ∈ ĴRγ(x?)
has full rank, we show that range(PG) = range(P) which
is the case if range(P) ∩ null(G) = ∅. Let a(n)

r and λr be
the factor vectors and scaling factors corresponding to x?.
By assumption, G has NR zero eigenvalues and null(G) =

range(K); see Lemma 2. Any b ∈ range(P) can be written
as b = [b(1)

1 ; . . . ; b(1)
R ; b(2)

1 ; . . . ; b(N)
R ; b(N+1)

1 ; . . . ; b(N+1)
R ] in which

either b(n)
r ⊥ a(n)

r or b(n)
r = 0; see (8). If b ∈ range(K), then

the following should hold with
∑N+1

n=1 k
(n) = 0:

b(n)
r = k(n)

r a
(n)
r ⇔ k(n)

r = 0, ∀n, r,
b(N+1)

r = k(N+1)
r λr ⇔ k(N+1)

r = b(N+1)
r /λr, ∀r,

which is false, hence b < range(K) and range(PG) = range(P).
Let Ĥ =

(
I − P

)
+ γPG, and l0 the number of active con-

straints for which J ΠO+
(x?)i,i = 0. As range(PG) = range(P),

we can show that there exists an NR+ l0 dimensional subspace
U1 of I−P, and a d +R−NR− l0 dimensional subspace U2 of
PH, such that u>

1 u2 = 0, ∀u1 ∈ U1 and ∀u2 ∈ U2. Therefore,
range(

(
I− P

)
+ γPG) = �d+R and Ĥ has full rank. �

III. The forward-backward envelope

Theorem 1 highlights an appealing property that the con-
strained GN directions (10) enjoy close to the solutions of
(3). Unfortunately, however, there is no practical way of
initializing the iterations in such a way that the quadratic
convergence is triggered. In fact, not only is fast convergence
not guaranteed without a proper initialization, but iterates may
not converge at all and even diverge otherwise. Because of the
constraints, classical linesearch strategies cannot be adopted
for nonnegative CPDs.

Here, we overcome this limitation by integrating the fast GN
directions (10) in a nonsmooth globalization strategy proposed
in [6], based on the forward-backward envelope [5,21]

ϕfbγ (x) = 1
2‖F(x)‖2 − 〈JF(x)>F(x), r〉 + 1

2γ‖r‖
2, (13)

where γ > 0 is a stepsize parameter,

z B ΠC
(
x− γJF(x)>F(x)

)
, and r B x− z. (14)

The key properties of the FBE are summarized next. Although
an easy adaptation of that of [5, Prop. 4.3 and Rem. 5.2], the
proof is included for the sake of self containedness.

Lemma 4 (Basic properties of the FBE). For every γ > 0,
ϕfbγ (x) is locally Lipschitz continuous and real-valued. More-
over, denoting f (x) B 1

2‖F(x)‖2, the following hold:
(i) ϕfbγ (x) ≤ f (x) for all x ∈ C.

(ii) For all x ∈ �d, if z B ΠC[x− γJF(x)>F(x)] satisfies

f (z) ≤ f (x) + 〈∇ f (x), z − x〉 + L
2‖x− z‖

2 (15)

for some L > 0, then F(z) ≤ ϕfbγ (x)− 1−γL
2γ ‖x− z‖

2. In
particular, ϕfbγ (x) ≥ f (z) ≥ 0 whenever γ ≤ 1/L.

(iii) On every bounded set Ω ⊆ �n, there exists LΩ > 0 such
that inequality (15) holds for every x ∈ Ω and L ≥ LΩ.

Proof. Real valuedness is apparent from (13). Moreover,

ϕfbγ (x) = min
v∈C
{ f (x) + 〈∇ f (x),v − x〉 + 1

2γ‖x− v‖
2}

= f (x)− γ
2‖∇ f (x)‖2 + 1

2γ dist
(
x− γ∇ f (x), C)2

hence ϕfbγ (x) ≤ f (x) whenever x ∈ C (by simply replacing
v = x in the minimization). Local Lipschitz continuity owes
to that of f , ∇ f and dist( · , C), see [22, Ex. 9.6]. Moreover,
since the minimum above is obtained at v = z, the second
claim follows. Finally, since ΠC is locally bounded (cf. [22,
Ex. 5.23(a)]) and so is ∇ f , ΠC[id−γ∇ f ] maps the bounded
set Ω into a bounded set. Therefore, there exists a convex set Ω̄

that contains any x and z = ΠC[x−γ∇ f (x)] with x ∈ Ω. The
claimed LΩ satisfying the last condition can thus be taken as
the Lipschitz modulus of ∇ f over Ω̄, see [23, Prop. A.24]. �

IV. A globally convergent algorithm

Lemma 4 contains all the key properties that lead to Algo-
rithm I, which amounts to PANOC algorithm [6] specialized
to this setting. Having shown the efficacy of the fast GN direc-
tions (10), the following result is a direct consequence of the
more general ones in [5,6]. We remark that the differentiability



Algorithm I PANOC for NCPD
Require Starting point x ∈ �d+R; α, β ∈ (0, 1); tolerance ε > 0;

estimate of Lipschitz modulus L > 0
Initialize γ = α/L

I.0: z = ΠC[x − γJF(x)>F(x)] and r = x − z
if 1

2‖F(z)‖2 > ϕfbγ (x)− 1−α
2γ ‖r‖

2 then
γ← γ/2 and go back to step I.0

I.1: if 1
γ
‖r‖2 ≤ ε then
return z

I.2: Pick Ĥ ∈ ĴRγ(x) and let d be such that Ĥ>Ĥd = −Ĥ>Rγ(x)
Set stepsize τ = 1

I.3: x+ = (1− τ)z + τ(x + d)
z+ = ΠC[x+ − γJF(x+)>F(x+)] and r+ = x+ − z+

I.4: if 1
2‖F(z+)‖2 > ϕfbγ (x+)− 1−α

2γ ‖r
+‖2 then

γ← γ/2 and go back to step I.0
else if ϕfbγ (x+) > ϕfbγ (x)− 1−α

2γ β‖r‖
2

τ ← τ/2 and go back to step I.3
I.5: (x,z , r)← (x+,z+, r+) and proceed to step I.1

assumptions of Rγ therein are only needed for showing the
efficacy of quasi-Newton directions, whereas acceptance of
unit stepsize only requires strong local minimality as shown
in [24, Thm. 5.23].

Theorem 5 (Convergence of Algorithm I). Suppose that the
sequence of points z remains bounded (as can be enforced by
intersecting C with any large box, cf. (16)), then Algorithm I
terminates in finitely many iterations. Moreover, with tolerance
ε = 0 the following hold:

(i) γ is reduced only finitely many times and the sequence
of points z converges to a stationary point for (3).

(ii) If the conditions of Theorem 1 are satisfied at the limit
point, then eventually stepsize τ = 1 is always accepted
and the sequence of points z converges Q-quadratically.

Although the proof is already subsumed by previous work,
in conclusion of this section we briefly outline the main details
of the globalization strategy. The algorithm revolves around
the upper bound (15); since the modulus L (initialized as L =
α/γ) is not known a priori, it is adjusted adaptively throughout
the iterations at steps I.0 and I.4 by halving γ (hence doubling
L = α/γ as a byproduct) until (15) is satisfied. Since z is the
result of a projection on C, its λ-component is nonnegative and
its a-component is bounded on unit spheres. Consequently,
boundedness of all the iterates may be artificially imposed by
changing the feasible set C into

C̃ B {(x,λ) ∈ �n ×�R | a ≥ 0, ‖a(n)
r ‖ = 1, 0 ≤ λ ≤ M},

(16)
where M is a large constant. Up to possibly resorting to this
modification, as ensured by Lemma 4(iii) the stepsize γ is
halved only a finite number of times and eventually remains
constant. Since γ = α/L < 1/L, Lemma 4(ii) guarantees that

1
2‖F(z)‖2 ≤ ϕfbγ (x)− 1−α

2γ ‖r‖
2 < ϕfbγ (x)− 1−α

2γ β‖r‖
2

holds at every iteration; strict inequality holds because β < 1
and r , 0 (for otherwise the algorithm would have stopped
at step I.1). It then follows from the continuity of the FBE,
Lemma 4(i), and the fact that x+ → z as τ ↘ 0 (cf. step I.3),

that at every iteration τ is halvened only a finite number of
times at step I.4. In particular, the algorithm is well defined
and, when γ becomes constant, produces a sequence satisfying

0 ≤ ϕfbγ (x+) ≤ ϕfbγ (x)− 1−α
2γ β‖r‖

2.

By telescoping the inequality, the vanishing of the residual r
follows, hence the finite termination of the entire algorithm.

V. Complexity

The computational complexity of Algorithm I is dominated
by the same operations as in the unconstrained case: com-
puting the function value f (x) (steps I.0 and I.4) and the
gradient JF(x)>F(x) (steps I.0 and I.3), and solving the linear
system (10) (step I.2). If an iterative solver is used to solve
(10)—which is common practice for medium to large scale
problems—the computational complexity is dominated by the
computation of the function evaluation and the gradient, which
require O(R

∏
n In) and O(NR

∏
n In) operations, respectively,

for an Nth-order I1 × I2 × · · · × IN tensor [3]. Given a good
initial guess for the Lipschitz modulus L, step I.0 is computed
only a few times. Hence, the total complexity mainly depends
on the number of backtracking steps on τ at step I.4.

VI. Experiments

We validate the theoretical properties of Algorithm I by two
experiments. Algorithm I is implemented in MATLAB 2019b
with Tensorlab 3.0 [14]. Default values for the parameters
α = 0.95 and β = 0.5 are used. If more than five backtracking
steps on τ at step I.4 are needed, a proximal gradient step is
taken. The stopping tolerance is set to ε = 10−20 and the max-
imum number of iterations to 2000. The Lipschitz modulus L
is estimated using finite differences in a random direction. To
prevent slower convergence due to small γ, we heuristically
set γ← max{γ, η} in step I.5 with η = g>Gg/‖g‖2 in which
g and G are the gradient and Gramian for the unconstrained
problem, respectively. (The scaling factor η is often used in
trust region methods to compute the Cauchy point.)

We show that Q-quadratic convergence can be achieved
for exact nonnegative CPD. In this experiment, 250 random
10× 10× 10 tensors of rank-5 are constructed using random
factor matrices with entries drawn from U(0, 1). In each factor
matrix, ten entries are set to zero at random to ensure some
constraints are active. For each random tensor, Algorithm I is
initialized by perturbing the exact solution such that approxi-
mately one digit is correct. During the algorithm the distance
to the exact solution ‖xk − x?‖ is tracked. This error should
decrease as ‖x+−x?‖ = O(‖x−x?‖q) with q = 2 to achieve
Q-quadratic convergence, which is indeed the case, cf. Fig. 1.

In the second experiment, we show that even for nonneg-
ative tensor approximation problems, the GN step can lead
to a faster convergence. Similar to the previous experiment,
random 10× 10× 10 tensors of rank-5 are constructed using
random factor matrices with entries drawn from U(0, 1). In
each factor matrix, ten entries are replaced by small negative
entries drawn from U(−0.01, 0). Hence, no exact nonnegative
CPD exists. Starting from a random initialization, the proposed
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Figure 1. Up to Q-quadratic convergence can be achieved near the global
optimum if an exact, unique solutions exists (F(x?) = 0). The histogram
shows the slope for the penultimate iteration for 500 experiments. The
convergence curves for ten randomly chosen experiments have a slope close
to 2. Results shown for a rank-5, 10 × 10 × 10 tensor with a unique and
nonnegative CPD, starting close to the global optimum.

method and standard proximal gradient descent are run until
convergence (‖r‖2 < γε). To eliminate excess iterations due to
nonoptimal stopping criteria, the number of gradient iterations
is counted until the algorithm converges to 1.01 f (zfinal), in
which zfinal is the value returned by the algorithm. (This
mainly benefits proximal gradient descent.) As can be seen
in Fig. 2, using the GN step clearly reduces the number of
gradient evaluations, which are the dominant cost. Note that
both algorithms may converge to local optima in which one
or more of the rank-1 terms become zero.
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Figure 2. By using (approximate) second-order information as in the proposed
algorithm, fewer gradients are computed compared to proximal gradient
descent. The global optimum is attained in 67% (proposed) and 77% (PGD)
of the cases. Histograms created using 250 experiments.

VII. Conclusion and future work

By combining nonnegativity and unit-norm constraints, a
proximal Gauss–Newton (GN) type algorithm is derived.
Global convergence is achieved by backtracking the GN
step to the proximal gradient descent (PGD) step based on
the forward-backward envelope function. While Q-quadratic
convergence is only shown for the global optima in the case of
an exact, essentially unique decomposition, the GN directions
effectively reduce the computational cost compared to PGD.

In the current work we focused on theoretical properties;
large-scale implementations are part of future work.
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