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Abstract  

 

Objective. Calibrated risk models are vital for valid decision support. We define four levels of 

calibration and describe implications for model development and external validation of 

predictions.  

Study Design and Setting. We present results based on simulated datasets. 

Results. A common definition of calibration is “having an event rate of % among patients 

with a predicted risk of %”, which we refer to as ‘moderate calibration’. Weaker forms of 

calibration only require the average predicted risk (mean calibration) or the average prediction 

effects (weak calibration) to be correct. ‘Strong calibration’ requires that the event rate equals 

the predicted risk for every covariate pattern. This implies that the model is fully correct for 

the validation setting. We argue that this is unrealistic: the model type may be incorrect, at 

model development the linear predictor is only asymptotically unbiased, and all nonlinear and 

interaction effects should be correctly modeled. In addition, we prove that moderate 

calibration guarantees non-harmful decision-making. Finally, results indicate that a flexible 

assessment of calibration in small validation datasets is problematic. 

Conclusion. Strong calibration is desirable for individualized decision support, but unrealistic 

and counter-productive by stimulating the development of overly complex models. Model 

development and external validation should focus on moderate calibration. 

 

Keywords 

Calibration; Decision curve analysis; External validation; Loess; Overfitting; Risk prediction 

models 
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What is new? 

 

 

Key Findings 

 

 We defined a new hierarchy of four increasingly strict levels of calibration, referred to 

as mean, weak, moderate, and strong calibration. 

 Strong calibration of risk prediction models implies that the model was correct given 

the included predictors. We argue that this is unrealistic. 

 Moderate calibration of risk prediction models guarantees that decision-making based 

on the model does not lead to harm. 

 The reliability of calibration assessments, most notably of flexible calibration plots, is 

highly dependent on the sample size of the validation dataset. 

 

What this adds to what is known 

 

 The evaluation of risk prediction models in terms of calibration is often described as a 

crucial aspect of model validation. However, a systematic framework for levels of 

calibration for risk prediction models was lacking, and the characteristics of different 

levels were unclear. 

 We find that strong calibration of risk models occurs only in utopia, while moderate 

calibration does not and is sufficient from a decision-analytic point of view. 

 

Implications of the findings 

 

 At model development, researchers should not aim to develop the correct model. This 

is practically impossible and may backfire by developing overly complex models that 

overfit the available data. Our focus should be on achieving moderate calibration, for 

example by controlling model complexity and shrinking predictions towards the 

average.  

 At model validation, sufficiently large datasets should be available to reliably assess 

moderate calibration. We suggest a minimum of 200 events and 200 non-events.
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1. Introduction 

 

There is increasing attention for the use of risk prediction models to support medical decision-

making. Discriminatory performance is commonly the main focus in the evaluation of 

performance, while calibration commonly receives less attention [1]. A prediction model is 

calibrated in a given population if the estimated risks are reliable, i.e. correspond to observed 

proportions of the event. Commonly, calibration is defined as ‘for patients with an estimated 

risk of %, on average  out of 100 should indeed suffer from the disease or event of 

interest’. Calibration is a pivotal aspect of model performance [2-4]: “For informing patients 

and medical decision making, calibration is the primary requirement” [2], “If the model is not 

[…] well calibrated, it must be regarded as not having been validated. […] To evaluate 

classification performance […] is inappropriate” [4].  

 

Recently, a stronger definition of calibration has been emphasized in contrast to the 

definition of calibration given above [4, 5]. Models are considered strongly calibrated if 

estimated risks are accurate for each and every covariate pattern. In this paper, we aim to 

define different levels of calibration and describe implications for model development, 

external validation of predictions, and clinical decision-making. We focus on predicting 

binary endpoints (event vs no event), and assume that a logistic regression model is developed 

in a derivation sample with performance assessment in a validation sample. We expand on 

examples used in recent work by Vach [5]. 
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2. Assessing calibration at external validation 

 

2.1. Methods 

We assume that the predicted risks are obtained from a previously developed prediction 

model for outcome  (1=event, 0=non-event), e.g. based on logistic regression analysis. The 

model provides a constant (model intercept) and a set of effects (model coefficients). The 

linear combination of the coefficients with the covariate values in a validation set defines the 

linear predictor : , where 

a  is the model intercept,  to  a set of regression coefficients, 

and  to  the predictor values that define the patient’s covariate pattern. Ideally the 

observed proportions in the validation set equal the predicted risks, resulting in a diagonal line 

in the plot (e.g. Figure 1A).  

 

Calibration of risk predictions is often visualized in calibration plots. These plots show the 

observed proportion of events associated with a model’s predicted risk [6]. The observed 

proportions per level of estimated risk cannot be directly observed. We consider their 

estimation in three ways. First, the observed event rates can be obtained after categorizing the 

predicted risks, for example using deciles. This is commonly done for the Hosmer-Lemeshow 

test [7]. Then, for each group the average predicted risk can be plotted versus the observed 

event rate to obtain a calibration curve, see [8] for an example.  Second, the logistic 

recalibration framework can be used [9, 10], where a logistic model is used for the outcome  

as a function of . More technically, the logistic recalibration framework fits the following 

model: . Using the results of this model to estimate the observed 

proportions results in a logistic calibration curve. If  and , the logistic calibration 

curve coincides with the diagonal line. The coefficient  is the calibration slope that gives an 
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indication of the level of overfitting ( ) or underfitting ( ). Overfitting is most 

common, reflected in a linear predictor that gives too extreme values for the validation data: 

high risks are overestimated and low risks are underestimated. The intercept  can be 

interpreted when fixing at , i.e. . This calibration intercept is obtained by fitting the 

model , where the slope  is set to unity by entering  as an 

offset term to the model. Predicted risks are on average underestimated if  > 0, and 

overestimated if .  

 

Third, a flexible, non-linear, calibration curve can be considered using the model 

. Here,  may be a continuous function of the linear predictor , such as 

loess or spline transformations [6, 11]. We used a loess smoother in this 

paper .

 

2.2.  Illustration: Examples 1-5 

For illustration, we consider five simulated examples, as previously presented [5].  We 

randomly generate four independent predictor variables  to . These predictor variables are 

ordinal with three categories (-1, 0, and 1) that each have 33% prevalence in order to visualize 

calibration by covariate pattern. Let outcome  be generated by an underlying logistic 

regression model with the true linear predictor 

, hence the intercept equals 0, and  to 

 are assumed to have linear main effects [5]. In simulations, the true probability of event 

 is calculated using the linear predictor and the observed outcome  is generated 

as a Bernoulli variable from . Then, we develop a model to predict  based on  

to , which means that we are using the correct model formulation. Finally, we validate on a 

new dataset that is generated with the exact same procedure. We repeat this process four times 
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to illustrate the influence of random variability: (1) using 100 simulated patients for 

development and 100 for validation, (2) using 100 for development and 10,000 for validation, 

(3) using 10,000 for development and 100 for validation, (4) using 10,000 for development 

and 10,000 for validation, and (5) using 10 million for development and 10 million for 

validation. Estimation of model coefficients was unstable when the development data contains 

only 100 patients (Table 1), despite having more than 10 events per variable (4 parameters, 44 

non-events, 56 events). Risk estimates were overfitted, as evidenced by the calibration slope 

and calibration curves at validation (Example 2 in Table 1, and Figure 1B) as well as the 

calibration curves. Further, the calibration intercept was negative which is suggestive of 

general overestimation. Enlarging the development dataset alleviated the problems (Example 

4 in Table 1, Figure 1D). Similar issues emerge when using a small validation dataset (Figures 

1A and 1C. Calibration results for Examples 1 and 3 are unstable, in particular the flexible 

calibration curve. With 10 million patients the coefficient estimates and calibration results 

were perfect (Table 1, Figure 1E). 

 

3. A hierarchy of risk calibration 

 

In the following we propose a hierarchy of increasingly strict levels of calibration, starting 

with the basic level of ‘calibration-in-the-large’, followed by weak, moderate, and strong 

calibration (Table 2). Higher levels of calibration require stronger conditions and imply that 

the conditions of lower levels are satisfied.  

 

3.1. Level 1: mean calibration (Calibration-in-the-large) 

The most basal type of calibration simply evaluates whether the observed event rate in the 

data equals the average estimated risk as a measure of the estimated event rate. There was 
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some miscalibration in mean risk for Examples 1-2 where the development sample was small, 

even though the correct underlying model formulation was estimated. For larger development 

datasets the disagreement between observed and predicted risks disappeared (Examples 3-5). 

The logistic recalibration framework can be used to investigate calibration-in-the-large by 

estimating the calibration intercept , and if desired by testing the null hypothesis that 

 using a likelihood ratio test with 1 degree of freedom [9, 10]. Fixing at1 

implies that we keep the relative risks fixed. Calibration-in-the-large is 

insufficient as the sole criterion. For example, it is satisfied when the estimated risk for each 

patient would equal the true event rate.  

 

3.2. Level 2: weak calibration 

The next level is to have weak calibration of predictions, defined as a calibration intercept 

( ) of 0 and a calibration slope of 1. As explained above, these values indicate that 

there is no over- or underfitting and no systematic over- or underestimation of predicted risks. 

Deviations from the ideal calibration values can readily be evaluated using confidence 

intervals, or tested by a Cox recalibration test, a likelihood ratio test with 2 degrees of 

freedom for the null hypothesis that  and  [10]. In Examples 1-2, the 

prediction model suffers from overfitting and overestimation due to the small development 

sample (Figure 1A-B). We consider logistic calibration to be only a weak form of calibration 

for two reasons. First, this approach lacks flexibility because the calibration curve is 

summarized by only two parameters through a logistic model. Second, this level of calibration 

is by definition achieved on the dataset on which the prediction model was developed if 

standard estimation methods are used, such as maximum likelihood for logistic regression 

models. For example, it generally does not matter whether and how nonlinear effects of 

continuous predictors were accounted for or whether important interaction terms were 
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included. Nevertheless, this approach can be useful at external validation because the 

calibration intercept and slope provide a general and concise summary of potential problems 

with risk calibration. In addition, when dealing with relatively small validation samples a 

simple calibration assessment may be preferred over more flexible alternatives (see Example 

1) [12].  

 

3.3.  Level 3: moderate calibration  

Moderate calibration refers to the common definition of calibration: a risk model is 

moderately calibrated if, among patients with the same predicted risk, the observed event rate 

equals the predicted risk [4, 13, 14]. For example, among patients with an estimated risk of 

25%, 1 in 4 should have the disease. Moderate calibration can be investigated using flexible 

calibration curves or using categorizations of predicted risk, preferably with the addition of 

confidence limits [15]. These approaches are more flexible and can reveal miscalibration that 

is not picked up by the logistic calibration framework. For example, strong interactions or 

nonlinearities may lead to miscalibration in the development sample although weak 

calibration is perfect [11]. 

 

A recent measure that bears resemblance to Harrell’s Emax and to the Brier score [6] is the 

estimated calibration index (ECI) [16]. This measure builds upon a flexible calibration 

analysis by computing the average squared difference between predicted risk and the 

observed proportion, and transforming the result to obtain a value between 0 and 1. If the 

flexible calibration curve is perfect, ECI equals 0. Because ECI summarizes a flexible 

calibration curve into a single number, it was mainly suggested as a measure to easily 

compare calibration between competing models [16]. 
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3.4.  Missing non-linearity or interaction: examples 6-7 

We simulate patient outcomes with the same procedure as above. For Example 6 we assume 

that the outcome is generated by a logistic regression formula with the following true linear 

predictor: , where  to  are ordinal 

variables as defined above and  is a continuous variable with a lognormal distribution (e.g. 

a biomarker). We develop a model to predict  based on  to  (without log-transformation) 

using 10,000 simulated patients, with calibration curves for the development data (Figure 2A). 

By definition, the logistic calibration curve is perfect. The flexible calibration is not, because 

the effect of  is not appropriately addressed. Thus, the model is weakly but not moderately 

calibrated on the development data.  

 

For Example 7 we assume that the outcome is generated by a logistic regression formula with 

the following true linear predictor: 

, so with a strong interaction 

effect between  and . Variables  to  are ordinal variables as defined above. We 

develop a model to predict  based on  to , without the interaction, using 10,000 

simulated patients, with calibration curves for the development sample (Figure 2B). Again, 

only the flexible calibration curve reveals that calibration is problematic.  

 

3.5. Level 4: strong calibration 

The most stringent definition of calibration requires predicted risks to correspond to observed 

event rates for each and every covariate pattern [4, 5]. This definition of strong calibration 

disentangles different covariate patterns that may be associated with the same predicted risk. 
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Requiring strong calibration is sensible from a clinical point of view [5]. If a model is 

moderately but not strongly calibrated, we may provide biased risk estimates depending on an 

individual patient’s covariate values. Note that calibration is always assessed relative to the 

predictors in the model. Thus, if a model is strongly calibrated it is still possible that patients 

with the same covariate pattern have different observed event rates after stratification for 

another variable that is not included as a predictor. This would not invalidate the strong 

calibration of the model.  

 

3.6.  Model misspecification: Examples 8-9 

Figure 3 presents three calibration plots to illustrate strong calibration. Each plot contains a 

logistic calibration curve, a flexible calibration curve, and results per covariate pattern. Figure 

3A represents the validation for Example 5 (model developed on 10 million patients and 

validated on another 10 million patients). This model exhibits perfect strong calibration: both 

calibration curves and all covariate patterns coincide with the diagonal. Example 8 (Figure 

3B) uses the same validation data as Example 5, but now a model with the following linear 

predictor is validated: . Two coefficients are 

overestimated and two underestimated relative to the true values (Table 1). This model 

exhibits perfect moderate calibration but lacks strong calibration because results per covariate 

pattern are scattered around the diagonal. Example 9 (Figure 3C) uses the same validation 

data to validate a model with the following linear predictor: 

. The calibration curves show that this model 

is not weakly calibrated due to overfitting. Results per covariate pattern are scattered around 

the calibration curves. (This last plot is based on the third example in [5].) 
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3.7. Can strong calibration be assessed? 

Ideally, we would check for strong calibration as in Figure 3 by calculating the observed 

event rate for every covariate pattern observed in the data, and construct a plot where every 

covariate pattern is represented by its estimated risk vs observed event rate. In practice this 

approach is hardly ever feasible because of limited sample size and/or the presence of 

continuous predictors: in such situations there may be as many patients as there are distinct 

covariate patterns. The impact of sample size is illustrated in Figure 4 for Examples 1-5. 

Figure 4A-B present the validation of the same model on a small or large dataset. In the small 

dataset there were 100 patients for 81 covariate patterns, hence many covariate patterns 

contained a single patient. These cells had an observed event rate of 0 or 1. For the model 

developed on 10,000 patients and validated on a different but equally large sample (Example 

4, Figure 4D), the covariate patterns still did not lie on the diagonal line. Only when the 

development and validation datasets were extremely large (Example 5, Figure 4E, 10M 

patients), results were near perfect. 

 

An approach that may be considered as an attempt to assess calibration beyond moderate 

calibration involves the categorization of patients based on (combinations of) predictor values 

rather than on predicted risk. For different subgroups defined by values of one or more 

predictors, the average predicted risk may be compared with the observed event rate [17]. 

This is an insightful exercise, but the ‘curse of dimensionality’ is still looming: increasingly 

detailed categorizations will inevitably lead to small subgroups and hence unreliable results. 

 

4. Calibration, decision-making, and clinical utility 
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Strong calibration implies that an accurate risk estimate is obtained for every covariate pattern. 

Hence a strongly calibrated model allows the communication of accurate risks to every 

individual patient. In contrast, a moderately calibrated model allows the communication of a 

reliable average risk for patients with the same estimated risk: among patients with an 

estimated risk of 70% on average 70 out of 100 have the event, although there may exist 

relevant subgroups with different covariate patterns and different event rates.  

 

Previous work has shown that miscalibration decreases clinical utility compared to moderate 

calibration [18]. Clinical utility was evaluated with the Net Benefit measure. This is a simple 

and increasingly adopted summary measure that appropriately takes the relative clinical 

consequences of true and false positives into account [19, 20]. Net Benefit accounts for the 

different consequences of true and false positives through the risk threshold, i.e. the risk at 

which one is indifferent about classifying a patient as having the event (and providing 

treatment) or not. The odds of the risk threshold is the harm-to-benefit ratio, i.e. the ratio of 

the harm of a false positive and the benefit of a true positive classification [21]. For example, 

a threshold of 0.2 implies a 1:4 odds, suggesting that one true positive is worth four false 

positives. Net Benefit at threshold t equals , with  the number 

of true positives,  the number of false positives, and  the sample size. Plotting Net 

Benefit for different choices for the risk threshold yields a decision curve. The model’s Net 

Benefit need to be compared with the Net Benefit of two default strategies in which either all 

patients are classified as having the event (treat all) or as not having the event (treat none). If 

the model’s Net Benefit is lower than that of a default strategy, then using the model to 

support decision-making can be considered as clinically harmful. 
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In terms of decision-making the question is whether strong calibration improves clinical 

utility over a moderately calibrated model? Let us consider Example 9 (Figure 3C). The 

model presented is not calibrated in a weak sense. We derived decision curves to assess the 

clinical utility of (1) the original miscalibrated model, (2) a recalibrated model to ensure 

moderate calibration, and (3) the strongly calibrated true model (Figure 5). Moderate 

recalibration was obtained by replacing original risk estimates with those from a flexible 

recalibration analysis based on 10 million patients. The original model has Net Benefit below 

that of treat all or treat none for a subset of risk thresholds (Figure 5). The moderately 

recalibrated version does not have that problem anymore: Net Benefit is now at least as high 

as that of the default strategies. Nevertheless, the decision curve for the true model is the best 

one. This suggests that moderate calibration prevents the model from becoming harmful [18] 

but that strong calibration may further enhance the model’s clinical utility. More specifically, 

we prove (see Appendix) that clinical utility in terms of Net Benefit will not be lower than the 

default strategies that either classify everyone as having the event or as not having the event. 

 

5. Strong calibration: realistic or utopic? 

 

In line with Vach’s work [5], we find that moderate calibration does not imply that the 

prediction model is ‘valid’ in a strong sense. In principle, we should aim for strong calibration 

since this makes predictions accurate at the individual patient’s level as well as at the group 

level leading tobetter decisions on average. However, we consider four problems in empirical 

analyses. First, strong calibration requires that the model form (e.g. a generalized linear model 

such as logistic regression) is correct. Such model formulations are often sensible 

approximations, but in reality, the true model is unknown, may not have a generalized linear 

form, or may not even exist [22]. Second, using maximum likelihood estimation, as is done 
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for logistic regression and Cox proportional hazards regression for time to event outcomes, 

yields only asymptotically unbiased estimates of individual coefficients [23]. However, even 

when the model coefficients are estimated without bias there is a tendency for overfitting: 

their combination in the linear predictor leads to too extreme risk prediction, resulting in a 

calibration slope smaller than one when the model is internally or externally validated. 

Ensuring sufficient events per variable (EPV) is important to control the amount of overfitting 

[24]. Also, for predictive purposes, estimators that impose shrinkage to reduce variance at the 

expense of inducing bias to the individual coefficients have been shown to be superior to 

standard maximum likelihood [25-27]. Such shrinkage methods include uniform shrinkage, 

ridge regression, LASSO, elastic net, and the Garotte [2, 27].  

 

Third, strong calibration not only requires correctly estimated regression coefficients for the 

main effects of model predictors, but also requires fully correct modeling of all nonlinear and 

non-additive effects. For a limited number of categorized predictors we can imagine fitting a 

‘full model’ including all first- and higher-order interaction terms, but the use of continuous 

predictors makes finding the correct model unrealistic. We stress that calibration is assessed 

relative to the predictors included in the model. Failing to include relevant predictors is 

therefore not an argument for stating that strong calibration is unrealistic, although the fact 

that many relevant covariates may exist outside of the model should make us modest in 

claiming that we can define a “true model”.  

 

Fourth, measurement error of the predictors is in practice often ignored although it is known 

that this is a common phenomenon that can bias regression coefficients [28]. Moreover, 

measurement error may not be transportable across various settings [29]. This means that at 
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least part of the measurement error is systematic, and further thwarts the concept of the 

existence of a true model. 

 

In sum, aiming for strong calibration requires the assumption that the model formulation is 

fully correct, and that unbiased model coefficients as well as unbiased linear predictors are 

obtained. Such a true model can only be identified in an infinitely large dataset: in utopia. As 

Vach [30] writes: “the idea to identify the “true” model by statistical means is just a great 

wish which cannot be fulfilled” (p202). 

 

6. Moderate calibration: a pragmatic guarantee for non-harmful decision-making 

 

Focusing on finding at least moderately calibrated models has several advantages. First, it is a 

realistic goal in epidemiologic research, where empirical data sets are often of relatively 

limited size, and the signal to noise ratio is unfavorable [31]. Second, moderate calibration 

guarantees that decision-making based on the model is not clinically harmful. Conversely, it is 

an important observation that calibration in a weak sense may still result in harmful decision-

making [18]. Third, simpler models can be aimed for, although it is still advisable to have 

sufficient events per variable (EPV) to appropriately investigate important deviations from 

linearity for continuous predictors, and to assess whether some (preferably prespecified) 

interaction terms are indispensable. We emphasize that continuous predictors should not be 

categorized in a naïve attempt to achieve strong calibration. The disadvantages of 

categorization are too numerous to summarize here [32]. Examining nonlinear and interaction 

terms may help to reduce the deviation from strong calibration and obtain better individual 

risk estimates, but at the risk of overfitting. While still providing sensible risk predictions, 
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simple models that are for example moderately but not strongly calibrated often have many 

practical advantages such as transparency or ease of use [33].  

 

7. A link with model updating 

 

In model updating, we adapt a model that has poor performance at external validation [34]. 

Basic updating approaches include, in order of complexity, intercept adjustment, recalibration, 

and refitting [34, 35]. There are parallels between updating methods and levels of calibration. 

Intercept adjustment updates the linear predictor  to . This will only address 

calibration-in-the-large, but does not guarantee weak calibration. A more complex updating 

method involves logistic recalibration, where the linear predictor  is updated to . 

This method addresses lack of weak calibration, but does not guarantee moderate calibration 

unless all coefficients were biased by the same rate. In model refitting, model coefficients for 

the predictors are re-estimated. Refitting should lead to moderate calibration, although this 

may also require reassessment of nonlinear effects.  

 

8. Sample size at external validation 

 

Our simulations have shown the impact of sample size on how reliably calibration can be 

assessed (Figures 1 and 4). It is clear that observed calibration curves will easily deviate from 

the diagonal line even when the model is moderately or strongly calibrated. We have extended 

our simulations by validating the correct (and hence strongly calibrated) model from 

Examples 1-5 on datasets with sample size between 100 and 1000. Given an overall event rate 

of 50%, the number of events and non-events varied from 50 to 500, yet the observed number 

of events per simulated dataset may vary due to random variation. Figure A.1 shows flexible 
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calibration curves for 50 randomly drawn validation datasets per sample size, Figure A.2 

shows boxplots of the calibration slope and ECI for 200 randomly drawn validation datasets. 

Given that we know that the model is correct, ECI can be used to quantify the variability of 

the flexible calibration curve around the true line. The results suggest that the flexible 

calibration curve is more variable and hence requires more data than the calibration slope for 

a stable assessment. This is in line with related work on this topic [11, 12, 36]. Confidence 

intervals are useful to properly interpret the obtained results. 

 

9. Statistical testing for calibration 

 

We mainly focused on conceptual issues in assessing calibration of predictions from statistical 

models. We did not consider statistical testing in detail, and in this area the assessment of 

statistical power needs further study. In previous simulations, the Hosmer-Lemeshow test 

showed such poor performance that it may not be recommended for routine use [7, 37]. In 

practice, indications of uncertainty such as confidence intervals are far more important than a 

statistical test.  

 

10. Conclusion and recommendations 

 

We conclude that strong calibration, although desirable for individual risk communication, is 

unrealistic in empirical medical research. Focusing on obtaining prediction models that are 

calibrated in the moderate sense is a better attainable goal, in line with the most common 

definition of the notion of ‘calibration of predictions’. In support of this view, we proved that 

moderate calibration guarantees that clinically non-harmful decisions are made based on the 

model. This guarantee cannot be given for prediction models that are only calibrated in the 
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weak sense. Based on these findings, we make the following recommendations. When 

externally validating prediction models, (1) perform a graphical assessment for moderate 

calibration including pointwise 95% confidence limits, and (2) provide the summary statistics 

for weak calibration, specifically the calibration slope ( ) for the overall effect of the 

predictors and the calibration intercept ( ). If sample size is limited, flexible calibration 

curves may become highly unstable and can be omitted [11]. In line with related work, we 

recommend at least 100 events and 100 non-events to assess the calibration intercept and 

slope, and at least 200 events and 200 non-events to derive flexible calibration curves [11, 12, 

36]. The figures in this paper are based on an adaptation of Harrell’s val.prob function in R 

[6], see Supplementary Material.  

 

At internal validation, e.g. using cross-validation or bootstrapping, we recommend to focus on 

the calibration slope to provide a shrinkage factor for the estimated risks. The calibration 

intercept is not relevant because internal validation implies that the model is validated for the 

same setting, where the mean of predictions matches the mean event rate according to 

standard statistical estimation methods such as maximum likelihood. When developing or 

updating prediction models, we recommend to focus on simple models and, to avoid 

overfitting, to focus more on non-linearity than on interaction terms, but always in balance 

with the effective sample size. In addition, flexible calibration curves on the development or 

updating dataset are important to evaluate moderate calibration. 



20 

 

Acknowledgments 

 

We thank Laure Wynants for proofreading the manuscript. 

 

 

Funding 

 

This study was supported in part by the Research Foundation – Flanders (FWO) (grant 

G049312N) and by Internal Funds KU Leuven (grant C24/15/037). 

 

 

Conflict of interest 

 

None. 



21 

 

 

Table 1. Development and validation results for Examples 1 to 5. Results are shown for a 

single random draw. 

 
 True  

model  

Example 1. 

ND=100 

NV=100 

Example 2. 

ND=100 

NV=10,000 

Example 3. 

ND=10,000 

NV=100 

Example 4. 

ND=10,000 

NV=10,000 

Example 5. 

ND=10M 

NV=10M 

Development results, shown as estimate or estimate (SE) 

C statistic 0.724 0.694 0.718 0.724 

Intercept 0 0.24 (0.22) 0.01 (0.02) 0.00 (0.0007) 

Coefficient 

 

0.21 -0.12 (0.27) 0.17 (0.03) 0.21 (0.0008) 

Coefficient  0.37 0.74 (0.28) 0.38 (0.03) 0.37 (0.0008) 

Coefficient  0.64 0.23 (0.26) 0.59 (0.03) 0.64 (0.0009) 

Coefficient  0.77 0.59 (0.27) 0.77 (0.03) 0.77 (0.0009) 

Validation results, shown as estimate or estimate (SE) 

C statistic 0.724 0.623 0.668 0.673 0.717 0.724 

 0 -0.18 (0.21) -0.28 (0.02) 0.03 (0.21) -0.04 (0.02) 0.00 (0.0007) 

 1 0.71 (0.29) 0.80 (0.03) 0.75 (0.27) 1.00 (0.03) 1.00 (0.0009) 

Event rate 0.50 0.49 0.49 0.49 0.49 0.50 

Average risk 0.50 0.53 0.55 0.48 0.50 0.50 

ND: development sample size; NV: validation sample size; 10M: ten million; SE: standard 

error; : calibration intercept; : calibration slope 
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Table 2. A hierarchy of calibration levels for risk prediction models. 

 

Level Definition Assessment 

Mean Observed event rate equals average 

risk estimate; “calibration-in-the-

large” 

* Compare event rate with average 

predicted risk;  

* evaluate  (with 1 df test 

) 

Weak No systematic over- or underfitting 

and/or over- or underestimation of 

risks; “logistic calibration” 

Logistic calibration analysis to evaluate 

 and  (with Cox recalibration 

test: a 2 df test of the null hypothesis that 

 and ) 

Moderate Predicted risks correspond to 

observed event rates  

Calibration plot (e.g. using loess or 

splines), or analysis by grouped 

predictions (including Hosmer-

Lemeshow test) 

Strong Predicted risks correspond to 

observed event rates for each and 

every covariate pattern 

Scatter plot of predicted risk and 

observed event rate per covariate pattern; 

impossible when continuous predictors 

are involved 
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Figure 1. Calibration curves on the validation data for examples 1 to 5, with pointwise 95% 

confidence limits for flexible curves: (A) trained on 100, validated on 100; (B) trained on 100, 

validated on 10,000; (C) trained on 10,000, validated on 100; (D) trained and validated on 

10,000; (E) trained and validated on 10 million patients. 

 

Figure 2. Calibration plots on the development data for (A) example 6 in which a true 

nonlinear effect is ignored and (B) example 7 in which a true interaction effect is ignored. 
 

 

Figure 3. Calibration plots illustrating (A) strong calibration, (B) moderate but not strong 

calibration, (C) miscalibration. 
 

Figure 4. Calibration curves for examples 1 to 5 including results for individual covariate 

patterns, for examples 1 to 5: (A) Trained on 100, validated on 100; (B) Trained on 100, 

validated on 10,000; (C) Trained on 10,000, validated on 100; (D) Trained and validated on 

10,000; (E) Trained and validated on 10 million patients.  

 

Figure 5. Decision curves for Example 8 to assess clinical usefulness. 
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Appendix 

 

Moderate calibration guaranties non-harmful decisions in terms of Net Benefit and 

decision curve analysis: proof 

 

Notation: 

: true probability of event given covariate vector , where  

: estimated probability of event given covariate vector  given by a prediction model. 

: outcome (1=event, 0=non-event) 

: probability density of covariate vector  

 and : event rate  and 1 minus event rate  

 

For a moderately calibrated model the following property holds, among patients with an 

estimated risk of % on average  out of 100 of these patients have the event. 

Mathematically this can be translated as: 

 

 

 

The expected net benefit at threshold t is given by: 
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To ensure that a moderately calibrated model is not harmful, the expected net benefit should 

be larger than (a) the net benefit of treating all patients and (b) the net benefit of treating no 

patients. 

 

 

 

 

 

 

 

 

 

 

 

From above we get: 
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So with moderate calibration using the model is better than treating no patients. Remains to 

show that for  below the event rate  using the model gives a higher expected net benefit 

than treating all patients. 

 

 

To achieve a better  using the model compared to treating all patients we then need  

 

 

 

whenever . 
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Figure A1. Flexible calibration curves to simulate external validation of a strongly calibrated 

model in 50 randomly drawn datasets of size 100 to 1000 (true event rate 50%). 
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Figure A2. Box plots of the calibration slope (A) and estimated calibration index (ECI) (B) to 

simulate external validation of a strongly calibrated model in in 200 randomly drawn datasets 

of size 100 to 1000 (true event rate 50%). 

 

 (A) 

 
 
 
 

 (B) 
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SUPPLEMENTARY MATERIAL 

 

R function val.prob.ci.2: description 

 

The R function val.prob.ci.2, developed in R version 3.2.1 (R Core Team, 2015), is 

available as online material for this paper. The function is an adaptation of val.prob from 

Frank Harrell’s rms package, https://cran.r-project.org/web/packages/rms/rms.pdf. The key 

feature of val.prob.ci.2 is the generation of logistic and flexible calibration curves and 

related statistics. It is used as follows: 

 

val.prob.ci.2 <- function(p, y, logit, group, 

weights=rep(1,length(y)), normwt=F, pl=T, 

smooth=c("loess","rcs",F), CL.smooth="fill", CL.BT=F, 

nr.knots=5, logistic.cal=F, xlab="Predicted probability", 

ylab="Observed proportion", xlim=c(-0.02,1), ylim=c(-

0.15,1), m, g, cuts, emax.lim=c(0,1), 

legendloc=c(0.50,0.27), statloc=c(0,.85), dostats=T, 

roundstats=2, riskdist="predicted", cex=0.75, cex.leg=0.75, 

connect.group=F, connect.smooth=T, g.group=4, evaluate=100, 

nmin=0, d0lab="0", d1lab="1", cex.d01=0.7, dist.label=0.04, 

line.bins=-.05, dist.label2=.03, cutoff, las=1, 

length.seg=1, y.intersp=1, col.ideal=”grey”, 

lwd.ideal=1, ...) 

 

New options, or options that are adapted from the original val.prob are (default values 

underlined): 

logistic.cal T or TRUE plots the logistic calibration curve, F or FALSE suppresses this 

curve. 

https://cran.r-project.org/web/packages/rms/rms.pdf
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smooth “loess” generates a flexible calibration curve based on loess, “rcs” 

generates a calibration curves based on restricted cubic splines, F or FALSE 

suppresses the flexible curve. We recommend to use loess unless N is large, 

for example N>5000. 

CL.smooth “fill” shows pointwise 95% confidence limits for the flexible calibration 

curve with a gray area between the lower and upper limits, T or TRUE shows 

pointwise 95% confidence limits for the flexible calibration curve with 

dashed lines, F or FALSE suppresses the confidence limits. To save a plot 

with filled confidence limits as .eps, we suggest to use cairo_ps: first run 

cairo_ps(filename=”C:/figure.eps”), then run the 

val.prob.ci.2 function to obtain the figure, and then run dev.off() to 

avoid that the figure is overwritten by subsequent figures. 

CL.BT T or TRUE uses confidence limits based on 2000 bootstrap samples, F or 

FALSE uses closed form confidence limits. 

nr.knots specifies the number of knots (3, 4, or 5) for rcs-based calibration curve. 

The default as well as the highest allowed value is 5. In case the specified 

number of knots leads to estimation problems, then the number of knots is 

automatically reduced to the closest value without estimation problems. 

dostats specifies whether and which performance measures are shown in the figure. 

T or TRUE shows the “abc” of model performance (Steyerberg et al, 2011): 

calibration intercept, calibration slope, and c statistic. F or FALSE 

suppresses the presentation of statistics in the figure. A c() list of specific 

stats shows the specified stats. The key stats which are also mentioned in 

this paper are “C (ROC)” for the c statistic, “Intercept” for the 

calibration intercept, “Slope” for the calibration slope, and “ECI” for the 
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estimated calibration index (Van Hoorde et al, 2015). The full list of 

possible statistics is taken from val.prob (Harrell, 2001) and augmented with 

the estimated calibration index and the scaled Brier score: “Dxy”, “C 

(ROC)”, “R2”, “D”, “D:Chi-sq”, “D:p”, “U”, “U:Chi-sq”, “U:p”, 

“Q”, “Brier”, “Intercept”, “Slope”, “Emax”, “Brier scaled”, 

“Eavg”, “ECI”. These statistics are always returned by the function. 

roundstats specifies the number of decimals to which statistics are rounded when 

shown in the figure. Default is 2. 

cex, cex.leg controls the font size of the statistics (cex) or plot legend (cex.leg). 

Default is 0.75. 

d0lab, d1lab controls the labels for events and non-events (i.e. outcome y) for the 

histograms. Defaults are d1lab=“1” for events and d0lab=“0” for non-

events. 

cex.d01 controls the size of the labels for events and non-events. Default is 0.7. 

dist.label controls the horizontal position of the labels for events and non-events. 

Default is 0.04. 

dist.label2 controls the vertical distance between the labels for events and non-events. 

Default is 0.03. 

line.bins controls the horizontal (y-axis) position of the histograms. Default is -0.05. 

cutoff puts an arrow at the specified risk cut-off(s). Default is none.  

las controls whether y-axis values are shown horizontally (1) or vertically (0). 

length.seq controls the length of the histogram lines. Default is 1. 

y.intersp character interspacing for vertical line distances of the legend. Default is 1. 

col.ideal controls the color of the ideal line. Default is “grey”. 

lwd.ideal controls the line width of the ideal line. Default is 1. 
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Further options relevant to this paper: 

cuts provides a list c() of actual cutpoints for categorization, in case calibration 

should be shown for categorizations of predicted risk. 

m provides average size of categories, in case calibration should be shown for 

categorizations of predicted risk. 

g provides number of equally large (quantile) categories, in case calibration 

should be shown for categorizations of predicted risk. E.g. g=10 groups 

predicted risk using deciles as is commonly done. 

group this provides a stratification variable for which to stratify the calibration 

analysis. This can be used to get average predicted risks and observed 

proportions for subgroups of patients based on the stratification variable. T 

or TRUE performs this analysis for the whole dataset. A plot with loess 

calibration curves per subgroup can be obtained with 

plot(val.prob.ci.2(p,y,group=z)). 

g.group  If the stratification variable is continuous, g.group defines the number of 

quantile groups (default is quartiles, i.e. 4).  

riskdist indicates whether histograms are based on predicted risk (“predicted”) or 

on calibrated risk (“calibrated”). Set to FALSE to omit the histograms. 
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R function val.prob.ci.2: code 

 

#------------------------# 

#                        # 

#    val.prob.ci.2       #  Adjusted version of Harrell's val.prob 

#                        # 

#------------------------# 

 

January 2016 

 
# WHEN USING THIS FUNCTION, PLEASE CITE: 

# Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg 

# EW. A calibration hierarchy for risk models was defined: from utopia to 

# empirical data. Journal of Clinical Epidemiology, in press (2016). 

 
# Some years ago, Yvonne Vergouwe and Ewout Steyerberg adapted val.prob  

# into val.prob.ci: 

  # - Scaled Brier score by relating to max for average calibrated Null 

  #   model 

  # - Risk distribution according to outcome 

  # - 0 and 1 to indicate outcome label; set with d1lab="..", d0lab=".." 

  # - Labels: y axis: "Observed Frequency"; Triangle: "Grouped 

  #   observations" 

  # - Confidence intervals around triangles 

  # - A cut-off can be plotted; set x coordinate 

 

# In December 2015, Bavo De Cock, Daan Nieboer, and Ben Van Calster adapted 

# this to val.prob.ci.2: 

  # - Flexible calibration curves can be obtained using loess (default) or 

  #   restricted cubic splines, with pointwise 95% confidence intervals 

  # - Loess: CI can be obtained in closed form or using bootstrapping  

  #   (CL.BT=T will do bootstrapping with 2000 bootstrap samples, however  

  #   this will take a while) 

  # - RCS: 3 to 5 knots can be used 

  #     -> the knot locations will be estimated using default quantiles of 
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  #        x (by rcspline.eval, see help rcspline.plot and rcspline.eval) 

  #     -> if estimation problems occur at the specified number of knots 

  #        (nr.knots, default is 5), the analysis is repeated with 

  #         nr.knots-1 until the problem has disappeared 

  # - You can now adjust the plot through use of normal plot commands  

  #   (cex.axis etc), and the size of the legend now has to be specified in 

  #   cex.leg  

  # - Label y-axis: "Observed proportion" 

  # - Stats: added the Estimated Calibration Index (ECI), a statistical  

  #   measure to quantify lack of calibration (Van Hoorde et al., 2015) 

  # - Stats to be shown in the plot: by default we shown the calibration  

  #   intercept (calibration-in-the-large), calibration slope and c- 

  #   statistic. Alternatively, the user can select the statistics of 

  #   choice (e.g. dostats=c("C (ROC)","R2") or dostats=c(2,3). 

  # - Vectors p, y and logit no longer have to be sorted 

 

  # Example: 

  # # simulated data 

  # x1 <- as.matrix(rnorm(500)) 

  # x2 <- as.matrix(rnorm(500)) 

  # x3 <- as.matrix(rnorm(500)) 

  # lp0=0.5*x1+1.2*x2+0.75*x3 

  # p0true=exp(lp0)/(1+exp(lp0)) 

  # y <-rbinom(500,1,p0true) 

  # data.0 <- data.frame(y,x1,x2,x3) 

  # 

  # # fit logistic model 

  # fit.lrm <- lrm(y~x1+x2+x3,data=data.0) 

  # pred.lrm <- predict(fit.lrm,type="fitted") 

  # 

  # # calibration plot for development data 

  # val.prob.ci.2(pred.lrm,y) 

 

val.prob.ci.2 <- function(p, y, logit, group, weights = rep(1, length(y)), normwt = F, pl = T, 

                          smooth = c("loess","rcs",F), CL.smooth="fill",CL.BT=F, 

                          nr.knots=5,logistic.cal = F, xlab = "Predicted probability", ylab = 

                            "Observed proportion", xlim = c(-0.02, 1),ylim = c(-0.15,1), m, g, cuts, emax.lim = c(0, 1), 

                          legendloc =  c(0.50 , 0.27), statloc = c(0,.85),dostats=T,roundstats=2, 

                          riskdist = "predicted", cex=0.75,cex.leg = 0.75, connect.group = 

                            F, connect.smooth = T, g.group = 4, evaluate = 100, nmin = 0, d0lab="0", d1lab="1", cex.d01=0.7, 
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                          dist.label=0.04, line.bins=-.05, dist.label2=.03, cutoff, las=1, length.seg=1, 

                          y.intersp=1,col.ideal="grey",lwd.ideal=1,...) 

{ 

   

  if(smooth[1]==F){smooth <- "F"} 

  smooth <- match.arg(smooth) 

  if(missing(p)) 

    p <- 1/(1 + exp( - logit)) 

  else logit <- log(p/(1 - p)) 

  if(length(p) != length(y)) 

    stop("lengths of p or logit and y do not agree") 

  names(p) <- names(y) <- names(logit) <- NULL 

  if(!missing(group)) { 

    if(length(group) == 1 && is.logical(group) && group) 

      group <- rep("", length(y)) 

    if(!is.factor(group)) 

      group <- if(is.logical(group) || is.character(group)) 

        as.factor(group) else cut2(group, g = 

                                     g.group) 

    names(group) <- NULL 

    nma <- !(is.na(p + y + weights) | is.na(group)) 

    ng <- length(levels(group)) 

  } 

  else { 

    nma <- !is.na(p + y + weights) 

    ng <- 0 

  } 

  logit <- logit[nma] 

  y <- y[nma] 

  p <- p[nma] 

  if(ng > 0) { 

    group <- group[nma] 

    weights <- weights[nma] 

    return(val.probg(p, y, group, evaluate, weights, normwt, nmin) 

    ) 

  } 

  require(rms) 

  # Sort vector with probabilities 

  y     <- y[order(p)] 

  logit <- logit[order(p)] 
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  p     <- p[order(p)] 

 

 

  if(length(p)>5000 & CL.smooth==T){warning("Number of observations > 5000, RCS is recommended.",immediate. = T)} 

  if(length(p)>1000 & CL.BT==T){warning("Number of observations is > 1000, this could take a while...",immediate. = T)} 

 

 

  if(length(unique(p)) == 1) { 

    #22Sep94 

    P <- mean(y) 

    Intc <- log(P/(1 - P)) 

    n <- length(y) 

    D <- -1/n 

    L01 <- -2 * sum(y * logit - log(1 + exp(logit)), na.rm = T) 

    L.cal <- -2 * sum(y * Intc - log(1 + exp(Intc)), na.rm = T) 

    U.chisq <- L01 - L.cal 

    U.p <- 1 - pchisq(U.chisq, 1) 

    U <- (U.chisq - 1)/n 

    Q <- D - U 

 

    stats <- c(0, 0.5, 0, D, 0, 1, U, U.chisq, U.p, Q, mean((y - p[ 

      1])^2), Intc, 0, rep(abs(p[1] - P), 2)) 

    names(stats) <- c("Dxy", "C (ROC)", "R2", "D", "D:Chi-sq", 

                      "D:p", "U", "U:Chi-sq", "U:p", "Q", "Brier", 

                      "Intercept", "Slope", "Emax", "Eavg", "ECI") 

    return(stats) 

  } 

  i <- !is.infinite(logit) 

  nm <- sum(!i) 

  if(nm > 0) 

    warning(paste(nm, "observations deleted from logistic calibration due to probs. of 0 or 1")) 

  i.2 <- i 

  f.or <- lrm(y[i]~logit[i]) 

  f <- lrm.fit(logit[i], y[i]) 

  f2<- lrm.fit(offset=logit[i], y=y[i]) 

  stats <- f$stats 

  n <- stats["Obs"] 

  predprob <- seq(emax.lim[1], emax.lim[2], by = 0.0005) 

  lt <- f$coef[1] + f$coef[2] * log(predprob/(1 - predprob)) 

  calp <- 1/(1 + exp( - lt)) 
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  emax <- max(abs(predprob - calp)) 

  if (pl) { 

    plot(0.5, 0.5, xlim = xlim, ylim = ylim, type = "n", xlab = xlab, 

         ylab = ylab, las=las,...) 

    clip(0,1,0,1) 

    abline(0, 1, lty = 1,col=col.ideal,lwd=lwd.ideal) 

    do.call("clip", as.list(par()$usr)) 

 

 

    lt <- 1 

    lw.d <- lwd.ideal 

    leg <- "Ideal" 

    marks <- -1 

    if (logistic.cal) { 

      lt <- c(lt, 1) 

      lw.d <- c(lw.d,1) 

      leg <- c(leg, "Logistic calibration") 

      marks <- c(marks, -1) 

    } 

    if (smooth=="loess") { 

      #Sm <- lowess(p,y,iter=0) 

      Sm <- loess(y~p,degree=2) 

      Sm <- data.frame(Sm$x,Sm$fitted); Sm.01 <- Sm 

 

      if (connect.smooth==T & CL.smooth!="fill") { 

        clip(0,1,0,1) 

        lines(Sm, lty = 1,lwd=2) 

        do.call("clip", as.list(par()$usr)) 

        lt <- c(lt, 1) 

        lw.d <- c(lw.d,2) 

        marks <- c(marks, -1) 

      }else if(connect.smooth==F & CL.smooth!="fill"){ 

        clip(0,1,0,1) 

        points(Sm) 

        do.call("clip", as.list(par()$usr)) 

        lt <- c(lt, 0) 

        lw.d <- c(lw.d,1) 

        marks <- c(marks, 1) 

      } 

      if(CL.smooth==T | CL.smooth=="fill"){ 
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        to.pred <- seq(min(p),max(p),length=200) 

        if(CL.BT==T){ 

          BT.samples <- function(y,p,to.pred){ 

            data.1 <- cbind.data.frame(y,p) 

 

            # REPEAT TO PREVENT BT SAMPLES WITH NA'S 

            repeat{ 

              BT.sample.rows <- sample(1:nrow(data.1),replace=T) 

              BT.sample <- data.1[BT.sample.rows,] 

              loess(y~p,BT.sample) ->loess.BT 

              predict(loess.BT,to.pred,type="fitted") ->pred.loess 

              if(!any(is.na(pred.loess))){break} 

            } 

            return(pred.loess) 

          } 

          cat("Bootstrap samples are being generated.\n\n\n") 

 

          replicate(2000,BT.samples(y,p,to.pred)) -> res.BT 

          apply(res.BT,1,quantile,c(0.025,0.975)) -> CL.BT 

          colnames(CL.BT) <- to.pred 

 

          if(CL.smooth=="fill"){ 

            clip(0,1,0,1) 

            polygon(x = c(to.pred, rev(to.pred)), y = c(CL.BT[2,], 

                                                        rev(CL.BT[1,])), 

                    col = rgb(177, 177, 177, 177, maxColorValue = 255), border = NA) 

            if (connect.smooth==T) { 

              lines(Sm, lty = 1,lwd=2) 

              lt <- c(lt, 1) 

              lw.d <- c(lw.d,2) 

              marks <- c(marks, -1) 

            }else if(connect.smooth==F){ 

              points(Sm) 

              lt <- c(lt, 0) 

              lw.d <- c(lw.d,1) 

              marks <- c(marks, 1) 

            } 

            do.call("clip", as.list(par()$usr)) 

            leg <- c(leg, "Flexible calibration (Loess)") 

          }else{ 
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            clip(0,1,0,1) 

            lines(to.pred,CL.BT[1,],lty=2,lwd=1);clip(0,1,0,1);lines(to.pred,CL.BT[2,],lty=2,lwd=1) 

            do.call("clip", as.list(par()$usr)) 

            leg <- c(leg,"Flexible calibration (Loess)","CL flexible") 

            lt <- c(lt,2) 

            lw.d <- c(lw.d,1) 

            marks <- c(marks,-1) 

          } 

 

        }else{ 

          Sm.0 <- loess(y~p,degree=2) 

          predict(Sm.0,type="fitted",se=T) -> cl.loess 

          clip(0,1,0,1) 

          if(CL.smooth=="fill"){ 

            polygon(x = c(Sm.0$x, rev(Sm.0$x)), y = c(cl.loess$fit+cl.loess$se.fit*1.96, 

                                                      rev(cl.loess$fit-cl.loess$se.fit*1.96)), 

                    col = rgb(177, 177, 177, 177, maxColorValue = 255), border = NA) 

            if (connect.smooth==T) { 

              lines(Sm, lty = 1,lwd=2) 

              lt <- c(lt, 1) 

              lw.d <- c(lw.d,2) 

              marks <- c(marks, -1) 

            }else if(connect.smooth==F){ 

              points(Sm) 

              lt <- c(lt, 0) 

              lw.d <- c(lw.d,1) 

              marks <- c(marks, 1) 

            } 

            do.call("clip", as.list(par()$usr)) 

            leg <- c(leg, "Flexible calibration (Loess)") 

          }else{ 

            lines(Sm.0$x,cl.loess$fit+cl.loess$se.fit*1.96,lty=2,lwd=1) 

            lines(Sm.0$x,cl.loess$fit-cl.loess$se.fit*1.96,lty=2,lwd=1) 

            do.call("clip", as.list(par()$usr)) 

            leg <- c(leg,"Flexible calibration (Loess)","CL flexible") 

            lt <- c(lt,2) 

            lw.d <- c(lw.d,1) 

            marks <- c(marks,-1) 

          } 
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        } 

 

      }else{ 

        leg <- c(leg, "Flexible calibration (Loess)")} 

      cal.smooth <- approx(Sm.01, xout = p)$y 

      eavg <- mean(abs(p - cal.smooth)) 

      ECI <- mean((p-cal.smooth)^2)*100 

    } 

    if(smooth=="rcs"){ 

      par(lwd=2,bty="n") 

      if(!is.numeric(nr.knots)){stop("Nr.knots must be numeric.")} 

      if(nr.knots==5){ 

        tryCatch(rcspline.plot(p,y,model="logistic",nk=5,show="prob", statloc = "none" 

                               ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p)))),error=function(e){ 

                                 warning("The number of knots led to estimation problems, nk will be set to 4.",immediate. = 

T) 

                                 tryCatch(rcspline.plot(p,y,model="logistic",nk=4,show="prob", statloc = "none" 

                                                        ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p)))),error=f

unction(e){ 

                                                          warning("Nk 4 also led to estimation problems, nk will be set to 

3.",immediate.=T) 

                                                          rcspline.plot(p,y,model="logistic",nk=3,show="prob", statloc = 

"none" 

                                                                        ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.om

it(p)))) 

                                                        }) 

                               }) 

      }else if(nr.knots==4){ 

        tryCatch(rcspline.plot(p,y,model="logistic",nk=4,show="prob", statloc = "none" 

                               ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p)))),error=function(e){ 

                                 warning("The number of knots led to estimation problems, nk will be set to 3.",immediate.=T) 

                                 rcspline.plot(p,y,model="logistic",nk=3,show="prob", statloc = "none" 

                                               ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p)))) 

                               }) 

      }else if(nr.knots==3){ 

        tryCatch(rcspline.plot(p,y,model="logistic",nk=3,show="prob", statloc = "none" 

                               ,add=T,showknots=F,xrange=c(min(na.omit(p)),max(na.omit(p)))), 

                 error=function(e){ 

                   stop("Nk = 3 led to estimation problems.") 
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                 }) 

      }else{stop(paste("Number of knots = ",nr.knots,sep="", ", only 5 >= nk >=3 is allowed."))} 

 

      par(lwd=1,bty="o") 

      leg <- c(leg,"Flexible calibration (RCS)","CL flexible") 

      lt <- c(lt,1,2) 

      lw.d <- c(lw.d,2,2) 

      marks <- c(marks,-1,-1) 

    } 

    if(!missing(m) | !missing(g) | !missing(cuts)) { 

      if(!missing(m)) 

        q <- cut2(p, m = m, levels.mean = T, digits = 7) 

      else if(!missing(g)) 

        q <- cut2(p, g = g, levels.mean = T, digits = 7) 

      else if(!missing(cuts)) 

        q <- cut2(p, cuts = cuts, levels.mean = T, digits = 7) 

      means <- as.single(levels(q)) 

      prop <- tapply(y, q, function(x)mean(x, na.rm = T)) 

      points(means, prop, pch = 2, cex=1) 

      #18.11.02: CI triangles 

      ng <-tapply(y, q, length) 

      og <-tapply(y, q, sum) 

      ob <-og/ng 

      se.ob <-sqrt(ob*(1-ob)/ng) 

      g  <- length(as.single(levels(q))) 

 

      for (i in 1:g) lines(c(means[i], means[i]), c(prop[i],min(1,prop[i]+1.96*se.ob[i])), type="l") 

      for (i in 1:g) lines(c(means[i], means[i]), c(prop[i],max(0,prop[i]-1.96*se.ob[i])), type="l") 

 

      if(connect.group) { 

        lines(means, prop) 

        lt <- c(lt, 1) 

        lw.d <- c(lw.d,1) 

      } 

      else lt <- c(lt, 0) 

      lw.d <- c(lw.d,0) 

      leg <- c(leg, "Grouped observations") 

      marks <- c(marks, 2) 

    } 

  } 
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  lr <- stats["Model L.R."] 

  p.lr <- stats["P"] 

  D <- (lr - 1)/n 

  L01 <- -2 * sum(y * logit - logb(1 + exp(logit)), na.rm = TRUE) 

  U.chisq <- L01 - f$deviance[2] 

  p.U <- 1 - pchisq(U.chisq, 2) 

  U <- (U.chisq - 2)/n 

  Q <- D - U 

  Dxy <- stats["Dxy"] 

  C <- stats["C"] 

  R2 <- stats["R2"] 

  B <- sum((p - y)^2)/n 

  # ES 15dec08 add Brier scaled 

  Bmax  <- mean(y) * (1-mean(y))^2 + (1-mean(y)) * mean(y)^2 

  Bscaled <- 1 - B/Bmax 

  stats <- c(Dxy, C, R2, D, lr, p.lr, U, U.chisq, p.U, Q, B, 

             f2$coef[1], f$coef[2], emax, Bscaled) 

  names(stats) <- c("Dxy", "C (ROC)", "R2", "D", "D:Chi-sq", 

                    "D:p", "U", "U:Chi-sq", "U:p", "Q", "Brier", "Intercept", 

                    "Slope", "Emax", "Brier scaled") 

  if(smooth=="loess") 

    stats <- c(stats, c(Eavg = eavg),c(ECI = ECI)) 

 

  # Cut off definition 

  if(!missing(cutoff)) { 

    arrows(x0=cutoff,y0=.1,x1=cutoff,y1=-0.025,length=.15) 

  } 

  if(pl) { 

    if(min(p)>plogis(-7) | max(p)<plogis(7)){ 

 

      lrm(y[i.2]~qlogis(p[i.2]))-> lrm.fit.1 

      if(logistic.cal)  lines(p[i.2],plogis(lrm.fit.1$linear.predictors),lwd=1,lty=1) 

 

    }else{logit <- seq(-7, 7, length = 200) 

    prob <- 1/(1 + exp( - logit)) 

    pred.prob <- f$coef[1] + f$coef[2] * logit 

    pred.prob <- 1/(1 + exp( - pred.prob)) 

    if(logistic.cal) lines(prob, pred.prob, lty = 1,lwd=1) 

    } 

    # pc <- rep(" ", length(lt)) 
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    # pc[lt==0] <- "." 

    lp <- legendloc 

    if (!is.logical(lp)) { 

      if (!is.list(lp)) 

        lp <- list(x = lp[1], y = lp[2]) 

      legend(lp, leg, lty = lt, pch = marks, cex = cex.leg, bty = "n",lwd=lw.d, 

             col=c(col.ideal,rep("black",length(lt)-1)),y.intersp = y.intersp) 

    } 

    if(!is.logical(statloc)) { 

      if(dostats[1]==T){ 

        stats.2 <- paste('Calibration\n', 

                         '...in the large: ', sprintf(paste("%.",roundstats,"f",sep=""), stats["Intercept"]), '\n', 

                         '...slope : ', sprintf(paste("%.",roundstats,"f",sep=""), stats["Slope"]), '\n', 

                         'Discrimination\n', 

                         '...c-statistic : ', sprintf(paste("%.",roundstats,"f",sep=""), stats["C (ROC)"]), sep = '') 

        text(statloc[1], statloc[2],stats.2,pos=4,cex=cex) 

 

      }else{ 

        dostats <- dostats 

        leg <- format(names(stats)[dostats]) #constant length 

        leg <- paste(leg, ":", format(stats[dostats], digits=roundstats), sep = 

                       "") 

        if(!is.list(statloc)) 

          statloc <- list(x = statloc[1], y = statloc[2]) 

        text(statloc, paste(format(names(stats[dostats])), 

                            collapse = "\n"), adj = 0, cex = cex) 

        text(statloc$x + (xlim[2]-xlim[1])/3 , statloc$y, paste( 

          format(round(stats[dostats], digits=roundstats)), collapse = 

            "\n"), adj = 1, cex = cex) 

      } 

    } 

    if(is.character(riskdist)) { 

      if(riskdist == "calibrated") { 

        x <- f$coef[1] + f$coef[2] * log(p/(1 - p)) 

        x <- 1/(1 + exp( - x)) 

        x[p == 0] <- 0 

        x[p == 1] <- 1 

      } 

      else x <- p 

      bins <- seq(0, min(1,max(xlim)), length = 101) 
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      x <- x[x >= 0 & x <= 1] 

      #08.04.01,yvon: distribution of predicted prob according to outcome 

      f0 <-table(cut(x[y==0],bins)) 

      f1 <-table(cut(x[y==1],bins)) 

      j0 <-f0 > 0 

      j1 <-f1 > 0 

      bins0 <-(bins[-101])[j0] 

      bins1 <-(bins[-101])[j1] 

      f0 <-f0[j0] 

      f1 <-f1[j1] 

      maxf <-max(f0,f1) 

      f0 <-(0.1*f0)/maxf 

      f1 <-(0.1*f1)/maxf 

 

      segments(bins1,line.bins,bins1,length.seg*f1+line.bins) 

      segments(bins0,line.bins,bins0,length.seg*-f0+line.bins) 

      lines(c(min(bins0,bins1)-0.01,max(bins0,bins1)+0.01),c(line.bins,line.bins)) 

      text(max(bins0,bins1)+dist.label,line.bins+dist.label2,d1lab,cex=cex.d01) 

      text(max(bins0,bins1)+dist.label,line.bins-dist.label2,d0lab,cex=cex.d01) 

 

    } 

  } 

  stats 

} 

 

 


