
Tackling Noise in Active Semi-Supervised
Clustering

Jonas Soenen �1,2[0000−0002−7289−6091],
Sebastijan Dumančić1,2[0000−0003−0915−8034],

Toon Van Craenendonck3[0000−0002−2175−3293], and
Hendrik Blockeel1,2[0000−0003−0378−3699]

1 KU Leuven, Department of Computer Science
firstname.lastname@cs.kuleuven.be

2 Leuven.AI
3 VITO NV, Unit Health

Abstract. Constraint-based clustering leverages user-provided constraints
to produce a clustering that matches the user’s expectation. In active
constraint-based clustering, the algorithm selects the most informative
constraints to query in order to produce good clusterings with as few
constraints as possible. A major challenge in constraint-based cluster-
ing is handling noise: the majority of existing approaches assume that
the provided constraints are correct, while that might not be the case. In
this paper, we propose a method to identify and correct noisy constraints
in active constraint-based clustering. Our approach reasons probabilis-
tically about the correctness of the user’s answers and asks additional
constraints to corroborate or correct the suspicious answers. We demon-
strate the method’s effectiveness by incorporating it into COBRAS, a
state-of-the-art method for active constraint-based clustering. Compared
to COBRAS and other active-constraint-based clustering algorithms, the
resulting system produces better clusterings in the presence of noise.

Keywords: Active learning, Clustering, Semi-supervised learning

1 Introduction

Despite being one of the fundamental data mining tasks, clustering is an inher-
ently subjective problem [8, 3]: different users often expect different clusterings
of the same dataset. In contrast to a supervised learning setting, there is no way
to select the clustering algorithm, its hyper-parameters and a similarity metric
based on data only; the user has to try different settings until an informative
clustering is found.

Semi-supervised clustering relies on a limited amount of supervision to guide
the clustering process towards an informative clustering. Such supervision comes
in the form of pairwise constraints: a must-link constraint between two instances
indicates that the instances must be in the same cluster, while a cannot-link
constraint indicates that the instances must be in different clusters (Figure 1).

2 J. Soenen et al.

Fig. 1. In semi-supervised clustering, constraints between pairs of instances guide the
clustering algorithm towards the desired solution. A must-link constraint indicates
that two instances must be in the same cluster (e.g. a and b), a cannot-link constraint
indicates that two instances must be in different clusters (e.g. b and c).

These pairwise constraints are often gathered in advance without knowing to
which extent they are useful for the clustering process. Moreover, obtaining con-
straints usually requires human intervention and can be prohibitively expensive.
In this case, it is beneficial to let the algorithm actively query the user: the algo-
rithm presents the user with a specific pair of instances (a query) and the user
answers with a ’must-link’ or ’cannot-link’ constraint. This way, an algorithm
can pose the most informative queries first and produce a high quality cluster-
ing with a substantially smaller number of constraints. This setting is known as
active semi-supervised clustering.

The prevalent assumption among existing semi-supervised clustering ap-
proaches is that all user-provided constraints are correct. However, this assump-
tion is often violated as the user might only have a vague idea of the clustering
structure of the data or might simply make mistakes while answering queries. It
is thus likely that a user provides inaccurate or even contradicting constraints.
These noisy constraints can have a detrimental impact on the quality of the
produced clustering. This is especially true for active methods which try to min-
imize the number of queries by asking only the most informative ones – wrongly
answering such a query will have a significant impact on the final clustering.

In this work, we tackle the problem of handling noise in active semi-supervised
clustering. The core idea behind our approach is to intentionally introduce re-
dundancy in the constraint set, by means of querying constraints that would form
cycles in the available set. Whether or not the resulting cycles are consistent will
then be used to reason about noise in the constraints. For instance, answering
a redundant query between instances c and e in Figure 1 would make a cycle
cdec. If the user answers this query with a cannot-link constraint, the new cy-
cle is inconsistent: the newly provided constraint states that instances c and
e should not be in the same cluster, while the available must-links (c − b and
b − e) state that they should. This is contradictory information implying the
existence of a noisy constraint. On the other hand, if the user answers with a
must-link constraint, the new constraint forms a consistent cycle with the must-
link constraints (c, d) and (d, e) and, therefore, increases our confidence in the
correctness of the constraints in this cycle. To reason about noise in a principled
way, we use a probabilistic model that entails the reasoning illustrated above.

Tackling Noise in Active Semi-Supervised Clustering 3

To show the effectiveness of our method, we integrate it into COBRAS [13],
a state-of-the-art active semi-supervised clustering algorithm. COBRAS will se-
lect queries that are informative for clustering; our approach will complement
these constraints by selecting queries that help to detect and correct the noisy
constraints. We focus on COBRAS because it is one of the approaches most sen-
sitive to noise. In our experiments, we show that with our approach COBRAS
becomes significantly more robust to noise.

2 Related work

While there is a substantial amount of research on constraint-based clustering,
including active learning approaches, almost none of it explicitly deals with noisy
constraints.

Most existing methods for semi-supervised clustering take pairwise constraints
into account by optimising a loss function that includes a penalty for each vio-
lated constraint (e.g., PCK-means [1], MPCK-means [2], LCVQE [10] and COSC
[11]). Thus, the constraints are interpreted as soft constraints. This makes these
methods robust to noise in the constraints, but it does not really counter noise.
The approach reflects the viewpoint that it may not be possible to satisfy all
constraints, but without distinguishing two different reasons for this: because
the constraint is simply wrong (noisy) or because a good solution that satisfies
it could not be found. Ideally, when a constraint is deemed likely to be noisy,
the penalty for violating it should be lower. Moreover, whether the constraint
is likely noisy should not be assessed based on how well the constraint fits the
inductive bias of the clustering system, as the purpose of these constraints is
exactly to change that bias.

A system that does actively try to reduce the effect of noisy constraints is
COP-RF [16]. Before the clustering process starts, COP-RF filters out 50% of
the constraints that are the least similar to all other constraints of the same type.
Besides this, the approach by Yang et al. [15] formulates a maximum entropy
model that can learn from noisy pairwise constraints. This model can be used
to learn a kernel matrix from the noisy pairwise constraints, which is then used
to cluster the dataset using spectral clustering [12].

None of the above approaches are active learners: they consider the set of
constraints as fixed, rather than actively looking for new constraints. In an active
learning context, dealing with noise is even more important: to minimize the
number of queries (instances pairs to be labeled by the user), active learners
try to eliminate as much redundancy as possible in the constraints, when in fact
such redundancy is crucial in a noisy context. In the context of active constraint-
based clustering, the only noise-handling approach we are aware of is the work by
Mazumbar and Saha [9]. They propose a method that theoretically guarantees
that the correct ground truth is recovered with high probability. However, this
method requires multiple constraints per instance in the dataset, so the number
of queries becomes orders of magnitude larger than for typical active constraint-

4 J. Soenen et al.

based clustering systems. This renders the method practically infeasible for large
datasets.

What we propose in this paper, is a method that tries to identify noisy
constraints in a way that is independent of the clustering system, and thus could
in principle be combined with any of the existing constraint-based clustering
methods (whether active or not, though non-active methods become active if
this procedure is included). The method employs a small number of additional
queries to that aim.

3 Reasoning about noisy constraints

In active semi-supervised clustering, the algorithm actively queries the user for
the constraints between specific pairs of instances. The constraints obtained
from the user are leveraged during clustering to produce high quality results.
Usually, active semi-supervised clustering algorithms avoid asking redundant
constraints. In a noiseless world, these redundant constraints do not give the
algorithm any additional information. However, when there is noise, redundant
constraints are crucial to reason about noisy constraints in a manner independent
from clustering bias.

Our approach expects a set of constraints and will ask additional redun-
dant queries to reason about the noise in these constraints. The end result is
a corrected version of the given constraint set that is likely to be free of noisy
constraints. This corrected set of constraints can then be used for clustering.
Before we present the details of our approach, we first introduce the necessary
terminology.

3.1 Terminology and background

We will denote a must-link constraint between instances x and y as ml(x, y)
and a cannot-link constraint as cl(x, y). Let S be the set of instance pairs for
which the user has provided a constraint. Let U be the set of all constraints that
are obtained from the user, such that U contains ml(x, y) or cl(x, y) for each
(x, y) ∈ S. The set G stands for the set of ground truth constraints about the
instance pairs in S. The constraints in G are unknown; our goal is to recover
these constraints from U . If a new query is posed, the query itself is added to
S, the user’s answer is added to U and G will contain the corresponding ground
truth constraint. For notational convenience, C(x, y) will denote the constraint
type (ml or cl) of the constraint in the constraint set C between the instances
x and y. A noisy constraint is any user-provided constraint that differs from
the corresponding ground truth constraint, i.e. U(x, y) 6= G(x, y).

For example, suppose the user has provided the constraints in Figure 1;
then U = {ml(a, b), cl(b, c),ml(c, d),ml(d, e)}. However, the constraint between
d and e is actually a cannot-link constraint in the ground truth constraint set,
thus G = {ml(a, b), cl(b, c),ml(c, d), cl(d, e)}. In this case, the user-provided con-
straint ml(d, e) is noisy (because U(d, e) = ml and G(d, e) = cl).

Tackling Noise in Active Semi-Supervised Clustering 5

Given a constraint set, we can deduce additional constraints that are implied
by the constraints in the given set:

ml(x, y) ∧ml(y, z)⇒ ml(x, z) (must-link transitivity)

ml(x, y) ∧ cl(y, z)⇒ cl(x, z) (cannot-link entailment)

We call a constraint set consistent if there is no instance pair (x, y) for which
both a must-link and a cannot-link constraint are implied. In other words, a
consistent constraint set does not contain any contradicting constraints.

If we represent a constraint set as a graph where nodes are instances and
edges indicate the corresponding constraints (as in Figure 1), then the following
holds:

Proposition 1. A constraint set is inconsistent if and only if its graph contains
a cycle with exactly one cannot-link edge. We call such a cycle an inconsistent
cycle.

Proof. The if part in the above claim is trivial. To explain the only if part,
note that the propagation rules can only derive both ml and cl for the same
instance pair (x, y) if there are at least two paths between x and y, one of which
is ml-only (hence the ml derivation) and the other contains exactly one cl (two
cls would break the derivation chain). These two paths form a cycle with exactly
one cannot-link edge.

If the user-provided constraint set U is inconsistent, there is no clustering
where all constraints from U are satisfied and thus there must be at least one
constraint in U that is noisy. Moreover, there is at least one noisy constraint in
each inconsistent cycle in U .

3.2 Overview

The goal of our work is to find a constraint set C, derived from the user-provided
constraints U , such that we are reasonably confident that C corresponds to
ground truth G. To reason about the correctness of a constraint set C, we define
a probabilistic model that quantifies P (G = C | U), i.e. the probability that the
ground truth is equal to a set of constraints C given a set of user constraints
U . Our goal is to find a constraint set C such that P (G = C | U) ≥ α with α a
predefined threshold. In the following, we call P (G = C | U) the confidence in
C.

When the user-provided constraint set U is consistent, the most likely con-
straint set C is equal to U . When U is inconsistent, there is noise in U . In this
case, the most likely constraint set C is the consistent constraint set that differs
from U in as few constraints as possible.1

However, C does not automatically satisfy the confidence threshold α. There
might not be enough redundancy in the constraint set to support C. Therefore, we

1there might be multiple most likely constraint sets with equal likelihood

6 J. Soenen et al.

Algorithm 1: Verification procedure

Function verify(U):
C ← most likely(U)
while confidence(C,U) < α do

new con← ask informative redundant query(U)
U ← U ∪ {new con}
C ← most likely(U)

return C

select additional redundant queries that complete cycles among the constraints
in U until the confidence of the most likely constraint set C reaches the threshold.
Adding the new constraint to U changes the most-likely constraint set C. The
confidence of the new C might be higher than that of the previous C, e.g. the
new constraint is consistent with the previous C, or lower, e.g. a new inconsistent
cycle is detected. By carefully selecting which queries we ask the user, we aim to
reach the confidence threshold with as few queries as possible. Pseudocode for
this procedure can be found in Algorithm 1.

In the remainder of this section, we present the probabilistic model used to
calculate the confidence of a constraint set. However, because evaluating this
model entails summing over all possible constraint sets, exact computation of
the confidence is computationally infeasible. Therefore, we introduce a simple
approximation of the actual confidence by focusing on a subset of all possible
constraint sets and provide a procedure to efficiently enumerate this subset.
Lastly, the way we select informative redundant queries is explained.

3.3 Defining the confidence of a constraint set

We develop a probabilistic approach where the value of all user constraints
U(x, y) and the corresponding ground truth constraints G(x, y) are considered
random variables. We use a Bayesian approach that computes P (G = C | U)
using the Bayes rule:

P (G = C | U) =
P (U | G = C)P (G = C)∑
C′∈C P (U | G = C′)P (G = C′)

(1)

Where C is the set of all possible constraint sets about the pairs in S
For the prior P (G = C), we assume a uniform distribution over all consis-

tent constraint sets C. This implies that all inconsistent constraint sets have a
probability of 0, thus we can sum over all consistent constraint sets instead of
all constraint sets. As P (G = C) is equal for every consistent constraint set, it
can be ignored (assuming C is consistent, otherwise P (G = C | U) is equal to 0).

We assume i.i.d. noise: there is a fixed probability ν that the user answers a
query incorrectly. Consequently, for each pair (x, y) and label c, P (U(x, y) 6= c |
C(x, y) = c) = ν. With this assumption in place, the likelihood P (U | G = C) can

Tackling Noise in Active Semi-Supervised Clustering 7

be written in function of n, the number of constraints in U , and d, the number
of constraints where U and C disagree.

P (U | G = C) = νd(1− ν)n−d (2)

Note that the assumptions behind the probabilistic model are likely to be
violated in practice; for instance, some pairs may be easier to correctly label
than others. Despite being violated in practical cases, the model allows us to set
formal foundations for tackling noise.

3.4 Approximating the confidence of a constraint set

To calculate the confidence of a certain constraint set C, we have to sum over
all consistent constraint sets C′ (see denominator of Equation 1). Naively enu-
merating all consistent constraint sets is not practically feasible as the number
of consistent constraint sets is, in the worst case, exponential in the number of
constraints. Therefore, we introduce an approximation that relies on a subset
of the consistent constraint sets that contribute the most to the confidence and
provide a procedure that finds these constraint sets efficiently.

High-likelihood constraint sets. Given our noise model, the contribution of
a consistent constraint set C′ to the denominator of the confidence is equal to
νd(1 − ν)n−d with n the total number of constraints in U and d the number of
pairs for which U and C disagree (Equation 1, 2). For small ν, terms with high
d contribute little to the sum. We therefore only sum over consistent constraint
sets C′ with d ≤ k, for some parameter k called the approximation order.
Higher values for k result in more accurate approximations, but increase the
execution time of the algorithm considerably, as the size of the search space is
exponential in k.

This approximation is accurate if it captures most of the probability mass,
that is, when there is a high probability that the number of noisy constraint
in U is smaller than the approximation order k. From our noise assumption
follows that the number of noisy constraints in U follows a binomial distribution
distributed with | U | trials and success probability ν.

P (#noisy constraint in U ≤ k) =

k∑
d=0

(
|U|
d

)
νd(1− ν)|U|−d (3)

If k is fixed, P (#noisy constraints in U ≤ k) increases when the size of U de-
creases or the noise probability ν decreases. Thus our approximation is most
accurate for small constraint sets and low noise probabilities. If the approxima-
tion order k is too small relative to |U| and ν, the approximation overestimates
the confidence and our approach will ask less redundant constraints than actually
necessary to reach the desired confidence level.

To make our approximation more accurate for bigger constraint sets we em-
ploy two tricks: we use a dynamically growing effective approximation order and
verify the user-provided constraints in batches.

8 J. Soenen et al.

When using a static approximation order k, the approximation becomes less
accurate as the number of identified noisy constraints increases. After identifying
k noisy constraints, all consistent constraint sets with more than k noisy con-
straints are not considered in the approximation of the confidence. This results
in a highly overestimated confidence and causes the procedure to never identify
more than k noisy constraints.

In order to resolve this, we use a dynamically growing effective approx-
imation order k′ instead of the static approximation order k. The effective
approximation order k′ is determined as the sum of the number of noisy con-
straints in the current most likely constraint set and the approximation order
k. The effective approximation order thus grows each time a noisy constraint is
detected in the user-provided constraints U . This ensures that the approxima-
tion can always reason about k additional noisy constraints on top of the noisy
constraints that have already been identified.

Additionally, the user-provided constraints can be verified in batches to en-
hance the accuracy of the approximation; instead of verifying all user-provided
constraints U in one single go, U is divided in several smaller batches. One after
the other, each of these batches is added to a constraint set U ′. After adding a
batch to U ′, the full set is verified. Because the preexisting constraints in U ′ have
been verified in the previous iteration, it is unlikely that these preexisting con-
straints contain undetected noisy constraints. The number of noisy constraints
in the newly added batch B follows the same distribution as in Equation 3 but
proportional to the |B| instead of |U|, with |B| < |U|. Therefore, the accuracy of
the approximation will mostly depend on the size of the newly added batch.

For several active semi-supervised clustering approaches it is actually natural
to verify the constraints in batches. NPU [14] and COBRAS [13] produce a new
intermediate clustering every couple of queries. Therefore, it makes sense to
verify the constraints right before each intermediate clustering is produced as
to make sure that none of these intermediate clusterings is based on a noisy
constraint.

Enumerating consistent constraint sets. Algorithm 2 outlines a simple yet
efficient recursive procedure to enumerate all consistent constraint sets up to the
effective approximation order k′. These consistent constraints sets are used to
approximate the confidence of a constraint set, determine the most likely con-
straint set and select redundant queries. In each recursive call, one constraint
in a constraint set A is flipped until it reaches the desired effective approxima-
tion order. If the constraint set A is consistent, each of the constraints in A is
considered as a candidate to be flipped next. If the constraint set A contains an
inconsistent cycle, the only way this constraint set can become consistent is to
flip one of the constraints involved in the inconsistent cycle. Therefore, only the
constraints involved in the inconsistent cycle have to be considered as candidates
to be flipped next. Every consistent constraint set that is encountered during
this procedure is stored. To ensure that every consistent constraint set is only
encountered once, a set of constraints flipped is maintained that keeps track

Tackling Noise in Active Semi-Supervised Clustering 9

Fig. 2. An example of an incomplete search tree to find consistent constraint sets. The
starting constraint set is consistent, hence every constraint is a candidate for flipping.
The second constraint set at depth 1 is inconsistent, only the constraints between
instance pairs (c, d) and (c, e) need to be considered as candidates ((d, e) was flipped
in a previous recursive call).

Algorithm 2: Procedure to enumerate consistent assignments

Function solve(A, flipped):
if unsat user constraints(A) > k′ then

return ∅
solutions← ∅
if A is consistent then

solutions← solutions ∪ {A}
candidates← U \ flipped

else
cycle ← find inconsistent cycle(A)
candidates← cycle \ flipped

for con in candidates do
flipped← flipped ∪ {con}
A′ ← A \ con ∪ {con.flip()}
solutions← solutions ∪ solve(A′, flipped)

return solutions

of all the constraints that have already been flipped and should not be flipped
again. Figure 2 shows part of the search tree explored by Algorithm 2 for an
example scenario.

Finding inconsistent cycles. To be able to use Algorithm 2, we need to detect
when a constraint set is inconsistent and, if so, find an inconsistent cycle in the
constraint set.

To check if a constraint set is inconsistent, we use a procedure similar to
the feasibility test with must-link and cannot-link constraints of Davidson and
Ravi [4]. The procedure maintains a set of must-link components, groups of
instances that are interconnected by must-link constraints, and checks whether
there are two instances within the same must-link component that are connected

10 J. Soenen et al.

by a cannot-link constraint. If such a pair of instances is found, this cannot-link
forms an inconsistent cycle with some must-links from this must-link component
and thus the constraint set is inconsistent. To reconstruct the inconsistent cycle,
we start from the two instances connected by the cannot-link and search for a
path between them that only contains must-link constraints.

3.5 Selecting redundant queries

Now that we have all pieces to calculate the confidence of the most likely con-
straint set C, we still have to select an informative query that will help us to
reach the confidence threshold.

We distinguish two different scenarios in which a redundant query needs to
be selected.

1. If there is only one most likely constraint set C, we aim to increase the confi-
dence of this constraint set. Therefore, we query the pair (x, y) for which the
total likelihood of consistent constraint sets that imply a different constraint
value for (x, y) than C is maximal. As before, we only use the consistent
constraint sets up to the current effective approximation order k′.

2. If there are multiple most likely constraint sets, we query a pair that will
reduce the amount of most likely constraint sets. As such, we aim to query
a pair (x, y) for which the amount of most likely constraint sets that imply
must-link is approximately equal to the amount of most likely constraint
sets that imply cannot-link. The answer to this query will thus agree with
approximately half of these constraint sets and disagree with the other half.
Adding the answer of this query to U causes the confidence of the agreeing
constraint sets to increase and the confidence of the disagreeing constraint
sets to decrease. This gives rise to a binary-search-like procedure which is
repeated until only one most likely constraint set remains.

It is possible that, at some point, no interesting queries are left (e.g. all
possible instance pair within a single must-link component have been queried)
and the confidence of the most likely constraint set is still lower than α. In this
case, the most likely constraint set (or one of the most likely constraint sets if
there are multiple) is assumed to be correct.

4 Integration in COBRAS

COBRAS [13] is a state-of-the-art active semi-supervised clustering algorithm.
Its strengths are that it is time-efficient, query-efficient, and that it provides
intermediate results. Its query-efficiency, however, naturally makes it more sen-
sitive to noise. Moreover, COBRAS has no noise handling mechanism, as the
algorithm aims to satisfy all of the user-provided constraints. Therefore, it is a
good candidate for testing the effectiveness of our noise correcting approach.

COBRAS is an iterative algorithm where each iteration consists of a splitting
phase and a merging phase. In its splitting phase, COBRAS identifies so-called

Tackling Noise in Active Semi-Supervised Clustering 11

Fig. 3. Illustration of how the consistent constraints sets are marginalized over the
irrelevant constraints (dotted lines) to only retain the relevant constraints (full lines).
(a) shows the given user-provided constraints (b) shows all consistent constraint sets
and their likelihood derived from the user-provided constraints with approximation
order 2 (c) shows the marginalized constraint sets with their likelihood.

super-instances, which are groups of instances that are assumed to belong to the
same cluster. During splitting, a small amount of queries are used to estimate
the number of super-instances that are needed. The new super-instances (groups
of instances) are then merged into clusters by querying constraints between
different super-instances. Two super-instances are merged into the same cluster
if the constraint between them is a must-link; two super-instances are not merged
together if the constraint between them is a cannot-link. It is after this phase
that our noise-correction approach is deployed.

After each merging phase, our approach tries to recover the correct con-
straints C from the user-provided constraints U . If no noisy constraints are de-
tected (i.e. C = U), COBRAS can safely continue with the next iteration. Other-
wise, the current clustering is based on at least one noisy constraint and has to
be corrected. Therefore, the merging phase of COBRAS is repeated with the cor-
rected constraint set C instead of U . We refer to the thus obtained noise-robust
version of COBRAS as nCOBRAS.

Reasoning on a subset of relevant constraints In COBRAS, only a subset
of all the constraints provided by the user is used to construct the next inter-
mediate clustering (i.e. only the constraints between the current super-instances
are used). Thus, it makes sense to only verify the constraints from this relevant
subset and not waste queries on obtaining the correct values of the irrelevant
constraints. However, the irrelevant constraints might still complete cycles with
relevant constraints and thus might still provide useful information. Therefore,
to calculate the confidence of a subset of relevant constraints Crel, we reason on
the full set of constraints and marginalize over the irrelevant constraints Cirrel.

P (Grel = Crel | U) =
∑

Cirrel∈Cirrel

P (G = Crel ∪ Cirrel | U) (4)

Where Cirrel is the set of all possible constraint sets involving the same pairs as
the irrelevant constraints

12 J. Soenen et al.

To ensure that the redundant query selection procedure only selects queries
that are informative to verify the relevant constraints, all consistent constraint
sets enumerated by Algorithm 2 are marginalized over the irrelevant constraints.
The active query selection procedure is then executed on the marginalized con-
straint sets that only contain the relevant constraints (Figure 3).

5 Experiments

We compare the clustering performance of several active semi-supervised clus-
tering approaches in the presence of varying amounts of noise. We are especially
interested to investigate (Q1) whether nCOBRAS is indeed more noise robust
than COBRAS and (Q2) how nCOBRAS performs compared to existing active
constraint-based clustering approaches.

5.1 Algorithms

We compare nCOBRAS2 to the following active semi-supervised clustering al-
gorithms:

– COBRAS [13], the original COBRAS algorithm with no noise handling mech-
anism. We use the code provided by the authors.3

– NPU [14] is an active query selection scheme that can be used with any
semi-supervised clustering algorithm, we use it with:
• MPCK-means [2], a constrained modification of k-means that uses a

modified objective function and allows constraint violation. We use the
implementation in the wekaUT package.4

• COSC [11], a constrained extension of spectral clustering that optimizes
a modified objective function. We use the fast implementation of the
code provided by the authors.5,6

NPU with MPCK-means (NPU MPCK) and NPU with COSC (NPU Cosc)
require the desired number of clustersK before clustering. In our experiments the
true value ofK (as indicated by the class labels) is given to these algorithms. This
gives NPU-MPCK and NPU-Cosc an advantage over COBRAS and nCOBRAS,
which do not require the number of clusters.

nCOBRAS needs three hyperparameters to be set: an estimated noise prob-
ability ν, the confidence threshold α and the approximation order k. In our
experiments, we provide nCOBRAS with the true noise probability for ν, except
when there is no noise: there, we set ν to 0.05 instead of 0, so that we can get
an idea of the cost of noise-handling when it is in fact unnecessary. The value
of the confidence threshold α is set to 0.95 and an approximation order of 3 is
used.

2https://github.com/magicalJohn/noise_robust_cobras
3https://dtai.cs.kuleuven.be/software/cobras/
4https://www.cs.utexas.edu/users/ml/risc/code/
5https://www.ml.uni-saarland.de/code/cosc/cosc.htm
6In some cases the code provided by the authors fails to produce a clustering; if

this happens, we use the clustering from the previous NPU iteration instead

Tackling Noise in Active Semi-Supervised Clustering 13

5.2 Experimental methodology

We perform 3 times 10-fold cross-validation and report the average clustering
quality. The algorithms cluster the full dataset, but only query constraints be-
tween instances that are both in the training set. The clustering quality is de-
termined by calculating the adjusted rand index (ARI) [7] on the instances in
the test set. The ARI measures the similarity between the produced clustering
and the ground truth clustering. A random clustering has an expected ARI of
0, while a clustering identical to the ground truth clustering has an ARI of 1.

To guarantee that COBRAS and nCOBRAS do not query any test instances
during clustering, we ensure that all super-instance representatives are in the
training set. For NPU, the selection of the most informative instance x∗ is mod-
ified to exclude points not in the training set.

We also report the average aligned rank (AAR) [6, 5], which ranks the overall
performance of each of the algorithms. The lower the AAR the better the algo-
rithm performs comparatively to the other algorithms. To calculate the average
aligned rank, for each dataset d and each algorithm a, compute the difference be-
tween the average ARI of algorithm a on dataset d and the average ARI achieved
by all algorithms on dataset d. The resulting differences are ranked from high to
low. The AAR for an algorithm is the average of the positions of its entries in
the sorted list.

The noisy constraints are generated according to the noise assumption pre-
sented in Section 3: for an experiment with x% of noise, each of the queries has
a probability of x% that the query is answered incorrectly.

5.3 Datasets

For our experiments, we use 21 clustering tasks defined over 17 datasets as in Van
Craenendonck et al. [13]. These datasets include 15 UCI classification datasets:
iris, wine, dermatology, hepatitis, glass, ionosphere, optdigits389, ecoli, breast-
cancer-wisconsin, segmentation, column 2C, parkinsons, spambase, sonar and
yeast. For these datasets, the class labels indicate the target clustering. Addi-
tionally, we consider 4 clusterings of the CMU faces dataset and cluster 2 different
subsets of the 20 newsgroup text dataset. For details about the preprocessing
and the clustering tasks, we refer to Van Craenendonck et al.[13].

5.4 Results

We ran each of the algorithms for 200 queries with varying amounts of noise
(0%, 5% and 10%). For each noise value, we calculate the average ARI and the
average aligned rank of each algorithm over all clustering tasks. The results are
shown in Figure 4 and Figure 5.

(Q1) The results (Figure 4) confirm that nCOBRAS is less sensitive to noise
than COBRAS. The average clustering quality of COBRAS significantly de-
creases when the amount of noise increases: with 10 % of noise, its ARI decreases

14 J. Soenen et al.

no noise 5% of noise 10% of noise

Fig. 4. Average ARI comparison of the different algorithms in the presence of varying
amounts of noise (higher is better).

no noise 5% of noise 10% of noise

Fig. 5. Average aligned rank of the different algorithms in the presence of varying
amounts of noise (lower is better).

by half. In contrast, the average clustering quality of nCOBRAS is relatively sta-
ble over all amounts of noise. Noise causes nCOBRAS’ improvement to slightly
slow down: with more noise, nCOBRAS has to ask more redundant queries to
verify the constraints. Moreover, with no noise nCOBRAS’ performance is very
close to that of COBRAS which does not reason about the correctness of the
constraints.

(Q2) The results also indicate that nCOBRAS outperforms both competi-
tors, NPU-Cosc and NPU-MPCK, for all levels of noise. NPU-MPCK outper-
forms nCOBRAS for small amounts of constraints; this is due to the combined
unsupervised and semi-supervised objectives of MPCK-means which allows it
to get to a better initial clustering than nCOBRAS. Both NPU-MPCK and
NPU-Cosc are less sensitive to noise than COBRAS.

5.5 Evaluation of noise detection

To show that our approach actually finds and corrects the majority of the noisy
constraints, we calculate the average precision and average recall achieved by
our noise detection algorithm when correcting a relevant constraint set with
5% of noise. For the majority of the datasets, the average recall is higher than
93% and the average precision is higher than 95%. This means our approach
identifies almost all noisy constraints in the relevant constraints, and almost all
constraints flagged by our approach are indeed noisy. For datasets where the
average batch size is high, the precision and recall are typically lower; in this
case our approximation fails to produce a reasonable estimate of the confidence.
For details on the experimental set-up and full results, we refer to the appendix.

Tackling Noise in Active Semi-Supervised Clustering 15

Fig. 6. Ratio of competitor to nCOBRAS average runtime for each of the 21 clustering
tasks (sorted ascending by size) when there is 5% noise and the algorithms are run for
200 queries.

5.6 Runtime

Figure 6 shows the ratio of the average run time of each competitor to the average
runtime of nCOBRAS for each of the 21 clustering tasks with 5% of noise for
200 queries. COBRAS is in both cases by far the fastest algorithm. nCOBRAS’
noise identification procedure makes it substantially slower than COBRAS, but
it is still about as fast as the other systems.

6 Conclusion

In this paper, we have presented a novel approach to handling noise in ac-
tive semi-supervised clustering. Our method reasons probabilistically about the
correctness of constraints and can correct noisy constraints with the help of
additional redundant queries. We integrated our method into COBRAS and
have shown that this makes COBRAS significantly more robust to noise. Under
noisy conditions, the noise-robust variant of COBRAS produces better cluster-
ings compared to two other active constraint-based clustering approaches.

Acknowledgments

This research received funding from the Flemish Government under the “On-
derzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme. SD is
supported by the Research Foundation-Flanders (FWO)

References

1. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: Proceedings of the 2004 SIAM international conference on
data mining. pp. 333–344 (2004)

2. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in
semi-supervised clustering. In: Twenty-first international conference on Machine
learning - ICML ’04 (2004)

16 J. Soenen et al.

3. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta Clustering. In: Sixth
International Conference on Data Mining (ICDM’06). pp. 107–118 (2006)

4. Davidson, I., Ravi, S.S.: Agglomerative hierarchical clustering with constraints:
Theoretical and empirical results. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho,
R., Gama, J. (eds.) Knowledge Discovery in Databases: PKDD 2005. pp. 59–70
(2005)

5. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences 180(10),
2044 – 2064 (2010)

6. Hodges, J., Lehmann, E.L., et al.: Rank methods for combination of independent
experiments in analysis of variance. The Annals of Mathematical Statistics 33(2),
482–497 (1962)

7. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218
(1985)

8. von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: Science or Art? In: Pro-
ceedings of ICML Workshop on Unsupervised and Transfer Learning. Proceedings
of Machine Learning Research, vol. 27, pp. 65–79 (2012)

9. Mazumdar, A., Saha, B.: Clustering with noisy queries. In: Advances in Neural
Information Processing Systems. pp. 5788–5799 (2017)

10. Pelleg, D., Baras, D.: K-Means with Large and Noisy Constraint Sets. In: Machine
Learning: ECML 2007. pp. 674–682 (2007)

11. Rangapuram, S.S., Hein, M.: Constrained 1-Spectral Clustering. In: AISTATS.
vol. 30, p. 90 (2012)

12. Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmental Papers
(CIS) p. 107 (2000)

13. Van Craenendonck, T., Dumančić, S., Wolputte, E.V., Blockeel, H.: COBRAS:
Interactive Clustering with Pairwise Queries. In: Proceedings of the 17th Interna-
tional Symposium on Intelligent Data Analysis. Springer (2018)

14. Xiong, S., Azimi, J., Fern, X.Z.: Active learning of constraints for semi-supervised
clustering. IEEE Transactions on Knowledge and Data Engineering 26(1), 43–54
(2013)

15. Yang, T., Jin, R., K. Jain, A.: Learning from Noisy Side Information by General-
ized Maximum Entropy Model. In: ICML 2010 - Proceedings, 27th International
Conference on Machine Learning. pp. 1199–1206 (2010)

16. Zhu, X., Loy, C.C., Gong, S.: Constrained Clustering With Imperfect Oracles.
IEEE Transactions on Neural Networks and Learning Systems 27(6), 1345–1357
(2016)

