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Abstract

Vibration-based damage identification has been widely studied in the field of structural health monitoring
(SHM) for several decades. It is well known, however, that low-order modal parameters, being among the
most frequently used, are not sensitive to local damage. A suitable methodology is therefore needed to
extract such damage features from the dynamic response of structures. In the present work, local bending
behavior of cables is studied for damage identification. First, the dynamic response of a cable is decomposed
into evanescent wave and propagating wave components. It is proven that the contribution of the evanescent
wave is spatially concentrated, and is sensitive to local damage. A signal transform is proposed next, which
allows the estimation of the wave components from the measured cable response. The reflection coefficient
of the evanescent wave (REW), which can be calculated from the estimated wave coefficients, depends only
on the characteristics of the local discontinuity, and proves to be a robust indicator for local damage. The
feasibility of the proposed methodology is studied by means of a simulated experiment, considering a cable
model with two locally damaged parts. The results show that the intensity of REW is significantly higher near
the damage locations, allowing damage localization. From the estimated REW near the damage locations,
the damage levels can be estimated, showing the potential of this methodology for damage assessment of
cable structures.

Keywords: cable; bending wave; wave decomposition; evanescent wave; signal transform; damage
identification

1. Introduction1

Cables are widely used in large-span engineering structures (e.g. cable-stayed bridges, suspension bridges2

and cableways), due to their high load capacity and low own weight [1]. However, most of such structures3

are located in harsh environment with heavy traffic loading, and have inevitable corrosion [2] or fatigue [3]4

damage. As cables are critical parts, the development of such local damage might rapidly endanger the main5

structure. It is therefore important to detect and quantify local damage prior to the occurrence of a failure.6

Cables usually consist of multiple wires protected in the PE pipe, and a large-span structure contains7

many such cables [4]. The visual inspection of local damage requires the dissection of PE pipe, which is8

neither convenient nor realistic for long-term health monitoring [5]. The image-based technique developed9

from feature recognition has been applied for the automatic inspection of stay cables, but is only effective for10

damage at the surface [6]. New approaches such as thermography, impulse radar, pulse magnetic response11

are developed [7], which allow detecting internal damage by means of indirect measurements [8]. However,12

most of these techniques involve costly equipment and manual operation.13
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During the past decades, modal parameters, which can be identified from operational vibration data [9],14

became one of the most popular features for health monitoring of structures. Reductions in natural frequen-15

cies represent a decrease of structural stiffness, indicating possible local damage [10]. A sudden increase in16

modal curvature indicates a reduction in local stiffness [11], revealing possible local damage [12]. The above17

methodologies have been extensively applied in real cases [13], but the following issues still remain to be18

solved:19

First, lower-order modal parameters, characterizing global dynamic behavior, are insensitive to local20

damage. Especially for cables connected to a flexible structure, the changes in natural frequencies resulting21

from damage might not be a reliable or suitable indicator of local damage due to the redistribution of cable22

forces [14]. Besides, measuring modal curvatures of cables requires a dense measurement [15], whereas in23

practice, only a few measurement points are available. Lastly, even when a decrease in natural frequency24

is detected, this may be due to change in temperature, degeneration of the connections to main structure,25

decrease in static loading besides local damage, resulting in an incorrect diagnosis.26

With the development of distributed measurements by means of FBG sensors, modal-based damage27

identification, involving modal strains [16], has regained interest [17] as they are direct indicators of local28

bending stiffness [18]. However, a physical contact between the sensor and the surface of the material is29

required, which is difficult for existing cables as the strands are usually protected inside.30

An alternative to the modal-based damage identification involves wave propagation features, as a reflected31

wave is generated at a damage location [19]. Theoretically, only one or two sensors are sufficient to capture32

propagating waves, including the incident wave and reflected wave. From the travel time and the intensity33

of the reflected wave, local damage can be located and quantified [20]. Due to this advantage, guided-34

wave-based methods have been studied and applied for damage detection of slender structures, such as35

pipes [21], rails [22], as well as multi-wire cables [23]. Applications of guided waves mainly focused on36

the longitudinal waves, excited by a harmonic wave signal with a short wavelength [24]. Such longitudinal37

guided waves, however, are complicated in a multi-wire cable due to the coupling between wires [25]. On38

the other hand, the longitudinal motion of wires can be disregarded for the transverse waves involving cable39

bending, as long as the wavelength is much larger than the dimensions of the cross section [26]. It has been40

proven that the bending wave is sensitive as well to local damage [20]. However, dispersion makes the wave41

signal distorted, and the reflected wave signal generated by a local damage is usually polluted by additional42

reflections from boundaries and multiple damages. This may complicate the signal interpretation, requiring43

a suitable method to extract damage sensitive features [27].44

The analytical solution of the frequency-domain response of a cable is formed by a superposition of four45

terms, which represent evanescent wave and propagating wave components. Among them, the evanescent46

wave component is not only sensitive to local discontinuities but is also spatially concentrated, which allows47

damage identification even when present at multiple locations. In the present work, a signal transform is48

developed for decomposing the frequency-domain response of a cable into evanescent wave and propagating49

wave components. Based on this, the reflection coefficient of the evanescent wave (REW), which depends50

only on the characteristics of a local discontinuity of the cable, can be estimated, and is shown to be a51

suitable indicator for local damage.52

The present work consists of three parts. First, the transverse motion of a cable with local damage is53

derived through a piecewise analytical solution. The sensitivity of the evanescent wave to local damage is54

studied. Next, the wave decomposition is implemented by means of the developed signal transform, allowing55

for the estimation of the coefficient of each wave component. The formula for the REW estimation is then56

derived. Finally, an experiment, simulated by a numerical model, is performed for a feasibility study of the57

proposed methodology.58
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2. Wave components of the uniform part of a cable59

Figure 1: Model of a uniform cable without local damage

A cable is modeled as a Timoshenko beam with constant axial force Nx (Fig. 1). The following assump-60

tions are made:61

• the transverse displacement of the cable is much smaller than the total length;62

• the cable sag under its own weight is disregarded;63

• viscous damping with regard to transverse motion and shear deformation is assumed negligible;64

• the orientation of the axial force remains tangent to the axis of the cable;65

• the cable is assumed to be excited at its boundaries only.66

In reference [20], the analytical solution of the dynamic response of the cable in the frequency domain is
derived as:

V̂ (x, s) = C̃1 exp(k1x) + C̃2 exp(k2x) + C̃3 exp(k3x) + C̃4 exp(k4x) (1)

Θ̂(x, s) = R1C̃1 exp(k1x) +R2C̃2 exp(k2x) +R3C̃3 exp(k3x) +R4C̃4 exp(k4x) (2)

where V̂ (x, s) and Θ̂(x, s) are the Laplace transforms of the transverse motion v(x, t) and the rotation of cross
section θ(x, t), respectively. The complex frequency is s = σ+ iω (i =

√
−1), ω is the circular frequency. σ is

a real constant, representing a hypothetical exponential decay of the signal [28]. The frequency-dependent
constants C̃j (j = 1, 2, 3, 4) depend on the boundary conditions. Rj (j = 1, 2, 3, 4) represent the ratio
between the transverse motion and the rotation of the cross section in the frequency domain, given as [20]:

Rj =
κGAk2j −Nxk

2
j + s2ρA

κGAkj
(j = 1, 2, 3, 4) (3)

where the wavenumbers kj (j = 1, 2, 3, 4) are given by the following dispersion relations [20]:

k1 = −

√
−β +

√
β2 − 4αγ

2α
(4)

k2 = +

√
−β +

√
β2 − 4αγ

2α
(5)

k3 = −

√
−β −

√
β2 − 4αγ

2α
(6)

k4 = +

√
−β −

√
β2 − 4αγ

2α
(7)
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where

α = EI(κGA+Nx) (8)

β = −κGANx − s2EIρA− s2κGAρI − s2ρINx (9)

γ = s2ρA(κGA+ s2ρI) (10)

where E and G are the elastic modulus and the shear modulus of the material, κ is the shear coefficient67

of cross section, A and I are the cross-section area and the moment of inertia, respectively, while ρ is the68

density of material.69

Suppose σ = 0 for the frequency-domain analysis. From the dispersion relations given by Eq. (4 - 7),70

ωc =
√

(κGA)/(ρI) is defined as the cut-off frequency. When ω ≤ ωc, the wavenumbers k1 and k2 are real, so71

C̃1 exp(k1x) and C̃2 exp(k2x) represent the evanescent non-propagating waves decaying exponentially along72

the positive and negative directions, respectively. The wavenumbers k3 and k4 are imaginary, so C̃3 exp(k3x)73

and C̃4 exp(k4x) represent the propagating bending (PB) waves along the positive and negative directions,74

respectively. When ω > ωc, all wavenumbers k1, k2, k3, k4 are imaginary. C̃1 exp(k1x) + C̃2 exp(k2x) and75

C̃3 exp(k3x) + C̃4 exp(k4x) represent propagating shear (PS) waves and bending (PB) waves, respectively.76

3. Wave reflection and transmission at a damage interface77

3.1. Theoretical derivation78

In this part, the wave reflection and transmission at the interface between an undamaged and damaged79

part of a cable will be studied based on the analytical solution given by Eq. (1 - 2). The solution will80

be decomposed by considering each of the terms C̃1 exp(k1x), C̃2 exp(k2x), C̃3 exp(k3x) and C̃4 exp(k4x)81

separately. At the damage interface, a sudden change in cross section occurs (Fig. 2), and its effect on the82

above wave components will be studied. In order to exclude the effect of the physical boundaries, the cable83

is assumed infinitely long, modeled with absorbing boundaries at both sides.84

Figure 2: An infinitely long cable with a sudden change in the cross section

The response in each part x < 0 or x > 0 takes the form of Eq. (1) and Eq. (2) [29]. The solution at
both sides of the damage interface, x ∈ (−∞, 0) ∪ (0,+∞), is expressed as:

V̂ (x, ω) =

{
C̃1 exp(k1x) + C̃2 exp(k2x) + C̃3 exp(k3x) + C̃4 exp(k4x) (x < 0)

C̃∗
1 exp(k∗1x) + C̃∗

2 exp(k∗2x) + C̃∗
3 exp(k∗3x) + C̃∗

4 exp(k∗4x) (x > 0)
(11)

Θ̂(x, ω) =

{
R1C̃1 exp(k1x) +R2C̃2 exp(k2x) +R3C̃3 exp(k3x) +R4C̃4 exp(k4x) (x < 0)

R∗
1C̃

∗
1 exp(k∗1x) +R∗

2C̃
∗
2 exp(k∗2x) +R∗

3C̃
∗
3 exp(k∗3x) +R∗

4C̃
∗
4 exp(k∗4x) (x > 0)

(12)

where ( )∗ denotes the parameter corresponding to the damaged part. Assume that an incident wave
C̃1 exp(k1x) + C̃3 exp(k3x) propagates from the negative side, while no excitation is present at the positive
side. This implies:

C̃∗
2 = R∗

4C̃
∗
4 ≡ 0 (13)
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Among the wave components in Eq. (11), C̃2 exp(k2x)+ C̃4 exp(k4x) and C̃∗
1 exp(k∗1x)+ C̃∗

3 exp(k∗3x) are the
reflected wave and the transmitted wave, respectively (Fig. 2). The remaining 6 unknown coefficients are
then determined by continuity and equilibrium [30] at the interface x = 0. The continuity conditions are
given by:

V̂ (0−, ω) = V̂ (0+, ω) (14)

Θ̂(0−, ω) = Θ̂(0+, ω) (15)

The equilibrium conditions are given by:

M(0−)−M(0+) = 0 (16)

Q(0−)−Q(0+) = 0 (17)

By substituting Eq. (11) and Eq. (12) into Eq. (14 - 17), a system of equations are obtained, which is written
in matrix form as:

H ·C = 0 (18)

where H is the characteristic matrix given by:

H =


1 R1 EIR1k1 κGA(k1 −R1)
1 R2 EIR2k2 κGA(k2 −R2)
1 R3 EIR3k3 κGA(k3 −R3)
1 R4 EIR4k4 κGA(k4 −R4)
−1 −R∗

1 −EI∗R∗
1k

∗
1 −κGA∗(k∗1 −R∗

1)
−1 −R∗

3 −EI∗R∗
3k

∗
3 −κGA∗(k∗3 −R∗

3)



T

(19)

The characteristic matrix is determined by the known conditions (i.e., material and geometric parameters,
dispersion relation). The vector C collects the frequency-dependent wave coefficients:

C =
{
C̃1 C̃2 C̃3 C̃4 C̃∗

1 C̃∗
3

}T
(20)

The matrix H has the following rank:
rank(H) = 4 < 6 (21)

Eq. (18) is therefore underdetermined, and has two fundamental solutions which can be derived by elimina-
tion of variables. First, by eliminating C̃∗

1 and C̃∗
3 , the reflected waves are expressed as a linear transformation

of the incident waves: {
C̃2

C̃4

}
=

[
r11 r12
r21 r22

]{
C̃1

C̃3

}
(22)

being the first fundamental solution. r11 and r21 represent the coefficients of the reflected evanescent wave
(or PS wave) and PB wave, respectively, for the case of an evanescent wave. r12 and r22 represent the
coefficients of the reflected evanescent wave (or PS wave) and PB wave, respectively, for the case of an
incident PB wave. Similarly, by eliminating C̃2 and C̃4, the transmitted waves are expressed by another
linear transformation of the incident waves:{

C̃∗
1

C̃∗
3

}
=

[
t11 t12
t21 t22

]{
C̃1

C̃3

}
(23)

being the second fundamental solution. t11 and t21 represent the coefficients of the transmitted evanescent
wave (or PS wave) and PB wave, respectively, for the case of an evanescent wave. t12 and t22 represent
the coefficients of the transmitted evanescent wave (or PS wave) and PB wave, respectively, for the case of
an incident PB wave. The closed-form solutions of these reflection and transmission coefficients are usually
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rather complicated [30]. For this reason, they are calculated indirectly in this study. First, let C̃1 = 1 and
C̃3 = 0. From Eq. (22) and Eq. (23), it follows that:

C̃2 = r11, C̃4 = r21, C̃∗
1 = t11, C̃∗

3 = t21 (24)

By substituting Eq. (24) into Eq. (18), the reflection and transmission coefficients of the incident evanescent
wave (or SP wave) C̃1 exp(k1x) are derived as:

r11
r21
t11
t21

 = −B−1 ·


1
R1

EIR1k1
κGA(k1 −R1)

 (25)

where the matrix B is:

B =


1 1 −1 −1
R2 R4 −R∗

1 −R∗
3

EIR2k2 EIR4k4 −EI∗R∗
1k

∗
1 −EI∗R∗

3k
∗
3

κGA(k2 −R2) κGA(k4 −R4) −κGA∗(k∗1 −R∗
1) −κGA∗(k∗3 −R∗

3)

 (26)

Similarly, let C̃1 = 0 and C̃3 = 1. From Eq. (22) and Eq. (23), it is found that:

C̃2 = r12, C̃4 = r22, C̃∗
1 = t12, C̃∗

3 = t22 (27)

By substituting Eq. (27) into Eq. (18), the effect of the incident PB wave C̃3 exp(k3x) is derived as:
r12
r22
t12
t22

 = −B−1 ·


1
R3

EIR3k3
κGA(k3 −R3)

 (28)

From Eq. (25) and Eq. (28), the reflection and transmission coefficients at the damage interface can be85

calculated. A parametric study will be performed next.86

3.2. Numerical example87

In this part, a 91φ7 mm multi-wire cable is considered. The material parameters are as follows: the88

elastic modulus E = 200 GPa, the density ρ = 7800 kg/m3, the Poisson’s ratio µ = 0.3. The geometric89

parameters are: the cross-section area A = 0.0035 m2, the moment of inertia Iz = 1.09× 10−6 m4, the shear90

constant κ = 0.46.91

Figure 3: Damage in the cross section of the cable

The assumed damage of the cross section, shown in Fig. 3, represents corrosion of wires. Four different92

damage cases are considered and the geometric parameters of the damaged cross sections are given in Tab. 1.93

Table 1: The geometric parameters of the undamaged and damage cases

Case No. Number of wires A (m2) I (m4) Damage level

Undamaged 91 0.003502 1.09× 10−6 00.00 %
Damage 1 61 0.002348 4.88× 10−7 32.97 %
Damage 2 37 0.001424 1.80× 10−7 59.34 %
Damage 3 19 0.000731 4.75× 10−8 79.12 %
Damage 4 7 0.000269 6.48× 10−9 92.31 %
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First, the initial axial force of the cable is defined as Nx = 500 MPa × 0.0035 m2 = 1750 kN. The94

reflection and transmission coefficients are evaluated by Eq. (25) and Eq. (28), respectively (Fig. 4).95
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Figure 4: a) Reflection and b) transmission coefficients at the damage interface (σ0 = 500 MPa). The arrows indicate the
increase of the damage level. The vertical dashed line indicates the cut-off frequency ωc = 19172 Hz.

For the undamaged case, t11 and t22 have a unit value, and the other coefficients are zero. This indi-96
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cates that the incident wave travels through the (undamaged) interface, with neither reflection nor mode97

conversion. Due to the remote location of the excitation, the incident evanescent wave C̃1 exp(k1x) and its98

reflections C̃2 exp(k2x) and C̃4 exp(k4x) are extremely weak for the damage cases (Fig. 4), even though the99

values of r11 and r21 are large. Note that the transmission coefficients are large (Fig. 4(b)) as well, even100

increasing with the damage level (t21 and t22). This is caused by the reduced stiffness of the damaged part.101

The coefficients r12 and r22 presented in Fig. 4(a) show the sensitivity of the reflected evanescent waves102

and PB waves to the damage interface, respectively, for the case of an incident PB wave. The reflected103

evanescent wave (r12 ) is particularly sensitive to the damage in the frequency range between 100 and 2000104

Hz and reaches its maximum near 1000 Hz. For the reflected PB wave (r22), the sensitivity is slightly lower.105

More importantly, the PB wave is not spatially concentrated due to its propagating behavior. It can be106

concluded from the above that the reflected evanescent wave has greater potential for damage identification.107

With increasing axial force, the dynamic behavior of a cable becomes increasingly similar to that of a108

taut string (disregarding bending stiffness), especially in the lower frequency range. The intensity of the109

reflected evanescent wave, characterized by bending deformation, is therefore lower.110

(a) (b)

Figure 5: a) Reflections and b) transmissions at the damage interface (damage case 2, σ0 = 100 - 500 MPa). The arrows
indicate the increase of the cable force. The vertical dashed line indicates the cut-off frequency ωc = 19172 Hz.

In order to verify this observation, an additional parametric study is performed based on damage case 2,111

changing the axial stress from 100 to 500 MPa. Fig. 5 shows that the reflection of the evanescent wave (r12)112

indeed decreases with increasing axial force. It has also been proven that the high-frequency components,113

which characterize local bending behavior, are less sensitive to the value of axial force. Both the reflection114

and transmission coefficients are hardly affected by the axial force at frequencies above 300 Hz.115

The above results prove that both the intensities of reflected evanescent wave and PB wave are sensitive116

to damage. Note that the derived reflection and transmission coefficients are independent of the physical117

excitations and the remote boundaries of cable, as neither of them is involved in the model (Fig. 2). However,118

the length of cable is always finite in reality, meaning that the effects of physical boundaries should be taken119

into account, as well as the length of the damaged part. In the following, the spatial distribution of the120

wave components will be studied for this case.121

4. Damaged cable with general boundary conditions122

4.1. Frequency-domain analytical solution123

In this part, the dynamic response of a damaged cable will be discussed for different types of boundary124

conditions.125
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Figure 6: Model of a damaged cable with general boundary conditions

As shown in Fig. 6, a cable with finite length L is considered. AB and CD are the undamaged parts,126

and BC is the damaged part. Depending on the boundary conditions considered, this model can represent127

either a single isolated cable, a cable connected to a main structure, or a sub-segment of a cable. Similar to128

Eq. (11) and Eq. (12), the frequency-domain response of this model is expressed by the following piecewise129

functions:130

V̂ (x, s) =


C̃

(AB)
1 exp(k1x) + C̃

(AB)
2 exp[k2(x− xB)] + C̃

(AB)
3 exp(k3x) + C̃

(AB)
4 exp(k4x) (0 ≤ x < xB)

C̃
(BC)
1 exp[k∗1(x− xB)] + C̃

(BC)
2 exp[k∗2(x− xC)] + C̃

(BC)
3 exp(k∗3x) + C̃

(BC)
4 exp(k∗4x) (xB ≤ x < xC)

C̃
(CD)
1 exp(k1(x− xC)) + C̃

(CD)
2 exp[k2(x− L)] + C̃

(CD)
3 exp(k3x) + C̃

(CD)
4 exp(k4x) (xC ≤ x ≤ xL)

(29)

Θ̂(x, s) =


R1C̃

(AB)
1 exp(k1x) +R2C̃

(AB)
2 exp[k2(x− xB)] +R3C̃

(AB)
3 exp(k3x) +R4C̃

(AB)
4 exp(k4x) (0 ≤ x < xB)

R∗
1C̃

(BC)
1 exp[k∗1(x− xB)] +R∗

2C̃
(BC)
2 exp[k∗2(x− xC)] +R∗

3C̃
(BC)
3 exp(k∗3x) +R∗

4C̃
(BC)
4 exp(k∗4x) (xB ≤ x < xC)

R1C̃
(CD)
1 exp(k1(x− xC)) +R2C̃

(CD)
2 exp[k2(x− L)] +R3C̃

(CD)
3 exp(k3x) +R4C̃

(CD)
4 exp(k4x) (xC ≤ x ≤ xL)

(30)

where xB and xC are the x-coordinates of B and C, respectively (taking A as the original point).131

Eq. (29) and Eq. (30) contain a total of 12 unknown coefficients, requiring a system of 12 equations,132

established by the continuity and equilibrium conditions at the damage interface B and C, as well as the133

boundaries conditions at A and D.134

First, continuity and equilibrium at B and C provide the following 8 equations:

V̂ (x−B , ω) = V̂ (x+B , ω) (31)

Θ̂(x−B , ω) = Θ̂(x+B , ω) (32)

M(xB, ω)−M(x+B , ω) = 0 (33)

Q(xB, ω)−Q(x+B , ω) = 0 (34)

V̂ (x−C , ω) = V̂ (x+C , ω) (35)

Θ̂(x−C , ω) = Θ̂(x+C , ω) (36)

M(xC, ω)−M(x+C , ω) = 0 (37)

Q(xC, ω)−Q(x+C , ω) = 0 (38)

where the frequency-domain bending moments and shear forces are calculated as:

Qy(x, ω) = κGA

[
∂V̂ (x, ω)

∂x
− Θ̂(x, ω)

]
(39)

Mz(x, ω) = −EI ∂Θ̂(x, ω)

∂x
(40)

The remaining 4 equations are obtained by considering the boundary conditions. Generally, each type of135

boundary condition yields two equations:136

• Fixed: the displacement or rotation is constrained. (e.g. vA(t) = 0 or θA(t) = 0)137

• Free: no force or moment is present. (e.g. QA(t) = 0 or MA(t) = 0)138

• Excited: the displacement or force is non-zero and known. (e.g. vA(t) 6= 0 or QA(t) 6= 0)139

• Absorbing: the cable extends to infinity. (e.g. C̃
(AB)
1 = 0 or C̃

(CD)
4 = 0)140

In the following, two typical cases will be considered.141
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4.2. Damaged cable with fixed boundaries142

Assuming that the displacements and rotations of both boundaries are known, the 4 boundary equations
take the form of:

V̂ (xA, ω) = V̂A (41)

Θ̂(xA, ω) = Θ̂A (42)

V̂ (xD, ω) = V̂D (43)

Θ̂(xD, ω) = Θ̂D (44)

By substituting the analytical solution (Eq. (29 - 30)) into the continuity and equilibrium conditions (Eq. (31
- 38)), as well as the boundary conditions (Eq. (41 - 44)), the following system of equations is established: H11 0 H13

H21 H22 0
0 H32 H33

 ·C = H ·C = d (45)

where the coefficient vector C contains the wave coefficients, which represent the amplitude and phase of
the wave components contributing to the response of the cable:

C =
{

C̃
(AB)
1 C̃

(AB)
2 C̃

(AB)
3 C̃

(AB)
4 C̃

(BC)
1 C̃

(BC)
2 C̃

(BC)
3 C̃

(BC)
4 C̃

(CD)
1 C̃

(CD)
2 C̃

(CD)
3 C̃

(CD)
4

}T

(46)

the vector d contains the known displacements and rotations of the boundaries A and D:

d =
{
V̂A Θ̂A V̂D Θ̂D 0 0 0 0 0 0 0 0

}T
(47)

In Eq. (45), H is the characteristic matrix, calculated by the known conditions (material and geometric
parameters, dispersion relation), representing the characteristics of the system. Its sub-matrices are given
by the following expressions:

H11 =


1 exp(−k2xB) 1 1
R1 R2 exp(−k2xB) R3 R4

0 0 0 0
0 0 0 0

 (48)

H13 =


0 0 0 0
0 0 0 0

exp[k1(L− xC)] 1 exp(k3L) exp(k4L)
R1 exp[k1(L− xC)] R2 R3 exp(k3L) R4 exp(k4L)

 (49)

H21 =


1 1 1 1
R1 R2 R3 R4

EIR1k1 EIR2k2 EIR3k3 EIR4k4
−κGA(k1 −R1) −κGA(k2 −R2) −κGA(k3 −R3) −κGA(k4 −R4)

 ·Λ1 (50)

H22 =


−1 −1 −1 −1
−R∗

1 −R∗
2 −R∗

3 −R∗
4

−EI∗R∗
1k

∗
1 −EI∗R∗

2k
∗
2 −EI∗R∗

3k
∗
3 −EI∗R∗

4k
∗
4

κGA∗(k∗1 −R∗
1) κGA∗(k∗2 −R∗

2) κGA∗(k∗3 −R∗
3) κGA∗(k∗4 −R∗

4)

 ·Λ2 (51)

H32 =


1 1 1 1
R∗

1 R∗
2 R∗

3 R∗
4

EI∗R∗
1k

∗
1 EI∗R∗

2k
∗
2 EI∗R∗

3k
∗
3 EI∗R∗

4k
∗
4

−κGA∗(k∗1 −R∗
1) −κGA∗(k∗2 −R∗

2) −κGA∗(k∗3 −R∗
3) −κGA∗(k∗4 −R∗

4)

 ·Λ3 (52)
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H33 =


−1 −1 −1 −1
−R1 −R2 −R3 −R4

−EIR1k1 −EIR2k2 −EIR3k3 −EIR4k4
κGA(k1 −R1) κGA(k2 −R2) κGA(k3 −R3) κGA(k4 −R4)

 ·Λ4 (53)

where

Λ1 = diag
{

exp(k1xB) 1 exp(k3xB) exp(k4xB)
}

(54)

Λ2 = diag
{

1 exp[k∗2(xB − xC)] exp(k∗3xB) exp(k∗4xB)
}

(55)

Λ3 = diag
{

exp[k∗1(xC − xB)] 1 exp(k∗3xB) exp(k∗4xB)
}

(56)

Λ4 = diag
{

1 exp[k2(xC − L)] exp(k3xB) exp(k4xB)
}

(57)

In this part, both boundaries are assumed fixed, so that V̂A = Θ̂A = V̂D = Θ̂D = 0. The coefficient vector
C in Eq. (45) has a non-trivial solution if and only if

det(H) = 0 (58)

From the above characteristic equation, a series of frequencies ωj = {ω | det[H(ω)] = 0} are obtained, which
are the natural frequencies of the cable, satisfying

rank[H(ωj)] = 11 < 12 (59)

At each natural frequency, the fundamental solution C obtained from Eq. (45) represents the contributions
of the wave components to the mode shape of the cable. Since the mode shapes of the cable take the form of
Eq. (29), they can be decomposed as follows. The contribution of the evanescent waves to the mode shapes:

V̂n(x, ω) =


C̃

(AB)
1 exp(k1x) + C̃

(AB)
2 exp[k2(x− xB)] (0 ≤ x < xB)

C̃
(BC)
1 exp[k∗1(x− xB)] + C̃

(BC)
2 exp[k∗2(x− xC)] (xB ≤ x < xC)

C̃
(CD)
1 exp(k1(x− xC)) + C̃

(CD)
2 exp[k2(x− L)] (xC ≤ x ≤ xL)

(60)

The contribution of the PB waves to the mode shapes:

V̂p(x, ω) =


C̃

(AB)
3 exp(k3x) + C̃

(AB)
4 exp(k4x) (0 ≤ x < xB)

C̃
(BC)
3 exp(k∗3x) + C̃

(BC)
4 exp(k∗4x) (xB ≤ x < xC)

C̃
(CD)
3 exp(k3x) + C̃

(CD)
4 exp(k4x) (xC ≤ x ≤ xL)

(61)

It has been shown in Fig. 4(a) that both evanescent wave and PB wave are sensitive to damage. A numerical143

example will be studied next to check their sensitivity and spatial distribution.144

For the cable model with fixed boundaries, an eigenvalue problem is considered in this example. The145

damaged cross section corresponds to damage case 1 (Tab. 1). The initial stress of the cable is σ0 = 500 MPa.146

Figure 7: Model of a damaged cable with fixed boundaries

As shown in Fig. 7, the cable has a finite length L = 40 m, and the damaged part is between xB = 12.0 m147

and xC = 12.1 m. The boundary condition vector d = 0 in Eq. (45). In order to find a series of natural148

frequencies ωj satisfying det(H) = 0, det(H) is firstly evaluated in the frequency interval 0−1500 Hz (Fig. 8).149
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Figure 8: The determinant of the matrix H

Each local minimum of det(H) indicates a natural frequency of the cable, and its value is found by the150

bisection method, solving for det(H)→ 0. The first three natural frequencies are found as 1.477 Hz, 2.972151

Hz, 4.497 Hz. Similarly, two high-order natural frequencies near 500 Hz and 1000 Hz are calculated as152

493.402 Hz and 1007.941 Hz, respectively. At each of the above frequencies, a fundamental solution of the153

coefficient vector C is solved from Eq. (45), and the mode shapes (Eq. (29)) are decomposed into evanescent154

wave components (Eq. (60)) and PB wave components (Eq. (61)), as shown in Fig. 9 and Fig. 10.155

0 5 10 15 20 25 30 35 40

-1

0

1

(a)

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

(b)

0 5 10 15 20 25 30 35 40

-1

0

1

(c)

Figure 9: Lower-order mode shapes of the cable and the wave decomposition (— 1st order, — 2nd order, — 3rd order). The
dashed lines indicate the damage interfaces: a) mode shapes b) evanescent waves c) PB waves
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Figure 10: Higher-order mode shapes of the cable and the wave decomposition (— 493 Hz, — 1008 Hz). The dashed lines
indicate the damage interfaces: a) mode shapes b) evanescent waves c) PB waves

Fig. 9(b) and Fig. 10(b) show that the evanescent wave components are spatially concentrated near the156

discontinuities of the cable (both the boundaries and the local damage), making each of the discontinuities157

easy to recognize independently. This is because the evanescent wave decays exponentially along the x axis158

(as in Eq. (60)). Since the evanescent wave involves a transverse motion with bending deformation, it is159

sensitive to the curvature at the location of discontinuity. As can be seen from Fig. 10(b), the evanescent wave160

component at 493 Hz is significantly sensitive to the damage, due to the large modal curvature (Fig. 10(c)).161

The dynamic response of the cable, measured by a sensor, is the total response, which is sum of the162

evanescent wave and PB wave. Since the evanescent waves decays exponentially with the distance from163

discontinuity, it cannot be detected far away from damage location unless the resolutions of sensors are164

sufficiently high.165

By comparing Fig. 9(a) and Fig. 9(c), as well as Fig. 10(a) and Fig. 10(c), it can be concluded that166

the mode shapes are dominated by PB waves which have a harmonic nature and propagation behavior.167

Therefore, it is not easy to detect damage from either mode shapes or PB wave components, despite the168

considerable sensitivity of PB wave shown in Fig. 4(a).169

The above study is based on the fundamental solution of Eq. (45) in case of d = 0. In the following,170

again based on Eq. (45), the wave propagation response of a damaged cable subject to a boundary excitation171

will be studied.172
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4.3. Wave propagation in a semi-infinite cable173

Referring again to the cable model in Fig. 6, the boundary conditions are re-defined in this part. Assume174

that a transverse motion is imposed at boundary A, while its rotation is constrained. The cable spatially175

extends to infinity along the positive x axis, which is modeled by an absorbing boundary at D. For this case,176

Eq. (45) is still applied after being modified to satisfy the new boundary conditions.177

The transverse motion at the boundary A is known, so that V̂A 6= 0 and Θ̂A = 0 in the vector d

(Eq. (47)). For the absorbing boundary D, the coefficients C̃
(CD)
2 and C̃

(CD)
4 , contained in the vector C, are

zero. Eq. (43) and Eq. (44) are eliminated. In order to satisfy the above conditions, Eq. (45) is modified as:



1 2 3 4 5 6 7 8 9 10 11 12

1 0 0
2 0 0
3 0 0 0 0 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0





C̃
(AB)
1

C̃
(AB)
2

C̃
(AB)
3

C̃
(AB)
4

C̃
(BC)
1

C̃
(BC)
2

C̃
(BC)
3

C̃
(BC)
4

C̃
(CD)
1

C̃
(CD)
2

C̃
(CD)
3

C̃
(CD)
4



=



V̂A
Θ̂A

0
0
0
0
0
0
0
0
0
0



(62)

where the other elements of the matrix at the left hand side are the same as those included in the previous178

H (Eq. (45)). Eq. (62) presents a fully determined property, and a unique solution of C is obtained at each179

frequency. The frequency-domain response of the cable, taking the form of Eq. (29), will now be decomposed180

into evanescent wave components (Eq. (60)) and PB wave components (Eq. (61)).181

Figure 11: Model of a damaged cable excited by a boundary displacement

The cable model in Section 4.2 is again considered as an example. As shown in Fig. 11, the transverse
motion vA(t) is imposed at the left boundary A. An absorbing boundary is assumed at D, indicating that
the cable spatially extends to infinity along the positive x axis. The boundary excitation is assumed to be
a Dirac Delta function:

vA(t) = δ(t) (63)

which represents a general case. In the frequency domain, the Fourier transform of Eq. (63):

V̂A(ω) = 1 (64)

represents a unit displacement at each frequency. The coefficient vector C is then calculated from Eq. (62).182

By substituting C into Eq. (29), Eq. (60), Eq. (61), the frequency-domain response of the cable, and the183

wave components are calculated, shown in Fig. 12.184
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(a)

(b)

(c)

Figure 12: Frequency response of the cable imposed by the transverse motion of a Dirac Delta function: a) transverse displace-
ment field b) evanescent wave component c) PB wave component

From Fig. 12(b), it is again found that the contributions from the evanescent waves are concentrated185

near discontinuities. In order to quantify the effect of the local damage, the results in Fig. 12 are studied186

in more detail. First, the wave components at the damage location x = 12 m and the undamaged location187

x = 30 m are compared in Fig. 13.188
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Figure 13: Wave components at the damaged (x = 12 m) and undamaged (x = 30 m) locations

Fig. 13 shows that the evanescent wave is significant at the damage location, getting even more intensive189

with increasing frequency. At the location x = 12 m, the ratio between the evanescent wave and the PB190

wave is around 0.2, which is consistent with the reflection coefficient |r12| in Fig. 4(a). The PB waves, which191

characterize the global response of the cable, on the other hand, are less sensitive to the local damage.192
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Figure 14: The spatial distributions of the wave components at 50 Hz, 100 Hz and 200 Hz (The solid lines and the dashed lines
represent the evanescent waves and the PB waves, respectively)

Next, the spatial distribution of the wave components at the frequencies 50 Hz, 100 Hz, 200 Hz are193

compared in Fig. 14. The spatial distributions of the evanescent waves near the discontinuities, i.e., x = 0 m194

(left boundary), x = 12 m and x = 12.1 m (damage interfaces), are of particular interest. At higher195

frequencies, the reflected evanescent waves (at the outer side of the damage) are more intensive, which is196

consistent with Fig. 13. The spatial decay of higher-frequency evanescent wave is faster, however, due to197

the larger value of wavenumber.198

In order to identify the area where the evanescent wave can potentially be detected, Fig. 15 shows the
locations where the evanescent wave generated by the damage satisfies the following condition which is here
assumed sufficient for detection:

x ∈ {x
∣∣ |V̂n(x, ω)| > 0.01} (65)
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Figure 15: The suitable area for the detection of evanescent wave

In the frequency range between 50 and 100 Hz, the detection area reduces with increasing frequency.199

The sensitivity of the lower-frequency evanescent wave to local damage is lower than the higher frequency200

components, however (Fig. 14). It can be concluded that a trade-off is needed between a large detection201

area and a high intensity of the detected evanescent wave.202

From the above study, it is concluded that local damage can in principle be identified from evanescent203

wave components. In practical cases, however, the displacement field shown in Fig. 12(a) is difficult to204

measure. Instead, the total response, which consists of evanescent wave and PB wave components, can only205

be measured at a few observation points. A suitable methodology for signal processing is therefore needed206

to decompose such measured response into the proposed wave components. This will be studied next.207

5. Damage identification based on wave decomposition208

5.1. Estimation of wave coefficients209

Figure 16: Model of a damaged cable excited by boundary motions and external force

As shown in Fig. 16, suppose that a few sensors are located at:

x =
{
x1 x2 · · · xn

}T
(66)

First of all, the substructure between x = x1 and x = xn is defined, with length Ls = |xn − x1|. As long
as neither local damage nor external forces are contained in (x1, xn), the substructure is an undamaged
cable, excited by boundary displacements (as well as rotations), regardless of the actual physical excitation
of the cable, i.e., the imposed motion at the boundaries A and D, the external force F (x, t). The transverse
motion of the substructure therefore takes the form of Eq. (1) in the frequency domain. The four wave
coefficients C̃1, C̃2, C̃3, C̃4 are unknown, requiring 4 equations, which are obtained by the consideration
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of the measurements. By applying the Laplace transform, the measured response is transformed into the
frequency domain:

V̂m = {V̂m(x∗1), V̂m(x∗2), · · · , V̂m(x∗n)}T (67)

where x∗j = xj − x1 (j = 1, 2, · · · , n) are the locations of the measurement points with the local coordinate
system defined at the level of the substructure. In order to avoid numerical problems arising from the singu-
larity of the characteristic matrix, the wave coefficients C̃2 and C̃4 in Eq. (1) are replaced by C̃2 exp(−k2Ls)
and C̃4 exp(−k4Ls), respectively. The frequency-domain analytical solution of the substructures is then
re-written as:

V̂ (x∗, s) = C̃1 exp(k1x
∗) + C̃2 exp[k2(x∗ − Ls)] + C̃3 exp(k3x

∗) + C̃4 exp[k4(x∗ − Ls)] (68)

Assuming that the measured response (Eq. (67)) equals the analytical solution (Eq. (68)), a system of
equations is established as:

H · C̃(es)
= V̂m (69)

where the coefficient vector, containing the estimated wave coefficients of Eq. (68) is given as:

C̃
(es)

=
{
C̃

(es)
1 C̃

(es)
2 C̃

(es)
3 C̃

(es)
4

}T

(70)

The characteristic matrix, determined by the known conditions, is given as:

H =


exp(k1x

∗
1) exp[k2(x∗1 − Ls)] exp(k3x

∗
1) exp[k4(x∗1 − Ls)]

exp(k1x
∗
2) exp[k2(x∗2 − Ls)] exp(k3x

∗
2) exp[k4(x∗2 − Ls)]

...
...

...
...

exp(k1x
∗
n) exp[k2(x∗n − Ls)] exp(k3x

∗
n) exp[k4(x∗n − Ls)]

 (71)

The wave coefficients are obtained by matrix inversion or the Least Squares Method:

C̃
(es)

= H−1V̂m (n = 4) or C̃
(es)

= (HTH)−1HTV̂m (n > 4) (72)

It is interesting to note that Eq. (72) in fact represents a linear transform of the measured response V̂m,210

from the frequency domain to the wavenumber domain.211

By substituting C̃
(es)

back into Eq. (68), the transverse motion of the substructure is reconstructed in
the frequency domain, expressed in the local coordinate system as:

V̂ (x∗, s) = C̃
(es)
1 exp(k1x

∗) + C̃
(es)
2 exp[k2(x∗ − Ls)] + C̃

(es)
3 exp(k3x

∗) + C̃
(es)
4 exp[k4(x∗ − Ls)] (73)

where C̃
(es)
1 and C̃

(es)
2 represent the evanescent waves at x∗ = 0 (decaying along the positive direction) and212

x∗ = Ls (decaying along the negative direction), respectively. C̃
(es)
3 and C̃

(es)
4 represent the PB waves at213

x∗ = 0 (propagating along the positive direction) and x∗ = Ls (propagating along the negative direction),214

respectively (Fig. 17).215

Figure 17: Reflections of the evanescent waves at the boundaries of the substructure
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From C̃
(es)
1 and C̃

(es)
2 , the discontinuities at the left and right side to the substructure, respectively, can

be identified. The absolute values of C̃
(es)
1 and C̃

(es)
2 are affected by the frequency response of cable, and

cannot be used for damage quantification. In order to derive a damage indicator depending only on the
characteristics of the local discontinuity, the reflection coefficients of evanescent wave (REW) for incident
PB waves are estimated from the reconstructed response of the substructure (Fig. 17):

[r
(es)
12 ]L(s) =

C̃
(es)
1 (s)

C̃
(es)
4 (s) exp[−k4(s)Ls]

(74)

[r
(es)
12 ]R(s) =

C̃
(es)
2 (s)

C̃
(es)
3 (s) exp[k3(s)Ls]

(75)

where [r
(es)
12 ]L indicates the REW at x∗ = 0 for the incident PB wave along the negative direction, [r

(es)
12 ]R216

indicates the REW at x∗ = Ls for the incident PB wave along the positive direction. The estimated [r
(es)
12 ]L217

and [r
(es)
12 ]R, which correspond to the coefficient r12 of Eq. 22, depend only on the characteristics of the218

discontinuity near the substructure, i.e., they depend on neither physical excitation nor the global response219

of cable. This renders them suitable for local damage identification.220

5.2. Numerical example221

Figure 18: The boundary excitation and the measurement

In this part, the cable model of Section 4.2 is again considered. Particularly for this example, two anchors222

are modeled at both end points of the cable, as shown in Fig. 18. The length of each anchor is La = 0.5 m.223

The cross section of the anchors is assumed to be a circle with diameter Da = 0.1 m, so the cross-section224

area is Aa = 0.0078 m2 and the moment of inertia is Ia = 4.909× 10−6 m4. Since the evanescent waves are225

spatially concentrated, multiple local damages at different locations can be detected independently, as long226

as the areas of detection do not overlap. At the locations x = 7 m and x = 15 m, local damages BC and DE227

are considered, with the damage levels of case 1 and case 2 in Tab. 1, respectively. At the right boundary228

F, a constant tensile force Nx = 1750 kN is applied.229

Tab. 2 and Fig. 19 compare the natural frequencies and mode shapes of the cable before and after damage,230

respectively, taking into account the static configuration under the own weight loading, as calculated by231

means of the finite element method.232
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Table 2: The natural frequencies of the cable model (Hz)

Order 1 2 3 5 10

Undamaged 3.190 6.386 9.597 16.090 33.055
Damaged 3.193 6.395 9.611 16.094 33.082

Relative change 0.09% 0.14% 0.15% 0.02% 0.08%
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Figure 19: The mode shapes of the cable model (— undamaged - - - damaged). The gray dashed lines indicate the damage
locations: a) 1st mode b) 2nd mode c) 3rd mode d) 5th mode e) 10th mode
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Interestingly, the transverse stiffness of the cable, which is mainly provided by the cable force, hardly233

changes after damage. As a consequence, the natural frequencies of the cable model actually slightly increase234

due to the loss of mass in the damaged parts. Therefore, local damage cannot be identified from changes in235

the natural frequencies in such a case. Additionally, the mode shapes before and after damage are compared236

in Fig. 19, showing that the local damages have little effect to the mode shapes.237

In this simulated experiment, the reflection coefficients [r
(es)
12 ]L and [r

(es)
12 ]R will be estimated by means238

of the proposed methodology, and will be applied for local damage identification. A sensor array, composed239

of 4 accelerometers with a spacing of ∆x = 1 m, is applied. Assuming that the sensor array can be moved240

along the cable, the experimental procedure is as follows:241

1. The sensor array is initially located at x = {0m, 1m, 2m, 3m}T;242

2. An unmeasured hammer impact is applied at an arbitrary location in a certain area;243

3. The acceleration response is measured by the sensor array;244

4. The sensor array is moved in the x positive direction by 0.1 m;245

5. Repeat step 2 to 4, until the sensor array reaches x = {17m, 18m, 19m, 20m}T.246

It has been shown that an evanescent wave is generated at each discontinuity. Therefore, the discontinuity of
the shear force produced by the hammer impact generates evanescent wave as well, which may interfere with
the detection of the evanescent waves generated from damage, in particular when the location of impact is
close to the sensors. Due to the exponential decay of the evanescent wave generated by the hammer impact,
it will not interfere with the damage identification as long as the location of the impact is far away from the
sensors. For this reason, each hammer impact applied to the cable model is modeled as:

p(x, t) = Ah · h(t) · δ(x− xh) (76)

where Ah is the amplitude of the impact force, which is an arbitrary value between 300 and 500 N in this247

example. xh is the location of the hammer impact, which is an arbitrary value between 25 and 35 m in this248

example. h(t) is a linear impact signal with a unit amplitude starting from ts = 0.5 s, and the total duration249

is td = 4 ms.250

In this experiment, the sampling frequency fs = 1000 Hz, and the total number of samples Ns = 211 =251

2048. The time-domain signal and the linear spectrum of h(t) are shown in Fig. 20.252

0.49 0.495 0.5 0.505 0.51 0.515 0.52 0.525 0.53
Time (s)

-0.5

0

0.5

1

1.5

U
ni

t f
or

ce
 (

-)

(a)

0 100 200 300 400 500
Frequency (Hz)

0

1

2

U
ni

t f
or

ce
 (

1/
H

z) 10-3

(b)

Figure 20: Unit impact h(t): a) time-domain signal b) linear spectrum
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The dynamic response of the cable is simulated by a two-step finite element method - spectral element253

method (FEM-SEM) approach [20]. First, the static state of the cable under its own weight is analyzed by254

means of the FEM. Based on this initial state, the dynamic response of the cable to each hammer impact255

is analyzed by means of the SEM. The accelerations at the sensor locations are considered as the measured256

responses. Particularly, each response is polluted by a zero-mean white noise signal, with standard deviation257 √
σ = 0.001 m/s

2
. Taking the measurement when the sensor array is located at x = {9m, 10m, 11m, 12m}T258

for example, the amplitude of the impact force is Ah = 404 N, and the location of the impact is xh = 31.5 m.259

The measured acceleration responses are shown in Fig. 21.260

0 0.5 1 1.5 2

Time (s)

-10

0

10

A
cc

e.
 1

 (
m

/s
2
)

(a)

0 0.5 1 1.5 2

Time (s)

-10

0

10

A
cc

e.
 2

 (
m

/s
2
)

(b)

0 0.5 1 1.5 2

Time (s)

-10

0

10

A
cc

e.
 3

 (
m

/s
2
)

(c)

0 0.5 1 1.5 2

Time (s)

-10

0

10

A
cc

e.
 4

 (
m

/s
2
)

(d)

Figure 21: The measured acceleration responses: a) x1 = 9.0 m b) x2 = 10.0 m c) x3 = 11.0 m d) x4 = 12.0 m

First of all, the measured time-domain acceleration signal is transformed into the frequency domain by261

the Laplace transform [20], obtaining V̂m in Eq. (67). The real constant of the complex frequency s is262

σ = 2π/(Ns∆T ) [28]. For example, the Laplace transform of the measured acceleration response shown in263

Fig. 21 is given in Fig. 22.264
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Figure 22: The Laplace transform of the measured response

By substituting the frequency-domain acceleration response V̂m (Fig. 22) into Eq. (72), the wave coef-265

ficients C
(es)
1 , C

(es)
2 , C

(es)
3 and C

(es)
4 are estimated. For each hammer impact and sensor array, these four266

wave coefficients can be estimated. Fig. 23 shows each estimated wave coefficients, as a function of both the267

location of the sensor array x and the frequency ω.268
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(a)

(b)

(c)

(d)

Figure 23: The estimated wave coefficients by the wave decomposition (The gray dashed lines indicate the damage locations):

a) C
(es)
1 b) C

(es)
2 c) C

(es)
3 d) C

(es)
4

In Fig. 23(a) and Fig. 23(b), the evanescent waves are concentrated near the damage locations (x = 7 m269
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and x = 15 m). Additionally in Fig. 23(a), the evanescent wave is detected as well near the left anchor270

(x = 0 m) due to the discontinuity present. However, the PB wave components (Fig. 23(c) and Fig. 23(d)),271

which are determined by the global characteristics of the cable, do not reveal the presence of discontinuities.272

This is because the propagating waves are mainly affected by the amplitude and location of the excitation,273

which are different for each hammer impact.274

Furthermore, by substituting the estimated wave coefficients (Fig. 23) into Eq. (74) and Eq. (75), the275

REW indicators [r
(es)
12 ]L and [r

(es)
12 ]R are estimated (Fig. 24), which depend only on damage level. The276

physical meaning of the reflection coefficients has been illustrated by Fig. 17.277

(a)

(b)

Figure 24: Estimated REW indicators (The gray dashed lines indicate the damage locations): a) [r
(es)
12 ]L b) [r

(es)
12 ]R

In Fig. 24, each local damage can be identified independently. The influence of the measurement noise at278

the frequencies below 10 Hz and above 450 Hz is easily recognizable and can for this reason be excluded from279

the data interpretation. From the results in Fig. 24, it is observed that the evanescent wave components are280

not strictly concentrated at the damage interface, but instead are smeared over wider areas (x ∈ [5, 7]∪[13, 15]281

in Fig. 24(a) and x ∈ [7, 9] ∪ [15, 17] in Fig. 24(b)). This phenomenon will be clarified next.282

Figure 25: The sensor array passes through the damage location

As shown in Fig. 25, three cases will be considered when the sensor array passes through a damage283

location:284
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1. When the sensor array is to the left of the damage location (the red sensors in Fig. 25), the damage285

interface is to the right of the substructure, and a significant [r
(es)
12 ]R is detected.286

2. When damage is situated within the substructure (i.e. the gray sensors in Fig. 25), the dynamic287

response of the substructure does not satisfy Eq. (68). Therefore, Eq. (69) does not hold, and the288

estimated wave coefficients make no sense, despite the large values of both [r
(es)
12 ]L and [r

(es)
12 ]R.289

3. When the sensor array is to the right of the damage location (the blue sensors in Fig. 25), the damage290

interface is to the left of the substructure, and a significant [r
(es)
12 ]L is detected.291

In order to indicate the damage location more clearly, an intensity of the evanescent wave reflection is

defined by integrating |[r(es)12 ]L| and |[r(es)12 ]R| along the frequency axis, with regard to the frequency range
ω ∈ [ω1, ω2] where the signal-to-noise ratio is considered sufficiently high:

EL(x) =
1

|ω2 − ω1|

∫ ω2

ω1

|[r(es)12 ]L(x, ω)|dω (77)

ER(x) =
1

|ω2 − ω1|

∫ ω2

ω1

|[r(es)12 ]R(x, ω)|dω (78)

where EL(x) and ER(x) indicate the intensity of the evanescent wave reflection from the left side and the
right side of the substructure, respectively. At a certain location, the sum of the above two terms:

Esum(x) = EL(x) + ER(x− Ls) (79)

represents the total intensity of the evanescent wave reflections to both sides, which can be used as an292

indicator for damage localization.293
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Figure 26: Damage localization based on the intensity of the evanescent wave reflection (The gray dashed lines indicate the
damage interfaces)

Fig. 26 shows the intensity of the evanescent wave reflection of the cable, considering ω1 = 10 Hz and
ω2 = 450 Hz to exclude the effect of the noise. From the peaks of Esum, the damage locations (x = 7 m
and x = 15 m) are identified. Based on the known damage locations, the estimated REW at the locations

0.1 m away from the damage interfaces (i.e., |[r(es)12 ]R(x = 6.9 m, ω)| and |[r(es)12 ]L(x = 7.2 m, ω)| for the

damage BC, |[r(es)12 ]R(x = 14.9 m, ω)| and |[r(es)12 ]L(x = 15.2 m, ω)| for the damage DE) are extracted for the
quantification of the damage levels. The theoretical value of the REW (r12) can be evaluated by Eq. (28).
Based on this, the reference value of the REW at xs away from the damage interface is then calculated by:

r∗12 = r12 · exp(−k2xs) (80)

In this example, xs = 0.1 m. The reference values and the estimated values of the REW are compared in294

Fig. 27.295
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Figure 27: Damage quantification based on the estimated REW indicator

From the comparison between the estimated REW and the theoretical value of |r∗12|, shown in Fig. 27, the296

damage levels at BC and DE are identified, corresponding to damage case 2 and 1 in Tab. 1, respectively. At297

frequencies below 10 Hz and above 450 Hz, the estimated REW is apparently affected by the measurement298

noise, and these results can be easily disregarded. The following two issues should be noticed for the results299

shown in Fig. 27:300

1. The estimated REW do not perfectly match the reference values at each frequency. The envelope of301

the frequency-domain REW approaches the theoretical value, which gives an approximate estimation302

of the damage level.303

2. The damage levels are always overestimated by the proposed indicator, as the estimated values of304

REW indicator |[r(es)12 ] are slightly higher than the reference values. This is even more obvious in the305

case of a higher damage level.306

The reason is that the cable model is not exactly consistent with the reference model (the single damage307

interface in Fig. 2), instead, each local damage involves two interfaces. As shown in Fig. 28, the reflection308

of the evanescent wave at the damage interface (r12) is indeed correct. However, the transmitted evanescent309

wave (t12) is further transmitted outside the damage part through the other interface (δ in Fig. 28). The310

reflection of the evanescent wave is therefore interfered by such additional component, resulting in the311

overestimation and interference pattern of Fig. 27.312

Figure 28: The transmission of evanescent wave through the damage part

Despite the influence of the transmitted wave, the damage level can still be assessed by the proposed313

indicator, with only a slight overestimation. From the above study, it can be seen that the proposed indicator314

is affected by neither the global response of the cable nor the differences in the amplitudes and locations315

of individual hammer impacts. Additionally, the damage indicator REW is frequency dependent, providing316

multiple values. These values at different frequencies can be combined into a single indicator which is more317

robust with respect to measurement noise.318
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6. Conclusion319

In the present work, the frequency-domain response of a cable is decomposed into evanescent wave320

and propagating bending (PB) wave components. Based on this, a wave-based methodology involving the321

reflection of the evanescent wave is proposed for local damage identification.322

First, it is proven by an analytical study that the evanescent wave is locally sensitive to discontinuities323

in the bending stiffness of the cable. In turn, a signal processing method is proposed to decompose the324

frequency-domain response of cable into evanescent wave and PB wave components. This allows the esti-325

mation of the REW for incident PB wave, which depends only on the characteristics of discontinuity and326

is proposed as a local damage indicator. The total intensity of REW can be used for localization of the327

damage. Based on the known damage location, local damage can be quantified by taking the theoretical328

value of r∗12 as a reference.329

The feasibility of the proposed methodology is studied by means of a numerical experiment simulated330

by a two-step FEM-SEM approach. The advantages of the proposed methodology are:331

1. The evanescent wave is always concentrated near a discontinuity, and decays exponentially with dis-332

tance. For this reason, multiple local damages can be identified independently.333

2. For the substructure defined by the location of the sensor array, the dynamic response is induced by334

the motion at both end points, satisfying the analytical solution. Physical excitation is therefore not335

particularly restricted as long as the excitation is neither inside the substructure nor near the sensors.336

3. The estimated REW only depends on the characteristics of discontinuity. The spectra of the global337

response do not affect the estimated result as long as the concerned frequency band is sufficiently338

excited.339

4. The estimation of wave components is obtained by a linear transform of the measured response, from340

frequency domain to wavenumber domain. The frequency-dependent REW therefore provides a series341

of independent values, which can be used to derive a damage indicator which is more robust to the342

measurement noise.343

The proposed methodology is promising for application in cable structures, offering opportunities to vibration-344

based damage assessment and structural health monitoring. The methodology can be extended for applica-345

tion to beams, either with or without prestressing, by considering Nx = 0 or Nx < 0, respectively.346

Acknowledgment347

The first author is an international scholar in the Department of Civil Engineering, KU Leuven, supported348

by the China Scholarship Council (CSC) (201607000039). The financial support is gratefully acknowledged.349

References350

[1] H. M. Irvine, Cable structures, New York: ASCE Press, 1992.351

[2] L. S. Frank, P. G. Christopher, Cable corrosion in bridges and other structures: Causes and solutions, New York: ASCE352

Press, 1996.353

[3] J. M. Stallings, K. H. Frank, Stay-cable fatigue behavior, Journal of Structural Engineering 117 (3) (1991) 936–950.354

[4] H. Svensson, Cable-stayed bridges: 40 years of experience worldwide, John Wiley & Sons, 2013.355

[5] A. B. Mehrabi, N. M. Telang, Cable-stayed bridge performance evaluationlessons from the field, in: Proceedings of the356

Structures Congress and Exposition, Vol. 1083, 2003.357

[6] H. N. Ho, K. D. Kim, Y. S. Park, J. J. Lee, An efficient image-based damage detection for cable surface in cable-stayed358

bridges, NDT & E International 58 (3) (2013) 18–23.359

[7] A. B. Mehrabi, In-service evaluation of cable-stayed bridges, overview of available methods and findings, Journal of Bridge360

Engineering 11 (6) (2006) 716–724.361

[8] X. Liu, J. Xiao, B. Wu, C. He, A novel sensor to measure the biased pulse magnetic response in steel stay cable for the362

detection of surface and internal flaws, Sensors & Actuators A Physical 269 (2018) 218–226.363

[9] B. Peeters, G. De Roeck, Stochastic system identification for operational modal analysis: a review, Journal of Dynamic364

Systems, Measurement, and Control 123 (4) (2001) 659–667.365

[10] O. S. Salawu, Detection of structural damage through changes in frequency: a review, Engineering Structures 19 (9)366

(1997) 718–723.367

27



[11] A. K. Pandey, M. Biswas, M. M. Samman, Damage detection from changes in curvature mode shapes, Journal of Sound368

and Vibration 145 (2) (1991) 321–332.369

[12] S. W. Doebling, C. R. Farrar, M. B. Prime, et al., A summary review of vibration-based damage identification methods,370

Shock and Vibration Digest 30 (2) (1998) 91–105.371

[13] G. De Roeck, The state-of-the-art of damage detection by vibration monitoring: the simces experience, Structural Control372

and Health Monitoring 10 (2) (2003) 127–134.373

[14] D. Degrauwe, G. De Roeck, G. Lombaert, Uncertainty quantification in the damage assessment of a cable-stayed bridge374

by means of fuzzy numbers, Computers & Structures 87 (1718) (2009) 1077–1084.375

[15] Y. Shokrani, V. K. Dertimanis, E. N. Chatzi, M. N. Savoia, On the use of mode shape curvatures for damage localization376

under varying environmental conditions, Structural Control & Health Monitoring (3) (2018) e2132.377

[16] N. Stubbs, J. T. Kim, K. Topole, An efficient and robust algorithm for damage localization in offshore platforms, in:378

Proceedings of the ASCE 10th Structures Congress, Vol. 1, 1992, pp. 543–546.379

[17] Z. Y. Shi, S. S. Law, L. M. Zhang, Structural damage localization from modal strain energy change, Journal of Sound and380

Vibration 218 (5) (1998) 825–844.381

[18] D. Anastasopoulos, M. De Smedt, L. Vandewalle, G. De Roeck, E. Reynders, Damage identification using modal strains382

identified from operational fiber-optic bragg grating data, Structural Health Monitoring (2017) 1475921717744480.383

[19] J. F. Doyle, Wave propagation in structures - spectral analysis using fast discrete Fourier transforms.384

[20] S. H. Zhang, R. L. Shen, T. Wang, G. De Roeck, G. Lombaert, A two-step FEM-SEM approach for wave propagation385

analysis in cable structures, Journal of Sound and Vibration 415 (2018) 41–58.386

[21] M. J. S. Lowe, D. N. Alleyne, P. Cawley, Defect detection in pipes using guided waves, Ultrasonics 36 (1-5) (1998) 147–154.387

[22] J. L. Rose, M. J. Avioli, P. Mudge, R. Sanderson, Guided wave inspection potential of defects in rail, NDT & E International388

37 (2) (2004) 153–161.389

[23] C. Schaal, S. Bischoff, L. Gaul, Damage detection in multi-wire cables using guided ultrasonic waves, Structural Health390

Monitoring 15 (3) (2016) 279–288.391

[24] P. S. Lowe, R. Sanderson, S. K. Pedram, N. V. Boulgouris, P. Mudge, Inspection of pipelines using the first longitudinal392

guided wave mode, Physics Procedia 70 (2015) 338–342.393

[25] C. Schaal, S. Bischoff, L. Gaul, Energy-based models for guided ultrasonic wave propagation in multi-wire cables, Inter-394

national Journal of Solids and Structures 64 (2015) 22–29.395

[26] K. Spak, G. Agnes, D. Inman, Parameters for modeling stranded cables as structural beams, Experimental Mechanics396

54 (9) (2014) 1613–1626.397
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