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Introduction

Traditional data collection makes decisions on collecting certain predictive

variables, which are potentially associated with a variable that is of pri-

mary interest, i.e., the response variable. A standard procedure after data

collection is to find the association between the predictive variables and

the response variables. In the past decades, numerous models have been

proposed and intensively studied for different data structures to model

the relationship of collected variables. Traditional linear regression is still

among the most popular techniques. It assumes linear relationships be-

tween predictive variables and the response variable. However, linear com-

binations of the predictive variables are not expected to perfectly coincide

with the observed values; the deviations are represented in the model by

the error variables. The above description can be expressed following

Y = Xβ + ε, (0.1)

where X ∈ Rn×p is the design matrix consisting of p predictive variables

X·j , j = 1, . . . , p and n samples Xi·, i = 1, . . . , n, ε ∈ Rn is the error vector,

and Y ∈ Rn is the response variable. The components of the coefficient

vector β ∈ Rp of the linear combinations of the predictive variables X·j ’s,

which reflect the associations, are parameters to be estimated. Two perti-

nent questions arise here: “How to estimate those parameters?” and “How

reliable are those estimators?”. When the errors follow a Gaussian distri-

bution, a common choice for estimation is the method of ordinary least

squares (OLS) using a least squares loss function ρLS(x) = x2, to estimate
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Figure 0.1: Example figures of the least squares loss and the quantile loss
functions at quantile level τ = 0.3.

the parameter vector β by

β̂OLS = arg min
β

n∑
i=1

(Yi −Xi·β)2 = (X>X)−1X>Y.

However, the least squares loss function is known to be sensitive to non-

Gaussian distributed errors. To obtain reliable parameter estimations al-

lowing non-Gaussian distributed errors, quantile regression (Koenker and

Bassett, 1978a; Koenker, 2005a) is developed. The quantile regression esti-

mates the parameter vector β at quantile level τ by minimizing the quantile

loss function

ρτ (x) = (x− uτ )(τ − I{x ≤ uτ}), (0.2)

where uτ = F−1
ε (τ), Fε is the distribution function of the error ε, I{·}

is the indicator function. Example figures of the least squares loss and

quantile loss functions are in Figure 0.1. Assessing the reliability of the

estimators of the parameters is often achieved by hypothesis testing and

confidence intervals at a certain significance level.

Nowadays, data collection has become cheaper as technology advances.
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Consequently, new data structures, i.e., high dimensional data, appear in

various fields, e.g., biology, astronomy, pattern recognition, climate re-

search, etc. Compared to traditional data structures, high dimensional

data have significantly more variables, typically of a much larger order

than the sample size. Additionally, the number of variables of high di-

mensional data either is fixed or grows accordingly with the sample size

following a fixed ratio, depending on the data collection procedure. Due

to a large number of variables in high dimensional data, classical regres-

sion theory assuming a fixed number of variables and a sample size that

goes to infinity is no longer applicable. Accordingly, statistical theory is

developed for high dimensional data with excessive variables. Extensive

research has been done on answering the two critical regression questions

regarding parameter estimation and the reliability of estimators, in high

dimensions, see Candes et al. (2007); Bickel et al. (2009); Rigollet et al.

(2011); Vershynin (2018); Bühlmann and van de Geer (2011).

A standard estimation approach is regularization, which estimates re-

gression coefficients by combining a loss function ρ(x) (e.g., least squares

loss, Huber’s loss, quantile loss, absolute deviation function, etc.) and a

regularizer Rλ (e.g., l1, l2, SCAD, etc.) with regularization parameter λ.

Numerous regularized estimators are derived based on the least squares loss

function (Hoerl and Kennard, 1970; Tibshirani, 1996; Fan and Li, 2001; Zou

and Hastie, 2005), modeling the mean, which is sensitive to non-Gaussian

distributed errors. Similar to the classical regression setting, a robust al-

ternative modeling quantiles in high dimensions is the regularized quantile

estimator defined as

β̂τ = arg min
β

{ n∑
i=1

ρτ (Yi −Xi·β) +Rλ(β)
}
,

where ρτ (x) is the quantile loss function at quantile level τ and Rλ is a reg-

ularizer. Further extensions include two types of weighted quantile regres-

sion estimators. In this thesis, I will particularly focus attention to com-

posite and model averaged quantile estimators. By using different quantile
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levels, both approaches aim at modeling a conditional mean. Indeed, for

a continuous random variable Y , it holds that E(Y ) =
∫ 1

0 F
−1
Y (τ)dτ with

F−1
Y the quantile function. The regularized composite quantile estimator

is obtained by minimizing K weighted quantile loss functions

β̂C = arg min
β
{
K∑
k=1

wk

n∑
i=1

ρτk(Yi −Xi·β) +Rλ(β)}.

And the regularized model averaged quantile estimator is obtained by

weighting multiple regularized quantile estimators β̂τk , k = 1, . . . ,K, de-

fined as

β̂MA =

K∑
k=1

wkβ̂τk .

A question then arises: how do we choose weights w = (w1, . . . , wK)>?

Weight selection for model averaging, also known as “forecast combina-

tion” (Bates and Granger, 1969; Cheng et al., 2015) or “multimodel infer-

ence” (Burnham and Anderson, 2002), has been studied substantially in

low dimensions. Different weighting schemes have been proposed such as

Mallow’s Cp (Hansen, 2007), the Akaike information criterion (AIC), the

Bayesian information criterion (BIC), and the focused information crite-

rion (FIC) (Claeskens and Hjort, 2008), adaptive forecast combination via

exponential re-weighting (Yang, 2004) combining jackknife or leave-one-

out cross-validation (Hansen, 2007; Hansen and Racine, 2012), or sam-

ple splitting called “adaptive regression by mixing” (Yang, 2001). For

model-averaged and composite quantile estimators, Koenker (2005b) de-

rived weight expressions achieving the lower bound of the corresponding

asymptotic variance. However, adapting the above weighting schemes to

high dimensions has not been thoroughly studied and requires cautious

investigation.

Assessing the reliability of the estimators by statistical inference often

relies on asymptotic distributions. However, due to the bias introduced

to the estimators by regularization, obtaining asymptotic distributions of

the regularized estimators becomes challenging in high dimensions. Sev-
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eral popular approaches have been proposed to tackle difficulties arising

from the biased estimators in high dimensions. Earlier literature derives

the so-called oracle-properties of the non-zero components of the true re-

gression coefficient vector by ignoring the selection uncertainty, meaning

the estimated (non-)zero components correspond to the true (non-)zeros

of the regression coefficient vector. An alternative approach considering

the complete coefficient vector is by debiasing (or desparsifying) (van de

Geer et al., 2014; Javanmard and Montanari, 2014b) the regularized esti-

mators. By adding a term compensating the bias caused by regularization,

the asymptotic normality of the bias-corrected estimator can be obtained

under certain sparsity conditions. Based on the debiased estimators, con-

fidence intervals and hypothesis tests are constructed. Simultaneous hy-

pothesis tests are first constructed following conservative Bonferroni-type

adjustments (Javanmard and Montanari, 2014a; van de Geer et al., 2014),

and later are improved by bootstrapping the debiased estimators (Zhang

and Cheng, 2017; Dezeure et al., 2017).

A major limitation of regularization is strict assumptions on the dis-

tributions and the existence of moments of certain variables. In practice,

those assumptions may or may not be satisfied, which makes the validity

of the estimators doubtful. Without specifying distributions, assuming ho-

moscedastic errors or linearity between response and predictive variables,

flexible modeling using copulas has attracted attention. A multivariate

joint distribution is linked to a multivariate copula by the probability in-

tegral transform, which transforms any univariate variable to a uniformly

distributed variable on the interval [0, 1] by applying its marginal distribu-

tion functions. For a multivariate joint distribution of the response vari-

able and predictive variables, Sklar’s Theorem (Sklar, 1973) in Lemma 0.1

states that there exists an associated copula mapping probability integral

transformed variables to the joint distribution.

Lemma 0.1 (Sklar’s Theorem). Let the inverse of the marginal distribu-

tions of Y and X·j be F−1
Y and F−1

j respectively. And let the marginal

density function of Y and X·j be fY and fj , j = 1, . . . , p. Further, let the
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joint distribution function of Y and X·j’s be F with density function f . It

holds that

CV,1,...,p(v, u1, . . . , up) = F
(
F−1
Y (v), F−1

1 (u1), . . . , F−1
p (up)

)
,

and the copula density is determined by

cV,1,...,p(v, u1, . . . , up) =
f
(
F−1
Y (v), F−1

1 (u1), . . . , F−1
p (up)

)
fY
(
F−1
Y (v)

)
f1

(
F−1

1 (u1)
)
· · · fp

(
F−1
p (up)

)
Sklar’s Theorem bridges multivairate joint distributions with possibly

complex forms and copulas with uniformly distributed margins, providing

an option of modeling multivariate copulas in hypercubes. However, when

the number of variables involved gets large, modeling a multivariate copula

is still challenging and does not escape from issues due to high dimension-

ality. To model multivariate copulas, a pair-copula construction, i.e., vine

copulas (Joe, 1996; Bedford and Cooke, 2001, 2002), can be obtained by

recursive conditioning and consists of only pair copulas. This pair cop-

ula construction avoids modeling multivariate copulas in hypercubes and

deals with multiple pair copulas. Since only pair copulas are involved in

the modeling process, vine copulas do not suffer from common issues in

high dimensions such as “curse of dimensionality”. As an extension of vine

copulas, flexible quantile modeling as an alternative for regularized quan-

tile estimator has been investigated by Noh et al. (2013, 2015); Chen et al.

(2009).

High dimensional statistics has attracted lots of attention due to tech-

nical challenges in deriving inferences. Model averaging combines multiple

estimators for achieving a more accurate prediction. Quantile regression

that models a quantile as opposed to the mean, is known to be less sensitive

to non-Gaussian distributed errors. This thesis combines the above three

topics discussing the quantile estimator, as well as its model-averaged and

composite versions, in high dimensions. Sparse high dimensional quantile

regression is the major focus of the first three chapters. We derive oracle-
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type asymptotic normality, asymptotic mean squared error (AMSE), as

well as the corresponding weight choices for the model-averaged and com-

posite quantile estimators in high dimensions. Confidence intervals and

hypothesis testing will be discussed for l1-regularized single quantile esti-

mators. To relax strict model assumptions, we discuss a flexible quantile

modeling using vine copulas in the last chapter.

Chapter 1 assumes a sparse high dimensional linear model allowing for

an exponential order of the number of parameters p and the sample size

n, such that log(p) = O(nδ) with δ ∈ (0, 1). The model-averaged and

composite quantile estimators are robust alternatives to the least squares

estimator, while the model-averaged quantile estimator is computationally

much faster than the composite estimator. Under the perfect selection

assumption assuming only the true non-zero coefficients (the so-called ac-

tive set of coefficients) are estimated to be non-zeros, we show asymptotic

normality of model-averaged quantile predictions with fixed weights. Fur-

ther, we derive an oracle-type weight expression for the regularized model-

averaged quantile estimator achieving the lower bound of the asymptotic

variance of the active set of coefficients. We also investigate the effect of

equal weights and estimated oracle-type weights on the efficiency of the

model-averaged and composite quantile estimators by simulation.

Chapter 2 focuses on the sparse high dimensional setting where the

sample size n and the dimension p grow accordingly with the ratio n/p→
δ ∈ (0, 1). To relax the perfect selection assumption, we consider the

robust approximate message passing algorithm (RAMP) which offers the

expression of asymptotic mean squared error (AMSE) for the l1-regularized

M-estimators (e.g., least squares estimators, quantile estimators, etc.) with

any convex loss function. The loss functions are not required to be differ-

entiable. We obtain expressions of the AMSE of the l1-regularized model-

averaged and composite M-estimators with fixed weights. An AMSE-type

weight choice minimizing the AMSE is derived for the model-averaged and

composite M-estimators, and a Stein-type estimator is derived for practi-

cally using the expressions of the AMSE and the AMSE-type weight. The
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efficiency of the model-averaged and composite quantile estimators using

the estimated AMSE-type weights are compared with estimators using es-

timated oracle-type weights and equal weights.

Chapter 3 is an extension of Chapter 2 focusing on a sequence denoted

as β̃(t) with iteration t = 0, 1, . . . at convergence in the RAMP iteration.

The sequence was shown to be linked to the corresponding debiased es-

timator (Mousavi et al., 2013; Javanmard and Montanari, 2018) and is

asymptotically normally distributed at each iteration t. The asymptotic

distribution of β̃(t) centers at the true regression coefficient and has vari-

ance ζ̄2
emp,(t), which can be obtained directly from the RAMP iteration. We

construct componentwise confidence intervals and two-sided individual hy-

pothesis tests by asymptotic normality of β̃(t) and ζ̄2
emp,(t) at convergence.

The effect of testing multiple hypotheses is handled by a Holm-Bonferroni

correction.

Chapter 4 proposes to model a conditional quantile by C-vine copulas,

i.e., pair-copula constructions obtained by recursive conditioning, where

the bivariate copulas are estimated nonparametrically. The structure of

the C-vine is obtained by a new algorithm maximizing truncated condi-

tional log-likelihoods gradually. The proposed method can be adapted

to both low and high dimensional data allowing heteroscedastic errors and

non-Gaussian copulas. The performance of the proposed estimator is evalu-

ated by out-of-sample prediction, compared with the D-vine based quantile

estimator (Kraus and Czado, 2017), using data with different distributions,

nonlinear relationships between predictors and response variable, and het-

eroscedastic errors. Further, we construct a flexible nonparametric mean

estimator using the constructed C-vine copulas. The performance of the

C-vine based mean estimator is compared with its D-vine based alterna-

tive, the ordinary least squares estimator in low dimensions and the Lasso

estimator in high dimensions, as well as the nonparametric regression with

the least squares cross-validated bandwidths.

The various chapters in this thesis can be found in

(i) Bloznelis D., Claeskens G. and Zhou J. (2019) Composite versus
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and Inference, 200, 32-46.

(ii) Zhou, J., Claeskens, G. and Bloznelis, D. (2018). Weight choice for

penalized composite quantile regression and for model averaging.

Proceedings of the 33rd International Workshop on Statistical Mod-

elling, University of Bristol, UK, July 16-20, 2018. Pages 219-224.

(iii) Zhou, J., Claeskens, G. and Bradic, J. (2019). Detangling robust-

ness in high dimensions: composite versus model-averaged estima-

tion. Submitted to Electronic Journal of Statistics.

(iv) Zhou, J., Tepegjozova M., Claeskens G. and Czado, C.(2020). Sparse
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Chapter 1

Composite versus

model-averaged quantile

regression

The composite quantile estimator is a robust and efficient al-

ternative to the least squares estimator in linear models. How-

ever, it is computationally demanding when the number of

quantiles is large. We consider a model-averaged quantile esti-

mator as a computationally cheaper alternative. We derive its

asymptotic properties in high dimensional linear models and

compare its performance to the composite quantile estimator

in both low- and high dimensional settings. We also assess

the effect on efficiency of using equal weights, theoretically

optimal weights, and estimated optimal weights for combin-

ing the different quantiles. None of the estimators dominates

in all settings under consideration, thus leaving room for both

model-averaged and composite estimators, both with equal and

estimated optimal weights in practice.

1



2
CHAPTER 1. COMPOSITE VERSUS MODEL-AVERAGED

QUANTILE REGRESSION

This chapter is based on

Bloznelis D., Claeskens G. and Zhou J. (2019) Composite ver-

sus model-averaged quantile regression. Journal of Statistical

Planning and Inference, 200, 32-46.

Zhou, J., Claeskens, G. and Bloznelis, D. (2018). Weight choice

for regularized composite quantile regression and for model av-

eraging. Proceedings of the 33rd International Workshop on

Statistical Modelling, University of Bristol, UK, July 16-20,

2018. Pages 219-224.

1.1 Introduction

For low dimensional linear regression models, ordinary least squares (OLS)

estimation is the common approach. Under standard assumptions, OLS

provides the minimum-variance (a.k.a. best) estimator in the class of linear

unbiased estimators. However, it may misbehave when the error distribu-

tion has heavy tails. This motivated the seminal Koenker and Bassett

(1978a) paper that introduced quantile regression as a robust alternative

to OLS. Unsurprisingly, robustness does not come at zero cost; the quan-

tile estimator is relatively less efficient than its OLS counterpart for certain

light-tailed distributions such as the Gaussian. Efforts to find robust yet ef-

ficient estimators have persisted. Koenker (1984) considered weighted com-

posite quantile regression (weighted CQR) and weighted model-averaged

quantile regression (weighted MAQR) as more efficient alternatives to the

regular single-quantile estimator. He showed that both estimators are more

efficient than the single-quantile one, and that both achieve the same lower

bound of the asymptotic variance, given a suitable choice of weights that

depend on the error distribution. The origins of MAQR can be found

already in Koenker and Bassett (1978a), while the idea of CQR was pro-

posed by R.V. Hogg in 1979; see (Koenker, 1984, 2005a). The literature

has continued expanding on the composite quantile regression (see Zou



1.1. Introduction 3

and Yuan, 2008; Bradic et al., 2011; Jiang et al., 2012, 2014). Meanwhile,

the model-averaged quantile regression has garnered little attention (with

a recent exception of Zhao and Xiao, 2014), although it is computationally

cheaper than CQR, and the difference in the computational cost becomes

prohibitive when the number of quantiles employed is larger than about

ten.

For high dimensional models, only the composite estimator has been

considered (Bradic et al., 2011). We introduce its model-averaged coun-

terpart, obtain optimal weights for the different quantiles under a given

error distribution, and compare CQR and MAQR in terms of asymptotic

relative efficiency and finite-sample performance. We also draw atten-

tion to the fact that when the error distribution is unknown, theoretically

optimal weights are unavailable. They need to be estimated from the

data and thus become random variables. Therefore, optimality results for

plug-in versions of the theoretically optimal weights may change. This is

similar in spirit to the forecast combination puzzle (e.g. Claeskens et al.,

2016, and references therein) where estimated optimal weights in forecast

combinations may yield poorer results than equal weights. Moreover, the

asymptotic distributions of the CQR and MAQR estimators under esti-

mated optimal weights are less straightforward to obtain than under fixed

weights. We examine in simulations whether estimated optimal weights or

equal weights perform better in practice.

In Section 1.2 we first review the composite and model-averaged linear

quantile estimators in low dimensional regression models. We contribute

with a theoretical comparison of equal weights and optimal weights for

both types of estimators. Section 1.3 proceeds with composite and model-

averaged estimation in high dimensional regression models under a sparsity

assumption. We obtain the limiting asymptotic distribution of a high

dimensional model-averaged quantile estimator and use the distribution to

propose a vector of optimal weights. A simulation study in Section 1.4

and a data example in Section 1.5 show the estimators’ performance in

practice.
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1.2 Low dimensional linear quantile regression

Consider a linear model Y = Xβ + ε as in (0.1). The components εj ’s

of the error vector ε = (ε1, . . . , εn)> are independent copies of a random

variable denoted by ε. We denote the common cumulative distribution of

the εi’s by Fε with corresponding density function by fε.

Given a single quantile level 0 < τ < 1, an estimator of the 100τ%

quantile of the response Y in the linear model is defined as

(ûτ , β̂
>
τ ) = arg min

uτ ,β

n∑
i=1

ρτ (Yi −Xi·β), (1.1)

where ρτ (x) = (x − uτ )(τ − I{x ≤ uτ}) is the quantile loss function as

in (0.2), ûτ is an estimator of the quantile intercept uτ , and β̂τ is the

estimator of the vector β. The true 100τ% quantile of Y given Xi· is

X>i· β+uτ , where uτ = F−1
ε (τ) is the 100τ% quantile of the distribution of

the error εi’s. Hence, the only regression parameter that depends on the

quantile level is the quantile intercept uτ , while the true β is the same for

all quantiles.

1.2.1 Composite and model-averaged estimators

For multiple quantile levels 0 < τ1 < . . . < τk < 1, the equally-weighted

CQR estimator is defined as

(ûτ1,comp, . . . , ûτk,comp, β̂
>
comp)(1k/k) =

arg minuτ1 ,...,uτk ,β
∑k

l=1

∑n
i=1 ρτl(Yi −Xi·β), (1.2)

where the vector (ûτ1,comp, . . . , ûτk,comp, β̂
>
comp) depends on the weights

1k/k, and 1k is a vector of length k consisting of ones. In (1.2), the

estimating functions from the single quantile regression models as in equa-

tion (1.1) are simply summed, or equivalently, all given the same weight.

A more general result, see Koenker (1984) and Koenker (2005a, Sec. 5.5),

is to allow for different weights wC = (wC,1, . . . , wC,k)
>, resulting in the
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weighted CQR estimator

(ûτ1,comp, . . . , ûτk,comp, β̂
>
comp)(w) = arg min

uτ1 ,...,uτk ,β

k∑
l=1

wC,l

n∑
i=1

ρτl(Yi −Xi·β).

This approach of getting composite estimators by linearly combining

the estimating functions has become quite popular, especially in quantile

regression. Zou and Yuan (2008) consider equally-weighted regularized

CQR in a high dimensional setting as an alternative to regularized least

squares estimation. They develop an oracle estimator that is at worst

30% less efficient than the regularized least squares estimator but in other

cases can be arbitrarily more efficient. For example, it works well when

the variance of the error distribution is infinite, where the regularized least

squares estimator fails. Bradic et al. (2011) consider a weighted regular-

ized CQR estimator and its oracle properties when the error distribution

is unknown. They build on an idea that the loss function of the CQR

with data-driven adaptive weights can approximate the true likelihood of

the error distribution well and as such can lead to efficient estimation.

Jiang et al. (2012) extend the research on robust yet efficient estimation

and model selection in high dimensions to nonlinear models. They use

weighted CQR and achieve consistent model selection together with esti-

mation efficiency that is near that of the maximum likelihood estimator.

Jiang et al. (2014) consider weighted CQR estimator for autoregressive

conditionally heteroscedastic models and demonstrate its robustness and

efficiency.

Model averaging is an alternative to composite estimation. Focusing

only on the slopes β, one may obtain different quantile estimators β̂τl ,

l = 1, . . . , k, from equation (1.1) and take their weighted average, to arrive

at a weighted MAQR estimator

β̂mod.avg(wMA) =
k∑
l=1

wMA,lβ̂τl ,
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where wMA = (wMA,1, . . . , wMA,k)
> is a vector of weights. In model aver-

aging, one usually restricts the weights to sum to one,
∑k

l=1wMA,l = 1.

Another restriction that one might or might not impose is that the weights

lie within [0, 1]. This estimator has recently been considered by Zhao and

Xiao (2014) in a low dimensional setting.

The main question we wish to investigate is, which approach is pre-

ferred: (1) separate estimation using different quantile levels τl, l = 1, . . . , k,

which is a simple procedure, followed by a weighted average of the esti-

mators to arrive at β̂mod.avg, or (2) a single, though more complicated,

estimation with a weighted loss function that immediately results in an

estimator β̂comp?

1.2.2 Asymptotic relative efficiency

For the low dimensional case, part of the answer to this question has been

given by Koenker (1984), see also Koenker (2005a, Th. 5.2). Under the

assumption that
∑k

l=1wC,l = 1 to guarantee consistency, and some addi-

tional assumptions to ensure the distribution of errors and the regressors

are well-behaved, he obtains that for n→∞ there is a limiting mean-zero

normal distribution for
√
n(β̂comp(wC) − β) with asymptotic covariance

matrix

Q−1

∑k
l,l′=1wC,lwC,l′ min(τl, τl′){1−max(τl, τl′)}
{
∑k

l,l′=1wC,lwC,l′fε(bτl)fε(bτl′ )}2
= Q−1w>CAwC/(w

>
Cf ε)

2,

where Q = limn→∞{ 1
nX
>X}, f ε = (fε(bτ1), . . . , fε(bτk))>, and the k × k

matrix A is formed by the entries all′ = min(τl, τl′){1 − max(τl, τl′)} for

l, l′ = 1, . . . , k.

In order to study the asymptotic distribution of the model-averaged

estimator we need the joint limiting distribution of the estimators β̂τl for

l = 1, . . . , k. Koenker and Bassett (1978a) obtain the limiting normal
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distribution of a vector of quantile regression estimators

√
n{(β̂>τ1 , . . . , β̂

>
τk

)− (β>, . . . , β>)}.

This limiting distribution has mean zero and a covariance matrix Ω⊗Q−1

where ⊗ denotes the Kronecker product and where the k × k matrix Ω

has l, l′ entry equal to all′/{fε(uτl)fε(uτl′ )}. This immediately leads to

the asymptotic normality of β̂mod.avg. It follows that, when n → ∞, with

β̃ = (
∑k

l=1wMA,l)β,

√
n(β̂mod.avg(wMA)− β̃)

d→ N(0, w>MAΩwMAQ
−1). (1.3)

When the weights sum to 1, β̃ = β and both the CQR and the MAQR

estimators are asymptotically unbiased. A comparison of the asymptotic

mean squared error (MSE) values of β̂mod.avg and β̂comp boils down to

comparing the asymptotic variances. The asymptotic relative efficiency

(ARE) of the model-averaged and the composite estimators is

ARE{β̂mod.avg(wMA), β̂comp(wC)} =
asyVar β̂mod.avg(wMA)

asyVar β̂comp(wC)

=
∑k

l,l′=1wMA,lwMA,l′
al,l′

fε(uτl )fε(uτl′ )

{
∑k
j=1 wC,jfε(uτj )}2∑k

j,j′=1 wC,jwC,j′aj,j′
.

Using inequalities related to eigenvalues of the matrix A, Koenker (2005a,

Th. 5.2, Cor. 5.1) explains that there exists a choice of the weight vectors

wMA and wC such that both estimators, β̂mod.avg(wMA) and β̂comp(wC),

achieve the same lower bound for the asymptotic variance, asyVar =

(f>ε A
−1f ε)

−1. That is, both estimators can achieve the same efficiency

and with optimal weights the ARE of the two estimators is 1. The optimal

choices of the weights wMA and wC follow expressions

wMA,opt = (f>ε A
−1f ε)

−1diag(f ε)A
−1f ε and wC,opt = A−1f ε.

Consequently, one may conclude that both approaches are worth pursuing,

each with its own optimal choice of weights depending on the choice of the
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quantile levels τl, l = 1, . . . , k and on the true error distribution fε.

Note that some components of the optimal weight vectors wMA,opt and

wC,opt may be negative. From the perspective of estimation algorithms,

this causes no difficulty for the MAQR estimator as the weighting is done

after having estimated the individual regressions for each quantile. How-

ever, it is a bigger problem in the composite regression setting. There,

negative weights lead to nonconvexity of the objective function and thus

conventional convex optimization algorithms cannot be applied. In prac-

tice this may be prohibitive and may effectively prevent the use of the

CQR estimator when some of the weights are negative.

1.2.3 Weights: theoretically optimal versus estimated op-

timal versus equal

The optimal weights wMA,opt and wC,opt are often not computable due to

an incompletely specified density function fε, which may be either entirely

unknown in a nonparametric setting, or partly unknown in a parametric

setting. When estimators replace unknown quantities in the computation

of optimal weights, the resulting estimated weights ŵMA and ŵC are obvi-

ously random. While wMA,opt and wC,opt minimize the asymptotic variance

of, respectively, β̂mod.avg(wMA) and β̂comp(wC), no such guarantee can be

given for their estimated counterparts ŵMA and ŵC. In fact, it might

well be the case that an equally-weighted estimator yields a lower mean

squared error than its counterpart with estimated optimal weights. This

phenomenon is known as the “forecast combination puzzle” (e.g., Smith

and Wallis, 2009). Claeskens et al. (2016) worked out first and second

moments of the forecast combination with estimated weights and showed

that such a phenomenon may take place when estimation uncertainty is

neglected while deriving the optimal weights. Whereas explicit formulas of

moments are harder to obtain for the quantile estimators, it is immediately

clear that the same problem may occur. Indeed, for the model-averaged
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estimator with estimated optimal weights,

E[β̂mod.avg(ŵMA)] =
k∑
l=1

E[ŵMA,lβ̂τl ],

Var[β̂mod.avg(ŵMA)] =
k∑
l=1

Var[ŵMA,lβ̂τl ]

+2
k∑
l=1

k∑
l′=1, l′<l

Cov[ŵMA,lβ̂τl , ŵMA,l′ β̂τl′ ].

Both quantities depend on the joint distribution of the weight vector ŵMA

and the vector of quantile estimators (β̂τ1 , . . . , β̂τk). A similar argument

holds for the composite quantile estimator with estimated weights ŵC.

Since wMA,opt and wC,opt are the theoretical minimizers of the fixed-weight

asymptotic variances, using estimated weights ŵMA and ŵC of course re-

sults in values of the asymptotic variance that are at least as large as the

minimal variance. Moreover, the asymptotic variance of the estimator with

estimated weights may exceed its counterpart with equal weights. Hence,

when the joint distribution of the estimated weights and the estimated

quantile slopes is not available, one might as well resort to employing the

simpler equal weights. A simulated comparison of equally-weighted versus

optimally-weighted MAQR estimator is offered in Section 1.4.

To avoid the estimation of optimal weights when the error distribution

is unknown, we might use the equally-weighted MAQR estimator where

wMA,l = 1/k for l ∈ {1, . . . , k}; or the equally-weighted CQR estimator

(1.2) of Zou and Yuan (2008). First, we find the choice of the weights

wMA of the model-averaged estimator that achieves the same ARE as the

equally-weighted composite estimator with wC,l = 1k/k. The equally-

weighted composite estimator gains precisely the same asymptotic variance

as a weighted model-averaged estimator with weights proportional to the

density fε(uτl), denoted w
[1]
MA,l, that is, w

[1]
MA,l = fε(uτl)/{

∑k
j=1 fε(uτj )}.

Thus more weight is assigned to the quantile estimator ûτl for which the
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density fε(uτl) is larger. Indeed, it can be verified that

ARE{β̂mod.avg(w
[1]
MA), β̂comp(1k/k)} = 1.

Meanwhile, taking equal weights for the model-averaged estimator corre-

sponds to the same asymptotic variance as when using the perhaps less

intuitive weights w
[1]
C,l = 1/fε(uτl) for the composite estimator, since it is

readily verified that

ARE{β̂comp(w
[1]
C ), β̂mod.avg(1k/k)} = 1.

Here, for the composite estimator to get the same efficiency as the equally-

weighted model-averaged estimator, one should weight inversely propor-

tional to the density, thus giving higher weights to the low-density areas.

Replacing optimal weights by equal weights will generally lead to a less

efficient estimator, and the effect will vary depending on the error distribu-

tion and the number of quantiles under consideration. Figure 1.1 contains

the asymptotic relative efficiency of the equally-weighted MAQR estima-

tor and the equally-weighted CQR estimator to their respective optimally-

weighted counterparts. Hence, the vertical axis measures the values of the

asymptotic relative efficiencies ARE({β̂mod.avg(1k/k), β̂mod.avg(wMA,opt)}
and ARE({β̂comp(1k/k), β̂comp(wC,opt)}. Different panels correspond to

different error distributions, and a range of equally-spaced quantiles k =

1, . . . , 20 is used on the horizontal axis. Note that the optimal asymptotic

variance is the same for both the composite and the model-averaged cases.

Comparing the equally-weighted MAQR estimator to its optimally-

weighted counterpart, we find that the loss in efficiency generally grows

with the number of quantiles k, but the growth rate differs considerably

across the different distributions. The loss is negligible for the normal and

the logistic distribution, e.g. at k = 15 the variance ratio equals 1.001

for the normal distribution and 1.037 for the logistic distribution. Mean-

while, for distributions with heavier tails, the losses in efficiency are larger,

e.g. the variance ratio is 6.017 for the t(1) distribution and 13.461 for the
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exponential distribution at k = 15.

The loss in efficiency of the equally-weighted CQR estimator in relation

to its optimally-weighted counterpart grows with the number of quantiles

as well. For the light-tailed normal distribution the loss is small, e.g. some

3%. This is more than for the MAQR estimator but not by much. The

estimator is fully efficient for the logistic distribution. Unlike its model-

averaged counterpart, the equally-weighted composite estimator is quite

efficient for the heavy-tailed distributions; the variance ratio is only 1.618

for t(1) at k = 15.

For the skewed distributions in the example, exponential and Weibull,

there is a significant loss in efficiency for both equally-weighted methods

relative to the optimally-weighted cases.

In general, algebraic calculations reveal the following relationship be-

tween the equally-weighted composite and model-averaged estimators:

ARE{β̂mod.avg(1k/k), β̂comp(1k/k)} < 1⇔
(f ε
fε

)>
·A·f ε

fε
< 1>k ·A·1k, (1.4)

where f ε/fε = (f ε/fε(uτ1), . . . , f ε/fε(uτk))> and f ε =
∑k

l=1 fε(uτl)/k.

If this condition holds, the equally-weighted model-averaged estimator is

more efficient than its equally-weighted composite counterpart. Condition

(1.4) can be verified for different error distributions. For mean-zero normal

distributions, regardless of the variance, and for Student t-distributions

with a large-enough degrees of freedom, the condition is satisfied, imply-

ing that model-averaged estimators with equal weights are more efficient

than equally-weighted composite estimators. For example, for the t(10)

distribution when k ≤ 4, model-averaged estimation is better than com-

posite estimation when both methods use equal weights. For t distributions

with 5, 3 and 1 degree of freedom, model-averaged estimation is equally ef-

ficient as composite estimation only for k = 2, while for values of k ≥ 3 the

composite estimation method is better. For the skewed distributions (ex-

ponential and Weibull), the condition fails under all values k ≥ 1, implying

that the equally-weighted composite estimator is the better choice.
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Figure 1.1: Asymptotic variance of the equally-weighted model-averaged
estimator (solid line) and the equally-weighted composite estimator (dot-
ted line) over the optimal variance for various distributions and different
numbers k of equally-spaced quantiles.

1.3 Weighted quantile estimators in high dimen-

sions

Consider now a sparse high dimensional linear model as in Bradic et al.

(2011) following Y = Xβ+ε in (0.1). We assume independent and identi-

cally distributed mean-zero errors εi’s; and with the number of parameters

p large relative to the sample size n, allowing for an exponential order such
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that log(p) = O(nδ) with δ ∈ (0, 1). The number of nonzero components

of β, or sparsity, is assumed to be s = O(nα0) with α0 ∈ (0, 1). Under such

circumstances, regularized estimation is employed.

1.3.1 Regularized composite quantile estimator

Bradic et al. (2011) consider a regularized composite quantile estimator

(ûτ1,comp,pen, . . . , ûτk,comp,pen, β̂
>
comp,pen)(ν) (1.5)

= arg min
uτ1 ,...,uτk ,β


k∑
l=1

n∑
i=1

ρτl(Yi −X
>
i· β) + n

p∑
j=1

γλ(|β(0)
j |)|βj |

 ,

where ρτl(x) = (x − uτl)(τl − I{x ≤ uτl}) is the quantile loss function at

quantile level τl in (0.2). For the regularizer term, β
(0)
j is an initial slope

estimator (e.g., the Lasso, regularized quantile estimator at single quantile

levels, etc.) and γλ is some function, e.g. the derivative of some regularizer

function, allowing for (adaptive) lasso (Tibshirani, 1996; Zou, 2006) where

γλ(z) = λ|z|−a for some constant a ≥ 0 and SCAD (Fan and Li, 2001)

where γλ(z) = λ[I(z ≤ λ) + max(aλ− z, 0)I(z > λ)/{(a− 1)λ}] for a > 0.

A related work of Jiang et al. (2012) addresses estimation of a high

dimensional nonlinear regression model of the form Y = h(X;β)+ε with a

known function h under the assumption that p = pn is such that p3/n→ 0

for n → ∞. They consider regularized estimation using lasso and SCAD.

From Jiang et al. (2012), the weight vector that minimizes the asymptotic

variance of the weighted composite quantile estimator is given by,

wC = (f>ε A
−2f ε)

−1/2A−1f ε.

These weights may be negative, as the authors explicitly mention.

In Bradic et al. (2011), the optimal value of the weights is given by

wC = A−1f ε to achieve the lower bound for the variance, (f>ε A
−1f ε)

−1.

While such weights may be negative and thus lead to a nonconvex objective

function that is hard to optimize, an alternative weight vector wC,+ is
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obtained by minimizing w>CAwC subject to having all weights nonnegative

and f>ε wC = 1. There is no explicit expression for the nonnegative optimal

weights wC,+. The authors show by simulations that both types of optimal

weights outperform the equally-weighted estimator.

Noteworthy, Bradic et al. (2011) comment upon the computational com-

plexity of the composite quantile estimation method with a large number

of quantiles, but report that usually k ≤ 10 suffices. Jiang et al. (2012)

also suggest that k = 10 is large enough to get close-to-optimal efficiency.

1.3.2 Model-averaged regularized quantile estimator

To our knowledge, a model-averaged quantile regression estimator has not

yet been investigated in the high dimensional setting. We define the esti-

mator as follows,

β̂mod.avg,pen(wMA) =
k∑
l=1

wMA,lβ̂τl,pen,

where

(ûτl , β̂
>
τl,pen) = arg min

uτl ,β


n∑
i=1

ρτl(Yi −X
>
i· β) + n

p∑
j=1

γλl(|β
(0)
j |)|βj |

 . (1.6)

Note that different regularization constants can be used for the separate

quantile estimators, allowing for high flexibility. A major advantage of us-

ing the model-averaged regularized quantile estimator is that optimization

is carried out for a single quantile at a time, which makes the estimator

simple and fast to compute.

We now derive, under the same assumptions as in Bradic et al. (2011)

the asymptotic distribution of the regularized model-averaged quantile es-

timator. We divide the design matrix X into two parts, X = (Xa, Xb)

where the columns of Xa are the columns of X for which the correspond-

ing components of the coefficient vector β are nonzero. Hence, Xa is the
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“active” part of the design matrix, with accompanying vector βa. Likewise,

Xb is the non-active part, concomitant to βb, the latter vector consisting

of zero components only. Due to the sparsity assumption, the dimen-

sion of Xa is n × s. When performing model averaging, the estimators

β̂τl,pen, l ∈ {1, . . . , k} may contain different components that are estimated

nonzero for different quantiles τl. Under such a scenario, it is not possible

to average the estimated active components of β. Therefore, instead of the

estimators β̂τl,pen we consider predictions of a linear combination x̃>β con-

structed with each of the estimated vectors β̂τl,pen
for the different values

of l, where x̃ is a known vector.

Given the regularity conditions 1 – 4 of Bradic et al. (2011, Th. 1), since

a single estimation is a special case of composite estimation, we obtain (i)

the existence, (ii) model selection consistency, and (iii) sign consistency of

the estimators β̂τl,pen for l ∈ {1, . . . , k}.

Likewise, with some adaptations to the prediction setting, we arrive

at the asymptotic normality of the model-averaged predictions under the

regularity conditions 1 – 5 of Bradic et al. (2011, Th. 2), including their

assumption of perfect asymptotic model selection where only the active

variables are estimated as nonzero. Care is required since the matrix cor-

responding to the active set, Qa = limn→∞
1
nX
>
a Xa, has growing dimension

when n → ∞. As the dimension of β also grows with the sample size n,

a correct limiting statement for the distribution of the estimators can be

obtained by considering the limiting distribution of their linear combina-

tion. For this purpose, let X̃a be any design matrix of dimension r × s,
containing the information about which r ≥ 1 predictions we wish to make.

Proposition 1.1. Under the above-mentioned assumptions and the as-

sumptions of Theorem 2 of Bradic et al. (2011), for the model-averaged

regularized quantile predictions it holds that

√
n(

1

n
X̃a(X

>
a Xa)

−1X̃>a )−1/2{wMA,1X̃a(β̂a,τ1,pen − βa) + . . .

+wMA,kX̃a(β̂a,τk,pen − βa)} →d Nr(0, (w
>
MAΩwMA)Ir)
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where β̂a,τl,pen is the τl-quantile estimator of the active parameters βa, for

l = 1, . . . , k.

Proof. We make use of Kronecker products to rewrite the model-averaged

estimator as

k∑
l=1

wMA,l{β̂a,τl,pen − βa} = (w>MA ⊗ Is)(β̂a,τ,pen − 1k ⊗ βa),

where β̂a,τ,pen = (β̂>a,τ1,pen, . . . , β̂
>
a,τk,pen)>. For vectors of fixed length,

β̂a,τ,pen is jointly asymptotically normal (Ruppert and Carroll, 1980, Cor. 1).

For a growing length, we consider either linear combinations with a unit

vector e in Rs to state the limiting result as

et
√
n(

1

n
X>a Xa)

1/2(wMA ⊗ Is)(β̂a,τ,pen − 1k ⊗ βa)→d N(0, w>MAΩwMA),

or predictions using a prediction matrix U of fixed dimension r × s to

obtain the asymptotic normality of the model-averaged predictions

k∑
l=1

wMA,lX̃a{β̂a,τl,pen − βa} = (w>MA ⊗ X̃)(β̂a,τ,pen − 1k ⊗ βa),

by the following convergence in distribution

√
n(

1

n
X̃a(X

>
a Xa)

−1X̃>a )−1/2X̃a(wMA ⊗ Is)(β̂a,τ,pen − 1k ⊗ βa)

→d Ns(0, (w
>
MAΩwMA)⊗ Ir).

Under the assumption that α0 ∈ [0, 2/3), the estimation bias asymptoti-

cally disappears (Bradic et al., 2011, Th. 2).

Note that here we make the same assumptions as in Bradic et al. (2011),

namely, the effect of the regularizer disappears, there is no shrinkage bias,

and the asymptotic results are for the part of the coefficient vector corre-

sponding to the true active set. Hence, there is no selection uncertainty.
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The optimal weights for this scenario can be found by noting the resem-

blance with the low dimensional case (1.3), from which we readily arrive

at the following expression:

wMA,opt = (f>ε A
−1f ε)

−1diag(f ε)A
−1f ε.

We might restrict the weights to be nonnegative to mimick the case of the

CQR estimator with nonnegative optimal weights.

To make the model-averaged prediction well defined in practical com-

putations, we define the prediction matrix X̃ in dimension r×p and denote

by X̃al the restriction of X̃ to the estimated active set for the lth regu-

larized quantile estimator. We end up with the model-averaged prediction∑k
l=1wMA,lX̃al β̂al,τl,pen instead of

∑k
l=1wMA,lX̃aβ̂a,τl,pen.

1.4 Simulation study

1.4.1 Quantile estimators in low dimensions

Since the low dimensional case has been well-studied, we restrict our at-

tention to the lesser known model-averaging estimator and to compar-

ing its equally- versus optimally-weighted versions. In the simulation

study in low dimensions, we consider a linear model as in (0.1) with

X ∼ N (0,ΣX) and (ΣX)i,j = (0.5)|i−j|, i, j ∈ {1, . . . , p}.

The number of columns in X is set at p = 3, and the coefficient vector

at β = (3, 1.5, 2)>. The number of observations in one simulated sample is

n = 100. The error distribution varies from symmetric to asymmetric and

from light- to heavy-tailed: normal N (0, 1); t distribution with degrees of

freedom equal to 1, 2, 3 and 5 (t1, t2, t3 and t5); Beta(3,5); Weibull(1.5, 1);

Logistic(0, 1); and Exponential(1). The simulation is repeated 1000 times

for each error distribution. The design matrix X is generated once by

random sampling and is fixed across the simulation runs.

We implement the equally-weighted composite and model-averaged esti-

mators as well as the (unrestricted) optimally-weighted model-averaged es-
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timator. The (unrestricted) optimally-weighted composite estimator could

not be implemented due to the nonconvexity of the objective function in

presence of negative weights. We use the R package quantreg (Koenker,

2017). The equally-weighted estimation is carried out in one step for the

CQR estimator and in two steps for the MAQR estimator; there, first the

individual models for the different quantiles are estimated, and then the es-

timators from these models are averaged. The optimally-weighted MAQR

estimation is done as follows:

(i) Apply OLS to (0.1) to obtain the residuals. Estimate the optimal

weights from the empirical distribution of the residuals.

(ii) Estimate individual quantile regressions for all quantiles.

(iii) Obtain a weighted average of the individual estimators above.

A variation to this scheme uses median regression in step 1, with simi-

lar results. We present the simulation results in Tables 1.1 and 1.2. Table

1.1 shows the ratios of the empirical mean squared errors of the estimated

coefficient vectors β̂ from the equally-weighted MAQR estimator to the

equally-weighted CQR estimator. Simplifying the ratio of MSEs to the

ratio of variances is not possible here, unlike in the previous section, since

the two estimators may be biased in finite samples. MSE ratios below one

favour the model-averaged estimator, while those above one favour the

composite one. Apparently, the composite estimator dominates almost ev-

erywhere except for low numbers of quantiles for t1 and t2 distributions.

There, the differences in MSEs are up to 18% to the advantage of the

model-averaged estimator, while elsewhere the composite estimator dom-

inates by up to 64%. The differences in performance are quite small for

t3, t5, and logistic distributions but larger for normal, Beta, Weibull, and

exponential distributions. Additional simulation results at larger sample

sizes (n = 103 and 104, not shown) exhibit the same trend.

Table 1.2 contains ratios of the MSEs of the estimated coefficient vectors

β̂ from the optimally-weighted MAQR estimator to the equally-weighted

MAQR estimator. Ratios below one suggest that the optimally-weighted
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f(ε)
/

k : 2 3 4 5 6 7 8 9 10

N (0, 1) 1.22 1.13 1.09 1.07 1.06 1.05 1.04 1.03 1.02

t5 1.10 1.05 1.03 1.03 1.03 1.03 1.03 1.03 1.03

t3 1.02 1.00 1.01 1.02 1.02 1.02 1.03 1.05 1.06

t2 0.96 0.97 0.98 1.01 1.03 1.05 1.08 1.10 1.12

t1 0.82 0.90 0.99 1.11 1.21 1.32 1.43 1.54 1.64

Logistic(0,1) 1.12 1.08 1.06 1.05 1.05 1.04 1.04 1.04 1.04

Beta(3,5) 1.39 1.26 1.19 1.16 1.14 1.12 1.10 1.09 1.08

Weibull(1.5,1) 1.29 1.21 1.17 1.15 1.14 1.13 1.12 1.12 1.12

Exp(1) 1.33 1.31 1.30 1.30 1.31 1.33 1.34 1.35 1.35

Table 1.1: Simulated relative efficiency of the equally-weighted model-
averaged estimator compared to the equally-weighted composite estimator
for different distributions and numbers of quantiles. Ratios less than 1
(colored in gray) indicate that the model-averaged estimator has lower sim-
ulated MSE than the composite estimator.

estimator is more efficient than its equally-weighted counterpart, while ra-

tios above one signal the opposite. We see that the optimally-weighted

estimator is superior for t2, t3, Beta, and especially Weibull and exponen-

tial distributions. For the latter distribution, the simulated MSEs of the

optimally-weighted estimator are up to six or seven times lower than for

the estimator with equal weights. The difference in performance becomes

larger at larger numbers of quantiles k. On the contrary, the optimally-

weighted estimator underperforms for the t1 distribution with MSEs up

to 55% above those of the equally-weighted estimator. For normal, t5,

and logistic distributions, the performance of the two estimators is on par.

Results at larger sample sizes (n = 103 and n = 104) are similar.

An additional simulation (not shown) using the theoretical optimal

weights and large sample sizes reveals a close correspondence to the the-

oretically expected ratios. Substituting the OLS by a quantile regression

at the median in the first stage of the optimally-weighted MAQR estima-

tion causes no important difference. Hence, the differences between the

results in Table 1.2 and the asymptotic analysis are mainly due to the use

of estimated weights instead of theoretically optimal weights. The theo-



20
CHAPTER 1. COMPOSITE VERSUS MODEL-AVERAGED

QUANTILE REGRESSION

f(ε)
/

k : 2 3 4 5 6 7 8 9 10

N (0, 1) 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02

t5 1.00 1.01 1.01 1.01 1.00 1.00 1.00 0.99 0.99

t3 1.00 0.99 0.98 0.96 0.95 0.94 0.93 0.92 0.91

t2 1.01 0.98 0.94 0.91 0.88 0.85 0.84 0.82 0.81

t1 1.04 1.12 1.20 1.32 1.48 1.53 1.55 1.52 1.50

Logistic(0,1) 1.00 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01

Beta(3,5) 0.98 0.97 0.95 0.94 0.94 0.93 0.92 0.92 0.92

Weibull(1.5,1) 0.85 0.75 0.68 0.64 0.60 0.57 0.55 0.53 0.52

Exp(1) 0.58 0.40 0.31 0.26 0.23 0.20 0.18 0.16 0.15

Table 1.2: Simulated relative efficiency of the optimally-weighted model-
averaged estimator to the equally-weighted model-averaged estimator for
different distributions and numbers of quantiles. Ratios less than 1 (colored
in gray) indicate that the optimally-weighted estimator has lower simulated
MSE than the equally-weighted estimator.

retical results do not take the randomness of the weights into account and

might therefore be unrealistic for practical use. A deeper study of the finite

sample estimation effects is an interesting topic for further research.

1.4.2 Quantile estimators in high dimensions

In the simulation study for the high dimensional case, we consider a linear

model given in (0.1), as in Bradic et al. (2011). We set the dimension

p = 150; the number of observations n = 100; and the true coefficient

vector β = (3, 1.5, 0, 2, 0, . . . , 0)>. The error distributions considered are

the same as in the low dimensional case. The design matrix X is generated

once by random sampling, then fixed thereafter. The simulation is repeated

nsim = 1000 times for each error distribution.

We implement regularized composite and regularized model-averaged

estimators using equal weights and nonnegative optimal weights, while the

case of unrestricted optimal weights is skipped due to the nonconvexity

of the objective function of the composite quantile regression. Equally-

spaced quantiles ( 1
k+1 , . . . ,

k
k+1) for k = 2, . . . , 10 are used for all estimators.
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Estimating the regularized composite and model-averaged estimators with

nonequal weights follows a 2-step procedure:

(i) Apply regularized estimation, e.g. Lasso or regularized quantile re-

gression, on the model in (0.1) to obtain initial slope estimates β̂(0)

and residuals; the initial quantile intercepts û
(0)
τl are estimated as the

empirical τl-level quantile of the residuals. Lasso with 5-fold cross-

validation choosing the tuning parameter is considered for the initial

estimation here. Obtain the nonnegative optimal weights for the

composite estimator as

wC,opt+ = arg min
wC,wC>0,1>k wC=1

{w>CAwC/(w
>
Cf ε)

2}

and for the model-averaged estimator as

wMA,opt+ = arg min
wMA,wMA>0,1>k wMA=1

{w>MAdiag(f ε)
−1Adiag(f ε)

−1wMA}

as in Sections 1.3.1 and 1.3.2, respectively.

(ii) Optimize the objectives in (1.5) and (1.6) using a local linear ap-

proximation of the SCAD regularizer with the starting values β(0)

and u
(0)
τl for the slope and intercept estimators, respectively. Employ

5-fold cross validation to find the optimal tuning parameters.

The relative efficiency of the regularized composite estimator compared

to the model-averaged estimator is calculated as the ratio of the trace of

the empirical MSEs of the two estimators where we consider the full vector,

including the components that are estimated as zero,

RE{β̂comp.pen(wC), β̂mod.avg.pen(wMA)}

=

∑nsim
r=1

∑p
j=1{β̂rcomp.pen,j(wC)− βj}2∑nsim

r=1

∑p
j=1{β̂rmod.avg.pen,j(wMA)− βj}2

.

The superscript r indicates that the estimator is obtained in the rth simu-

lation run. Similarly, the relative efficiency of the equally-weighted estima-
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tors compared to nonnegative optimally-weighted estimators is calculated

as

RE{β̂pen(1k/k), β̂pen(wC,opt+)} =

∑nsim
r=1

∑p
j=1{β̂rpen,j(1k/k)− βj}2∑nsim

r=1

∑p
j=1{β̂rpen,j(wC,opt+)− βj}2

,

which is applicable to both the MAQR and the CQR estimator (thus the

subscripts in the formula above are not specific to either).

The relative efficiency of the composite estimator compared to the

model-averaged estimator using equal weights and nonnegative optimal

weights is reported in Tables 1.3 and 1.4, respectively. Furthermore, the

relative efficiency of the equally-weighted estimators compared to the non-

negative optimally-weighted estimators is presented in Tables 1.5 and 1.6.

From Tables 1.3 and 1.4, we observe that the relative efficiency of the

model-averaged estimator compared to the composite estimator, using

equal or nonnegative optimal weights, is rarely close to 1, but none of

the estimators generally dominates the other. Also, for a particular dis-

tribution, the relative efficiency is not necessarily a monotone function of

the number of quantiles k.

The performance of the equally-weighted MAQR estimator in relation

to its CQR counterpart (Table 1.3) is superior for Beta, Weibull and ex-

ponential distributions with up to 1.64-fold gains in efficiency; but inferior

for t(1) and t(2) distributions with up to 2.18-fold losses, except for the

case of only two quantiles. The cases of normal, logistic, t(3) and t(5)

are mixed. There, having a small or a large number of quantiles favours

the model-averaged estimator while having a medium number of quantiles

favours the composite estimator.

The MAQR estimator with estimated nonnegative optimal weights is

favoured over the corresponding CQR estimator by logistic and all t distri-

butions (with the exception of k = 2) with gains in efficiency of up to 2.38

times; the converse is true for Beta, Weibull and exponential distributions

with up to 1.76-fold losses in efficiency (Table 1.4).

Considering estimated nonnegative optimal weights against equal weights,
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f(ε)
/

k : 2 3 4 5 6 7 8 9 10

N (0, 1) 0.92 0.97 1.01 1.06 1.01 0.97 0.85 0.78 0.70

t5 0.89 0.98 1.08 1.09 1.10 1.02 0.97 0.88 0.78

t3 0.88 1.07 1.10 1.23 1.22 1.15 1.08 0.99 0.90

t2 0.92 1.13 1.31 1.32 1.49 1.39 1.36 1.22 1.16

t1 0.98 1.17 1.72 1.73 1.98 2.07 2.01 2.03 2.18

Logistic(0,1) 0.86 0.99 1.16 1.21 1.25 1.11 1.06 0.97 0.87

Beta(3,5) 0.95 0.90 0.86 0.87 0.84 0.79 0.77 0.70 0.64

Weibull(1.5,1) 0.94 0.92 0.86 0.87 0.82 0.77 0.73 0.68 0.61

Exp(1) 0.89 1.02 0.99 1.01 0.96 0.95 0.89 0.80 0.73

Table 1.3: Simulated relative efficiency of the equally-weighted model-
averaged estimator compared to the equally-weighted composite estimator
for different distributions and numbers of quantiles. Ratios less than 1
(colored in gray) indicate that the model-averaged estimator has lower sim-
ulated MSE than the composite estimator.

f(ε)
/

k : 2 3 4 5 6 7 8 9 10

N (0, 1) 0.99 0.99 1.01 0.93 0.97 0.99 0.93 0.86 0.89

t5 0.95 0.92 0.88 0.92 0.79 0.77 0.71 0.74 0.77

t3 0.98 0.89 0.78 0.77 0.73 0.66 0.66 0.64 0.65

t2 1.09 0.83 0.72 0.61 0.65 0.58 0.58 0.53 0.53

t1 1.06 0.60 0.59 0.51 0.48 0.43 0.52 0.40 0.42

Logistic(0,1) 0.91 0.87 0.83 0.79 0.73 0.73 0.72 0.73 0.67

Beta(3,5) 1.12 1.16 1.21 1.23 1.29 1.29 1.29 1.30 1.30

Weibull(1.5,1) 1.03 1.11 1.18 1.20 1.25 1.25 1.30 1.29 1.32

Exp(1) 0.99 1.09 1.27 1.29 1.48 1.48 1.61 1.63 1.76

Table 1.4: Simulated relative efficiency of the model-averaged estima-
tor compared to the composite estimator, both with nonnegative optimal
weights, for different distributions and numbers of quantiles. Ratios less
than 1 (colored in gray) indicate that the model-averaged estimator has
lower simulated MSE than the composite estimator.
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f(ε)
/

k : 2 3 4 5 6 7 8 9 10

N (0, 1) 1.02 1.14 1.26 1.23 1.27 1.29 1.32 1.25 1.32

t5 1.08 1.23 1.28 1.36 1.22 1.22 1.18 1.18 1.21

t3 0.97 1.11 1.10 1.10 1.10 1.05 1.04 0.98 0.95

t2 1.19 1.17 1.05 1.00 0.97 0.97 0.93 0.87 0.90

t1 1.22 0.95 0.95 0.87 0.78 0.84 0.82 0.81 0.82

Logistic(0,1) 1.08 1.19 1.24 1.25 1.23 1.30 1.24 1.22 1.25

Beta(3,5) 1.13 1.15 1.25 1.26 1.29 1.29 1.30 1.31 1.29

Weibull(1.5,1) 0.88 0.85 0.85 0.83 0.84 0.83 0.82 0.82 0.81

Exp(1) 0.60 0.54 0.51 0.49 0.47 0.45 0.44 0.43 0.42

Table 1.5: Simulated relative efficiency of the nonnegative optimally-
weighted model-averaged estimator to the equally-weighted model-averaged
estimator for different distributions and numbers of quantiles. Ratios less
than 1 (colored in gray) indicate that the estimator with nonnegative opti-
mal weights has lower simulated MSE than the equally-weighted estimator.

f(ε)
/

k : 2 3 4 5 6 7 8 9 10

N (0, 1) 0.94 1.12 1.26 1.41 1.33 1.26 1.21 1.13 1.04

t5 1.00 1.31 1.57 1.62 1.69 1.62 1.60 1.40 1.22

t3 0.87 1.34 1.54 1.74 1.84 1.84 1.70 1.51 1.32

t2 1.00 1.60 1.91 2.17 2.24 2.30 2.18 2.02 1.95

t1 1.13 1.83 2.75 2.97 3.20 4.03 3.19 4.09 4.29

Logistic(0,1) 1.02 1.35 1.75 1.91 2.09 1.98 1.84 1.61 1.61

Beta(3,5) 0.97 0.89 0.89 0.89 0.84 0.79 0.77 0.71 0.64

Weibull(1.5,1) 0.80 0.70 0.62 0.60 0.54 0.51 0.46 0.43 0.37

Exp(1) 0.53 0.50 0.39 0.39 0.31 0.29 0.24 0.21 0.17

Table 1.6: Simulated relative efficiency of the nonnegative optimally-
weighted composite estimator to the equally-weighted composite estimator
for different distributions and numbers of quantiles. Ratios less than 1 (col-
ored in gray) indicate that the estimator with nonnegative optimal weights
has lower simulated MSE than the equally-weighted estimator.
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we confirm that using equal weights can lead to higher estimation efficiency

for both MAQR and CQR, just as the forecast combination puzzle sug-

gests. The MAQR estimator with estimated weights is compared to its

equally-weighted counterpart in Table 1.5, where we see a rather mixed

picture. Estimated nonnegative optimal weights are clearly superior in the

case of Weibull and exponential distributions; the converse is true for nor-

mal, t(5), logistic, and Beta distributions; while t(1), t(2), and t(3) favour

either of the estimators depending on the number of quantiles considered.

The CQR estimator with estimated nonnegative optimal weights out-

performs its equally-weighted counterpart for Beta, Weibull and exponen-

tial distributions, and the gains in efficiency increase with the number of

quantiles. It underperforms under normal, logistic and t distributions, ex-

cept for the case of only two quantiles. The losses in efficiency are the

largest for t(1), t(2), and logistic distributions. The effect of changing the

number of quantiles is nonmonotonic.

Tables 1.3 to 1.6 show the relative performance of pairs of estima-

tors (model-averaged against composite, and optimally-weighted against

equally-weighted). But which estimator is the overall best for a given dis-

tribution and a given number of quantiles? Table 1.7 provides a summary.

On the whole, composite estimation (denoted by hollow symbols) tends to

dominate model-averaged estimation (denoted by filled-in symbols). Next,

equal weights (denoted by circles) tend to dominate estimated nonneg-

ative optimal weights (denoted by triangles). However, each estimator

gets to be the best at least in a few cases, thus there is room for all of

them in practice. The underperformance of the model-averaged estima-

tor should be weighted against its computational efficiency, such that in

order to save time less accurate estimation could sometimes be accept-

able. Also, over a fixed time interval the model-averaged estimator with

many quantiles would be competing against a composite estimator with

few quantiles. Therefore, for some distributions a relatively higher effi-

ciency of the model-averaged estimator against the composite one could

be expected as compared to the values indicated in the tables.
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f(ε)
/

k : 2 3 4 5 6 7 8 9 10 30

N (0, 1)   # # #      

t5   # # # #     

t3 N # # # # # # N N N

t2  # # # # # # # # N

t1  # # # # # # # # N

Logistic(0,1)   # # # # #    

Beta(3,5)  M       M  

Weibull(1.5,1) M M M M M M M M M N

Exp(1) N M M M M M M M M N

Table 1.7: Estimator with the lowest simulated MSE among the four esti-
mators for different distributions and numbers of quantiles. #– composite
estimator with equal weights; M– composite estimator with estimated non-
negative optimal weights;  – model-averaged estimator with equal weights;
N– model-averaged estimator with estimated nonnegative optimal weights.
The last column only considers the model-averaged estimators with equal
and estimated nonnegative optimal weights because the composite estima-
tors are too expensive to compute for k = 30.

We have repeatedly noted the computational advantages of the MAQR

estimator over the CQR estimator. A quantitative assessment of the high

dimensional case is given in Table 1.8. While the computational time does

not differ much for k = 2 quantiles, the MAQR estimator is between 2 and

9 times faster for k = 10, depending on the distribution. For MAQR the

computation time increases linearly with the number of quantiles, while

the increase in execution time may be more rapid for CQR (the precise

speed depends on the algorithms used for optimizing the CQR objective).

In our example with the Weibull distribution, CQR estimation takes 6.4

seconds at k = 2 and 514.7 seconds at k = 30. On the other hand, MAQR

takes 7.7 seconds for k = 2 and only 63.9 seconds for k = 30.
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Table 1.8: Execution time (in seconds) for the nonnegative optimally-
weighted composite and model-averaged estimators for different error dis-
tributions using 2, 10, and 30 quantiles (average over three runs). We use
an Intel i7-6700 (Quad-core 3.40GHz) processor to carry out the experi-
ment.
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1.4.3 Model-averaged estimator in yet higher dimensions

The computational simplicity of the MAQR estimator allows examining

its performance in even higher dimensions. In this section, we analyze

the same linear model (0.1) as before, but increase the column dimension

of the design matrix X to p = 500 and the number of observations to

n = 200. We compare three levels of sparsity defined by the number of

nonzero elements in the coefficient vector β: a high-sparsity case of s = 3,

a medium-sparsity case of s = 100 and a low-sparsity case of s = 200.

The error distributions and the numbers of quantiles considered are the

same as before. The nonzero components of the true coefficient vector

are generated once by randomly sampling s values from 500 independent

realizations of a standard normal random variable (the seed number for

the random sampling is set to 1 in R software). The simulation is repeated

nsim = 1000 times for each error distribution, and the results are reported

in Table 1.9.

In the high-sparsity case of s = 3, the estimated nonnegative optimal

weights outperform the equal weights for t(1) and t(2) distributions for all

numbers of quantiles but k = 2, also for t(3) with k = 9 and 10, and for

Weibull and logistic distributions. Equal weights are superior elsewhere.

The results are similar to these in Section 1.4.2, Table 1.5. This is not

surprising as the sparsity level considered there is also relatively high with

3 out of 150 true slope coefficients being nonzero.

Meanwhile, in the medium-sparsity case of s = 100, the dominance

of the estimated nonnegative optimal weights disappears for t(2), t(3),

Weibull and exponential distributions and shrinks for t(1) distribution.

On the other hand, equal weights are just barely superior in all other

cases, with asymptotic relative efficiency never increasing above 1.03.

In the low-sparsity case of s = 200, the relative efficiency varies in a

narrow band between 1.00 and 1.03 (not shown), indicating that equal

weights are the better choice, though only marginally so. A comparison

across the different levels of sparsity suggests that the difference in per-
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s = 3

f(ε)
/

k : 2 3 4 5 6 7 8 9 10

N (0, 1) 1.02 1.05 1.05 1.06 1.07 1.06 1.05 1.04 1.05

t5 1.04 1.06 1.07 1.06 1.05 1.05 1.06 1.05 1.05

t3 1.03 1.05 1.03 1.03 1.02 1.01 1.00 0.99 0.98

t2 1.02 0.99 0.94 0.92 0.90 0.89 0.88 0.87 0.85

t1 1.12 0.80 0.75 0.70 0.68 0.65 0.65 0.64 0.63

Logistic(0,1) 1.02 1.07 1.06 1.06 1.04 1.04 1.02 1.02 1.02

Beta(3,5) 1.09 1.13 1.16 1.20 1.20 1.22 1.26 1.27 1.26

Weibull(1.5,1) 0.87 0.82 0.78 0.77 0.79 0.78 0.78 0.77 0.80

Exp(1) 0.73 0.65 0.64 0.64 0.64 0.63 0.63 0.64 0.63

s = 100

f(ε)
/

k : 2 3 4 5 6 7 8 9 10

N (0, 1) 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01

t5 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01

t3 1.00 1.01 1.00 1.00 1.01 1.01 1.01 1.01 1.02

t2 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.02 1.02

t1 1.02 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.98

Logistic(0,1) 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02

Beta(3,5) 1.00 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.03

Weibull(1.5,1) 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Exp(1) 1.00 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01

Table 1.9: Simulated relative efficiency of the nonnegative optimally-
weighted model-averaged estimator to its equally-weighted counterpart for
different distributions and numbers of quantiles, under high and medium
sparsity (s = 3 and s = 100) of the true slope coefficient vector. Ratios
less than 1 (colored in gray) indicate that the estimator with nonnegative
optimal weights has lower simulated MSE than the equally-weighted esti-
mator.
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formance between MAQR estimators with estimated nonnegative optimal

weights and equal weights grows with the level of sparsity but is negligible

when most of the true slope coefficients in the model are nonzero.

1.5 Quantile estimation for Riboflavin data

In this section, we consider the Riboflavin dataset from Bühlmann and

van de Geer (2011) available in R package hdi (Dezeure et al., 2015). We

aim to predict the logarithm of riboflavin production rate in Bacillus sub-

tilis using a linear model where the regressors are log-transformed expres-

sion levels of 4088 genes. CQR and MAQR with different weight choices

are employed for estimating the linear model, and their performance is

compared via prediction errors.

In the first step, we follow the pre-selection procedure in Bühlmann

and van de Geer (2011) for reducing the computational burden; we select

the top 150 genes with the highest variance. This results in a sub-dataset

of p = 150 genes; the number of observations is n = 71. In the second

step, we randomly split the dataset into a training subsample with 61

observations and a test subsample with the remaining 10 observations.

This is done 200 times to assess the variability of the results arising from

the random splitting. The training set is used to estimate the slopes and

intercepts of the CQR and MAQR with equal weights and nonnegative

optimal weights. The estimation follows the two-step procedure described

in Section 1.4, except that the Lasso is replaced by regularized quantile

regression at the median for obtaining the initial slope estimator β(0). We

employ three equally spaced quantiles (k = 3).

The 10 observations in the test set are used for calculating prediction

errors, and on their basis, three measures of accuracy. In addition to the

mean squared prediction error,

MSPEτ =

n∑
i=1

(Yi − ûτ −Xi·β̂)2/n, τ ∈ {1/(k + 1), . . . , k/(k + 1)},
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we consider the median absolute prediction error from Xu et al. (2014),

MAPEτ = median{|Yi − ûτ −Xi·β̂|, i = 1, . . . , n},

with τ ∈ {1/(k + 1), . . . , k/(k + 1)}, and the prediction error from Wang

and Wang (2016),

PEτ =
n∑
i=1

ρ̂τ (Yi −Xi·β̂), τ ∈ {1/(k + 1), . . . , k/(k + 1)},

where ρ̂τ (x) = (x − ûτ )(x − I{x ≤ ûτ}). The latter two measures being

perhaps more relevant than MSPE for this dataset.

Table 1.10 shows the accuracy measures of CQR and MAQR with es-

timated nonnegative optimal and equal weights. We first compare the

performance of composite and model-averaged estimators under the same

type of weights. The accuracy measures of MAQR averaged over 200 sam-

ple splits are slightly better than those of CQR in 6 out of 9 cases, i.e. with

MAPE at the median and the third quartile, PE at all three quantiles, and

MSPE at the median. The standard errors of the accuracy measures of

MAQR are consistently smaller than those of CQR, suggesting that the

performance of MAQR is more stable.

Comparing the prediction accuracy due to estimated nonnegative opti-

mal versus equal weights, we observe that the latter lead to lower MAPE

values for all three quantiles and for both estimators. Equal weights also

lead to lower values of PE in four cases out of six. Regarding the MSPE,

both weight choices produce almost equivalent results, with a slight ad-

vantage of estimated nonnegative optimal weights.

It is also interesting to look at the estimated weights themselves since

they are not covered in our theoretical analysis, unlike the case of theoret-

ically optimal weights. Figure 1.2 shows boxplots of the estimated weights

for CQR and MAQR. We observe that CQR assigns larger weights to the

25% and 75% quantiles, while MAQR focuses more on the median. The

interquartile ranges of the weights for CQR are smaller than those for
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Table 1.10: Accuracy measures MSPE, MAPE and PE at different quan-
tile levels for CQR and MAQR averaged over 200 different splits of the
dataset. Values in parentheses are standard deviations.
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Figure 1.2: Boxplots of the non-negative optimal weights for CQR (left)
and MAQR (right). In each boxplot, weights for 25%, 50% and 75% quan-
tile levels are placed from right to bottom.
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MAQR; hence, the weights vary less across subsamples for CQR than for

MAQR. Curiously, the high variation in estimated weights of MAQR is in

contrast to the method’s low standard errors of accuracy measures.

In summary, the empirical example illustrates that MAQR is compet-

itive with CQR and that equal weights are competitive with estimated

nonnegative optimal weights. In light of the more relevant accuracy mea-

sures for this dataset, MAPE and PE, MAQR and equal weights slightly

outperform CQR and estimated weights, respectively.

1.6 Discussion and possible extensions

We have compared model-averaged and composite quantile estimators in

linear quantile regression models. Such a comparison is possible also for

nonlinear models of the form Yi = h(Xi·;β)+εi, including the linear model

as a special case when h(Xi·;β) = X>i· β. For nonregularized estimators,

Oberhofer and Haupt (2016) phrased quite weak assumptions regarding

dependence of the errors and heterogeneity and obtained consistency and

asymptotic normality of a single nonlinear quantile regression estimator.

This extends their earlier work (Oberhofer and Haupt, 2005) where under

stronger assumptions also the asymptotic distribution of a vector of such

quantile estimators has been derived. This may serve as a starting point

for obtaining the asymptotic distribution of a model-averaged nonlinear

quantile estimator under weak assumptions on the errors. Also of interest

would be deriving results of the composite quantile estimator under such

error assumptions to further compare both types of estimators.

In the case of regularized estimators, Jiang et al. (2012) studied the

composite nonlinear quantile regression estimator. An essential difference

between the linear and nonlinear estimator is in the expression of the

asymptotic variance. Jiang et al. (2012) could be the starting point for

studying the joint distribution of a vector of nonlinear quantile estima-

tors under regularization in order to obtain results for a model-averaged

estimator in a high dimensional setting.
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Chapter 2 includes investigation of a proper weight choice in high di-

mensions by taking the shrinkage effects of the regularized estimators into

account. This relates to the topic of post-selection inference where setting

a parameter to zero is considered an act of selection. The currently avail-

able asymptotic properties of regularized quantile estimators only provide

asymptotic normality for the parameter estimators corresponding to the

true active set. To take the selection uncertainty into account, one possibil-

ity is to use debiasing results as in van de Geer et al. (2014) or Javanmard

and Montanari (2014a). Then, different sets of weights are expected to be

preferable than under the assumption of perfect variable selection.





Chapter 2

Detangling robustness in

high dimensions: composite

versus model-averaged

estimation

Robust methods, though ubiquitous in practice, are yet to be

fully understood in the context of regularized estimation and

high dimensions. Even simple questions become extremely

challenging very quickly. For example, classical statistical the-

ory identifies equivalence between model-averaged and com-

posite quantile estimation. However, little to nothing is known

about such equivalence between methods that encourage spar-

sity. This chapter provides a toolbox to further study robust-

ness in these settings and focuses on prediction without impos-

ing valid model selection. It is well known that prediction is

an easier task, and that model selection is often merely a tool

for achieving superior prediction.

37
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In particular, we study optimally weighted model-averaged as

well as composite l1-regularized estimation. Optimal weights

are determined by minimizing the asymptotic mean squared

error. This approach incorporates the effects of regularization

without the assumption of perfect selection, as is often used in

practice. Such weights are then optimal for prediction quality.

Through an extensive simulation study, we show that no single

method systematically outperforms others. We find, however,

that model-averaged and composite quantile estimators often

outperform least squares methods, even in the case of Gaus-

sian model noise. In fact, composite estimators perform better

than their model-averaged counterparts. Real data application

witnesses the method’s practical use through the reconstruc-

tion of compressed audio signals.

This chapter is based on

Zhou, J., Claeskens, G. and Bradic, J. (2019). Detangling ro-

bustness in high dimensions: composite versus model-averaged

estimation. Submitted to Electronic Journal of Statistics.

Zhou, J., Claeskens, G. and Bloznelis, D. (2018). Weight choice

for penalized composite quantile regression and for model av-

eraging. Proceedings of the 33rd International Workshop on

Statistical Modelling, University of Bristol, UK, July 16-20,

2018. Pages 219-224.

2.1 Introduction

We investigate the benefits of model-averaged as well as composite estima-

tors in high dimensional problems where the underlying goal is superior

prediction quality. Robustness in data analysis with potentially more pa-

rameters than samples is a critical practical question. This is of particular
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interest in constructing recoveries of compressed images and signals which

should have high precision.

Model averaging, as a first tool to improve quality of estimation, forms a

weighted average of estimators and is here utilized for regularized sparsity-

encouraging estimation in a high dimensional regression setting. Model

averaging is also well-known in the Bayesian setting (Hoeting et al., 1999),

though we focus on its frequentist version in which a user determines the

weights assigned to the separate estimators (e.g., see Claeskens and Hjort,

2008; Hjort and Claeskens, 2003; Yuan and Yang, 2005). Model averaging

enjoys a wide application, see, for example, the recent overview chapter for

model averaging in ecology by Dormann et al. (2018) and for application

to hydrology by Höge et al. (2019). In econometrics, the terminology

“forecast combinations” appears (e.g., in Cheng et al., 2015; Bates and

Granger, 1969); whereas “multimodel inference” is another commonly used

term for this procedure (Burnham and Anderson, 2002).

While the technique is quite thoroughly investigated for low dimensional

models, much fewer results have been obtained in high dimensions. Ando

and Li (2014) consider high dimensional linear regression. By comput-

ing the marginal correlation between each covariate and the response and

forming groups according to the obtained values, regularized estimation is

avoided, and a fixed number of low-dimensional models are fit by the least

squares method and subsequently averaged. Zhao et al. (2016) extend this

method to dependent data, while Ando and Li (2017) extend this approach

to generalized linear models, again by only fitting low-dimensional models,

this time via maximum likelihood estimation. In these papers, the choice

of the weights is obtained via cross-validation; see also Hansen (2007) and

Hansen and Racine (2012) for similar weight finding approaches in low-

dimensional models.

Our setting is different and is theoretically valid (see Theorem 2.1 be-

low). We explicitly work with l1-regularized estimators that are averaged,

and we do not rely on the correct low-dimensional representation of the

model. For the choice of the optimal weights, we explicitly take variable
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selection effects (of regularization itself) into account. Is the dependence

among regularized estimators an impediment or a hidden benefit in ob-

taining robust predictions, i.e., predictions that do not change much when

the data is changed a little?

A second approach to robustness is through composite estimation. While

model averaging combines estimators after optimization of their respective

loss functions, composite estimation weights the loss functions directly

(before optimization). For quantile regression in low dimensions, Koenker

(2005b, Theorem 5.2) stated the asymptotic equivalence of model-averaged

and composite quantile regression estimators, provided each method uses

its own, optimal set of weights that minimize the asymptotic variance.

Hence, with optimal weights, in low dimensions, there is no asymptotic

preference between the two methods. For high dimensional quantile re-

gression, when one restricts the attention to inference regarding the true

nonzero part of the regression coefficient and ignores the variable selection

effect, Bloznelis et al. (2019) obtained the same equivalence for high di-

mensional quantile regression using different types of regularizations (e.g.,

SCAD, lasso, adaptive lasso, etc).

In practice, however, one works with an estimated coefficient vector for

which one is not sure that the regularization has led to the correct selection.

Therefore, incorporating imperfections of variable selection is especially

important for achieving robustness. This is where our approach differs

from Bloznelis et al. (2019) or Bradic et al. (2011), where an irrepresentable

condition (needed for consistent model or asymptotically perfect selection)

has been used to specify weights and analyze robustness.

The approximate message passing (AMP) algorithm is crucial in our

approach to take the variable selection into account when studying the

estimators’ asymptotic mean squared errors. The use of such algorithms

has been investigated by Donoho et al. (2009) and Bayati and Montanari

(2011a) for compressed sensing. Donoho and Montanari (2016) explain

the use of AMP algorithms for obtaining the variance of high dimensional

M-estimators for which n/p → δ ∈ (1,∞). However, the robustness of
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sparsity encouraging AMP estimators is still largely unknown.

In this chapter, we first extend the robust AMP (RAMP) of Bradic

(2016) to regularized composite estimation. Second, we construct esti-

mators and develop new theory for the asymptotic mean squared error

(AMSE) both for model-averaged and for composite estimators. Note that

model-averaged AMSE required an extension of AMP theory for a chal-

lenging case of dependent estimates. Besides, we establish new Stein-type

risk estimates of the AMSE in both cases.

The new estimates of the AMSE of the model averaged and composite

estimators enable a theoretically justified and data-driven, optimal weight

choice by minimizing the estimated AMSE (without relying on perfect

variable selection). The estimated AMSE gives more information regarding

the estimators as compared to merely considering which variables have

been selected.

Organization of the chapter. First, in Section 2.2 we detail the model-

averaged and composite estimators in a high dimensional setup. Next,

we explain the model-averaged robust message passing algorithm in Sec-

tion 2.3. he limiting behaviour of the estimators in the algorithm is studied

by state evolution parameters in Section 2.4. We obtain the estimators’

asymptotic mean squared error as well as an estimator of that quantity in

Section 2.5. We showcase the procedure for high dimensional regularized

quantile regression in Section 2.6 and present numerical results in Sec-

tion 2.7. Section 2.8 concludes. All proofs, together with the conditions

and some technical lemmas are collected in Sections 2.9 and 2.10.

2.2 Model-averaged and composite estimation

We consider a high dimensional linear model Y = Xβ + ε as in (0.1). We

assume the components of ε to be independent and identically distributed

with mean zero, cumulative distribution function Fε and probability den-

sity function fε. We allow for a sparse high dimensional setup. Denote

by s the l0 norm of the parameter vector, s = ‖β‖0, which counts the
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number of nonzero components of the vector β. We assume that the ratios

n/p→ δ ∈ (0, 1) and n/s→ a ∈ (1,∞) when p, n, s tend to ∞.

We consider two types of weighted estimation methods. First, model-

averaged estimation where estimators from different models or estimation

methods are weighted and summed to arrive at a final estimator, see (2.2).

Second, composite estimation where a weighted average of loss functions

is minimized, see (2.3).

For model-averaged estimation of the parameter β, define for k =

1, . . . ,K the regularized estimators

β̂k(λk) = arg min
β∈Rp

{
n∑
i=1

ρk(Yi −Xi·β) + λk‖β‖1

}
, (2.1)

where ρ1, . . . , ρK are nonnegative convex loss functions and λ = (λ1, . . . , λK)>

is a vector of possibly different nonnegative regularization parameters. For

a set of weights w = (w1, . . . , wK)>, the model-averaged estimator is de-

fined as

β̂MA(λ) =
K∑
k=1

wkβ̂k(λk). (2.2)

Often one assumes that the weights w1, . . . , wK are all nonnegative and

sum to 1, although this is not necessary for the computation of the esti-

mator.

For composite estimation we consider again K loss functions, though

only with a single nonnegative regularization parameter λ, such that the

regularized composite estimator is defined as

β̂C(λ) = arg min
β∈Rp

{
K∑
k=1

n∑
i=1

wkρk(Yi −Xi·β) + λ‖β‖1

}
. (2.3)

Computationally, composite estimation is harder than model-averaged es-

timation and requires that all weights are positive to ensure a nonnegative

and convex weighted loss function, even when all ρk are nonnegative and
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Single versus composite quantile loss function with different weights

Figure 2.1: Examples of quantile loss functions. Left: τ = 0.3 quantile
loss function. Middle: Composite quantile loss function at quantile levels
0.25, 0.5, 0.75 with equal weights w = (1/3, 1/3, 1/3)>. Right: Composite
quantile loss function at quantile levels 0.25, 0.5, 0.75 with weights w =
(0.15, 0.55, 0.3)>.

convex. Hence, for composite estimation it is required that the weight

vector w ∈ [0, 1]K such that
∑K

k=1wk = 1.

As a worked-out scenario throughout the chapter we consider quantile

loss functions ρk(·), k = 1, . . . ,K that are defined below. For more infor-

mation about quantile regression with i.i.d. errors, see Koenker (2005b,

Sec. 3.2.2). In this chapter we assume that the design matrix X does

not contain a column of ones, see Condition (A1) in Section 2.9. With

τ ∈ (0, 1), the τ -quantile of the response Y is obtained as Xβ + F−1
ε (τ) =

Xβ + uτ .

Figure 2.1 presents first a single quantile loss function in (0.2) with

τ = 0.3. For model averaging we specify K different quantile levels and

use K different such quantile loss functions for estimation of β:

ρk(x) = (x− uτk)(τk − I{x ≤ uτk}), k ∈ {1, . . . ,K}.
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For composite quantile estimation we assume that the K quantile levels

τ1 < · · · < τK , then also the quantiles of ε are sorted uτ1 < · · · < uτK .

Define uτ0 = −∞ and uτK+1 =∞.

The middle panel of Figure 2.1 depicts such a composite quantile loss

function ρC =
∑K

k=1wkρk for K = 3 quantile levels 0.25, 0.5 and 0.75 with

equal weights w = (1/3, 1/3, 1/3)>. The panel on the right in Figure 2.1

uses the same quantile levels but depicts the quantile loss function ρC with

weights w = (0.15, 0.55, 0.3)>.

In general, the composite quantile loss function can be rewritten in the

following way,

ρC(x) =



K∑
k=1

wk(1− τk)(uτk − x), x < uτ1

K∑
k=1

wkτk(x− uτk), x ≥ uτK

∑̀
k=1

wkτk|x− uτk |+
K∑

k=`+1

wk(1− τk)|x− uτk |, x ∈ [uτ` , uτ`+1
)

` = 1, . . . ,K − 1.

(2.4)

Note that a single quantile loss function can be seen as a special case

of a composite loss function with K = 1 and the single weight w1 = 1.

Theoretical results regarding regularized estimation for a single quantile

loss function can be found in Bradic (2016). Henceforth, we concentrate

in the example on the composite case.

One aim of this chapter is to investigate the weight choice w by mini-

mizing the asymptotic mean squared error of the estimators β̂MA(λ) and

β̂C(λ).

2.3 Robust approximate message passing

The idea behind approximate message passing algorithms is to provide an

iterative procedure that has as its fixed point the estimator of interest; in
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this case the minimizer (2.2) of the regularized loss function in the case

of model averaging, and the estimator (2.3) in the case of composite es-

timation. Due to a mean squared convergence (Serfling, 2009, Sec. 1.2.3,

convergence in rth mean) between the solution of the approximate message

passing algorithm and the estimator (2.2), respectively (2.3), the asymp-

totic mean squared error that holds for the solution to the approximate

message algorithm, is also the asymptotic MSE of the other estimator.

Studying effects of regularization while allowing n/p → δ ∈ (0, 1) is ex-

tremely challenging. In these cases, AMP provides theoretical advantages

as it enables a complete (not yet easy but tractable) structure for obtain-

ing AMSE. This chapter is the first to not only obtain but also use the

asymptotic mean squared error of the regularized estimators to optimize

the weight choice of both the model-averaged estimator and the composite

estimator. We extend the theory of the RAMP to apply to the model-

averaged estimator, see Theorem 2.1. Challenges arise with incorporating

dependence into the AMSE expression. This, in turn, leads to a new Stein-

type estimator of RAMPs asymptotic MSE, see Theorem 2.2. While we

focus on the weight choice, the availability of an estimated AMSE may

be used in other contexts too such as for the construction of confidence

intervals.

2.3.1 Notation

When the composite loss function ρC =
∑K

k=1wkρk is used in the RAMP

algorithm with tuning parameter α we denote the estimator at iteration

number t by β̂C,(t)(α). When the value of the tuning parameter is clear

from the context we also denote the RAMP estimator by β̂C,(t).

For constructing the model averaging estimator we denote the separate

estimators from the RAMP algorithm using regularity parameters αk, k =

1, . . . ,K by β̂k,(t)(αk) and the model averaged estimator is denoted by

β̂MA,(t)(α) =
∑K

k=1wkβ̂k,(t)(αk) with α = (α1, . . . , αK)>. When the value

of the tuning parameters is clear from the context we denote the model

averaging RAMP estimator by β̂MA,(t).
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A generic estimator, without referring to a specific loss function or con-

struction is denoted by β̂(t), using tuning parameter α; the subscript (t)

refers to the iteration number.

2.3.2 The robust approximate message passing algorithm

We first revise the (robust) approximate message passing algorithm which

consists of three steps which are iterated until convergence. In compari-

son with the simpler AMP for the case with a differentiable convex loss

function (Donoho et al., 2009), this procedure for robust high dimensional

parameter estimation (Donoho and Montanari, 2016; Bradic, 2016) adjusts

the residuals to incorporate the effective score directly. While more details

are given in Algorithm 1, which is applied to the different loss functions

ρ1, . . . , ρk and to their weighted sum ρC =
∑K

k=1wkρK , we here provide the

main outline. The used notation does not explicitly indicate a dependence

on the number of coefficients p to not overcomplicate the formulas.

Donoho and Montanari (2016) proposed to use the following proximal

mapping operator to adjust the residuals. With b > 0,

Prox(z, b) = arg min
x∈R
{bρ(x) +

1

2
(x− z)2}

which minimizes the square loss regularized by the non-differentiable loss.

The parameter b controls how the proximal operator map points to the

minimum of the non-differentiable loss, where small values correspond to

a small movement towards the minimum of ρ. The fixed point solution of

the proximal operator coincides with the minimum of the loss function ρ.

For more information, see Parikh and Boyd (2014).

We continue with the worked out example on quantile regression, see

(2.4). For ` = 0, . . . ,K, define h(`) =
∑`

k=1wkτk −
∑K

k=`+1wk(1 − τk),
where we define a summation sign to be equal to zero in case the upper

summation index is smaller than the lower one, that is,
∑b

i=a xi = 0 if
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b < a. The proximal operator for the composite quantile case, see (2.4), is

Prox(z; b) =

{
z − bh(`), z ∈ (uτ` + bh(`), uτ`+1

+ bh(`)), ` = 0, . . . ,K

uτ` z ∈ [uτ` + bh(`− 1), uτ` + bh(`)], ` = 1, . . . ,K.

(2.5)

See Section 2.10.2 for the derivation of the algorithm.

We now describe the three steps in more detail.

Step 1: Create adjusted residuals.

We use the estimates β̂(t−1) and β̂(t) from iteration steps t − 1 and t to

compute the adjusted residuals

z(t) = Y −Xβ̂(t)+ (2.6)

n−1G(z(t−1); b(t−1))

p∑
j=1

I
{
η
(
β̂(t−1),j +X·jG(z(t−1); b(t−1)); θt−1

)
6= 0
}
,

where the soft-thresholding function η(x; θ) = sign(x) max(|x| − θ, 0). In

Algorithm 1, see Section 2.4, we give details on how to set the soft-

thresholding parameter θ, which might change in each iteration, and we

explain that a proper choice of θ as a function of the regularity constant λ

leads to an equivalence of the RAMP estimator and the regularized esti-

mator. This step adds a product related to n, p, s to the ordinary residual

Y −Xβ̂. Bradic (2016) recognized that this adjustment is similar to the

proximal gradient descent (Beck and Teboulle, 2009) using the step size∑p
j=1 I

{
η
(
β̂(t−1),j +X·jG(z(t−1); b(t−1)); θt−1

)
6= 0
}
· p/s.

The score function G is defined in (2.10). And we explain its construc-

tion below, starting from the effective score function G̃. The effective score

function used in Donoho and Montanari (2016) is

G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b), with b > 0; (2.7)

a subgradient is used in case of nondifferentiability. That is, for a value x
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where ρ is non-differentiable

∂ρ(x) = {y : ρ(u) ≥ ρ(x) + y(u− x),∀u}.

Throughout, we use ∂1 as the notation for the partial derivative or partial

subgradient of a function with respect to its first argument. Functions

(e.g. G̃) are applied componentwise to vectors.

For the example on composite quantile regression the subgradient of ρC

is computed as,

∂ρC(x)

{
= h(`), x ∈ (uτ` , uτ`+1

), for ` = 0, . . . ,K,

∈ [h(`− 1), h(`)], x = uτ` , for ` = 1, . . . ,K.
(2.8)

The effective score function for composite quantile regression, see Sec-

tion 2.10.2, is

G̃(z; b) =

{
bh(`), z ∈ (uτ` + bh(`), uτ`+1

+ bh(`)), ` = 0, . . . ,K

z − uτ` , z ∈ [uτ` + bh(`− 1), uτ` + bh(`)], ` = 1, . . . ,K.

(2.9)

To incorporate the sparsity, Bradic (2016), see also Bayati and Monta-

nari (2011a), used the rescaled, min regularized effective score function,

G(z; b) = δω−1G̃(z; b) (2.10)

where ω corresponds to the limit of s/p with s = ‖β‖0 the true number of

nonzero components as s, p→∞. Condition (A2) in Section 2.9 formalizes

the limit of the coefficient vector β by placing the sequence of uniform dis-

tributions on the components; the components of the p-vector β converge

to a distribution FB0 and can be represented by a random variable B0.

In addition, Condition (A2) provides an alternative definition of the ratio

ω = P (B0 6= 0) using the limit random variable B0.

Step 2: Use the effective score function to set b.

We choose the scalar b(t) such that the empirical average of the effective

score function G(z; b) has slope 1, thus n−1
∑n

i=1 ∂1G(zi,(t); b(t)) = 1. In
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the case of a non-differentiable loss function, Bradic (2016) proposed to

solve ν̂(b(t)) = 1 with

ν̂(b(t)) =
b(t)δ

ω

( 1

n

n∑
i=1

2∑
j=1

∂vj{z(t),i}+
L−1∑
l=1

γl{f̂P (rl+1)− f̂P (rl)}
)
. (2.11)

Condition (A3) in Section 2.9 (See also Condition (R) of Bradic, 2016)

writes the subgradient ∂ρ as a sum of three functions: the differentiable

functions v1 and v2, where v1 has an absolutely continuous derivative

and v2 is continuous consisting piecewise linear parts, and non-decreasing

step functions γl{f̂P (rl+1) − f̂P (rl)}, l = 1, . . . , L − 1, with step magni-

tude γl, endpoints rl, and f̂P the estimated density of Prox(zi,(t); b(t)) for

i = 1, . . . , n.

The derivation of the estimator ν̂(b(t)), see also Section 2.10.2, relies on

the limiting behaviour of the system, see Section 2.4.

For the composite quantile loss, see (2.4), we clearly see the dependence

on the quantiles. The estimator of ν in (2.11) uses v1(z) = 0 and v2(z) =

z − uτ` z ∈ [uτ` + bh(` − 1), uτ` + bh(`)], ` = 1, . . . ,K, corresponding to

the differentiable pieces in (2.9). The step functions v3(z) = bh(`) when

z ∈ (uτ` + bh(`), uτ`+1 + bh(`)), ` = 0, . . . ,K. Solving for b in the equation

ν̂(b) = 1 is equivalent to solve for b in the following equation,

s

n
= b

[K−1∑
k=0

h(k)fz{uτk+1
+ bh(k)} −

K∑
k=1

h(k)fz{uτk + bh(k)}
]

+Fz{bh(K)} − Fz{bh(0)}, (2.12)

where Fz is the cumulative distribution function and fz the density func-

tion of the adjusted residuals. In practice, a grid search is performed to

approximate the solution b̂t. For each b in the grid, we use the empirical

cumulative distribution, that is, F̂z(bh(K)) = n−1
∑n

i=1 I{zi;(t) ≤ bh(K)}.
A kernel density estimator of fz with the Gaussian kernel estimates defined

as f̂z{uτk + bh(k)} = (nh)−1
∑n

i=1 φ{(zi;(t)− uτk − bh(k))/h} with φ being

the standard normal density function. The solution b̂t is taken to be the
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average of the smallest b in the grid that makes the righthand side of (2.12)

smaller than s
n and the next value in the grid.

Step 3: Update the estimator of β.

Use the estimated b(t) from the previous step to update the estimate of β

to

β̂(t+1) = η(β̃(t); θ(t)), where β̃(t) = β̂(t) +X>G(z(t); b(t)). (2.13)

A similar iterative thresholding algorithm is proposed in Daubechies et al.

(2004) for parameter estimation with sparsity constraint. The estimator

β̃(t), before applying the soft-thresholding function, is of interest too since

it can be interpreted as a debiased estimator (Javanmard and Montanari,

2014a,b; van de Geer et al., 2014; Javanmard and Montanari, 2018). A

thorough study, however, is beyond the case of the current work.

2.4 State evolution

Within each iteration step t of the approximate message passing algorithm,

state evolution studies the limiting behaviour of the estimators when the

sample size goes to infinity. We now define the state evolution parameter

ζ̄2
(t) which is critical for Algorithm 1. We start by defining the empirical

version as follows

ζ̄2
emp,(t) =

1

n

n∑
i=1

G(zi,(t); b(t))
2. (2.14)

This quantity is linked to the state evolution recursion which describes

the limiting behaviour of large systems, see Theorem 2 in Bayati and

Montanari (2011a) and Lemma 1 in Bradic (2016). It holds that, see

Section 2.10.2 for details,

lim
n→∞

1

n

n∑
i=1

G
(
zi,(t); b(t)

)2 a.s.
= E[G(ε− σ̄(t)Z; b(t))

2] = ζ̄2
(t), (2.15)
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Algorithm 1: RAMP algorithm for a single loss function with
tuning parameter α

1 Function singleRAMP(α):

Initialization: β̂(0) ← 0 ∈ Rp,
iteration index t← 0, final iteration tfinal ← 0,
adjusted residuals z(0) ← Y ∈ Rn,
empirical state evolution ζ̄2

(0) using (2.14),

tuning parameter of the soft-thresholding function θ(0) = αζ̄(0)

2 while iteration t ≤ T and tolerance tol > εtol do
(i) Adjust residuals: adjust the residuals z(t) ∈ Rn:

z(t) ← Y −Xβ̂(t) +
1

n
G(z(t−1); b(t−1))

p∑
j=1

I
{
η
(
β̂j,(t−1) +X>·jG(z(t−1);

b(t−1)); θ(t−1)

)
6= 0
}
.

(ii) Effective score:

(a) choose the scalar b(t) satisfying

if G differentiable then 1 = 1
n

∑n
i=1 ∂1G(zi,(t); b(t))

else 1 = ν̂(b(t)), see (2.11);

(b) update the state evolution parameter ζ̄2
(t) using (2.14)

(c) update the tuning parameter θ(t) ← αζ̄(t).

(iii) Estimation: Update the coefficient estimation

β̃(t) ← β̂(t) +X>G(z(t); b(t)) and β̂(t+1) ← η(β̃(t); θ(t)),

(iv) Adjust iteration index: t← t+ 1; tfinal ← t.

(v) Calculate tolerance: tol = ‖β̂(t) − β̂(t−1)‖2/p

3 end

4 return β̂ ← β̂(tfinal), β̃ ← β̃tfinal
,

the estimated AMSE(β̂;β) for β̂, see Theorems 2.1 and 2.2.
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which, together with σ̄2
(t) in (2.17), are the state evolution parameters for

the large system, Z is a random variable with standard normal distribution

independent of everything else.

Due to the symmetry of Z, the state evolution parameter is formally

defined as

ζ̄2
(t) = E[G(ε+ σ̄(t)Z; b(t))

2]. (2.16)

This definition explicitly features the extra Gaussian component σ̄(t)Z in

the limiting version, with variance

σ̄2
(t) = δ−1E[(η(B0 + ζ̄(t−1)Z; θ(t−1))−B0)2] (2.17)

with B0 defined in Condition (A2) in Section 2.9. To connect the theo-

retical expression of σ̄2
(t) to Algorithm 1, we apply Bayati and Montanari

(2011a, Eq.(3.6)) and Bradic (2016, Eqs.(7.10), (7.19)). This leads to

δ−1 lim
p→∞

1

p

p∑
j=1

{η(β̂(t),j +X>·jG(zi,(t); b(t)); θ(t))− βj}2
a.s.
= σ̄2

(t). (2.18)

Note that (2.18) features the debiased estimator from (2.13).

We now explain the connection between the estimators that explicitly

use an l1 regularization and the corresponding estimators from the RAMP

algorithm.

By applying Theorem 2 of (Bradic, 2016) we get the immediate con-

nection between the regularized estimators β̂k(λk) for k = 1, . . . ,K and

the corresponding estimators obtained by applying the RAMP algorithm

with a suitable choice of its regularity parameter α. We explain this be-

low. Since the regularized estimators β̂k(λk) for k = 1, . . . ,K are used

for β̂MA(λ), (2.2), the connection between the model-averaged estimators

from regularization and from application of the RAMP algorithm, follows

immediately from the connections between the K separate estimators. The

composite estimator β̂C(λ), (2.3), is a special case of a model averaged esti-

mator with K = 1, weight equal to one, and loss function ρC =
∑K

k=1wkρk.
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Denote (ζ̄2, b) as the fixed point solution when the iteration number

t→∞ of the following equations,

ζ̄2
(t) = E[G(ε+ ζ̄(t)Z; b(t))

2] = (δ/ω)2E[G̃(ε+ ζ̄(t)Z; b(t))
2] (2.19)

1 = E[∂1G(ε+ ζ̄(t)Z; b(t))] = (δ/ω)E[∂1G̃(ε+ ζ̄(t)Zk; b(t))]. (2.20)

Note that (2.19) is the state evolution recursion for the large system while

in (2.20) the first equality is the population version of the requirement in

step 2 in Algorithm 1 which states that n−1
∑n

i=1 ∂1G(zi,(t); b(t)) = 1. The

second equalities of both (2.19) and (2.20) follow by using the definition

of G in (2.10), with G̃ being defined in (2.7).

Then, under conditions (A1)–(A5) (see Section 2.9), for the RAMP al-

gorithm with θ = αζ, where the tuning parameter α > 0 (which motivates

the definition of θ(t) = αζ̄(t) in Algorithm 1), and for the l1-optimization

with

λ =
αζ

bδ
P (|B0 + ζZ| ≥ αζ), (2.21)

it follows by Theorem 2 of Bradic (2016) that

lim
t→∞

lim
p→∞

1

p

p∑
j=1

{β̂C,j(λ)− β̂C,(t),j(α)}2 = 0 a.s. (2.22)

The convergence in (2.22) explicitly connects the two composite estima-

tors: one estimator uses an explicit l1-regularization as in (2.3), the other

estimator is obtained via the RAMP algorithm.

Similar results can be found in Huang (2020, Theorem 2.2) for a gen-

eralized AMP algorithm with non-negative convex loss function, and in

Bayati and Montanari (2011b, Theorem 1.8) for the AMP algorithm with

least squares loss function.

For the model averaging estimator we use such an equivalence for es-

timation with each separate loss function ρk, k = 1, . . . ,K. When using

explicit l1-regularization as in (2.1) with the regularization constants λk
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matching as in (2.21) the values θk = αkζ̄, for k = 1, . . . ,K that are used

in the RAMP algorithm, again Theorem 2 of Bradic (2016) applies. It

hence follows that

lim
t→∞

lim
p→∞

1

p

p∑
j=1

{β̂MA,j(λ)− β̂MA,(t),j(α)}2 = 0, a.s.

2.5 Theoretical contributions

2.5.1 Asymptotic mean squared error

We first define the asymptotic mean squared error as

AMSE(β̂(t), β) = lim
p→∞

1

p

p∑
j=1

(β̂(t),j − βj)2. (2.23)

Combining (2.18) and (2.15), we obtain

AMSE(β̂(t), β) = lim
p→∞

1

p

p∑
j=1

(
η(β̃(t−1),j ; θ(t−1))− βj

)2

a.s.
= E[{η(B0 − ζ̄(t−1)Z; θ(t−1))−B0}2], (2.24)

which corresponds to Bradic (2016, Eq.(3.4)) with β̃(t),j the debiased esti-

mator in (2.13).

In Section 2.4, we defined the empirical state evolution parameter ζ̄2
emp,(t),

and we described the connections between the empirical updates in Algo-

rithm 1 and the theoretical state evolution recursion, which connects to

the theoretical expression of the AMSE. While Algorithm 1 and the theo-

retical state evolution recursion involve only a single estimator, the model-

averaged estimator, on the other hand, is the weighted sum of K such

estimators β̂k, k = 1, . . . ,K, each obtained by Algorithm 1. Consequently,

the estimators β̂k, k = 1, . . . ,K are correlated.

Lemma 2.1 extends Theorem 2 in Bayati and Montanari (2011a) and

(3.16) in Lemma 1(b) in Bayati and Montanari (2011a) to the almost sure
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convergence of the product for any two recursions among K paralleled

recursions. All proofs are contained in Section 2.10.

Lemma 2.1. Let the sequences of design matrices {X(p)}, coefficient vec-

tors {β(p)}, error vectors {ε(p)}, initial condition vectors {q0(p)} be the

common sequences for K recursions satisfying conditions (A1)–(A4) in

Section 2.9. Let {σ̄2
k,(t), ζ̄

2
k,(t)} be defined uniquely by the recursions in

(2.16) and (2.17). These are the state evolution parameters for the kth es-

timation with initialization σ̄2
k,(0) = limn→∞

1
n

∑n
i=1 q

2
(0),i/δ. Then Lemma

1 in Bayati and Montanari (2011a) holds individually for each of the K

recursions; additionally, for all pseudo-Lipschitz functions ψ̃c : Rt+2 → R
of order κc for some 1 ≤ κc ≤ κ/2 with κ as in Condition (A4) and t a

natural number larger than or equal to 0,

lim
p→∞

1

p

p∑
j=1

ψ̃c(hk1,(1),j , . . . , hk1,(t+1),j , βj)ψ̃c(hk2,(1),j , . . . , hk2,(t+1),j , βj)
a.s.
=

E[ψ̃c(ζ̄k1,(0)Zk1,(0), . . . , ζ̄k1,(t)Zk1,(t), B0)ψ̃c(ζ̄k2,(0)Zk2,(0), . . . , ζ̄k2,(t)Zk2,(t), B0)]

where (Zk,(0), . . . , Zk,(t)) ∼ N (0, It+1), k = k1, k2, is a (t+ 1)-dimensional

zero-mean multivariate standard normal vector independent of B0, ε; at

iteration t, (Zk1,(t), Zk2,(t)) is a bivariate standard normal vector with co-

variance not necessarily equal to zero.

Note that Algorithm 1 belongs to the general recursion in Bayati and

Montanari (2011a), the initial condition takes q(0) = −β and the kth esti-

mator calculated by Algorithm 1 takes hk,(t+1) = β −X>G(zk,(t); bk,(t))−
βk,(t).

We obtain at iteration t, for k1, k2 ∈ {1, . . . ,K},

lim
p→∞

1

p

p∑
j=1

(β̂k1,(t),j − βj)(β̂k2,(t),j − βj)

a.s.
= E

[ 2∏
r=1

{
η(B0 + ζ̄kr,(t−1)Zkr ; θkr,(t−1))−B0

}]
,
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where Zk1 and Zk2 are possibly dependent standard normal random vari-

ables.

Since the estimators β̂kr , r = 1, 2 use the same design matrix, a cor-

relation between Zk1 and Zk2 exists (see Corollary 2.2) and contributes

to the correlation between β̂k1 and β̂k2 . Using Lemma 2.1, we obtain the

theoretical AMSE for the regularized model-averaged estimator.

Theorem 2.1. Assume conditions (A1)–(A5) in Section 2.9 . At Algo-

rithm 1’s iteration step t for the estimator β̂k,(t), for each k = 1, . . . ,K,

and for a weight vector w = (w1, . . . , wK)>, the model-averaged estimator

β̂MA,(t) =
∑K

k=1wkβ̂k,(t) has asymptotic mean squared error

AMSE(β̂MA,(t), β) = lim
p→∞

1

p

p∑
j=1

(β̂MA,(t),j − βj)2

= lim
p→∞

w>Σ0,(t)(p)w
a.s.
= w>Σ(t)w (2.25)

where Σ0,(t)(p) is a K ×K matrix with (k1, k2)th component

(Σ0,(t))(k1,k2)(p) = p−1
p∑
j=1

(β̂k1,(t),j − βj)(β̂k2,(t),j − βj); (2.26)

similarly, Σ(t) is a K ×K matrix with the (k1, k2)th component

(Σ(t))(k1,k2) = E
[ 2∏
r=1

{η(B0 + ζ̄kr,(t−1)Zkr ; θkr,(t−1))−B0}
]
.

Since the AMSE expression of the regularized model-averaged estimator

is a quadratic function of the weight vector w, Corollary 2.1 readily pro-

vides the lower bound of the AMSE as well as the weight vector reaching

this lower bound. We define the K-vector 1K to consist of ones only.

Corollary 2.1. Constraining the weights to sum to one, the lower bound

of the AMSE at iteration t for the model-averaged estimator as in (2.25) is

equal to
(
1>K(Σ(t))

−11K
)−1

. This lower bound is attained for the theoretical
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optimal weights wMA =
(
Σ(t)

)−1
1K
(
1>K(Σ(t))

−11K
)−1

.

2.5.2 Estimating optimal weights

The expression of the core matrix Σ(t), which is the limit matrix for n, p→
∞, contains the random variable B0 which satisfies Condition (A2) in

Section 2.9. Likewise, Σ0,(t) which is the limit matrix for fixed p while

n → ∞, contains the true coefficient β (see (2.26)). In practice, neither

the true coefficient vector β, nor the random variable B0 is known. To

make practical use of the expressions of the AMSE, we derive an estimator

of the matrix Σ0,(t) relying only on sequences generated in Algorithm 1.

Model-averaged estimator

Before deriving the estimator of the AMSE for the model-averaged esti-

mator, we first define ζ̄emp,(k1,k2),(t) which is an estimator of the parameter

ζ̄(k1,k2),(t), a quantity similar to the state evolution parameter ζ̄2
k,(t), which

records the covariance between the unbiased sequences β̃k1,(t) and β̃k2,(t)

generated in (2.13) in Algorithm 1 when p → ∞. Since model-averaged

estimators combine estimators constructed from the same data into one

weighted average, the correlation between β̂k1 and β̂k2 is needed to under-

stand the AMSE of the model-averaged estimator.

Notice that the unbiasedness of the sequence β̃k,(t) follows from the ar-

gument that β̃k,j,(t) converges weakly to B0 + ζ̄k,(t)Zk when p→∞, while

assigning 1/p point mass to each entry of the vector. Then, β̃k,j,(t)|(B0 =

βj) ∼ N(βj , ζ̄
2
k,(t)) for large p indicates first that β̃k,j,(t) centers at βj en-

suring the unbiasedness. Also the vector β̃k,(t) is Gaussian distributed. By

applying the soft-thresholding function η on β̃k,j,(t) in Lemma 2.4, we avoid

the true coefficient vector β in Σ0,(t) resulting in a Stein-type risk estima-

tor requiring only arguments from Algorithm 1. A Gaussianity argument

has also been used in Bayati and Montanari (2011b); Bayati et al. (2013);

Mousavi et al. (2013, 2018) to derive a similar Stein-type risk estimator

for the Lasso. Details can be found in Section 2.10.2. The bias of the esti-
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mator β̂k,(t) is introduced in Algorithm 1 by applying the soft-thresholding

function componentwise to the unbiased sequence β̃k,(t).

Corollary 2.2. Assume conditions (A1)–(A5) in Section 2.9. For any

k1, k2 = 1, . . . ,K, at iteration t,

lim
p→∞

1

p

p∑
j=1

(β̃k1,(t),j − β)(β̃k2,(t),j − β)
a.s.
= ζ̄k1,(t)ζ̄k2,(t)Cov(Zk1 , Zk2),

where ζ̄k,(t), k = k1, k2 is the state evolution parameter corresponding to

β̂k.

Corollary 2.2 indicates both the existence and a feasible estimation of

the covariance between Zk1 and Zk2 . As an estimator for

ζ̄(k1,k2),(t) = ζ̄k1,(t)ζ̄k2,(t)Cov(Zk1 , Zk2)

we define

ζ̄emp,(k1,k2),(t) =
1

p− 1

p∑
j=1

(
β̃k1,(t),j−

1

p

p∑
j=1

β̃k1,(t),j

)(
β̃k2,(t),j−

1

p

p∑
j=1

β̃k2,(t),j

)
.

(2.27)

We now state an unbiased estimator for the matrix Σ0,(t), and a consis-

tent estimator for the matrix Σ(t) upon convergence of Algorithm 1.

Theorem 2.2. Assume conditions (A1)–(A5) in Section 2.9, and that the

state evolution parameter in (2.14) satisfies ζ̄2
emp,(t)−ζ̄

2
emp,(t−1) = o(1). For

any k1, k2 = 1, . . . ,K, define

(Σ̂0)(k1,k2),(t) = −ζ̄emp,(k1,k2),(t−1)

+
1

p

p∑
j=1

2∏
r=1

{
η(β̃kr,(t−1),j ; θkr,(t−1))− β̃kr,(t−1),j

}
+ ζ̄emp,(k1,k2),(t−1) ·

1

p

p∑
j=1

2∑
r=1

I{|β̃kr,(t−1),j | ≥ θkr,(t−1)},
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with β̃k1,(t−1), β̃k2,(t−1) in (2.13) Then, (Σ̂0)(k1,k2),(t) is an unbiased esti-

mator of component (k1, k2) of the matrix Σ0,(t) at iteration t. Further,

(Σ̂0)(k1,k2),(t) is a consistent estimator of the matrix Σ(t) in Theorem 2.1.

This new estimator can be compared to the estimator used in Bayati

et al. (2013, Def. 2) and Mousavi et al. (2018, Eq.(9)) for the case of a single

estimator (K = 1). The proof of Theorem 2.2, see Section 2.10.2 uses

Stein’s lemma (see Lemma 2.4) to estimate the covariances that appear

in the matrix Σ0,(t). The soft-thresholding function η(·; θ) that appears

in the estimator Σ̂0,(t) links the estimator β̂k to the estimator β̃k. The

proof also uses the joint asymptotic normality of the jth components of

the vectors β̃k1 and β̃k2 . The obtained estimator for Σ0,(t) in the case

K > 1 is nontrivial and new to the literature.

Estimated AMSE-type optimal weights for the model-averaged estima-

tor are obtained by using the estimator Σ̂0,(t) at the final iteration in The-

orem 2.2. In combination with the sum-to-one constrained weights this

gives the estimated weights that minimize the estimated AMSE for the

model averaged estimator

ŵMA =
(
Σ̂(t)

)−1
1K
(
1>K(Σ̂(t))

−11K
)−1

.

When additional constraints such as positivity are needed, the optimal

weights no longer have an explicit formula, but they are straightforward

to compute, see (2.30).

Composite estimator

The AMSE of a composite estimator can be obtained from Theorem 2.1 as

a special case, treating the composite loss function as a single loss function

with weight one, thus ρC =
∑K

k=1wkρk as in (2.3). At iteration t,

Σ(t) = E[{η(B0 + ζ̄(t−1)Z; θ(t−1))−B0}]2, and Σ0,(t) = p−1
p∑
j=1

(β̂(t),j−βj)2.
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The matrices Σ(t),Σ0,(t) are now real numbers and coincide with the AMSE

of the estimator in (2.24). We obtain the corresponding estimator for the

AMSE

Σ̂C,0 = ÂMSEC(w) (2.28)

= −ζ̄2
emp(w) +

1

p

p∑
j=1

[{
η(β̃j(w); θ)− β̃j(w)

}2
+ 2ζ̄2

emp(w)I{|β̃j(w)| ≥ θ}
]
.

For the single loss function ρC, the estimator of AMSE in (2.28) can be

compared to the Stein-type estimator that has been obtained in Definition

2 in Bayati et al. (2013) for the AMP algorithm using the least squares

loss, which is a special case of Algorithm 1.

Finding optimal weights is more complicated for the composite estima-

tor. Indeed, while the model-averaged estimator has an AMSE which is

a quadratic function in the weights, see (2.25), the composite estimator

and its AMSE depend on the weights in a highly nonlinear fashion; e.g.,

observe that the soft-thresholding function in (2.28) depends on w.

Therefore, optimization of the estimated AMSE with respect to the

weights proceeds numerically;

wC,1 = arg min
w

ÂMSEC(w).

See Section 2.6.2 for more details.

2.5.3 The case of dense (non-sparse) linear models with

n/p→ δ ≥ 1: asymptotic variance optimality

Donoho and Montanari (2016) and El Karoui et al. (2013) showed that the

asymptotic variance of the M-estimators in the case where p, n → ∞ and

n/p → δ ∈ [1,∞) contains an extra Gaussian component. Recently, Lei

et al. (2018) obtained the coordinate-wise asymptotic normality of regres-

sion M-estimators in the moderate p/n regime for a fixed design matrix.

In the sparse high dimensional linear model setting where δ ∈ (0, 1), it was
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shown that the sequence β̃(t) in (2.13) follows for the Lasso estimator (Bay-

ati et al., 2013) a similar normal distribution with the variance containing

an extra Gaussian component. The above-mentioned literature focuses on

the asymptotics for a single M-estimator, we extend the asymptotic re-

sult to the model-averaged estimator. In this section, we only characterize

the asymptotic variance of the model-averaged estimator for dense linear

models with n/p→ δ ≥ 1, following Donoho and Montanari (2016).

Under the dense linear model with n ≥ p, the soft-thresholding function

η(·; θ) is replaced by the identity function and the ratio ω = E[‖B0‖0] = 1.

Consequently, Algorithm 1 is adjusted to estimate

β̂k = arg min
β∈Rp

{ n∑
i=1

ρk(Yi −Xiβ)
}
,

where β is dense. It is trivial to show that Algorithm 1 still belongs to the

general recursion in Bayati and Montanari (2011a). For a single estimator

at iteration t denoted as β̂k,(t), the two state evolution parameters ζ̄2
k,(t) and

σ̄2
k,(t) coincide and Theorem 4.1 in Donoho and Montanari (2016) holds.

Theorem 2.3. Assume conditions (A1)–(A5) in Section 2.9 . Let n/p→
δ ≥ 1 when n, p→∞. For the asymptotic variance of the model-averaged

estimator β̂MA holds that

lim
n,p→∞

1

p

p∑
j=1

Var(β̂MA,j )
a.s
=

K∑
k1=1

K∑
k2=1

Cov(Zk1 , Zk2)
2∏
r=1

{wkrV 1/2(G̃kr ; F̃kr)}

(2.29)

for differentiable G̃, where V (G̃k;Fk) = (
∫
G̃2
kdFk)/(

∫
∂1G̃kdFk)

2 denotes

the Huber asymptotic variance formula for M-estimators.

For non-differentiable G̃, we replace V in (2.29) by the consistent estimator

V̂ (G̃k;Fk) = (
∫
G̃2
kdFk)/ν̂(bk)

2. The extra Gaussian component is identi-

fied in the convolution of the regression noise distribution and a Gaussian

distribution: F̃k = Fε ? N(0, ζ̄2
k).

Recall that the componentwise empirical distribution of β̂k(p), when

p → ∞, converges weakly to B0 + ζ̄kZk following Bayati and Monta-
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nari (2011a) and Donoho and Montanari (2016). Then for large p, while

the iteration t → ∞, β̂k(p) ∼ N(β, ζ̄2
kIp) (Donoho and Montanari, 2016;

Mousavi et al., 2013) with Ip the p×p identity matrix. The (k1, k2)th com-

ponent of the empirical variance matrix is denoted by
(
Σemp(p)

)
(k1,k2)

=

p−1
∑p

j=1(β̂k1,j − βj)(β̂k2,j − βj), which is unbiasedly estimated by

(
Σ̂emp(p)

)
(k1,k2)

=

p∑
j=1

(β̂k1,j −
1

p

p∑
j=1

β̂k1,j)(β̂k2,j −
1

p

p∑
j=1

β̂k2,j)/(p− 1).

Note that this estimator coincides with (2.27) for the special case that n ≥
p and the soft-thresholding function is replaced by the identity function.

2.6 Computational details

2.6.1 Regularized model-averaged quantile estimation

The estimation of the quantile uτk = F−1
ε (τk) follows a two-step procedure.

(i) Obtain an initial slope estimate β̂init and calculate the residuals.

Example initial slope estimates are the Lasso or regularized quantile

estimation with a single quantile level.

(ii) For k = 1, . . . ,K, estimate the quantile intercepts ûτk by taking the

corresponding τk × 100% quantile of the residuals from the previous

step.

The regularized model-averaged estimator is obtained by averaging over

K paralleled estimators. See Algorithm 2 for the pseudo code, of which

the core is Algorithm 1 in which the effective score function G is that for

a single quantile loss function using K = 1, see also Example 2 in Bradic

(2016). In our numerical work the upper bound for the number of iteration

steps T is set to be 50 in both the simulation and the data analysis sections.

With K = 1, this algorithm applies to the regularized composite estimator

too.
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Algorithm 2: RAMP algorithm for K paralleled estimations with
tuned α’s

1 Function KparallelRAMP(K):
2 for k in {1, . . . ,K} do

Initialization: β̂(αk,opt)← 0 ∈ Rp, β̃k(αk,opt)← 0 ∈ Rp

and AMSE(β̂k(αk,opt);β)← 0
3 for α in candidate set A do
4 singleRAMP(α) in Algorithm 1

if AMSE(β̂k(α);β) ≤ AMSE(β̂k(αk,opt);β) then

5 β̂k(αk,opt)← β̂k(α), β̃k(αk,opt)← β̃k(α),

AMSE(β̂k(αk,opt);β)← AMSE(β̂k(α);β)

6 end

7 end

8 end

9 return (β̂1(α1,opt), . . . , β̂K(αK,opt)),

(β̃1(α1,opt), . . . , β̃K(αK,opt)), and

(AMSE(β̂1(α1,opt);β), . . . ,AMSE(β̂K(αK,opt);β))

AMSE refers to the estimated version. The β̃ks are recorded for calculating the weights
in Corollary 2.1.
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The tuning parameter α of Algorithm 2 controls the sparsity of the es-

timators and requires a tuning procedure to choose it in practice. In Sec-

tion 2.7, we consider the one dimensional Golden-section search algorithm

(Kiefer, 1953) for tuning the value α in the range [αmin, αmax] that minimize

the estimated MSE of β̂ using the estimator derived in Section 2.5.2. The

upper bound αmax is chosen to be 2.3 for the simulations and data anal-

ysis. The lower bound αmin in the data analysis follows the lower bound

in Proposition 9.2 in Eldar and Kutyniok (2012) and is chosen to be the

unique non-negative solution to the equation (1+α2)Φ(−α)−αφ(α) = δ/2,

where φ(x) and Φ(x) denote the p.d.f and c.d.f of the standard normal dis-

tribution respectively. In the simulation study, the lower bound αmin is

chosen to be 1.3 for computational efficiency purpose, since the optimal

tuning parameter for those settings was rarely less than 1.3.

2.6.2 Optimization of the weights

To obtain the regularized model-averaged quantile estimations with the

AMSE-type weight derived in Corollary 2.1, we follow the following pro-

cedure:

(i) Obtain optimally tuned paralleled regularized quantile estimates, see

(2.13), (β̂τ1(α1,opt), . . . , β̂τK (αK,opt)), and the additional K estimates

(β̃τ1(α1,opt), . . . , β̃τK (αK,opt)) from the converged iterations using Al-

gorithm 2.

(ii) Estimate the AMSE-type optimal weight ŵMA,1 with constraints by

ŵMA,1 = arg min
w≥0,1>Kw=1

w>Σ̂0w (2.30)

where the K ×K matrix Σ̂0 is the consistent estimator of Theorem

2.2.

(iii) Obtain the regularized model-averaged estimate (2.2) with the esti-

mated AMSE-type optimal weight.
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It is worth mentioning that ŵMA,1 is a constrained version of wMA at-

taining the lower bound of the AMSE in Corollary 2.1. ŵMA,1 focuses

on approximating the lower bound of the AMSE of the sparse coefficient

vector β without assuming that the nonzero entries are selected perfectly;

whereas another type of weight choice derived in Bradic et al. (2011) and

Chapter 1 aims at the lower bound of the variance of the nonzero part of

β by imposing the perfect selection assumption. A numerical comparison

of these two types of weight choices is presented in Section 2.7.

To equip the regularized composite quantile estimator with the weight

minimizing the estimated AMSE we cannot make use of an analytical

solution to the weight minimization problem. Instead, a numerical search

for a better weight choice in the neighbourhood of an initial weight proposal

is employed. The basic idea is that the estimator β̂C(wC) is treated as a

function of the weights. We propose a collection of candidate weight vectors

in the neighbourhood of the weight chosen in the previous step. The weight

for β̂C(wC) is updated in each step by the one having the lowest estimated

AMSE, i.e.,

wC,1 = arg min
wcand

ÂMSE(β̂C(αopt;wcand);β).

A more detailed search procedure is as follows.

(i) Propose a reasonable initial weight vector wC,init, e.g. the vector of

equal weights; estimate β̂C at the initial weight wC,init and obtain

the estimate of AMSE
(
β̂C(αopt;wC,init);β

)
.

(ii) Initiate the searching step calculator sD = 0, the candidate optimal

weight wC,1 = wC,init, and the corresponding candidate minimum

MSE

AMSE(wC,1) = AMSE
(
β̂C(αopt;wC,init);β

)
estimated by the AMSE estimator in Theorem 2.2 for K = 1, the

collection of the used weight vectors Vw = {wC,1}.

(iii) Propose a set of candidate weight vectors Vwcand
, which excludes
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those recorded in the collection of the used weight vectors Vw, in the

neighbourhood of the current optimal weight wC,1. Rules of propos-

ing candidate weight vectors are user-decided; here, we consider a

(K − 1)-dimensional grid search centering at wC,1.

(iv) Obtain the regularized composite quantile estimates at all candidate

weight vectors in Vwcand
by Algorithm 2. Update the used weight

vector collection Vw, searching step calculator sV = sV + 1, the can-

didate optimal weight wC,1 by the weight with the lowest estimated

AMSE in Vw = {wC,1}, and the candidate minimum AMSE value

AMSE(wC,1).

(v) Stop the iteration if the searching step calculator sV > SV or the

candidate weight vector collection Vwcand
= ∅; otherwise repeat steps

3 and 4.

The pseudocode of the search procedure is stated in Algorithm 3.

2.7 Numerical results

2.7.1 Simulation study

In this section, we consider the following setup under the high dimensional

linear model setting.

(i) Fix the dimension p = 500, the sample size n = 250, the ratio δ = 0.5.

The number of non-zero components s is taken to be 5 for the high-

sparsity setting and 50 for the medium-sparsity setting; the non-

zero part is generated from the Dirac distribution with a point mass

equally distributed on -1 and 1, or a standard normal distribution.

(ii) In each repetition, we generate a new dataset by randomly generating

a sensing matrix X, a coefficient vector β, and an error vector ε. The

components of the sensing matrix X are independent and generated

from N(0, 1/250).
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Algorithm 3: Weight search for regularized composite estimator

1 Function Weight Search:
Initialization: Better weight recorder wC,1 ← wC,init, step

calculator sV ← 0, MSE recorder
AMSE(wC,1)← ÂMSE

(
β̂C(αopt;wC,init);β

)
,

and the collection of the used weight vectors
Vw = {wC,1}.

2 while searching step sV ≤ SV or candidate weight collection
Vwcand

= ∅ do
(i) Propose a new Vwcand

in the neighbourhood of wC,1. Rules of
proposing candidate weight vectors are user-decided; here, we
consider a (K − 1)-dimensional grid search centering at wC,1.

(ii) for wcand in Vwcand
∩ V{w do

Estimate β̂C(αopt;wcand) and ÂMSE
(
β̂C(αopt;wcand);β

)
if ÂMSE

(
β̂C(αopt;wcand);β

)
< AMSE(wC,1) then

wC,1 ← wcand,

AMSE(wC,1)← ÂMSE
(
β̂C(αopt;wcand);β

)
end

end

(iii) Update sV = sV + 1.

3 end

4 return wC,1, β̂(αopt, wC,1), and ÂMSE(β̂C(αopt;wcand);β)

A possible initial weight vector wC,init is the vector of equal weights or the weight

proposed in Bradic et al. (2011); β̂C is estimated by Algorithm 2, and AMSE(β̂C;β) is
estimated by (2.28).
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(iii) As error distributions, we take the standard normal N(0, 1), student-

t with degrees of freedom 3, and the mixture of normal distributions

0.5N(0, 1) + 0.5N(5, 9); errors generated in Step 2 are centered and

rescaled to have standard deviation 0.2.

The objective is to compare the performance of the regularized model-

averaged estimator and the composite estimator with different weights,

with emphasis on the weights where the selection uncertainty is taken into

account. The simulation is repeated 500 times for each setup. For both the

regularized model-averaged and composite quantile estimator, the weights

considered are

(1) The estimated AMSE-type weights (i.e. wMA,1 for the model-averaged

quantile estimator and wC,1 for the composite quantile estimator).

(2) The estimated weights based on minimizing the asymptotic variance

of the estimators of only the active set of coefficients, denoted by

wMA,2 (Bloznelis et al., 2019) and wC,2 (Bradic et al., 2011) where,

with the (k1, k2)th component of A being Ak1,k2 = min(τk1 , τk2){1−
max(τk1 , τk2)}, Aε = diag(fε(uτ1), . . . , fε(uτK )), and

aε = (fε(uτ1), . . . , fε(uτK ))>

wMA,2 = arg min
w,1>Kw=1,wk≥0

{
w>A−1

ε AA−1
ε w

}
(2.31)

and

wC,2 = arg min
w,a>ε w=1,wk≥0

[
w>Aw

]
.

Only considering the variance has been the standard practice so far.

(3) Equal weights 1/K for each component.

The number of quantiles K for both estimators is taken to be 3, with

quantile levels 25%, 50%, 75%.

We present the empirical MSEs of the abovementioned estimators for

estimation of three vectors of coefficients. First, we consider the estimator



2.7. Numerical results 69

of the subvector of the full coefficient vector that consists of only the non-

zero true coefficients, we refer to this as the “non-zero part”. Second, we

consider the estimator of the subvector of the coefficients that are truly

zero. This is referred to as the “zero part”. Third, we consider the full

vector of estimated coefficients. Note that some truly zero coefficients

might have a non-zero estimate, while some truly non-zero coefficients

might be estimated as zero. For each of these three vectors, “parts”, we

compare the estimated values with the true values to get

MSE(β̂part) =

ppart∑
jpart=1

(β̂jpart − βjpart)
2/ppart

for the appropriate part of the full vectors. Results for the regularized

model-averaged quantile estimator with different weights are presented in

Table 2.1. We observe that the model-averaged quantile estimator using

the weight in (2.30) has lower MSEs for estimating the non-zero part of

β and for the full vector β, and this for t3 and the mixture of normally

distributed errors in the high-sparse case where the number of non-zero

components s = 5. Using equal weights leads to a fair performance of the

model-averaged quantile estimator especially for estimating the all-zero

part of β. The Lasso estimator is considered as the baseline comparison

which from Table 2.1 seems to have a competitive performance, especially

in the medium sparsity settings. However, the Lasso mostly gives over-

sparse estimations, which can be observed in the top half of Table 2.2

summarizing the averaged true positive (TP) and true negative (TN) re-

covery rates which are defined as

TP (TN) =
number of correctly identified as non-zeros (zeros)

number of true non-zeros (zeros)

The Lasso has consistently the highest TN rate and mostly the lowest TP

rate. Further, while increasing the standard deviation of the errors, the

overly-sparse estimation of the Lasso becomes clearer, i.e., Lasso gives

sparser estimations and becomes all-zeros eventually. The regularized
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model-averaged estimator with equal weights mostly has the highest TP

rate, except for the medium sparsity settings where the non-zero part of

the true regression coefficient is sampled from a Dirac distribution at -1

and 1, and the errors are sampled from N(0, 1) or 0.5N(0, 1) + 0.5N(5, 9).

The model-averaged estimator with the weight in (2.30) has consistently

the second highest TN rate.

Since there is no analytical expression for the selection incorporated

weight of the regularized composite quantile estimator wC,1, the choice

of weights can only be determined numerically by an exhaustive search.

To reduce the searching time of the composite quantile estimator, we set

the stopping criterion SV to be 5 and only randomly select 4 points in

the neighbourhood Vwcand
; the tuning parameter α of the soft-thresholding

function is tuned once for the regularized composite quantile estimator

with the weight wC,2, then fixed thereafter.

Table 2.3 summarizes the empirical MSEs of the regularized composite

quantile estimator with different weights. Since the tuning parameter α

is selected for wC,2 and a fixed tuning parameter is used for obtaining

the regularized composite quantile estimates with other weights, it is not

surprising that using wC,2 leads to lower MSEs in most cases. However, it

is worth noticing that using equal weights, while α is not optimally tuned,

leads to fair performances of the regularized composite quantile estimator.

The Lasso estimator consistently has the lowest empirical MSEs recovering

the all-zero parts, through the largest empirical MSEs recovering the non-

zero parts. This is caused by overly sparse estimations of the Lasso, which

is indicated in the bottom half of Table 2.2. The regularized composite

estimator with locally optimized wC,1 consistently has the highest TP rate,

and second highest TN rate among all competitors, except the TN rate for

t3 distributed errors and TP rate for 0.5N(0, 1) + 0.5N(5, 9) distributed

errors, while the non-zero parts of β are generated from Dirac distribution

at -1 and 1.

Tables 2.2 and 2.3 illustrates that the regularized composite quantile

estimator mostly improves the performance of regularized single quantile
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fε part MSE(β̂ŵMA,1
) MSE(β̂ŵMA,2

) MSE(β̂ŵMA
eq

) MSE(β̂Lasso)

Non-zero part of β: Dirac distribution at -1 and 1 (∗: ×10−2, †: ×10−3, ‡: ×10−4)
s = 5 Non-zero 0.312 0.299 0.306 0.480
N(0, 1) Zero (‡) 6.812 6.436 5.276 0.526

Full vec (†) 3.790 3.630 3.585 4.854

t3

Non-zero 0.167 0.168 0.182 0.681
Zero (‡) 4.051 3.579 3.041 0.106

Full vec (†) 2.078 2.039 2.121 6.816

0.5N(0, 1)+
Non-zero 0.247 0.355 0.314 0.412
Zero (‡) 4.593 7.516 5.418 0.791

0.5N(5, 9) Full vec (†) 2.920 4.294 3.680 4.207
s = 50 Non-zero 0.487 0.502 0.526 0.376
N(0, 1) Zero (†) 5.498 4.438 3.675 5.710

Full vec (∗) 5.364 5.419 5.590 4.275

t3

Non-zero 0.399 0.427 0.452 0.384
Zero (†) 4.976 3.945 3.412 5.317

Full vec (∗) 4.436 4.630 4.832 4.318

0.5N(0, 1)+
Non-zero 0.504 0.517 0.540 0.371
Zero (†) 5.303 4.386 3.635 5.913

0.5N(5, 9) Full vec (∗) 5.514 5.566 5.724 4.241
Non-zero part of β: N(0,1) (∗: ×10−2, †: ×10−3, ‡: ×10−4)

s = 5 Non-zero 0.206 0.197 0.203 0.378
N(0, 1) Zero (‡) 5.624 5.683 4.439 0.158

Full vec (†) 2.613 2.537 2.465 3.800

t3

Non-zero 0.123 0.126 0.132 0.540
Zero (‡) 3.727 3.153 2.752 0.017

Full vec (†) 1.601 1.574 1.590 5.403

0.5N(0, 1)+
Non-zero 0.159 0.230 0.204 0.313
Zero (‡) 3.788 6.723 4.720 0.348

0.5N(5, 9) Full vec (†) 1.969 2.970 2.511 3.162
s = 50 Non-zero 0.257 0.256 0.265 0.216
N(0, 1) Zero (†) 3.377 2.835 2.401 2.445

Full vec (∗) 2.870 2.819 2.870 2.376

t3

Non-zero 0.201 0.207 0.216 0.244
Zero (†) 2.831 2.275 2.009 1.859

Full vec (∗) 2.264 2.278 2.336 2.611

0.5N(0, 1)+
Non-zero 0.275 0.278 0.285 0.220
Zero (†) 3.571 2.945 2.536 2.530

0.5N(5, 9) Full vec (∗) 3.076 3.049 3.077 2.423

Table 2.1: The mean, over 500 simulation repetitions, of the empirical
MSE of the regularized model-averaged quantile estimator with K = 3 for
three error distributions. Empirical MSEs are calculated for the non-zero
parts, all-zero parts, and the full vector of the true coefficient β. The non-
zero part of the true coefficient vector is generated from Dirac distribution
with point mass equally distributed on -1 and 1 (top half), or standard nor-
mal distribution (bottom half). Smaller values of MSE among competitors
indicate more accurate estimations.
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Table 2.2: The mean, over 500 simulation repetitions, of the true positive
(TP) and true negative (TN) rate of the regularized model-averaged (top
half) and composite (bottom half) quantile estimator with K = 3 for three
error distributions. The TP and TN rates of the regularized single quantile
estimator at quantile level 0.5 are presented in the 7th and 12th columns.
The non-zero part of the true coefficient vector is generated from Dirac
distribution with point mass equally distributed on -1 and 1 (left), or

standard normal distribution (right). Larger values of TP and TN
indicate a better identification power; the largest values among

competitors are highlighted in green, whereas the second largest values
are highlighted in yellow.
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fε part MSE(β̂ŵC,1
) MSE(β̂ŵC,2

) MSE(β̂ŵC
eq

) MSE(β̂Lasso) MSE(β̂0.5)

Non-zero part of β: Dirac distribution at -1 and 1 (∗: ×10−2, †: ×10−3, ‡: ×10−4)
s = 5 Non-zero 0.226 0.246 0.249 0.479 0.272
N(0, 1) Zero (‡) 6.566 7.119 7.199 0.571 11.641

Full vec (†) 2.906 3.163 3.202 4.847 3.752

t3

Non-zero 0.122 0.135 0.133 0.674 0.142
Zero (‡) 3.782 4.148 4.109 0.112 5.650

Full vec (†) 1.593 1.756 1.740 6.747 1.911

0.5N(0, 1)+
Non-zero 0.184 0.246 0.311 0.420 0.461
Zero (‡) 4.635 6.165 7.353 1.015 20.016

0.5N(5, 9) Full vec (†) 2.301 3.068 3.839 4.303 6.011
s = 50 Non-zero 0.342 0.359 0.367 0.384 0.310
N(0, 1) Zero (†) 8.722 9.273 9.536 5.572 4.368

Full vec (∗) 4.203 4.423 4.524 4.339 4.308

t3

Non-zero 0.280 0.294 0.298 0.398 0.598
Zero (†) 7.026 7.511 7.618 5.159 19.415

Full vec (∗) 3.429 3.617 3.663 4.443 5.709

0.5N(0, 1)+
Non-zero 0.358 0.376 0.385 0.375 0.318
Zero (†) 9.099 9.644 10.007 5.750 4.301

0.5N(5, 9) Full vec (∗) 4.403 4.631 4.751 4.268 4.360
Non-zero part of β: N(0,1) (∗: ×10−2, †: ×10−3, ‡: ×10−4)

s = 5 Non-zero 0.157 0.173 0.175 0.363 0.177
N(0, 1) Zero (‡) 3.782 4.311 4.327 0.220 9.528

Full vec (†) 1.946 2.153 2.178 3.655 2.555

t3

Non-zero 0.099 0.110 0.108 0.527 0.107
Zero (‡) 2.575 2.861 2.826 0.043 5.169

Full vec (†) 1.245 1.382 1.360 5.273 1.492

0.5N(0, 1)+
Non-zero 0.134 0.176 0.212 0.317 0.406
Zero (‡) 2.787 3.772 4.550 0.476 23.379

0.5N(5, 9) Full vec (†) 1.615 2.135 2.568 3.213 4.469
s = 50 Non-zero 0.174 0.182 0.186 0.216 0.230
N(0, 1) Zero (†) 4.925 5.220 5.369 2.299 3.970

Full vec(∗) 2.181 2.289 2.342 2.371 2.571

t3

Non-zero 0.130 0.138 0.139 0.236 0.168
Zero (†) 3.849 4.077 4.152 1.888 2.887

Full vec (∗) 1.645 1.744 1.765 2.531 1.925

0.5N(0, 1)+
Non-zero 0.189 0.198 0.205 0.214 0.236
Zero (†) 5.149 5.507 5.738 2.386 3.984

0.5N(5, 9) Full vec (∗) 2.354 2.476 2.562 2.353 2.776

Table 2.3: The mean, over 500 simulation repetitions, of the empirical
MSE of the regularized composite quantile estimator with K = 3 and the
regularized single quantile estimator at quantile level 0.5 for three error dis-
tributions. Empirical MSEs are calculated for the non-zero parts, all-zero
parts, and the full vector of the true coefficient β. The non-zero part of the
true coefficient vector is generated from Dirac distribution with point mass
equally distributed on -1 and 1 (top half), or standard normal distribution
(bottom half). Smaller values of MSE among competitors indicate more
accurate estimations.
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estimator. For the same simulations settings, we compare the averaged

empirical MSEs, true positive and true negative rates of the regularized

composite quantile estimator, see Tables 2.2, column 7 and 12, and 2.3,

column 7, with the single regularized quantile estimator at the median

τ = 0.5. For settings where s = 5, the composite quantile estimator clearly

dominates the single quantile estimator for all three error distributions. For

settings where s = 50, the composite estimator still mostly outperforms

the single quantile estimator, except for the following cases : (1) the MSE

for the non-zero and zero estimated subvector of β in settings where errors

are generated from N(0, 1) and 0.5N(0, 1) + 0.5N(5, 9) distribution and

the true non-zero subvector of β is generated from a Dirac distribution;

(2) TN rates in settings where errors are generated from N(0, 1) and t3

distribution and the true non-zero subvector of β is generated from N(0, 1).

Convergence rates for the model-averaged and composite estimator,

while setting the tolerance to be 10−6 for different error distributions are

included in Table 2.4.

(%) s = 10 s = 50

fε MAQR CQR MAQR CQR

N(0, 1) 76.39 89.84 69.30 86.42

t3 78.05 77.81 71.43 81.65

0.5N(0, 1) + 0.5N(5, 9) 77.00 86.38 71.43 85.08

Table 2.4: Convergence rates of both regularized model-averaged and com-
posite quantile estimator while the convergence tolerance is set to be 10−6.
The convergence rate of the regularized model-averaged estimator is cal-
culated by including only those of which all single quantile components
converge before 50 iterations.

2.7.2 Data analysis

We consider the example audio wave file of a waveshape from Octave in

the R package signal. The dataset is a list of 3 elements; the audio wave
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sample is a vector of 17380 entries stored in the element “sound”, the

sample rate is 22050 Hz stored in the element “rate”, and the resolution

of the wave file is 16 bits recorded in the element “bits”. To alleviate the

computational burden of the signal compression and reconstruction, we

only consider the signal from the 6145th entry to the 8192th entry of the

original sound wave signal.

The preprocessing – discrete wavelet transform

Originated from the compressed sensing problem, the sparse linear model

Y = Xβ + ε describes the image or signal compression. The s-sparse

p-dimensional input signal β is first compressed by a known sensing ma-

trix X ∈ Rn×p with n < p; the compressed signal vector Xβ ∈ Rn can

be corrupted by the noise ε with εi’s i.i.d. via transmission. Notice that

the p-dimensional input signal vector β is assumed to be s-sparse which

is usually unsatisfied by signals expressed in the standard basis. To ob-

tain the sparse representation of β in practice, an intermediate stage of

expressing the natural non-sparse vector β∗ in a proper orthonormal basis

Ψ∗ = (ψ∗1, . . . , ψ
∗
p) is required. Examples of such orthonormal basis include

the orthonormal wavelet basis, the Fourier basis, etc. To perform the dis-

crete wavelet transform, we use the R package wavethresh. The collection

of the coefficients at all resolution levels is used for further compression.

The artificially corrupted compression

To imitate the compressed sensing process, we process the audio wave

signal vector as follows:

(i) Perform the Daubechies’ least asymmetric wavelet transform with 8

vanishing moments using the wd function in the R package wavethresh

on the original signal β∗ ∈ R2048 and obtain the corresponding

wavelet coefficient vector β ∈ R2047 with p = 2047.

(ii) Randomly generate the sensing matrixX with i.i.d componentsXij ∼
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N(0, 1/n), where n = bδ′pc and δ′ is the undersampling ratio chosen

to be 0.5 here; compress the corresponding wavelet coefficients β by

computing Xβ.

(iii) Corrupt the compressed wavelet coefficients by error vector ε with

i.i.d. components εi following p.d.f fε; obtain the artificial observed

signal vector Y = Xβ+ε. Additionally, the standard normal N(0, 1),

student-t with 3 degrees of freedom, and the bimodal mixed normal

0.5N(0, 1)+0.5N(5, 9) are used as the corruption error distributions;

the errors are sampled according to the distributions first, then cen-

tered and rescaled to have standard deviation 0.03.

In practice, the artificial vector Y and the sensing matrix X are observed.

The accurate recovery of the original wavelet coefficient vector β is of

practical interest. To obtain an impression on the performance of the

AMSE-type optimal weight, we generate the sensing matrix X under a

fixed seed number which is set to be 1 in our case; then generate the

error vector ε under various seed numbers. However, we only present the

reconstructions under one seed for each setting in Section 2.7.2.

Signal recovery

To reconstruct the signal vector β expressed in the wavelet basis from the

sensing matrix X and the observed compressed signal vector Y corrupted

by potentially non-Gaussian distributed error ε, we consider the regular-

ized model-averaged and the composite quantile estimator weighting over

three equally-spaced quantiles (25%, 50%, 75%) using equal weights, the

oracle-type weights and the AMSE-type weights. The Lasso estimator is

considered as the baseline comparison. Notice that the regularized es-

timates β̂MA and β̂C after reconstruction are the representations in the

wavelet domain. To compare the accuracy of the reconstruction, we per-

form a back-transform on the estimates and obtain the corresponding sig-

nal vectors β̂∗MA and β̂∗C with representations in the natural basis.

Example reconstructions of the audio signal for K = 3 using the reg-
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Figure 2.2: Reconstructed audio signal from using the regularized model-
averaged estimator with the estimated AMSE-type weights in (2.30),
oracle-type optimal weights in (2.31), and equal weights. The original au-
dio curve is depicted in black. The Lasso reconstruction is presented at
bottom-right. The error used for corruption follows the mixture of normals
distribution 0.5N(0, 1) + 0.5N(5, 9).

ularized model-averaged estimator equipped with different weights, with

the baseline recovery from the Lasso represented in the natural basis are

presented in Figure 2.2 for the mixture of normals distributed error, and

in Figure 2.3 for the t3 distributed error. We observe that the strong sig-

nals corresponding to large values located at the end of the sound signal

are well captured by the model-averaged quantile estimator using different

weights for both error distributions. For the weak signals clustering at the

front of the signal, the model-averaged estimators using ŵMA,1 and equal

weights outperform the counterpart with ŵMA,2 for 0.5N(0, 1)+0.5N(5, 9)

distributed errors; recovery differences for the weak signals of the model-
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Figure 2.3: Reconstructed audio signal using the regularized model-
averaged estimator with the estimated AMSE-type weights in (2.30),
oracle-type optimal weights in (2.31), and equal weights. The original au-
dio curve is depicted in black. The Lasso reconstruction is presented at
bottom-right. The error used for corruption is t3 distributed.

averaged estimator using different weights are hardly observable for the t3

distributed errors. Recovery using the Lasso is competitive to the model-

averaged estimator using wMA,1 for strong signals. However, the Lasso

estimates the signals in an over-sparse way with too many zeros entries;

one can observe the almost flat recovery for the weak signals for both error

distributions.

Bates and Granger (1969) provide an alternative weight choice for the

model-averaged estimator obtained by considering only the variances of

β̂k’s and ignoring the covariances. This leads to

ŵMA,3 = arg min
w≥0,1>Kw=1

w>diag(Σ̂0,(t))w, (2.32)
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Figure 2.4: Reconstructed audio signal using the regularized model-
averaged estimator with Bates-Granger type weight in (2.32). The orig-
inal audio curve is depicted in black. The left figure uses t3 distributed
corruption error, while the figure on the right used 0.5N(0, 1) + 0.5N(5, 9)
distributed corruption error.

where diag(Σ̂0,(t)) denotes the diagonal matrix obtained from Σ̂0,(t) which

keeps the diagonal and has zeros in all off-diagonal entries. Figure 2.4 con-

tains the recovery of the audio signal using the model-averaged estimator

using this weight.

For the composite quantile estimator β̂C, we performed the same weight

searching method as for the simulation study. This is, SV = 5 and ran-

domly select 4 candidate weights in the neighbourhood of the previous

value. We select the tuning parameter α once for the starting weight ŵC,2,

it remains unchanged thereafter. The recovered signals by the composite

estimator with different weights are very similar in all cases.

To compare the recovery of the regularized model-averaged and compos-

ite estimator combined with different weights, as well as the Lasso estima-

tor, we present the mean absolute percentage error (MAPE) in Table 2.5

where the MAPE is defined as

MAPE(β̂, β) =
1

p

p∑
j=1

∣∣∣(β̂j − βj)/βj∣∣∣ (2.33)
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Notice that the MAPE in this Chapter has a different definition from the

MAPEτ , i.e., median absolute prediction error, in Chapter 1. Table 2.6

reports the MSE.

fε t3 0.5N(0,1) + 0.5 N(5, 9)

est: MA / C west,1 west,2 weq west,3 west,1 west,2 weq west,3

MAQR 3.177 3.339 3.341 3.005 2.934 5.746 3.722 4.152

CQR 2.798 2.730 2.671 - 6.100 6.090 6.462 -

Lasso 1.346 1.536

Table 2.5: The MAPE defined in (2.33) of the audio signal recovered
by the regularized model-averaged and composite estimators with different
weights, and the Lasso estimator. The seed number used to generated the
errors for corrupting the compressed signal vector is 37 for both t3 and
mixed normal distributed errors.

fε t3 0.5N(0,1) + 0.5 N(5, 9)

est: MA / C (×10−4) west,1 west,2 weq west,3 west,1 west,2 weq west,3

MAQR 1.286 1.288 1.274 1.304 2.044 2.417 2.051 2.006

CQR 1.279 1.273 1.271 - 2.363 2.068 2.120 -

Lasso 2.566 2.003

Table 2.6: The MSE of the audio signal recovered by the regularized
model-averaged and composite estimators with different weights, and the
Lasso estimator. The seed number used to generated the errors for cor-
rupting the compressed signal vector is 37 for both t3 and mixed normal
distributed errors.

We see that the Lasso has the lowest MAPE for both t3 and mixed nor-

mal distributed errors; at the same time, it estimates the weak signals in an

over-sparse way and is not capable of capturing the weak signals. Compar-

ing the effect of different weight choices on the regularized model-averaged

quantile estimator with its composite quantile counterpart, we see that the

MAPEs of the composite quantile estimators are fairly stable using differ-

ent weights. The model-averaged estimator with the AMSE-type weight

ŵMA,1 has a fair performance compared to the composite estimator, espe-
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cially for the mixed normal distributed error. The Bates-Granger weighting

provides good results regarding MAPE for the t3 error case, but not for

the mixed normal. Regaring MSE it performs well for the mixed normal

case, but is worst for the t3 errors, where in this example the equal weights

perform best, although all results are close. Searching for the selection

incorporated weight ŵC,1 for the regularized composite quantile estimator

is computationally infeasible for large p (2047 in our case). Estimating

the regularized model-averaged quantile estimator averaging 3 quantiles

here takes approximately 4 – 5 hours whereas estimating the regularized

composite quantile estimator takes more than 16 hours with only 5 steps

in a nearby search with 4 surrounding candidate weights, and the tuning

parameter α tuned only once for the starting weight.

Additionally, we present the estimated weights for both regularized

model-averaged and composite estimators in Table 2.7. An interesting

observation is made by comparing the estimated weights ŵMA,1 and ŵMA,2

for the mixed normal distributed error. The weight ŵMA,1 presented here

is quite representative; it assigns weight 0 to the quantile estimate at 50%

quantile level suggesting the final model-averaged estimate is obtained by

averaging estimates at 25% and 75% quantile levels. On the contrary,

ŵMA,2 assigns the largest weight to the estimate at 50% quantile level

indicating the largest contribution to the final model-averaged estimate.

fε est: MA / C MAQR CQR

t3
west,1 (0.156, 0.725, 0.119) (0.089, 0.492, 0.419)

west,2 (0.077, 0.650, 0.273) (0.314, 0.267, 0.467)

0.5N(0, 1)+ west,1 (0.548, 0, 0.452) (0.469, 0.495, 0.036)

0.5N(5, 9) west,2 (0.147, 0.843, 0.010) (0.369, 0.345, 0.286)

Table 2.7: The estimated weights ŵMA,1 and ŵMA,2 for the model-averaged
estimator, and ŵC,1 and ŵC,2 for the composite estimator. The seed num-
ber used to generated the errors for corrupting the compressed signal vector
is 37 for both t3 and mixed normal distributed errors.
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2.8 Discussion

This chapter is the first one to take the selection uncertainty due to regular-

ization into account when computing the weights used in model-averaged

and composite estimation. While we have studied both composite estima-

tion and model-averaged estimation, the flexibility of allowing for a parallel

computation and a component-specific choice of regularization, combined

with an explicit expression of the optimal weights for model averaging,

places this method in a preferred position from a computational point of

view.

It would be interesting to investigate whether AMSE expressions for

other types of regularization may be obtained in a similar fashion. Go-

ing yet one step further would be incorporating the effect of data-driven

values of the regularization parameters λ (for composite estimation) and

λ1, . . . , λK (for model-averaged estimation) on the choice of the weights.

To further study the weight selection and the effect of using data driven

weights, one should study the joint distribution of the estimated weights

and the estimators of interest. To simplify such matters, sample splitting

could be used such that the weights are computed on a hold-out sample

and the estimation using those weights proceeds on the rest of the sample.

In this chapter we used the same dataset for estimating both β and w.

To avoid overly complicated mathematical expressions, we followed ear-

lier literature in the use of a design matrix where Xij ∼ N(0, 1/n). Other

applications might require studying, for example, fixed designs, which is

beyond the scope of the current chapter.

2.9 Conditions

(A1) Design: The elements of the design matrix X, that is Xij for i =

1, . . . , p and j = 1, . . . , n, are independent and identically distributed

according to a N(0, 1/n) which is also called a standard Gaussian

design.
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(A2) Coefficients: The p-vector β is such that the sequence of uniform dis-

tributions that is placed on its components converges, for p tending

to infinity, to a distribution with a bounded (2k − 2)th moment for

k ≥ 2. Denote by B0 a random variable with this limiting distribu-

tion function FB0 .

(A3) Loss function: (i) The subgradient ∂ρ(u) =
∑3

j=1 vj(u) where v1 has

an absolutely continuous derivative, v2 is continuous and consists of

piecewise linear parts and is constant outside a bounded interval,

and v3 is a non-decreasing step function. Denote v′2(u) = αl and

v3(u) = γl when u ∈ (rl, rl+1] where α0 = αL = 0, −∞ = r0 < r1 <

. . . < rL < rL+1 = ∞ and −∞ = γ0 < γ1 < . . . < γL < γL+1 = ∞.

(ii) The subgradient’s absolute value |∂ρ(u)| is bounded for all u ∈ R.

(iii) h(t) =
∫
ρ(z − t)dFε(z) has a unique minimum at t = 0. (iv)

There exists a δ > 0 and η > 1 such that E[{sup|u|≤δ |v′′1(z + u)|}η]
is finite.

(A4) We assume that for some κ > 1,

(a) limp→∞Ef̂β
(B2κ−2

0 ) = EfB0
(B2κ−2

0 ) <∞

(b) limp→∞Ef̂ε(ε
2κ−2) = Efε(ε

2κ−2) <∞

(c) limp→∞Ef̂q0
(B2κ−2

0 ) <∞.

(A5) The regression errors ε1, . . . , εn and ε are i.i.d. random variables

with mean zero and finite 2nd moment. Assume ε has cumulative

distribution function Fε and probability density function fε. Let

Fε have bounded derivatives fε and ∂fε; further, let fε > 0 in the

neighbourhood of r1, . . . , rL in (A3).

Condition (A1) has been used by Bayati and Montanari (2011a); Donoho

and Montanari (2016); Bradic (2016), Condition (A2) has been used by

Bayati and Montanari (2011a); Bradic (2016); while conditions (A3) and

(A5) correspond to conditions (R) and (D) of Bradic (2016). Condi-

tion (A4) is used in Lemma 2.1, in addition to the moment condition

stated in (A2) and (A5). We take κ = 2 for Algorithm 1.
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2.10 Lemmas and Proofs

2.10.1 Auxiliary definitions and lemmas

Definition 1. (Pseudo Lipschitz function) A function φ : Rm → R is

pseudo-Lipschitz of order κ ≥ 1, if there exists a constant L > 0, such that

∀x, y ∈ Rm

|φ(x)− φ(y)| ≤ L(1 + ‖x‖κ−1 + ‖y‖κ−1)‖x− y‖.

It follows that if φ is a pseudo-Lipschitz function of order κ, then there

exists a constant L′ such that ∀x ∈ Rm : |φ(x)| ≤ L′(1 + ‖x‖κ).

Lemma 2.2 (Theorem 1 in Jameson (2014)). If xi ≥ 0 where i = 1, . . . , n

and p ≥ 1. Then

n∑
i=1

xpi ≤ (
n∑
i=1

xi)
p ≤ np−1

n∑
i=1

xpi .

The reversed inequality holds for p ∈ (0, 1)

Lemma 2.3 (Extrema of quadratic forms in Rao (1973)). Let A be a

m×m matrix , B be a m× k matrix, and U be a k-vector. Denote by S−

any generalized inverse of B>A−1B. Then

inf
B>X=U

X>AX = U>S−U

where X is a column vector and the infimum is attained at A−1BS−U .

Lemma 2.4 (Stein’s lemma in Stein (1981)). Let X1, X2 jointly Gaussian

distributed. Let g : R→ R be absolutely continuous with derivative ∂g and

E|∂g(X1)| <∞. Then

Cov(g(X1), X2) = Cov(X1, X2)E[∂g(X1)].

Lemma 2.5 (Lemma 4 in Bayati and Montanari (2011a)). Let κ ≥ 2

and a sequence of vectors {β(p)}p≥0 whose empirical distribution converges
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weakly to probability measure fB0 on R with bounded κth moment; addi-

tionally, assume that limp→∞Ef̂β
(Bκ

0 ) = EfB0
(Bκ

0 ). Then for any pseudo-

Lipschitz function ψ : R→ R of order κ:

lim
p→∞

1

p

p∑
j=1

ψ(βj)
a.s.
= E[ψ(B0)].

2.10.2 Proofs

Proof of (2.5)

Proof. By definition, the proximal mapping operator is the minimizer of

the function bρC(x) + 0.5(x− z)2 which is non-differentiable but subdiffer-

entiable, with subgradient b · ∂ρC(x) + x− z. Prox(z; b) is the minimizer if

and only if 0 ∈ {b · ∂ρC(x)|x=Prox(z;b) + Prox(z; b)− z}. We distinguish be-

tween intervals where ρC is differentiable and non-differentiable points. For

x ∈ (uτ` , uτ`+1
), ` = 0, . . . ,K the function ρC is differentiable. Using the

expression of the subgradient in (2.8), we obtain 0 = bh(`)+x−z, which is

solved for x to get that Prox(z; b) = z−bh(`). From Prox(z; b) ∈ (uτ` , uτ`+1
)

it follows that z ∈ (uτ` + bh(`), uτ`+1
+ bh(`)). For the non-differentiable

points, that is x = uτ` , ` = 1, . . . ,K, having 0 ∈ {b[h(`− 1), h(`)] + x− z}
leads to uτ` = Prox(z; b) ∈ [z − bh(`), z − bh(` − 1)]. This implies that

z ∈ [uτ` + bh(`− 1), bτ` + bh(`)].

Proof of (2.9)

Proof. By definition, G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b), and, see the Proof of

(2.5) hereabove, 0 ∈ {b · ∂ρ(x)|x=Prox(z;b) + Prox(z, b)− z. Without loss of

generality, we show the calculation for the cases where z < uτ1 + bh(0) and

where z ∈ [uτ1 + bh(0), uτ1 + bh(1)].

For z < uτ1+bh(0) it holds that Prox(z; b) = z−bh(0) < uτ1 , which leads

to ∂ρ(x)|x=Prox(z;b) = h(0). Hence, G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b) = bh(0).

Having z ∈ [uτ1 + bh(0), uτ1 + bh(1)] corresponds to taking the non-

differentiable point uτ1 = Prox(z; b), see the proof of (2.5). We have
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∂ρ(x)|x=Prox(z;b) ∈ [h(0), h(1)]. The subgradient ∂ρC is non-decreasing

(Condition (A3)) and linear. From (2.5) the proximal operator is also a

linear function. An intuitive choice for G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b) with

z ∈ [uτ1 + bh(0), uτ1 + bh(1)] is G̃(z; b) = z − bτ1 which keeps the linearity

of the composition of the two functions ∂ρ and Prox(·; b).

Proof of (2.15)

Proof. Bayati and Montanari (2011a, Theorem 2, Eq.(3.7)) states in our

notation that

lim
n→∞

1

n

n∑
i=1

ψ(εi − z(t),i, εi)
a.s.
= E[ψ(σ̄(t)Z, ε)], (2.34)

where ψ : R2 → R is any pseudo-Lipschitz function, Z ∼ N(0, 1), σ̄(t) from

(2.18), and ε as in (A5). Motivated by Eqs.(7.16) and (7.18) in Bradic

(2016) we take ψ(d, ε) = {G(ε− d; b(t))}2, with b(t) as in Algorithm 1, step

2. Applying (2.34) we obtain that as n→∞

1

n

n∑
i=1

G(εi − (εi − zi,(t)); b(t))2 =
1

n

n∑
i=1

G(zi; b(t))
2

a.s.→ E[G(ε− σ̄(t)Z; b(t))
2].

Estimation of ν(b)

The effective score step in Section 2.3.2, in cases where G(·; b(t)) is non-

differentiable, requires a solution b(t) to the equation 1 = ν̂(b(t)) where

ν̂(b(t)) is a consistent estimator of a population parameter ν(b(t)) defined

as

ν(b(t)) = E[∂1G̃(C(t); b(t))] = b(t)(δ/ω)E(∂[∂ρ{Prox(C(t); b(t))}])
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with C(t) = ε − σ̄(t)Z the random variable characterizing the limit distri-

bution of the adjusted residuals z(t) when p→∞.

Using Condition (A3) and Lemma 3 of Bradic (2016), ∂ρ can be written

as a sum of three functions of which v1 and v2 are differentiable. For the

step function v3, we use Condition (A3) on ρ, where γl is the step height

on the interval (rl, rl+1]. Let f
C(t)−G̃(C(t);b)

denote the density of the vari-

able C(t) − G̃(C(t); b) which is equivalent to Prox(C(t); b). The equivalence

is obtained by setting the derivative of the bρ(x) + 1
2(x − C(t))

2 w.r.t. x

to zero and evaluate at Prox(C(t); b), due to the fact that the proximal

operator is the minimizer of the function bρ(x) + 1
2(x − C(t))

2. Then we

arrive at

ων(b(t))

δb(t)
=

2∑
j=1

E[∂vj(C(t))]

+
L−1∑
l=1

γl{fC(t)−G̃(C(t);b(t))
(rl+1)− f

C(t)−G̃(C(t);b)
(rl)}.

The consistent estimator in (2.11) is obtained by replacing the expectation

above with the empirical mean and replacing the density of the proximal

operator Prox(C(t); b) with its kernel density estimator.

Proof of Lemma 2.1

Since this proof is based on the general recursion and Lemma 1 in Bayati

and Montanari (2011a), we first restate the general recursion to which

Algorithm 1 belongs with slight changes in the notations. Given the noise

ε ∈ Rn and the coefficient vector β ∈ Rp, the general recursion defined is

h(t+1) = X>m(t) − ξ1,(t)q(t), m(t) = g1,t(d(t), ε)

d(t) = Xq(t) − ξ2,(t)m(t−1), q(t) = g2,(t)(h(t), β)
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where

ξ1,(t) = n−1
n∑
i=1

∂1g1,(t)(d(t),i, εi),

ξ2,(t) = (δp)−1
p∑
j=1

∂1g2,(t)(h(t),j , βj).

Further, to connect the general recursion to Algorithm 1, we also state

the exact form of h(t+1),m(t), d(t), q(t) taken in Algorithm 1. Lemma 1 in

Bradic (2016) states that Algorithm 1 takes h(t+1) = β−X>G(z(t); b(t))−
β(t), q(t) = β(t) − β, from (2.6) z(t) = ε − d(t), which defines d(t),

m(t) = −G(z(t); b(t)) with the functions g1,(t)(x1, x2) = −G(x2 − x1; b(t)),

and g2,(t)(x1) = η(β−x1; θ)−β. To proceed with the proof of Lemma 2.1,

we first recall the technique used for proving Lemma 1 in Bayati and Mon-

tanari (2011a), which uses induction on the iteration t. To not fully repeat

the long proof and all notations we only give details about where our proof

differs from theirs.

(i) B(0): show properties (3.15), (3.17), (3.19), (3.21), (3.23) and (3.23)

of Bayati and Montanari (2011a) which are related to the vectors

b(0) and m(0), by conditioning on the σ-algebra D(0),(0) generated by

{β, ε, q(0)}; obtain the σ-algebra D(1),(0) by adding b(0) and m(0) to

the set S(0),(0) = {β, ε, q(0)}.

(ii) H1: show that the properties (3.14), (3.16), (3.18), (3.20), (3.22),

(3.24) and (3.25), which are related to the vectors h(1) and q(1), hold

by conditioning on the σ-algebra D(1),(0); obtain the σ-algebra D(1),(1)

by adding h(1) and m(1) to the set S(1),(0) = {β, ε, q(0), d(0),m(0)}.

(iii) B(t): Similar to B(0); the proof is conditioning on the σ-algebra D(t),(t)

for the set containing β, ε, q(0) and all previous obtained vectors;

obtain the new σ-algebra D(t+1),(t) by adding b(t+1) and m(t+1) to

the set.

(iv) H(t+1): Similar to H(1); conditioning on the σ-algebra D(t+1),(t) for
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the set containing β, ε, q(0) and all previous obtained vectors.

Assuming Lemma 1 in Bayati and Montanari (2011a) holds for all K es-

timators β̂k, k = 1, . . . ,K in (2.2), we add an additional step considering

the correlations between the estimators. The main technique is condition-

ing on the σ-algebra generated by ∪Kk=1Sk,(1),(0) and ∪Kk=1Sk,(t+1),(t), where

Sk,(1),(0) and Sk,(t+1),(t) are the sets described in step 2 and 4 above for

the kth estimator. The proof is similar to that of (3.16) in Lemma 1(b) of

Bayati and Montanari (2011a), with different mathematical techniques in

order to adjust the original proof from a single sequence of iterations to K

paralleled sequences of iterations.

Proof. Idea of the construction: The construction of B(0), H(0), B(t+1) and

H(t+1) depends on the space D(t+1),(t) which is the space generated by the

true coefficient β, the noise ε, the initial condition q(0), and the subsequent

terms generated from Algorithm 1. The proof by induction is similar to

the proof of Lemma 1(b) in Bayati and Montanari (2011a). We prove that

H(1) holds and if B(r),H(s) holds for all r ≤ t and s ≤ t, then H(t+1) holds.

Let ok,(t)(1) denote a vector in Rt for the kth estimator such that all of its

entries converge to 0 almost surely for p→∞.

Step 2 from Bayati and Montanari (2011a): H(1): We know from Bayati

and Montanari (2011a, Eq.(3.35)) that for each k and a Gaussian matrix

X̃k with the same distribution as the design matrix X, see also Bayati and

Montanari (2011a) Lemma 2 (1),

hk,(1)|Dk,(1),(0)

d
= (X̃k)

>mk,(0) + ok,(1)(1)qk,(0).

Let ak,j = ([(X̃k)
>mk,(0)]j+o1,k(1)qk,(0),j , βj) and ck,j = ([(X̃k)

>mk,(0)]j , βj)

where k = k1, k2. We first show that for any two k1, k2 ∈ {1, . . . ,K}.

lim
p→∞

1

p

p∑
j=1

[
ψ̃c(ak1,j)ψ̃c(ak2,j)− ψ̃c(ck1,j)ψ̃c(ck2,j)

]
= 0. (2.35)
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Since ψ̃c is κc order pseudo-Lipschitz, hence we have

|ψ̃c(ak,j)− ψ̃c(ck,j)| ≤ L{1 + max(‖ak,j‖κc−1, ‖ck,j‖κc−1)}|q0
k,j |o1,k(1);

|ψ̃c(ak,j)| ≤ L′(1 + ‖ak,j‖κc), |ψ̃c(ck,j)| ≤ L′′(1 + ‖ck,j‖κc);

meanwhile, from the proof in H0 in Lemma 1 in Bayati and Montanari

(2011a), we have for an arbitrary κc order pseudo-Lipschitz function ψ̃c

lim
p→∞

1

p

p∑
j=1

|ψ̃c(ak,j)− ψ̃c(ck,j)| = 0. (2.36)

Notice that

|ψ̃c(ak1,j)ψ̃c(ak2,j)− ψ̃c(ck1,j)ψ̃c(ck2,j)|

= |ψ̃c(ak1,j)ψ̃c(ak2,j)− ψ̃c(ak2,j)ψ̃c(ck1,j)

+ψ̃c(ak2,j)ψ̃c(ck1,j)− ψ̃c(ck1,j)ψ̃c(ck2,j)|

≤ |ψ̃c(ak2,j)||ψ̃c(ak1,j)− ψ̃c(ck1,j)|+ |ψ̃c(ck1,j)||ψ̃c(ak2,j)− ψ̃c(ck2,j)|.

Then we have

1

p

p∑
j=1

|ψ̃c(ak1,j)ψ̃c(ak2,j)− ψ̃c(ck1,j)ψ̃c(ck2,j)|

≤ 1

p

p∑
j=1

|ψ̃c(ak2,j)||ψ̃c(ak1,j)− ψ̃c(ck1,j)|+ |ψ̃c(ck1,j)||ψ̃c(ak2,j)− ψ̃c(ck2,j)|

≤ max
j
|ψ̃c(ak2,j)| ·

1

p

p∑
j=1

|ψ̃c(ak1,j)− ψ̃c(ck1,j)|

+ max
j
|ψ̃c(ck1,j)| ·

1

p

p∑
j=1

|ψ̃c(ak2,j)− ψ̃c(ck2,j)|

≤ L′2{1 + max
j

(‖ak2,j‖κc)}1

p

p∑
j=1

|ψ̃c(ak1,j)− ψ̃c(ck1,j)|

+L′′1{1 + max
j

(‖ck1,j‖κc)}1

p

p∑
j=1

|ψ̃c(ak2,j)− ψ̃c(ck2,j)|. (2.37)
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By (2.36), for k = k1, k2, p−1
∑p

j=1 |ψ̃c(ak,j)− ψ̃c(ck,j)| tends to 0 as p →
+∞. The remaining two factors are finite almost surely: [(X̃k)>mk,(0)]j

is a Gaussian random variable which is finite almost surely; β0,j is finite

almost surely since its limiting distribution has bounded moments up to

(2κ−2) by condition (A2). Hence, for any pairs k1, k2 ∈ {1, . . . ,K} (2.35)

holds.

From here, we consider h̃k,(1)|Dk,(1),(0)

d
= (X̃k)

>mk,(0) of which the com-

ponents have the same distribution as ‖mk,(0)‖Zk/
√
n for Zk ∼ N(0, 1).

Conditioning on Dk1,(1),(0) and Dk2,(1),(0), we use the strong law of large

numbers for triangular arrays in Theorem 3 of Bayati and Montanari

(2011a) to obtain that

lim
p→∞

1

p

p∑
j=1

{ 2∏
r=1

ψ̃c(h̃kr,(1),j , βj)− E(X̃k1
,X̃k2

)[
2∏
r=1

ψ̃c(h̃kr,(1),j , βj)]
}

a.s.
= 0.

(2.38)

We first prove (2.38). For k1 6= k2, we show that the condition in Theorem

3 of Bayati and Montanari (2011a) holds. To simplify the notation, we

denote the independent copies of the matrices X̃k1 , X̃k2 to be Xk1 , Xk2 .

We take the random variables in the triangular array to be

ψ̃c(h̃k1,(1),j , βj)ψ̃c(h̃k2,(1),j , βj)− E(X̃k1
,X̃k2

)[ψ̃c(h̃k1,(1),j , βj)ψ̃c(h̃k2,(1),j , βj)]

(2.39)

and let 0 < ρ < 1 then

1

p

p∑
j=1

E
∣∣∣ 2∏
r=1

ψ̃c(h̃kr,(1),j , βj)− E(X̃k1
,X̃k2

)[

2∏
r=1

ψ̃c(h̃kr,(1),j , βj)]
∣∣∣2+ρ

=
1

p

p∑
j=1

E(Xk1
,Xk2

,X̃k1
,X̃k2

)

[∣∣∣ψ̃c([X
>
k1
mk1,(0)]j , βj)ψ̃c([X

>
k2
mk2,(0)]j , βj)

−ψ̃c([X̃
>
k1
mk1,(0)]j , βj)ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
=

1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

>
k1
mk1,(0)]j , βj)ψ̃c([X

>
k2
mk2,(0)]j , βj)
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−ψ̃c([X
>
k1
mk1,(0)]j , βj)ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

+ψ̃c([X
>
k1
mk1,(0)]j , βj)ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

−ψ̃c([X̃
>
k1
mk1,(0)]j , βj)ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
≤ 1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

>
k1
mk1,(0)]j , βj)ψ̃c([X

>
k2
mk2,(0)]j , βj)

−ψ̃c([X
>
k1
mk1,(0)]j , βj)ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

∣∣∣2+ρ

+
1

p

p∑
j=1

E
∣∣∣ψ̃c([X

>
k1
mk1,(0)]j , βj)ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

−ψ̃c([X̃
>
k1
mk1,(0)]j , βj)ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
≤ 1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

>
k1
mk1,(0)]j , βj)

∣∣∣2+ρ

×
∣∣∣ψ̃c([X

>
k2
mk2,(0)]j , βj)− ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
+

1

p

p∑
j=1

E
[∣∣∣ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

∣∣∣2+ρ

×
∣∣∣ψ̃c([X

>
k1
mk1,(0)]j , βj)− ψ̃c([X̃

>
k1
mk1,(0)]j , βj)

∣∣∣2+ρ]
≤ 1

p

p∑
j=1

E
[∣∣∣L′(1 + |[X>k1

mk1,(0)]j |κc + |βj |κc
)∣∣∣2+ρ

×
∣∣∣ψ̃c([X

>
k2
mk2,(0)]j , βj)− ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
+

1

p

p∑
j=1

E
[∣∣∣L′(1 + |[X̃>k2

mk2,(0)]j |κc + |βj |κc
)∣∣∣2+ρ

×
∣∣∣ψ̃c([X

>
k1
mk1,(0)]j , βj)− ψ̃c([X̃

>
k1
mk1,(0)]j , βj)

∣∣∣2+ρ]
≤ max

j=1,...,p
E
[∣∣∣L′(1 + |[X>k1

mk1,(0)]j |κc + |βj |κc
)∣∣∣2+ρ]

×1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

>
k2
mk2,(0)]j , βj)− ψ̃c([(X̃k2)>mk2,(0)]j , βj)

∣∣∣2+ρ]
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+ max
j=1,...,p

E
[∣∣∣L′(1 + |[X̃>k2

mk2,(0)]j |κc + |βj |κc
)∣∣∣2+ρ]

×1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

>
k1
mk1,(0)]j , βj)− ψ̃c([X̃

>
k1
mk1,(0)]j , βj)

∣∣∣2+ρ]
.

For the first term in the last inequality above, we see that the expecta-

tion E[|L′(1 + |[X̃>k2
mk2,(0)]j |κc + |βj |κc)|2+ρ] is bounded by some constant,

since the expectation is with respect to the matrices Xk1 , Xk2 , X̃k1 , X̃k2 of

which the components are Gaussian distributed with mean 0 and variance

1/n; the rest terms are bounded by a constant; the moments of Gaussian

distributed r.v. are all finite. Let us denote the upper bound of this ex-

pectation by L′′, then the first term of the inequality above is bounded

by

L′′
1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

>
k2
mk2,(0)]j , βj)− ψ̃c([X̃

>
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
,

which can be shown to be bounded by cpρ/2 following a similar argument

as in Lemma 1(b) in Bayati and Montanari (2011a). The second term sim-

ilarly can be shown to be bounded by c′pρ/2. Hence the variable defined

in (2.39) satisfies the condition in Theorem 3 in Bayati and Montanari

(2011a); thus the a.s. convergence holds.

In the special case where k1 = k2, we show that the square of ψc is

still pseudo-Lipschitz of order 2κc ≤ κ, then the almost sure convergence

hold by directly applying the result in Lemma 1 in Bayati and Montanari

(2011a).

To simplify the notation, we use ψ to denote any pseudo-Lipschitz function

here. For any pairs x, y ∈ Rm, we have

|ψ2(x)− ψ2(y)|

≤ |ψ(x) + ψ(y)||ψ(x)− ψ(y)| ≤ (|ψ(x)|+ |ψ(y)|)|ψ(x)− ψ(y)|

≤ L
′
(1 + ‖x‖κ + 1 + ‖y‖κ) · L(1 + ‖x‖κ−1 + ‖y‖κ−1)‖x− y‖

≤ LL
′′
(1 + ‖x‖κ + ‖y‖κ)(1 + ‖x‖κ−1 + ‖y‖κ−1)‖x− y‖



94

CHAPTER 2. DETANGLING ROBUSTNESS IN HIGH
DIMENSIONS: COMPOSITE VERSUS MODEL-AVERAGED

ESTIMATION

≤ LL
′′
(1 + ‖x‖+ ‖y‖)2κ−1‖x− y‖

≤ LL
′′
3κ−1(1 + ‖x‖2κ−1 + ‖y‖κ−1)‖x− y‖.

Since κ ≥ 1, ‖x‖, ‖y‖ ≥ 0, the last two inequalities are obtained by ap-

plying the first and second inequality in Lemma 2, respectively. Hence,

the square of any arbitrary pseudo-Lipschitz function of order κ is still

pseudo-Lipschitz with order 2κ. This proves (2.38).

Using Lemma 2.5 for v = β and

ψ(βj) = E(X̃k1
,X̃k2

)ψ̃c(h̃k1,(1),j , βj)ψ̃c(h̃k2,(1),j , βj),

the following convergence holds

lim
p→∞

1

p

p∑
j=1

E(X̃k1
,X̃k2

)

[
ψ̃c(h̃k1,(1),j , βj)ψ̃c(h̃k2,(1),j , βj)

]
a.s.
= EB0

[
E(Zk1,(0),Zk2,(0))

[ 2∏
r=1

ψ̃c(‖
mkr,(0)√

n
‖Zkr,(0), B0)

]]
a.s.
= E

[ 2∏
r=1

ψ̃c(ζ̄kr,(0)Zkr,(0), B0)
]
.

Step 4 from Bayati and Montanari (2011a): Ht+1: Following the first

expression in the proof of Lemma 1(b) in step 4 in Bayati and Montanari

(2011a), for any index k = 1, . . . ,K

ψ̃c(hk,(1),j , . . . , hk,(t+1),j , βj)|Dk,(t+1),(t)

d
=

ψ̃c

(
hk,(1),j , . . . , hk,(t),j ,[ t−1∑
r=0

αrhk,(r+1) + (X̃k)
>mk,(t) + Q̃k,(t+1)ok,(t+1)(1)

]
j
, βj

)
.

The columns of Q̃k,(t+1) form an orthogonal basis for the column space of

Qk,(t+1) = [qk,(0) . . . qk,(t)]. Define the matrix Mk,(t) = [mk,(0) . . .mk,(t−1)],

the vector (mk,(t))‖ =
∑t−1

r=0 δrmk,(r) as the projection of mk,(t) on the
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column space of Mk,(t) and the vector (mk,(t))⊥ = mk,(t)−(mk,(t))‖. Similar

to the proof in H1, we first show that the error term Q̃k,(t+1)ok,(t+1)(1) can

be dropped. Let

ak,j =
(
hk,(1),j , . . . , hk,(t),j ,[∑t−1

r=0 δrhk,(r+1) + (X̃k)
>(mk,(t))⊥ + Q̃k′,(t+1)ok,(t+1)(1)

]
j
, βj

)
,

and ck,j =
(
hk,(1),j , . . . , hk,(t),j ,

[∑t−1
r=0 δrhk,(r+1) + (X̃k)

>(mk,(t))⊥

]
j
, βj

)
.

To show that the left hand-side of (2.37) is finite for the new ak,j and ck,j ,

it suffices to show that both maxj(‖ak2,j‖κc) and maxj(‖ck1,j‖κc) are finite

almost surely. By Lemma 2.2, we obtain the following inequality

max
j

(‖ak2,j‖κc) = max
j

(
C(

t∑
r=0

|hk2,(r+1),j |κc + |βj |κc)
)

≤ C
( t∑
r=0

max
j
|hk2,(r+1),j |κc + max

j
|βj |κc

)
for some constant C. The finiteness of maxj |βj |κc has been discussed

in H1; maxj |hk2,(r+1),j | is finite almost surely since Lemma 1 in Bay-

ati and Montanari (2011a) states that for a higher order l = k − 1,

lim
∑

p→∞ p
−1
∑p

j=1(hk2,(t+1),j)
2l <∞.

The almost-sure finiteness of maxj |hk2,(r+1),j | follows by a simple contra-

diction: assume P (maxj |hk2,(r+1),j | = ∞) = P (|hk2,(r+1),jmax
| = ∞) > 0,

then

P
(

sup
p′≥p

1

p′

p′∑
j=1

(hk2,(t+1),j)
2l <∞

)
= P

(
supp′≥p

p′−1
p′ ( 1

p′−1

∑
j 6=jmax

(hk2,(t+1),j)
2l) + 1

p′ (hk2,(t+1),jmax
)2l <∞

)
< 1.

The above equation contradicts the result in Lemma 1(e) in Bayati and

Montanari (2011a). Follow similar arguments, we have maxj(‖ck1,j‖κc)
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finite almost surely. Now we consider the random variable

Ãk,j = ψ̃c

(
hk,(1),j , . . . , hk,(t),j ,[∑t−1

r=0 δrhk,(r+1) + (X̃k)
>(mk,(t))⊥ + Q̃k,(t+1)ok,(t+1)(1)

]
j
, βj

)
.

Following arguments as in H1, it is easy to show that

lim
p→∞

1

p

p∑
j=1

[
Ãk1,jÃk2,j − E(X̃k1

,X̃k2
)Ãk1,jÃk2,j

]
a.s.
= 0. (2.40)

By Lemma 2.5 and arguments as in the proof of Lemma 1 (b) in Bayati

and Montanari (2011a),

lim
p→∞

1

p

p∑
j=1

ψ̃c

(
hk1,(1),j , . . . , hk1,(t),j ,

[ t−1∑
r=0

δk1,(r)hk1,(r+1) + (X̃k1)>(mk1,(t))⊥
]
j
, βj

)

×ψ̃c

(
hk2,(1),j , . . . , hk2,(t),j ,

[ t−1∑
r=0

δk2,(r)hk2,(r+1) + (X̃k2)>(mk2,(t))⊥
]
j
, βj

)
a.s.
= EB0E(Zk1,(0),...,Zk1,(t)

,Zk2,(0),...,Zk2,(t)
)[ 2∏

r=1

ψ̃c

(
ζ̄kr,(0)Zkr,(0), . . . , ζ̄kr,(t)Zkr,(t), B0

)]

= E

[ 2∏
r=1

ψ̃c

(
ζ̄kr,(0)Zkr,(0), . . . , ζ̄kr,(t)Zkr,(t), B0

)]
.

Proof of Corollary 2.2

Proof. The almost sure convergence holds by choosing ψ̃c(y(0), . . . , y(t), βj) =

ψc(y(t), βj) =
(
βj − y(t)

)
− βj in Lemma 2.1.
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Proof of Theorem 2.1

Proof. By Lemma 2.1 and choosing ψ̃c(y(0), . . . , y(t), βj) = ψc(y(t), βj) =

η(βj − y(t); θ(t))− βj which is a pseudo-Lipschitz function of order κc = 1

the convergence in (2.25) is obtained.

Proof of Theorem 2.2

Proof. Theorem 2 in Bayati and Montanari (2011a) showed that when as-

signing 1/p point mass to each entry of the vector, β̃k,j,(t−1)(p) converges

weakly to B0 + ζ̄k,(t−1)Zk for p → ∞ where Zk ∼ N(0, 1) and B0 has

p.d.f. fB0 . When p is large, β̃k,(t−1) | (B0 = β) ≈ N(β, ζ̄2
k,(t−1)Ip); the

normality comes from Zk ∼ N(0, 1). Similar results for the Lasso esti-

mator can be found in Bayati et al. (2013) and Donoho and Montanari

(2016). The normality of β̃k,(t−1) ensures that the Stein’s unbiased risk

estimate is applicable for constructing the AMSE estimator. We choose µ,

x, µ̂(x) and g(x) in Lemma 2.4 to be β, β̃k,(t−1), η(β̃k,(t−1); θk,(t−1)) and

(η(β̃k,(t−1); θk,(t−1))− β̃k,(t−1)), respectively. Recall that η(β̃k,(t−1); θk,(t−1))

refers to applying the soft-thresholding function with parameter θt to each

entry of the vector β̃(t−1). Then the function η(·; θk,(t−1)) is weakly dif-

ferentiable with the derivative defined almost everywhere on Rp except at

−θk,(t−1) and θk,(t−1) in each coordinate.

Next, consider any pair (k1, k2) with k1, k2 ∈ {1, . . . ,K}. The conditional

normality holds for β̃kr,(t−1) (r = 1, 2). Each component of the sequence

β̃kr,(t−1) is independent of the remaining entries. Hence, the dependence

between β̃k1,(t−1) and β̃k2,(t−1) comes from the entry-wise dependence of the

two variables. In other words, there is only dependence between β̃k1,(t−1),j1

and β̃k2,(t−1),j2 when j1 = j2. The covariance between the two sequences is

ζ̄(k1,k2),(t−1) = Cov(β̃k1,(t−1), β̃k2,(t−1)).

For β̃kr,(t−1),−j the vector obtained by excluding the jth entry of β̃kr,(t−1)

we can easily check that the function f(x, β̃kr,(t−1),−j) : x →
(
η(x; θ) −

x
)

is univariate and satisfies the condition in Lemma 2.4 (Stein, 1981).
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Meanwhile, since ζ̄2
emp,(t) = ζ̄2

emp,(t−1)+o(1) by assumption, θkr,(t) = αζ̄kr,(t)

where α is fixed for the different iterations, we obtain

lim
p→∞

1

p

p∑
j=1

| β̂kr,(t),j − β̂kr,(t−1),j |

a.s
= E | η(B0 + ζ̄kr,(t)Zkr,(t),j ; θkr,(t))− η(B0 + ζ̄kr,(t−1)Zkr,(t−1),j ; θkr,(t−1)) |

= E | η(B0 + ζ̄kr,(t)Zkr,(t),j ; θkr,(t))

−η(B0 + ζ̄kr,(t)Zkr,(t−1),j ; θkr,(t)) + o(1) |

= 0.

The almost sure convergence holds by Lemma 1(b) (Bayati and Montanari,

2011a). The next equality holds by ζ̄2
(t) = ζ̄2

(t−1) + o(1) and the definition

of θkr,(t). The last equality holds because both Zkr,(t−1),j and Zkr,(t),j

are standard Gaussian distributed. Thus, β̂kr,(t),j − β̂kr,(t−1),j |(B0 = βj)

converges to 0 almost surely. Further, by (2.13), β̂kr,(t−1),j − β̃kr,(t−1),j
d
=

ζ̄kr,(t−1)Zk,j where Zkr,j ∼ N(0, 1). Then,

β̂kr,(t),j − β̃kr,(t−1),j

= (β̂kr,(t),j − β̂kr,(t−1),j) + (β̂kr,(t−1),j − β̃kr,(t−1),j)
d
= ζ̄kr,(t−1)Zk,j ,

where β̂kr,(t),j = η(β̃kr,(t−1),j ; θkr,(t−1)), by Slutsky’s theorem. Next, Stein’s

lemma is applied. We denote by Aj , conditioning on (B0 = βj) and

β̃kr,(t−1),−j , r = 1, 2. It holds that

E
[
{η(β̃k1,(t−1),j ; θk1,(t−1))− β̃k1,(t−1),j}(β̃k2,(t−1),j − βj)|Aj

]
= Cov

(
η(β̃k1,(t−1),j ; θk1,(t−1))− β̃k1,(t−1),j , β̃k2,(t−1),j |Aj

)
= Cov(β̃k1,(t−1),j , β̃k2,(t−1),j |Aj)E

[
∂1η(β̃k1,(t−1),j ; θk1,(t−1))− 1|Aj

]
.

Below we condition everywhere on B which denotes the event that B0,j =

βj for j = 1, . . . , p where B0,j are independent copies of B0. Taking expec-
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tation w.r.t. β̃kr,(t−1),−j , we obtain for the whole vector,

E
[
{η(β̃k1,(t−1); θk1,(t−1))− β̃k1,(t−1)}(β̃k2,(t−1) − β)|B

]
= ζ̄(k1,k2),(t−1)E

[
∂1η(β̃k1,(t−1); θk1,(t−1))− 1p|B

]
E
[
{η(β̃k2,(t−1); θk2,(t−1))− β̃k2,(t−1)}(β̃k1,(t−1) − β)|B

]
= ζ̄(k1,k2),(t−1)E

[
∂1η(β̃k2,(t−1); θk2,(t−1))− 1p|B

]
.

Next, we show the construction of the estimator for (Σ0)(k1,k2),(t) at itera-

tion t. The product-sign notation
∏2
r=1 vr = v>1 v2.

E
[
(β̂k1,(t) − β)>(β̂k2,(t) − β)|B

]
= E

[ 2∏
r=1

{η(β̃kr,(t−1); θkr,(t−1))− β}|B
]

= E
[ 2∏
r=1

{η(β̃kr,(t−1); θkr,(t−1))− β̃kr,(t−1)}|B
]

+ E
[ 2∏
r=1

(β̃kr,(t−1) − β)|B
]

+E
[
{η(β̃k1,(t−1); θk1,(t−1))− β̃k1,(t−1)}>(β̃k2,(t−1) − β)|B

]
+E
[
(β̃k1,(t−1) − β)>{η(β̃k2,(t−1); θk2,(t−1))− β̃k2,(t−1)}|B

]
= E

[ 2∏
r=1

{η(β̃kr,(t−1); θkr,(t−1))− β̃kr,(t−1)}|B
]

+ ζ̄(k1,k2),(t−1)

+ζ̄(k1,k2),(t−1)

2∑
r=1

E
[
∂1η(β̃kr,(t−1); θkr,(t−1))− 1p|B

]
= −ζ̄(k1,k2),(t−1) + E

[ 2∏
r=1

{η(β̃kr,(t−1); θkr,(t−1))− β̃kr,(t−1)}|B
]

+ζ̄(k1,k2),(t−1)

2∑
r=1

E
[
∂1η(β̃kr,(t−1); θkr,(t−1))|B

]
.

Replacing the expectations and the covariance ζ̄(k1,k2),(t−1) with their corre-

sponding empirical versions leads to the unbiased estimator of
(
Σ0

)
(k1,k2),(t)

,

(
Σ̂0,(t)(p)

)
(k1,k2)

= −ζ̄emp,(k1,k2),(t−1)
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+
1

p

p∑
j=1

2∏
r=1

{
η(β̃kr,(t−1),j ; θkr,(t−1))− β̃kr,(t−1),j

}

+
ζ̄emp,(k1,k2),(t−1)

p

p∑
j=1

2∑
r=1

I
{
|β̃kr,(t−1),j | ≥ θkr,(t−1))

}
.

The consistency of the estimator (Σ̂0,(t)(p))(k1,k2) follows since

lim
p→∞

(
Σ̂0,(t)(p)

)
(k1,k2)

= lim
p→∞

(
Σ0,(t)(p)

)
(k1,k2)

=
(
Σ(t)

)
(k1,k2)

holds with probability one for for all k1, k2 = 1, . . . ,K. The first equality

follows by the unbiasedness of
(
Σ̂0,(t)(p)

)
(k1,k2)

for (Σ0,(t)(p))(k1,k2), and

the second equality holds by Lemma 2.1. The proof is completed by re-

alizing the above equality shows almost sure convergence which indicates

convergence in probability.

Proof of Theorem 2.3

Proof. Under the assumption that n > p, the model-averaged estimator is

unbiased. Hence

AMSE(β̂MA, β) = lim
n,p→∞

1

p

p∑
j=1

Var(β̂MA,j )
a.s.
= w>Σ(∞)w, (2.41)

where Σ(∞) is a K ×K matrix with (k1, k2)th component

(
Σ
)

(k1,k2)
= E

[
{I(B0 + ζ̄k1Zk1)−B0}{I(B0 + ζ̄k2Zk2)−B0}

]
= Cov

(
ζ̄k1Zk1 , ζ̄k2Zk2

)
= Cov(Zk1 , Zk2)ζ̄k1 ζ̄k2 . (2.42)

Combining (2.19) and (2.20), we obtain that

ζ̄k = δ
{
E
[
G̃(ε+ ζ̄kZk; bk)

2
]}1/2

=
{
E
[
G̃(ε+ ζ̄kZk; bk)

2
]}1/2{

E
[
∂1G̃(ε+ ζ̄kZk; bk)

]}−1
. (2.43)
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The expressions of the asymptotic variance of the model-averaged estima-

tor in Theorem 2.3 hold by combining (2.41), (2.42), and (2.43).





Chapter 3

Componentwise confidence

intervals and hypothesis

testing in high dimensions –

a computational approach

Recent literature on debiasing (desparsifying) the regularized

estimators focuses on the debiased Lasso estimator and uses

it to construct confidence intervals and hypothesis tests. In

this chapter, we deeper investigate the estimator β̃ from the

robust approximate message passing algorithm, see Chapter 2.

Based on the asymptotic normality of the estimator β̃, we pro-

pose a computational approach constructing componentwise

confidence intervals and hypothesis tests for the coefficients

of sparse high dimensional models with growing dimensions.

Numerical results show that the constructed componentwise

confidence intervals and hypothesis tests have reasonable accu-

racy, especially in high-sparsity settings. In addition, a residual

103
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bootstrap procedure is proposed for improving the accuracy of

the confidence intervals and hypothesis tests in medium spar-

sity settings with small sample sizes.

This chapter is based on

Zhou, J. and Claeskens G. (2020). Componentwise confidence

intervals and hypothesis testing in high dimensions – a com-

putational approach. Technical report.

3.1 Introduction

Due to the simultaneous selection and estimation aspects of regularized

procedures it is challenging to study the asymptotic properties of the re-

sulting estimators. Indeed, at first the literature focused only on properties

of the non-null part of the estimators, resulting in so-called oracle proper-

ties where one assumed that the selection has been done perfectly, e.g. Zou

(2006). That is, one assumes that all true zero coefficients have been dis-

carded by applying the regularization and that all true non-zero coefficients

have been estimated by a non-zero value. Later, studying compressed

sensing, Donoho et al. (2009); Bayati and Montanari (2011a); Donoho and

Montanari (2016) found that the mean squared error of regularized esti-

mators (the full vector, not only the non-zero part) could be obtained by

using another estimation scheme, namely the approximate message passing

algorithm. While such algorithm produces another estimator, that estima-

tor converges to the regularized estimator in mean-square (provided some

choices regarding tuning parameters hold), see discussion after (2.21) in

Section 2.4 in Chapter 2. In Chapter 2 we followed Bradic (2016) in the

construction of a robust approximate message passing algorithm in order

to investigate the mean squared error of estimators resulting from mini-

mizing an objective function formed by using a convex non-differentiable

loss function in combination with an l1-regularization. See Chapter 2 for a

study of the mean squared error of regularized composite estimators and

of model-averaged regularized estimators for high dimensional data. We
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explicitly showcased the method for high dimensional quantile regression.

As a by-product of constructing the estimator via the (robust) approx-

imate message passing algorithm, there is another sequence of estimators

(one estimator for each iteration of the algorithm), which possesses in-

teresting properties regarding bias and which can be compared to the

debiased estimators that have been constructed earlier. Javanmard and

Montanari (2014a); van de Geer et al. (2014) worked in high dimensional

linear models with homoscedastic Gaussian errors and studied a debiasing

(or desparsification) of the l1-regularized least squares estimator, i.e. the

Lasso estimator. The desparsified estimator in van de Geer et al. (2014)

is obtained by inverting the Karush–Kuhn–Tucker characterization of the

Lasso estimator. The debiased estimator in Javanmard and Montanari

(2014a) is obtained by adding a term proportional to the subgradient of the

l1-regularizer of the Lasso method. Both approaches showed the asymp-

totic normality of the debiased (desparsified) Lasso assuming the spar-

sity s, the number of true non-zero coefficients, is of order o(
√
n/ log p),

and the sample size requirement for the asymptotic properties to hold is

s2 log p/n→ 0 for constructing confidence regions. A joint coverage prob-

ability for multiple confidence intervals is taking care of by adjusting the

nominal levels via a conservative Bonferroni correction method. Relaxing

the sparsity condition o(
√
n/ log p) in the above-mentioned work, Javan-

mard and Montanari (2018) showed that the debiased Lasso estimator is

asymptotically Gaussian under s = o(n/(log p)2). Li (2017) proposed a

bootstrap double debiased Lasso estimator to further improve the sample

size condition to n � max{s log p, (s̃ log p)2}, where s̃ is the number of

coefficients with magnitudes less than a certain threshold proportional to√
log p/n. The desparsification of the l1-regularized estimators, on the one

hand, reduces the bias caused by the shrinkage effect of the regularization

and on the other hand, obtains an estimator with a limiting normal distri-

bution, not being hindered by the presence of zeros for the components of

the parameter vector that did not survive the selection.

While a study of the asymptotic mean squared error of the l1-regularized
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estimator is taken care of by an application of the RAMP algorithm, see

Chapter 2, in this chapter we focus on a study of a debiased, or bias-

corrected estimator obtained from the RAMP algorithm. We use this esti-

mator to construct confidence intervals for components of the parameter,

and for the construction of hypothesis tests. The quantile loss function

is considered again as a working example. We evaluate the component-

wise confidence intervals and hypothesis tests by both simulated data and

audio signals. The method works well in the sense that the constructed

confidence intervals and hypothesis tests are observed to have simulated

coverage probabilities, respectively type I errors, close to the nominal val-

ues already when the sample size is small in settings with high sparsity.

The literature is not only limited to debiasing the Lasso estimators

obtained from least squares loss functions. A popular robust alternative

is to use quantile loss functions (Koenker and Bassett, 1978b; Koenker,

2005b). Debiasing the regularized quantile estimator was investigated in

Zhao et al. (2014, 2019); Bradic and Kolar (2017). Zhao et al. (2014) con-

sidered a very similar debiasing procedure as in Javanmard and Montanari

(2014a) for l1-regularized composite quantile estimator by using a consis-

tent approximation of the inverse of the covariance matrix of the predictive

variables. The debiased estimator was used to construction confidence in-

tervals. Simultaneous confidence intervals are constructed similar to Zhang

and Cheng (2017) by using a Gaussian multiplier bootstrap. Alternatively,

the debiasing term in Bradic and Kolar (2017) consists of the quantile loss

function, an inverse of the covariance matrix of the predictive variables,

and an estimator of the sparsity function (Tukey, 1965), which is shown to

be equivalent to the derivative of the quantile function in Koenker (2005b).

To estimate the sparsity function, the high dimensional rank score was de-

veloped. Further, uniform confidence bands were constructed based on a

Bahadur representation of the debiased estimator.

Recent developments on simultaneous hypothesis testing also consider

bootstrap procedures to accompany the debiasing approach. Belloni et al.

(2018) construct simultaneous confidence bands for parameters of interest
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in moment condition models with functional response data by bootstrap-

ping only the linearized part of the asymptotic linear expansion of the bias.

The moment condition models assume that the observations are generated

by a known function with some parameters, and the expectation of the

data generating function is equal to zero. A special case of the moment

condition model is the l1-regularized M-estimator. Similarly, Zhang and

Cheng (2017) focuses on the debiased Lasso estimator which is asymp-

totically normal centering at the true coefficient vector. They bootstrap

only the linearized part of the remainder term of the difference of debi-

ased estimator and the true coefficients. They proposed for sparse high

dimensional linear models with non-Gaussian distributed errors, a simul-

taneous test statistic performing multiple two-sided hypothesis tests. The

test statistic is shown to be asymptotically nonconservative as compared

to the Bonferroni adjustment in van de Geer et al. (2014); Javanmard and

Montanari (2014a). Dezeure et al. (2017) proposed to construct the test

statistic for the same multiple two-sided hypothesis tests in Zhang and

Cheng (2017) using residual bootstrap, the non-Gaussian multiplier wild

bootstrap, or the xyz-paired bootstrap for both homoscedastic and het-

eroscedastic residuals. Different from Zhang and Cheng (2017); Belloni

et al. (2018), the method by Dezeure et al. (2017) considered bootstrap-

ping the entire de-sparsified estimator; and the sparsity assumption on the

design matrix was shown to be weaker than in Zhang and Cheng (2017).

In this chapter we propose to use a residual bootstrap procedure to

improve the accuracy of the confidences intervals and hypothesis tests in

medium sparsity settings.

Different from the previous literature, our approach relies heavily on

the RAMP algorithm. Bradic (2016) incorporated arbitrary convex non-

differentiable loss function to the general recursion in Bayati and Monta-

nari (2011a), and the resulting algorithm approximates the l1-regularized

M-estimators. Chapter 2 (see also Zhou et al., 2019) further discussed the

model-averaged version of Bradic (2016). However, the above two papers

mainly focus on the asymptotic mean squared error (AMSE) of the regu-
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larized estimators. A sequence at iteration t denoted as β̃(t) in Chapter 2,

Section 2.3.2, (2.13) was shown to be asymptotically normal centering at

the true regression coefficient vector, see Section 2.5.2 before Corollary 2.2.

Similar asymptotic normality of the sequence β̃(t) with iteration index t in

the AMP algorithm approximating the Lasso estimator, which is a spe-

cial case of the l1-regularized M-estimator, was argued in Mousavi et al.

(2013, 2018); Javanmard and Montanari (2018). However, the above two

works only used the asymptotic normality of β̃(t) for deriving a Stein-type

estimator for the AMSE.

In this chapter, we further investigate the sequence β̃(t), t = 1, 2, . . .

at convergence. Based on the asymptotic normality of the converged esti-

mator β̃, the confidence intervals and individual hypothesis tests are con-

structed componentwise for the true regression coefficient vector β. Multi-

ple tests testing a group of individual hypothesis tests, are adjusted using

a Holm-Bonferroni correction. Additionally, we consider the bootstrap in

small sample cases.

3.2 Setup

We consider the same sparse high dimensional linear model Y = Xβ + ε

as in Chapter 2, Section 2.2 with Y, ε ∈ Rn, β = (β1, . . . , βp)
> ∈ Rp, X ∈

R
n×p satisfying assumptions Condition (A1) - Condition (A5) in Chap-

ter 2, Section 2.9. The components of ε are independent and identically

distributed with cumulative distribution function Fε and density function

fε. The random variable B0 has distribution FB0 to which βj , j = 1, . . . , p

converges by assigning 1/p point mass to each component of β. We de-

note the number of non-zero components of β by its l0 norm s = ‖β‖0;

and we assume that the ratios n/p → δ ∈ (0, 1), n/s → a ∈ (1,∞),

s/p→ ω = P (B0 6= 0) when n, p, s→∞.

We define l1-regularized M-estimator β̂ as the solution to the following
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minimization problem, that is,

β̂(λ) = arg min
β∈Rp

{
n∑
i=1

ρ(Yi −X>i· β) + λ‖β‖1

}
, (3.1)

where the nonnegative convex possibly non-differentiable loss function ρ

satisfies Condition (A3). As in Chapter 2, we consider the (robust) approx-

imate message passing algorithm (Bradic, 2016; Zhou et al., 2019; Bayati

and Montanari, 2011a; Donoho and Montanari, 2016; Donoho et al., 2009)

to obtain a sequence of estimators β̂(t), with iteration number t = 1, 2, . . .,

with the estimator at convergence denoted by β̂.

For completeness, we here briefly revise the main ingredients of this

algorithm. To incorporate non-differentiable loss functions, the proximal

mapping operator (Donoho and Montanari, 2016) with parameter b > 0 is

used to adjust the residuals in the algorithm,

Prox(z, b) = arg min
x∈R
{bρ(x) +

1

2
(x− z)2}, b > 0;

and the effective score function (Donoho and Montanari, 2016) G̃(z; b) =

b · ∂ρ(x)|x=Prox(z;b), where ∂ρ(x) = {y : ρ(u) ≥ ρ(x) + y(u− x),∀u} is the

subgradient at non-differentiable points x and the gradient at differentiable

points. To incorporate the sparsity s, the rescaled effective score function

is defined as

G(z; b) = δω−1G̃(z; b).

The RAMP algorithm, with a fixed tuning parameter α and iterations

indexed by t, starts from β̂(0) = 0 and updates iteratively using the follow-

ing three steps:

Step 1 Adjusted residuals: adjust the empirical residuals by

z(t) = Y −Xβ̂(t)+

n−1G(z(t−1); b(t−1))
∑p

j=1 I
{
η
(
β̂(t−1),j +X>j G(z(t−1); b(t−1)); θt−1

)
6= 0
}

;
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with X·j being the jth column of X, I denotes the indicator function,

and the soft-thresholding function η(x; θ) = sign(x) ·max(|x| − θ, 0).

Step 2 Effective score: choose the scalar b(t) such that the empirical aver-

age of the rescaled effective score function G(z; b) has slope 1; update

the tuning parameter θ(t) = αζ̄emp,(t) where

ζ̄2
emp,(t) =

1

n

n∑
i=1

G(zi,(t); b(t))
2, (3.2)

with a limit version, when n, p→∞, denoted by

ζ̄2
(t) = E

[
G(ε+ σ̄(t)Z; b(t))

]
, (3.3)

with

σ̄2
(t) = δ−1E[(η(B0 + ζ̄(t−1)Z; θ(t−1))−B0)2],

where Z ∼ N(0, 1), B0 is defined in Condition (A2), and ε is defined

in Condition (A5).

Step 3 Estimation: update the estimator of β

β̂(t+1) = η(β̃(t); θ(t)), where β̃(t) = β̂(t) +X>G(z(t); b(t)). (3.4)

Since a bias is introduced by applying the soft-thresholding function η in

Step 3, the estimator β̃(t) which is obtained before applying the threshold-

ing can be interpreted as a debiased estimator. This estimator is of main

interest in this chapter.

3.3 Componentwise confidence intervals

Instead of the sequence β̂(t) indexed by iteration t, the main focus of this

chapter is the other sequence β̃(t) in (3.4) in the three-steps iteration of

the RAMP algorithm, which was argued in Chapter 2, Section 2.5.2, be-

fore Corollary 2.2 to converge weakly to B0 + ζ̄(t)Z(t), n, p → ∞, where
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B0 is defined in Condition (A2), ζ̄(t) is the square-root of state evolution

parameter in (3.3), and Z is an independent standard normally distributed

variable. Thus, the conditional distribution β̃(t),j |(B0 = βj) approximately

follows a N(βj , ζ̄
2
(t)) distribution. With the center being the true regression

coefficient vector β, β̃(t) is an asymptotically unbiased estimator for β with

common variance ζ̄(t) for each component with j = 1, . . . , p. Equivalently,

let

B̃j =
β̃j − βj

ζ̄

∣∣(B0 = βj),

we obtain the following asymptotic normality, when p→∞

B̃j
d
≈ N(0, 1), j = 1, . . . , p. (3.5)

Since the asymptotic normality in (3.5) is obtained by rewriting the

conditional distribution β̃(t)|(B0 = βj), our expression appears to be dif-

ferent from the common asymptotic normality expressions containing
√
n.

In fact, the scaling term
√
n is in the state evolution parameter ζ̄(t), see

Bayati and Montanari (2011a, Proof of Lemma 1 (b), e.g. the last almost

sure convergence on p775). The variance ζ̄2
(t) is the limit version of the

estimator ζ̄2
emp,(t) in (3.2), which is directly obtainable from the RAMP

algorithm.

We denote the sequences β̃(t) in (3.4) and ζ̄2
emp,(t) in (3.2), with itera-

tion index t, from a RAMP iteration at convergence by β̃, ζ̄2
emp. Then,

componentwise confidence intervals can be constructed by plugging β̃j ’s

and ζ̄2
emp in the expression of B̃j ’s (3.5). A confidence interval for βj with

asymptotic confidence level 1− α ∈ (0, 1) can be constructed as

ĈIj(1− α) =
[
β̃j − Φ−1(1− α/2)ζ̄emp, β̃j + Φ−1(1− α/2)ζ̄emp

]
, (3.6)

where Φ is the cumulative distribution function of the standard normal

distribution.
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3.4 Hypothesis testing

Sparse high dimensional models assume that there is a large proportion

of the components of the true regression coefficient vector that is equal to

zero and that there are only a few non-zero components. Consequently, in

practice, we are often interested in testing if one (or a few) components

are equal to zero. The classical approach is a two-sided hypothesis test

for testing whether βj is equal to 0. A test statistic can be constructed

based on the asymptotic distribution of β̃j . Rejecting or not rejecting the

null hypothesis at a given significance level can be decided upon using the

p-value. We describe in this section first a two-sided individual testing

problem where the null hypothesis states that βj is equal to a given value

β0,j . Next, we construct a multiple test testing a family of hypothesis for

{βj , j ∈M}, where M ⊆ {1, . . . , p}.

The individual hypotheses are stated as follows. For each component

βj , j = 1, . . . , p, we are interested in testing the null hypothesis

H0,j : βj = β0,j versus Ha,j : βj 6= β0,j .

The p-value of the test statistic

Tj =
β̃j − β0,j

ζ̄emp
(3.7)

for H0,j can be computed using the conditional asymptotic normality in

(3.5) in the following way by inserting the values β̃j and ζ̄2
emp from the

RAMP algorithm at convergence,

Pj = 2

(
1− Φ

( |β̃j − β0,j |
ζ̄emp

))
. (3.8)

As usual, for a given significance level α, the null hypothesis H0,j is rejected

if Pj ≤ α.

In practice, we are often interested in testing multiple hypotheses H0,j .

To control the error rate of a multiple test, a procedure adjusting the
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p-values (e.g., Bonferroni, Holm-Bonferroni (Holm, 1979), Šidák (Šidák,

1967), the Hochberg (Hochberg, 1988) procedure, etc.) should be con-

sidered in order to control the Type I error rate of the combined tests.

Here, we follow the choice of van de Geer et al. (2014) and adjust the

p-values by the Holm-Bonferroni procedure. For a family of hypotheses

{H0,j , j ∈M}, M ⊆ {1, . . . , p} with a nominal probability of a type I error

α, the adjustment works as follows:

(i) obtain the p-values Pj for testing the individual hypothesis H0,j by

(3.8);

(ii) sort the p-values in ascending order and denote the sorted p-values

by P[j];

(iii) the significance levels for the individual tests are adjusted to α
m−[j]+1 ;

(iv) reject the null hypothesis H0,[j] if P[j] ≤ α
m−[j]+1 .

3.5 Simulation study

In this section, we investigate the finite sample performance of the com-

ponentwise confidence intervals in (3.6) in Section 3.3 and the hypothesis

tests constructed in Section 3.4. These matters have not been investigated

before by using the estimator β̃ resulting from the RAMP algorithm.

We first describe the simulation procedure.

(i) Fix the dimension p, sample size n, compression ratio δ, and the

number of non-zero components s. We randomly generate a sensing

matrix X and a coefficient vector β, which are used in all replica-

tions for the same simulation setting. The components of the sensing

matrix X are independent and generated from N(0, 1/n). The sub-

vector of β consisting of non-zero components is generated from a

Dirac distribution with point mass equally distributed on -1 and 1,

or from a N(0, 1). We consider a high-sparsity setting with s = 5
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and a medium sparsity setting with s = 50. We choose p = 500,

n = 250 or 100, and accordingly δ = 0.5 or 0.2.

(ii) In each simulation replication r for one setting, we generate an error

vector εb. The considered error distributions are the standard normal

N(0, 1), student-t with 3 degrees of freedom, and the mixture of

normal distributions 0.5N(0, 1)+0.5N(5, 9). The errors are centered

and rescaled to have standard deviation 0.2 after sampling.

(iii) Construct the response vector Yr = Xβ + εr.

(iv) Obtain the converged β̃r by the RAMP algorithm; compute the (1−
α)% confidence interval for each component βj by plugging β̃r,j and

ζ̄2
emp in (3.6).

(v) Repeat R′ times Step 2 - 4; leave R converged records, and report

averaged coverage probability for the subvectors of β consisting of

non-zero components, of only the components that are zero and of

the full vector β.

This procedure is tested for l1-regularized quantile estimators at quan-

tile level 0.5. We consider R = 500 replications for each setting, and choose

the confidence level 1−α to be 0.95 and 0.99. Example 95% componentwise

confidence intervals of the subvector consisting of non-zero components of

β in different settings are included in Figure 3.1. This example is chosen

by taking the replication of which the coverage probability is the closest

to 95% nominal coverage probability from R = 500 replications. The non-

zero components of β for Figure 3.1 are randomly generated from N(0, 1)

using the random seed number 5; the same data will be reused for Fig-

ure 3.2. We observe that the true values of the non-zero components of

the vector β, depicted using the red dots, are all located in the 95% confi-

dence intervals in the high-sparsity settings with s = 5 for N(0, 1) and t3

distributed errors, and 2 out of 5 are located outside of the 95% confidence

intervals for 0.5N(0, 1) + 0.5N(5, 9) distributed errors. In the medium

sparsity settings with s = 50, there are 3 out of 50 non-zero components of
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β which are not located in the 95% confidence intervals for N(0, 1) and t3

distributed errors, and only 1 out of 50 non-zero component of β that are

located outside of the 95% confidence intervals for 0.5N(0, 1) + 0.5N(5, 9)

distributed errors.

Since componentwise confidence intervals are based on the asymptotic

normality of the estimator B̃j , j = 1, . . . , p in (3.5), we also present exam-

ple QQ-plots of B̃j ’s, i.e., pooling β̃j ’s corresponding to the components of

β, and plot empirical quantiles of B̃j ’s against theoretical standard normal

quantiles. We use the same data, i.e., same β, β̃, ζ̄emp, for Figure 3.2. The

non-zero components of β are generated from N(0, 1) under the seed num-

ber 5. Example QQ-plots for different settings are included in Figure 3.2,

and all six plots, as well as p-values of the Shapiro-Wilk tests presented at

the end of the titles of each plot in Figure 3.2, suggest normality of B̃j ’s.

We also calculate the average coverage probabilities and average lengths

of the confidence intervals. The average coverage probabilities ĈPvec(1−α)

for subvectors with length pvec of the full vector β are calculated as follows

ĈPvec(1− α) =

pvec∑
j=1

ĈPj(1− α)/pvec, (3.9)

where

ĈPj(1− α) =

R∑
r=1

I{βj ∈ ĈIr,j(1− α)}/R, (3.10)

and the confidence interval of the jth component in the rth simulation

replication ĈIr,j(1−α) is obtained using (3.6). Since the confidence inter-

vals for each component of βj are constructed using a common variance

ζ̄2
emp using (3.6), we obtain only one averaged length of the confidence

intervals

L̂(1− α) =
2Φ(1− α/2)

R

R∑
r=1

ζ̄emp,r.

The average coverage probabilities and averaged lengths of the confidence

intervals, averaging over the components of β are presented in Table 3.1.
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(e) 0.5N(0, 1) + 0.5N(5, 9), s = 5
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(f) 0.5N(0, 1) + 0.5N(5, 9), s = 50

Figure 3.1: Example 95% confidence intervals plots of non-zero compo-
nents of β; the non-zero values are randomly generated from N(0, 1) using
the seed number 5. The example is chosen by taking the replication of which
the coverage probability is the closest to 95% nominal coverage probability
from R = 500 replications. Plots for s = 5 are in the left column and for
s = 50 are in the right column. Each row corresponds to plots for one error
distribution, i.e., N(0, 1) – (a), (b), t3 – (c), (d), 0.5N(0, 1) + 0.5N(5, 9)
– (e), (f).
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(c) t3, s = 5, p = 0.288

−2

0

2

−2 0 2
theoretical

sa
m

pl
e

(d) t3, s = 50, p = 0.977
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(e) mixed normal, s = 5, p = 0.654
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(f) mixed normal, s = 50, p = 0.227

Figure 3.2: Example QQ-plots of B̃j in (3.5); non-zero components of β
are randomly generated from N(0, 1) using the seed number 5. The example
is chosen by taking the first replication from R = 500 replications. Plots
for s = 5 are on the left column and for s = 50 are on the right column.
Each row corresponds to plots for one error distribution, i.e., N(0, 1) –
(a), (b), t3 – (c), (d), 0.5N(0, 1) + 0.5N(5, 9) – (e), (f). The p-values of
the Shapiro-Wilks test for each setting are presented in the end of the titles
of each plot.
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From Table 3.1, we observe that: (1) the zero subvector of β and the full

vector β mostly have average coverage probabilities ĈPvec(1 − α) close

to the nominal coverage probability 1 − α both for 0.95 and 0.99; (2)

ĈPvec(1−α) for the subvector consisting of the non-zero part of β is closer

to the nominal coverage probability in the high-sparsity setting where

s = 5, as compared to the medium sparsity setting where s = 50; (3) t3

distributed errors have slightly shorter averaged lengths of the confidence

intervals L̂(1 − α) and lower average coverage probabilities ĈPvec(1 − α)

for both high and medium sparsity settings; (4) average coverage probabil-

ities ĈPvec(1−α) are closer to the nominal coverage probabilities and the

lengths of confidence intervals L̂(1 − α) gets shorter, when increasing the

sample size n from 100 to 250, especially in the medium sparsity settings

where s = 50.

We also report the observed extrema and median calculated for the

simulation study maxj∈{1,...,p} ĈPj(1 − α), minj∈{1,...,p} ĈPj(1 − α), and

medianj∈{1,...,p}ĈPj(1 − α). Extrema and medians of the coverage prob-

abilities of different settings are reported in Table 3.2 for n = 100 and

δ = 0.2, and in Table 3.3 for n = 250 and δ = 0.5. In each simulation

setting, the extrema suggest the worst empirical coverage probabilities of

βj ’s. The range of the maximum and minimum, as well as the ranges of

the extrema and the nominal coverage probabilities, quantifies the worst

deviations of the empirical coverage probabilities from the nominal cover-

age probabilities. A larger range suggests a more severe deviation from the

nominal probability. We see a much wider range, i.e., minima and maxima

deviate much farther from the medians, of ĈPj(1−α) in the median spar-

sity settings where s = 50. Differences due to different error distributions

are not considerable when the sample size is small n = 100. However, t3

distributed errors mostly lead to the largest range among three error dis-

tributions, when the sample size is increased to n = 250. We observe that

large sample sizes lead to a smaller range of values of ĈPj(1−α) which are

close to the corresponding nominal coverage probabilities in the medium

sparsity settings, whereas the values ĈPj(1 − α) in the high-sparsity set-
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n = 100 δ = 0.2 95% nominal 99% nominal

CPvec L CPvec L
fε s non-zero zero full vector non-zero zero full vector

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.96 0.95 0.95 0.91 0.99 0.99 0.99 1.20

50 0.88 0.94 0.93 2.20 0.97 0.98 0.98 2.90

t3
5 0.94 0.95 0.95 0.86 0.98 0.99 0.99 1.13

50 0.88 0.93 0.93 2.19 0.97 0.98 0.98 2.88

0.5N(0, 1) 5 0.96 0.95 0.95 0.91 0.99 0.99 0.99 1.20

+0.5N(5, 9) 50 0.89 0.95 0.94 2.22 0.97 0.99 0.98 2.92

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 0.92 0.95 0.95 0.88 0.98 0.99 0.99 1.16

50 0.92 0.94 0.93 2.27 0.98 0.98 0.98 2.99

t3
5 0.94 0.95 0.95 0.83 0.98 0.99 0.99 1.16

50 0.92 0.94 0.93 2.23 0.98 0.98 0.98 2.94

0.5N(0, 1) 5 0.92 0.95 0.95 0.88 0.98 0.99 0.99 1.16

+0.5N(5, 9) 50 0.92 0.94 0.93 2.24 0.98 0.98 0.98 2.95

n = 250 δ = 0.5 95% nominal 99% nominal

CPvec L CPvec L
fε s non-zero zero full vector non-zero zero full vector

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.93 0.95 0.95 0.90 0.98 0.99 0.99 1.18

50 0.91 0.95 0.95 1.45 0.98 0.99 0.99 1.91

t3
5 0.92 0.94 0.94 0.64 0.97 0.98 0.98 0.84

50 0.91 0.95 0.94 1.36 0.98 0.99 0.99 1.79

0.5N(0, 1) 5 0.94 0.95 0.95 1.16 0.99 0.99 0.99 1.52

+0.5N(5, 9) 50 0.92 0.95 0.95 1.49 0.98 0.99 0.99 1.96

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 0.93 0.95 0.95 0.89 0.99 0.99 0.99 1.17

50 0.95 0.95 0.95 1.23 0.99 0.99 0.99 1.62

t3
5 0.93 0.94 0.94 0.63 0.98 0.98 0.98 0.83

50 0.95 0.95 0.95 1.04 0.99 0.99 0.99 1.36

0.5N(0, 1) 5 0.94 0.95 0.95 1.16 0.99 0.99 0.99 1.53

+0.5N(5, 9) 50 0.95 0.95 0.95 1.28 0.99 0.99 0.99 1.69

Table 3.1: The average coverage probabilities CPvec,j(1 − α), j =
1, . . . , pvec and average length L(1−α) of confidence intervals of subvectors
of β for n = 100 (δ = 0.2) and n = 250 (δ = 0.5) for 1 − α = 0.95 and
0.99.
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tings are already close to the nominal confidence level when sample size is

small.

Next we consider hypothesis testing for a sparse high dimensional model

where we test whether β0,j = 0. We denote the set of indices of non-zero

and zero components of β by S with size s and Sc = {1, . . . , p}\S with

size p − s, respectively. To evaluate the performance of the individual

hypothesis tests at significance level α, we calculate averaged false positive

(FP) and true positive (TP) rates defined as

FP(α) =

∑
j∈Sc

∑R
r=1 I{Pr,j ≤ α}/R
p− s

,

and

TP(α) =

∑
j∈S

∑R
r=1 I{Pr,j ≤ α}/R

s
.

Averaged FP and TP rates for different settings are presented in Table 3.4.

We see that for high-sparsity settings where s = 5, the FP rates are already

close to the nominal significance levels in cases where the sample size is

small, i.e., n = 100. Also, the TP rates remain stable and have no signif-

icant improvement when the sample size n is increased to 250. However,

in the medium sparsity settings where s = 50, the FP and TP rates are

largely improved by increasing the sample size from 100 to 250. Another

observation is that the TP rates in settings with t3 distributed errors are

mostly the highest among all three errors for the same sparsity s and the

same distribution of non-zero components of β.

We consider a multiple test {H0,j , j ∈ {1, . . . , p}} including all individ-

ual hypotheses. The multiple test is evaluated by the empirical version of

the familywise error rate (FWER) defined as

FWER(α) =
1

R

R∑
r=1

I{∃H(r)
0,j is rejected at adjusted α, j ∈ Sc},

and the rejection percentage (RP) observed in the simulation study is
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95% nominal

fε s non-zero zero full vector

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 (0.95, 0.96, 0.96) (0.61, 0.96, 1.00) (0.61, 0.96, 1.00))

50 (0.08, 0.97, 1.00) (0.04, 1.00, 1.00) (0.04, 1.00, 1.00)

t3
5 (0.90, 0.93, 0.96) (0.67, 0.96, 0.99) (0.67, 0.96, 0.99)

50 (0.09, 0.98, 1.00) (0.03, 0.99, 1.00) (0.03, 0.99, 1.00)

0.5N(0, 1) 5 (0.93, 0.96, 0.98) (0.62, 0.96, 1.00) (0.62, 0.96, 1.00)

+0.5N(5, 9) 50 (0.07, 0.99, 1.00) (0.03, 1.00, 1.00) (0.03, 1.00, 1.00)

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 (0.88, 0.91, 0.96) (0.77, 0.96, 0.99) (0.77, 0.96, 0.99)

50 (0.26, 1.00, 1.00) (0.00, 1.00, 1.00) (0.00, 1.00, 1.00)

t3
5 (0.89, 0.95, 0.96) (0.80, 0.96, 1.00) (0.80, 0.96, 1.00)

50 (0.26, 1.00, 1.00) (0.00, 1.00, 1.00) (0.00, 1.00, 1.00)

0.5N(0, 1) 5 (0.89, 0.92, 0.95) (0.81, 0.96, 0.99) (0.81, 0.96, 0.99)

+0.5N(5, 9) 50 (0.31, 1.00, 1.00) (0.00, 1.00, 1.00) (0.00, 1.00 1.00)

99% nominal

fε s non-zero zero full vector

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 (0.99, 0.99, 1.00) (0.84, 0.99, 1.00) (0.84, 0.99, 1.00)

50 (0.44, 1.00, 1.00) (0.21, 1.00, 1.00) (0.21, 1.00, 1.00)

t3
5 (0.97, 0.98, 0.99) (0.87, 0.99, 1.00) (0.87, 0.99, 1.00)

50 (0.44, 1.00, 1.00) (0.20, 1.00, 1.00) (0.20, 1.00, 1.00)

0.5N(0, 1) 5 (0.97, 0.99, 0.99) (0.83, 0.99, 1.00) (0.83, 0.99, 1.00)

+0.5N(5, 9) 50 (0.46, 1.00, 1.00) (0.20, 1.00, 1.00) (0.20, 1.00, 1.00)

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 (0.97, 0.98, 0.99) (0.93, 0.99, 1.00) (0.93, 0.99, 1.00)

50 (0.65, 1.00, 1.00) (0.13, 1.00, 1.00) (0.13, 1.00, 1.00)

t3
5 (0.97, 0.98, 0.99) (0.93, 0.99, 1.00) (0.93, 0.99, 1.00)

50 (0.67, 1.00, 1.00) (0.09, 1.00, 1.00) (0.09, 1.00, 1.00)

0.5N(0, 1) 5 (0.97, 0.98, 0.99) (0.94, 0.99, 1.00) (0.94, 0.99, 1.00)

+0.5N(5, 9) 50 (0.71, 1.00, 1.00) (0.08, 1.00, 1.00) (0.08, 1.00, 1.00)

Table 3.2: Extrema and medians of CPvec,j(1−α), j = 1, . . . , pvec. Nom-
inal coverage probabilities considered are 0.95 and 0.99. Values in the
parentheses follow (minimum, median, maximum). For this table, we con-
sider sample size n = 100 with (δ = 0.2).
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95% nominal

fε s non-zero zero full vector

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 (0.92, 0.93, 0.93) (0.88, 0.95,0.99) (0.88, 0.95, 0.99))

50 (0.34, 0.97, 1.00) (0.06, 0.98, 1.00) (0.06, 0.98, 1.00)

t3
5 (0.88, 0.93, 0.94) (0.85, 0.94, 0.97) (0.85, 0.94, 0.97)

50 (0.30, 0.97, 1.00) (0.05, 0.99, 1.00) (0.05, 0.98, 1.00)

0.5N(0, 1) 5 (0.93, 0.94, 0.96) (0.88, 0.95, 0.98) (0.88, 0.95, 0.98)

+0.5N(5, 9) 50 (0.37, 0.97, 1.00) (0.09, 0.98, 1.00) (0.09, 0.98, 1.00)

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 (0.91, 0.93, 0.97) (0.86, 0.95, 0.98) (0.86, 0.95, 0.98)

50 (0.82, 0.96, 0.99) (0.41, 0.97, 1.00) (0.41, 0.97, 1.00)

t3
5 (0.91, 0.93, 0.94) (0.84, 0.94, 0.97) (0.84, 0.94, 0.97)

50 (0.85, 0.96, 0.99) (0.39, 0.98, 1.00) (0.39, 0.98, 1.00)

0.5N(0, 1) 5 (0.92, 0.94, 0.96) (0.88, 0.95, 0.98) (0.88, 0.95, 0.98)

+0.5N(5, 9) 50 (0.82, 0.96, 1.00) (0.42, 0.97, 1.00) (0.42, 0.97, 1.00)

99% nominal

fε s non-zero zero full vector

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 (0.98, 0.98, 1.00) (0.96, 0.99, 1.00) (0.96, 0.99, 1.00)

50 (0.71, 0.99, 1.00) (0.22, 1.00, 1.00) (0.22, 1.00, 1.00)

t3
5 (0.96, 0.97, 0.99) (0.95, 0.98, 1.00) (0.95, 0.98, 1.00)

50 (0.67, 1.00, 1.00) (0.20, 1.00, 1.00) (0.20, 1.00, 1.00)

0.5N(0, 1) 5 (0.98, 0.99, 1.00) (0.96, 0.99, 1.00) (0.96, 0.99, 1.00)

+0.5N(5, 9) 50 (0.72, 1.00, 1.00) (0.31, 1.00, 1.00) (0.31, 1.00, 1.00)

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 (0.98, 0.99, 1.00) (0.96, 0.99, 1.00) (0.96, 0.99, 1.00)

50 (0.96, 0.99, 1.00) (0.71, 0.99, 1.00) (0.71, 0.99, 1.00)

t3
5 (0.97, 0.97, 0.99) (0.94, 0.98, 0.99) (0.94, 0.98, 0.99)

50 (0.96, 0.96, 1.00) (0.71, 1.00, 1.00) (0.71, 1.00, 1.00)

0.5N(0, 1) 5 (0.98, 0.99, 1.00) (0.96, 0.99, 1.00) (0.96, 0.99, 1.00)

+0.5N(5, 9) 50 (0.94, 0.94, 1.00) (0.74, 1.00, 1.00) (0.74, 1.00, 1.00)

Table 3.3: Extrema and medians of CPvec,j(1−α), j = 1, . . . , pvec. Nom-
inal coverage probabilities considered are 0.95 and 0.99. Values in the
parentheses follow (minimum, median, maximum). For this table, we con-
sider sample size n = 250 with (δ = 0.5).



3.6. Bootstrap confidence intervals for small samples 123

defined as

RP(α) =
1

s

∑
j∈S

{ r∑
r=1

I{H(r)
0,j is rejected at adjusted α}/R

}
.

Values of FWER and RP for different settings are included in Table 3.4.

We observe similar patterns as those shown for the individual hypothesis

testing. In the high-sparsity settings where s = 5, values of FWER and

RP are already stable when the sample size is small (n = 100), and are

not significantly improved when increasing the sample size to n = 250.

However, the FWERs are larger than the nominal significance level. In

the medium sparsity settings where s = 50, values of FWER and RP can

be largely improved by increasing the sample size.

3.6 Bootstrap confidence intervals for small sam-

ples

In Section 3.5, we have seen that the coverage probabilities of compo-

nentwise confidence intervals, the true positive and true negative rates of

individual hypothesis tests and the familywise error rate and simulated

rejection percentages for multiple tests can be improved for the medium

sparsity setting with s = 50 when the sample size is small n = 100. The

accuracy can be improved by increasing the sample size to n = 250. Here,

we describe a residual bootstrap procedure, instead of using the confidence

interval based on the asymptotic normal distribution of the estimator as in

(3.6). For each replication r in the simulation procedure in Section 3.3, we

state the following bootstrap procedure replacing Step 4. Bootstrap resid-

uals can be constructed by a suitable estimator of β. Similar to Dezeure

et al. (2017) who construct bootstrap residuals using the Lasso estimator,

we use the converged vectors β̂r of the rth replication from the RAMP

algorithm; the components of the β̂r are denoted by β̂r,j . Another possible

choice of an estimator of β for constructing bootstrap residuals is the value

of β̃r at convergence.
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n = 100 δ = 0.2 Significance α = 0.05 Significance α = 0.01

fε s FP TP FWER RP FP TP FWER RP

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.05 0.99 0.10 0.63 0.01 0.96 0.05 0.49

50 0.06 0.28 0.23 0.04 0.02 0.17 0.17 0.03

t3
5 0.05 0.99 0.10 0.70 0.01 0.95 0.03 0.57

50 0.07 0.29 0.26 0.04 0.02 0.18 0.19 0.03

0.5N(0, 1) 5 0.05 0.99 0.10 0.63 0.01 0.97 0.04 0.47

+0.5N(5, 9) 50 0.05 0.27 0.17 0.03 0.02 0.16 0.10 0.02

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 0.05 0.80 0.10 0.67 0.01 0.76 0.03 0.64

50 0.06 0.28 0.21 0.05 0.02 0.16 0.07 0.03

t3
5 0.05 0.81 0.11 0.69 0.01 0.78 0.02 0.66

50 0.07 0.27 0.22 0.05 0.02 0.16 0.08 0.04

0.5N(0, 1) 5 0.05 0.80 0.11 0.67 0.01 0.76 0.04 0.64

+0.5N(5, 9) 50 0.07 0.28 0.22 0.05 0.02 0.16 0.08 0.04

n = 250 δ = 0.5 Significance α = 0.05 Significance α = 0.01

fε s FP TP FWER RP FP TP FWER RP

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.05 0.99 0.09 0.66 0.01 0.95 0.02 0.53

50 0.05 0.67 0.20 0.13 0.01 0.47 0.07 0.07

t3
5 0.06 1.00 0.20 0.96 0.02 1.00 0.10 0.93

50 0.05 0.73 0.22 0.18 0.01 0.54 0.08 0.12

0.5N(0, 1) 5 0.05 0.91 0.11 0.33 0.01 0.77 0.04 0.25

+0.5N(5, 9) 50 0.05 0.65 0.16 0.12 0.01 0.46 0.06 0.07

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 0.05 0.81 0.10 0.70 0.01 0.79 0.04 0.66

50 0.05 0.56 0.06 0.27 0.01 0.46 0.02 0.22

t3
5 0.07 0.82 0.21 0.79 0.02 0.81 0.12 0.77

50 0.05 0.68 0.07 0.39 0.01 0.58 0.03 0.34

0.5N(0, 1) 5 0.05 0.79 0.07 0.52 0.01 0.74 0.02 0.44

+0.5N(5, 9) 50 0.05 0.60 0.10 0.28 0.01 0.49 0.03 0.23

Table 3.4: Average FP and TP rates for individual hypothesis testing;
as well as FWER and RP for multiple testing. Rates are calculated for
n = 100 (δ = 0.2) and n = 250 (δ = 0.5).
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However, if β̃r, i.e., the vector which is linked to the debiased estimator

of the regularized estimator of the rth simulation replications, is used to

construct bootstrap residuals for the subsequent bootstrap replications,

the RAMP algorithm estimating β̂∗ of the residual bootstrap replications

has very low convergence rates (around 20%) in all settings. If β̂r, i.e.,

the l1-regularized estimator of the rth simulation replication, is used to

construct the bootstrap residuals for the following bootstrap replication,

convergence of the RAMP algorithm of the bootstrap replications is not

an issue. Thus, we choose to use converged β̂r’s here.

We consider B bootstrap replications for each simulation replication

r, r = 1, . . . , R, and choose B = 500 here. The procedure of simulation

replications is described in Section 4.5.

(i) For the rth simulation replications with samples (Yr,i, Xr,i·), i =

1, . . . , n, first obtain converged vector β̂r; next, construct residuals

by ε̂r,i = Yr,i −Xr,i·β̂r.

(ii) For each bootstrap replication b, sample ε̂∗r,b,i, i = 1, . . . , n with re-

placement from ε̂r,i’s; construct bootstrap pairs (Y ∗r,b,i, X
∗
r,b,i·), i =

1, . . . , n by Y ∗r,b,i = X∗r,b,i·β̂r + ε∗r,b,i. Then, obtain β̃∗r,b at convergence;

(iii) Repeat steps 2 and 3 B′ > B times; keep B = 500 converged boot-

strap records (convergence rates are in Table 2.4 in Chapter 2) to

construct componentwise confidence intervals using the bootstrap

quantiles in the following way: For the jth component of β, obtain

the empircal quantile estimators at quantile levels α/2 and (1−α/2)

using the estimators β̃∗r,b,j ’s corresponding to B times bootstrap repli-

cation. Denote the empirical α/2× 100%th and (1− α/2)× 100%th

quantile estimators of β̃∗r,b,j ’s by β̃∗r,(α/2),j and β̃∗r,(1−α/2),j , respec-

tively. Then, the bootstrap componentwise confidence intervals for

the jth component of β can be constructed as [β̃∗r,(α/2),j , β̃
∗
r,(1−α/2),j ],

where j = 1, . . . , p.

Tables 3.1 and 3.2 indicate that t3 distributed errors in the medium

sparsity setting s = 50, with a small sample size n = 100, mostly have
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estimated coverage probabilities that are least close to the nominal cover-

age probabilities. We consider the above stated bootstrap procedure for

the setting with t3 distributed errors and the non-zero components of the

true regression coefficient vector are generated from N(0, 1). To reduce

the computational burden, we consider R = 100 simulation replications

where a new dataset is generated in each replication. Further, we consider

B = 500 bootstrap replication for each dataset. The coverage probabil-

ities β̂vec and averaged length of the confidence intervals L̂(1 − α) are

presented in Table 3.5 for α = 0.05, or 0.01. Compared to Table 3.1 (2.23

for α = 0.05 and 2.94 for α = 0.01), the average lengths of the confidence

intervals become shorter (1.28 for α = 0.05 and 1.66 for α = 0.01), which

suggests a smaller standard deviation. The average coverage probability

of the subvectors consisting of non-zero components decreases significantly

from 0.92 (0.98) to 0.74 (0.84) for the nominal level α = 0.05 (0.01). The

averaged coverage probability of the zero subvectors of β increases from

0.94 (0.98) to 0.99 (1.00) for the nominal level α = 0.05(0.01). The aver-

aged coverage probability of the full vector of β increases from 0.93 (0.98)

to 0.97 (0.98) for α = 0.05 (0.01). Notice that we only considered R = 50

times simulation replications combining B = 500 times bootstrap replica-

tions for each simulation replication r, whereas Table 3.1 is reported using

R = 500 times simulation replications. In principle, results in Table 3.5

and 3.1 are not comparable. However, we do observe acceptable aver-

aged coverage probabilities with narrower averaged confidence intervals by

bootstrapping, which is worth further investigation.

Nominal 1− α CPvec(α) L(α)

non-zero zero full vector

95% 0.74 0.99 0.97 1.28
99% 0.84 1.00 0.98 1.66

Table 3.5: The average coverage probabilities and averaged length of boot-
strap confidence intervals of subvectors of β for t3 distributed errors where
n = 100 (δ = 0.2).



3.7. Sparse signal recovery 127

3.7 Sparse signal recovery

We consider again the audio wave signals example used in Chapter 2, Sec-

tion 2.7.2. The artificial compressed sensing process involves a wavelet

transform of the original audio signal for obtaining a “sparse” representa-

tion of β ∈ R2047. The artificial compressed sensing process is as follows:

(i) The sparse signal β is compressed by a randomly generated com-

pression matrix X ∈ R1024×2047; components of the matrix Xij are

i.i.d. with a N(0, 1/1024) distribution.

(ii) The compressed signal Xβ is then sent to a receiver; the received

signal Y from transmission is corrupted by error ε. Components of

the error vector ε are randomly generated from either t3 or mixed

normal distribution 0.5N(0, 1) + 0.5N(5, 9), and are rescaled to have

standard deviation 0.03.the transformed audio signal.

In practice, we are interested in recovering the sparse signal β from the

compression matrix X and the received signal Y . Here, the wavelet audio

signal β is known, and is artificially compressed and corrupted.

We first construct componentwise confidence intervals. For a clearer

presentation, we only plot confidence intervals of the last 20 entries of β,

see Figure 3.3.

Notice that the componentwise confidence intervals are constructed

based on the asymptotic normality B̃j ∼ N(0, 1), j = 1, . . . , p in (3.5),

where B̃j ’s are constructed using the converged estimators β̃j ’s of βj ’s,

i.e., the wavelet coefficients of the audio signal. We first construct B̃j ’s

using the components of the converged β̃, which follow a standard normal

distribution according to theory. To check the normality of B̃j ’s, we plot

the constructed B̃j ’s against the standard normal Figure 3.4. From the fig-

ures, we see that the test statistic is roughly normal distributed for both

t3 and 0.5N(0, 1) + 0.5N(5, 9) distributed corruption errors. The Shapiro-

Wilk test for normality gives p-values 0.460 for t3 distributed errors and

0.615 for 0.5N(0, 1)+0.5N(5, 9) distributed errors suggesting normality of
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Figure 3.3: The 95% confidence intervals of the last 20 entries of β. True
values are depicted by red round dots. The plot on the left corresponds to
t3 distributed errors, and the plot on the right corresponds to 0.5N(0, 1) +
0.5N(5, 9) distributed errors.
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Figure 3.4: QQ plots of the test statistic calculated by (3.7). The plot
on the left corresponds to t3 distributed errors, and the plot on the right
corresponds to 0.5N(0, 1) + 0.5N(5, 9) distributed errors.

Next, we consider a multiple testing scenario including individual null

hypotheses H0,j : βj = 0 versus two-sided alternative hypotheses Ha,j :

βj 6= 0 for all components of the wavelet coefficient β of the audio signal

fraction. Since most βj ’s are close to zero with countable non-negligible

entries, we set cut-off values by taking the (τ/2)th and (1− τ/2)th empir-

ical quantile of βj ’s. Our goal is to identify βj ’s with magnitude exceeding

the two cut-off values by the multiple hypothesis test. We consider the
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cut-off level τ = 0.01, 0.05. The nominal significance levels of the test are

α = 0.01 or 0.05. We replicate the artificial compressed sensing process

R = 200 times, and evaluate the performance of the multiple hypothesis

test by the familywise error rate (FWER) and rejection percentage (RP).

Table 3.6 reports the FWER and RP of the multiple test. We observe

that when setting the level of the cut-off value τ to be 0.05 (i.e., select

βj ’s whose magnitude greater than 97.5% or less than 2.5% of βj ’s magni-

tude), the FWER and RP of the test are both low for the significance level

α = 0.01 and 0.05. On the contrary, the FWER and RP of the test are

both high when the cut-off level τ = 0.01 (i.e., select βj ’s whose magni-

tude exceed the range of 99% of βj ’s magnitude). This observation is not

surprising: The cut-off level τ decides if βj ’s are counted as non-negligible

entries; higher cut-off level τ results in less non-negligible entries. When

an individual null hypothesis H0,j is rejected, it can be counted as a Type

I error when τ = 0.01, resulting in high FWER, but counted as a correct

rejection when τ = 0.05. This situation happens for βj ’s whose magnitudes

are not high enough to be counted as non-negligible entries when τ = 0.01,

but are counted as non-negligible entries when τ = 0.05. Similarly, when

magnitudes of βj ’s are low enough for rejecting H0,j but high enough to

exceed cut-off level 0.05, the Type II error increases resulting in low RP.

Cut-off level τ 0.05 0.01

Significance α 0.05 0.01 0.05 0.01

t3
FWER 0.11 0.11 0.93 0.81

RP 0.22 0.20 0.88 0.85

0.5N(0, 1) FWER 0.06 0.00 0.38 0.14

+0.5N(5, 9) RP 0.13 0.11 0.58 0.51

Table 3.6: FWER and RP of multiple hypothesis test finding variables
with magnitude exceeding certain cut-off values. The cut-off values are
determined by (τ/2)th and (1− τ/2)th quantile of βj’s. Significance levels
α considered are 0.05 and 0.01.
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3.8 Discussion

This chapter focuses on the estimator β̃ from the RAMP algorithm at

convergence in Chapter 2, and is the first one proposing a computational

approach constructing componentwise confidence intervals and conducting

hypothesis tests for l1-regularized estimators. The proposed confidence

intervals and hypothesis tests are shown to have fair accuracy, especially

in high-sparsity settings.

Since Chapter 2 discusses the model-averaged and composite versions of

the l1-regularized estimators, a natural extension would be componentwise

confidence intervals and hypothesis testing for the model-averaged and

composite estimators. Further, we have seen in the simulation section that

the accuracy of the confidence intervals and hypothesis tests depends on

the sample size and the sparsity. It would be interesting to derive theory

on the optimal sample size given a certain sparsity.

For multiple testing, we considered a conservative Bonferroni adjust-

ment following van de Geer et al. (2014); Javanmard and Montanari (2014a).

It is of interest to develop and study other non-conservative adjustments.

Also, the numerical results in the residual bootstrap section do not

show a clear evidence that bootstrapping improves accuracy (e.g., averaged

coverage probabilities) of the componentwise confidence intervals when

the sample size is small. A theoretical study on the consistency of the

bootstrap confidence intervals is worth investigating.



Chapter 4

C-vine copula based quantile

regression

Classical approaches on quantile regression make strict distri-

butional and moment assumptions on the linear model, which

are usually violated in practice. We propose here a flexible

nonparametric quantile regression approach based on C-vine

copulas without imposing additional assumptions and allow-

ing for conditional heteroscedasticity. As a subclass of regular

vine copulas, C-vine copulas formulate multivariate copulas by

using only bivariate copulas, which is referred to as the pair-

copula construction. The proposed algorithm incorporates a

new variable selection approach, namely a “one-step-ahead”

selection, by maximizing the conditional log-likelihood of one

level of the C-vine tree sequence taking also the next level of

trees into account. The performance of the proposed method

is evaluated in both low and high dimensional settings using

simulated and real data.
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This chapter is based on:

Zhou, J., Tepegjozova M., Claeskens G. and Czado, C.(2020).

Sparse C- and D-vine copula selection in high dimensions.

Technical report.

4.1 Introduction

As a robust alternative for the ordinary least squares regression which es-

timates the conditional mean of a response variable given the predictive

variables, quantile regression (Koenker and Bassett, 1978b) focuses on the

conditional quantiles. This method has been studied extensively in statis-

tics, economics and finance. Under strict distributional assumptions on

the variables, properties such as asymptotic normality and consistency of

the estimator are obtained (Koenker, 2005b). Several extensions of quan-

tile regression exist, such as adapting quantile regression in the Bayesian

framework (Yu and Moyeed, 2001), for longitudinal data (Koenker, 2004),

time-series models (Xiao and Koenker, 2009), high dimensional models

with l1-regularizer (Belloni and Chernozhukov, 2011), to nonparametric

estimation by kernel weighted local linear fitting (Yu and Jones, 1998) and

by additive models (Koenker, 2011; Fenske et al., 2011), etc. Most of these

approaches are derived under strict model assumptions which are often

violated in practice.

In addition to the above-mentioned issue, Bernard and Czado (2015)

addressed other potential concerns such as quantile crossings and model-

misspecification when the dependence structure of the response variables

and the predictive variables does not follow Gaussian copulas for Gaussian

distributed margins. Hence, flexible models without assuming specific dis-

tributions for the data, homoscedasticity, nor a linear relationship between

response and predictive variables, are of interest and motivate research on

modeling conditional quantiles using copulas, see also Noh et al. (2013,
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2015); Chen et al. (2009). In cases where the number of predictive vari-

ables is large, a pair-copula construction, namely a vine copula, of a multi-

variate copula is developed in Joe (1996); Bedford and Cooke (2001, 2002)

through recursive conditioning. By this pair-copula construction, a mul-

tivariate density function can be constructed using only bivariate copula

densities and marginal densities. Different pair-copula constructions can

be obtained by changing the order of conditioning. A crucial assumption,

a.k.a, the simplifying assumption, is often made for reducing computa-

tional burden and increasing modelling flexibility. This assumption states

that the conditional copula does not depend on the value of the condition-

ing variable. Haff et al. (2010); Stoeber et al. (2013) further investigated

the validity of this assumption and found that it is not a severe restric-

tion in practice. By assuming that the conditional copula depends on the

conditioning variables only through the conditional densities, we obtain

simplified pair-copula constructions, i.e., simplified vine copulas. A graph-

ical representation was developed in Bedford and Cooke (2001, 2002) for

representing different pair-copula constructions based on graph theory. A

general construction using such pair copulas can be represented by a reg-

ular (R-) vine tree sequence using nodes and edges; edges in each level of

trees correspond to bivariate copulas in the pair-copula construction, and

become nodes in the next tree. Two subclasses of R-vines are canonical

(C-) vines and drawable (D-) vines, i.e., in each level of trees, C-vine cop-

ulas follow a star structure with a root node connected to all other nodes,

and D-vine copulas follows a sequential structure. For recent literature

about predicting conditional quantiles using simplified vine copulas, see

Kraus and Czado (2017) using D-vines and Chang and Joe (2019) using

R-vines. The proposed method in this chapter uses C-vines and incorpo-

rates a search algorithm maximizing the conditional log-likelihood step by

step in the sequence of trees of which the C-vines are composed.

Similar to the method of Kraus and Czado (2017) which is based on D-

vine copulas, we propose in this chapter a flexible nonparametric approach

estimating conditional quantiles using C-vine copulas without strict model
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assumptions. Since this approach does not set strict restriction to the un-

derlying copulas between the predictive variables and the response variable

(Bernard and Czado, 2015, also see discussion above), issues such as quan-

tile crossings are avoided. The main contribution which is novel compared

to other papers is a “one-step-ahead” approach maximizing the conditional

log-likelihood, of which the next level of trees are taken into account in each

level of root node selection. Additionally, all marginal densities and cop-

ulas are estimated nonparametrically, thus this allows more flexibility as

opposed to parametric specifications and the construction permits a large

variety of dependence structures, resulting in a well-performing conditional

quantile estimator.

This chapter is organized as follows. Section 4.2 introduces the general

setup and concept of C-vine copulas. Sections 4.4.2 describes in detail

the construction of the conditional quantile estimator using C-vine copu-

las. Since all densities involved in the model construction are estimated

nonparametrically, we investigate in Theorem 4.1 the consistency of the

conditional quantile esimator for given variables orders. The new “one-

step-ahead” approach maximizing the conditional log-likelihood gradually

is described in detail in Section 4.4. Performance of the constructed C-

vine based conditional quantile estimator is evaluated in Section 4.5 by

several quantile related measurements in various simulation settings, and

compared with the D-vine based quantile estimator in Kraus and Czado

(2017). We also evaluate the constructed C-vine based quantile estimator

using low and high dimensional datasets in Section 4.6.

4.2 Setup

In a regression framework some predictive variables in the p-vector X =

(X·1, . . . , X·p) have predictive ability for the response Y ∈ R. Denote the

cumulative distribution function of Y as FY , the marginal cumulative dis-

tribution function of X·j as Fj for j ∈ {1, . . . , p}, and the joint distribution

function of (Y,X) as F . Further we assume that FY , Fj , and F are con-
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tinuous, then there exists a copula C associated with the joint distribution

of (Y,X) such that

F (y, x1, . . . , xp) = C(FY (y), F1(x1), . . . , Fp(xp))

with the joint density function

f(y, x1, . . . , xp) = c(FY (y), F1(x1), . . . , Fp(xp)) · fY (y) · f1(x1) · . . . · fp(xp).

To inspect the dependence structure of (Y,X), we transform all variables

marginally to a uniform distribution on the unit interval [0, 1] (the so-called

u-scale) by the probability integral transform (PIT). The corresponding

transformed variables are defined as V = FY (Y ) and Uj = Fj(X·j), j =

1, . . . , p which are uniformly distributed on [0, 1]. The joint distribution

of (V,U) = (V,U1, . . . , Up) is a copula denoted by CV,1,...,p with density

cV,1,...,p.

Additionally, we introduce some notations following Kraus and Czado

(2017); Czado (2019). Let a set D ⊂ {1, . . . , p} be the index set of a sub-

vector of the p-vector X, such that XD is a sub-vector of X consisting of

the variables indexed by elements in D. For example, the sub-vector is de-

noted as X{1,2,3,4} with the corresponding transformed sub-vector denoted

as U{1,2,3,4}, when D = {1, 2, 3, 4}. Let j, j′ ∈ {1, . . . , p}\D be two indices

not belonging to D. Then we have the following definitions.

(i) Cj,j′;D (respectively CV,j;D) denotes the copula associated with the

conditional distribution of (X·j , X·j′) (respectively (Y,X·j)) condi-

tioning on XD with the corresponding copula density cj,j′;D (cV,j;D).

(ii) Fj|D (respectively FY |D) denotes the conditional distribution of X·j

(respectively Y ) conditional on XD.

(iii) Cj|D (respectively CV |D) denotes the conditional distribution of the

PIT transformed variable Uj (respectively V ) conditional on UD with

corresponding density function cj|D (respectively cV |D).



136
CHAPTER 4. C-VINE COPULA BASED QUANTILE

REGRESSION

(iv) The h-functions hUj |Uj′ (uj |uj′) = ∂
∂uj′

Cj,j′(uj , uj′) and hV |Uj (v|uj) =

∂
∂uj

CV,j(v, uj). Similarly, for the conditioned case,

hUj |Uj′ ;UD(uj |uj′ ;uD) =
∂

∂uj′
Cj,j′;D(uj , uj′ ;uD),

and

hV |Uj ;UD(v|uj ;uD) =
∂

∂uj
CV,j;D(v, uj ;uD).

Further, for unconditional copulas, hUj |Uj′ (uj |uj′) = Cj|j′(uj |uj′) and

hV |Uj (v|uj) = CV |j(v|uj). When the simplifying assumption holds,

that is, the copula function does not depend on the specific condi-

tioning value, then hUj |Uk;Ul(uj |uk;ul) = ∂
∂uk

Cjk;l(uj , uk).

In this chapter we focus on C-vines (Bedford and Cooke, 2001, 2002)

which have the advantage of expressing a joint density function by a prod-

uct of bivariate functions with a special structure, which are easy to handle.

The continuous joint density function of (Y,X·1, . . . , X·p) for the ordered

sequence X·1, X·2, . . . , X·p, Y , by Czado (2019, Thm 4.8), is written as a

product of conditional bivariate copula densities and marginal densities in

the following way

f(y, x1, . . . , xp) =
[ p∏
j=1

fj(xj)

p−1∏
j=1

p−j∏
j′=1

cj,j+j′;1,...,j−1

][
fY (y)

p∏
j=1

cj,V ;1,...,j−1

]
.

(4.1)

This pair-copula construction (Bedford and Cooke, 2001, 2002), is called a

C-vine density. When all marginal densities in (4.1) are uniform, the den-

sity is a C-vine copula density. An example of a graphical representation

of a C-vine is presented in Table 4.1, where each edge corresponds to a

pair-copula, and all edges (nodes) are covered by the pair-copulas in the

decomposition.

To simplify the notation in the graphical representation, we use the

subscripts in (4.1) to denote the nodes (edges) in the graph. For example,

“12” denotes the bivariate copula of U1 and U2, whereas “23;1” denotes
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the bivariate copula of U2 and U3 conditional on U1, etc.

The main focus of this chapter is quantile regression based on C-vine

Tree 1 Tree 2 Tree 3

1

V 2 3

12

V 1 13

V 2; 1

23;1

cV |123(v|u1, u2, u3) = cV 1(v, u1) · cV 2;1(CV |1(v|u1), C2|1(u2|u1))

·cV 3;12(CV |1,2(v|u1, u2), C3|12(u3|u1, u2))

Table 4.1: Conditional density of V given U1, U2, U3. Notations in the
graphs should be interpreted as follows: j in Tree 1 represents Uj, V stands
for the variable V ; “12” (“V 1”) in Tree 2 represents the bivariate copula
of U1 and U2 (resp. V and U1); “V 2;1” in Tree 3 represents the bivariate
copula of V and U2 given U1.

copulas, discussed in detail in Section 4.3.1, which relies on the conditional

distribution FY |1,...,p. Let the index j′′ ∈ D and D−j′′ = D\{j′′}. The pair-

copula construction specified for C-vines provides a strategy to estimate

the conditional distribution FY |1,...,p by using only the pair-copulas in (4.1),

in concert with the following recursion (Joe, 1997)

FY |D = hV |j′′;D−j′′

(
FY |D−j′′ (y|xD−j′′ )

∣∣∣FXj′′ |D−j′′ (xj′′ |xD−j′′ )).
Example 4.3.1 shows that the conditional distribution FY |1,2,3 can be ex-

pressed iteratively by a sequence of h-functions hV |U3;U1,U2
, hV |U2;U1

, hU3|U2;U1
,

hV |U1
, hU2|U1

, hU3|U1
, hU2|U1

.

The main contribution of this chapter is a new variable ordering algo-

rithm searching for a root node order of the C-vines described in detail in

Section 4.4. Compared to Kraus and Czado (2017); Chang and Joe (2019),

the new algorithm maximizes the truncated conditional log-likelihoods of

each level of trees taking also the edges of the next level of trees into

account.
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4.3 C-vine copula based quantile regression model

4.3.1 Conditional quantile function

The main interest in using vine copula-based quantile regression is to pre-

dict the τ ∈ (0, 1) quantile of the response variable Y given X, which can

be achieved by a joint modeling of (Y,X) and by using the conditional

quantile function qτ (x{1,...,p}) = F−1
Y |1,...,p(τ |x{1,...,p}). To motivate the con-

struction of a C-vine copula, we first give the conditional distribution of Y

given X on the u-scale and its corresponding inverse, the quantile function,

as derived in Kraus and Czado (2017),

FY |1,...,p(y|x{1,...,p}) = CV |1,...,p(v|u{1,...,p}),

F−1
Y |1,...,p(τ |x{1,...,p}) = F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
. (4.2)

The above equations indicate that the conditional quantile of Y given X

can be expressed as a composition of the inverse marginal distribution

function F−1
Y with the conditional quantile function C−1

V |1,...,p. Estimat-

ing the conditional quantile of Y can be achieved by replacing in (4.2)

the unknown functions by estimates, that is, we use estimated inverses

of the marginal distributions, denoted by F̂−1
Y , F̂−1

j , j = 1, . . . , p, and an

estimated conditional quantile function Ĉ−1
V |1,...,p.

4.3.2 Variable ordering in C-vines

When C-vines are used to estimate the conditional distribution CV |1,...,p

and its inverse function C−1
V |1,...,p, an ordering of the variables Uj ’s is re-

quired. This ordering determines the structure of the C-vine. Details on

the ordering procedure based on maximizing the conditional log-likelihood

of V , are covered in section 4.4.

We demonstrate the connection between the variable ordering and the

root node order using the graphical representation of a 4-dimensional C-

vine in Table 4.2 which shows the C-vine structure corresponding to a
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specific variable order.

Tree Root node Number of choices for the root node

Tree 1

1

2

3

4

“1” 4

Tree 2

12

13

14

“12” 3

Tree 3
23;1 24;1

“23;1” or “24;1” 4 · 3 = 12

Table 4.2: Illustration of a variable order in C-vines (d = 4). To simplify
the notation in the graphical representation, variable Uj is denoted by its
subscript j in the graph; e.g., “1” in Tree 1 represents variable U1, “12”
in Tree 2 represents the bivariate copula of U1 and U2, “23;1” in Tree 3
represents the bivariate copula of U2 and U3 given U1.

In the regression framework we require V , the response on the u-scale, to

be one of the leaves, not the central node. The specific variable ordering

that is used in the C-vine determines how the conditional density and

conditional quantile of V given U are estimated, see (4.2). Both functions,

CV |1,...,p and its inverse C−1
V |1,...,p, can be expressed by means of a product

of bivariate copulas.

First we explain the used notation. Denote by CV |1,...,p−1 the conditional

cumulative distribution function of V given U1 = u1, . . . , Up−1 = up−1, and

by Cp|1,...,p−1 the conditional cumulative distribution function of Up given

U1 = u1, . . . , Up−1 = up−1. Further, denote by cV,p|1,...,p−1 the conditional

density of V and Up given U1, . . . , Up−1, and by cV,p;1,...,p−1 the copula

density of cV,p|1,...,p−1.

To obtain the C-vine representation of the conditional density of V

given U1 = u1, . . . , Up = up, we start from

cV |1,...,p(v|u{1,...,p})
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= cV,p;1,...,p−1

(
CV |1,...,p−1(v|u{1,...,p−1}), Cp|1,...,p−1(up|u{1,...,p})

)
×cV |1,...,p−1(v|u{1,...,p−1}). (4.3)

By recursively rewriting the conditional density cV |1,...,p−1(v|u{1,...,p−1}) in

(4.3) in a similar way, we obtain the representation of the C-vine in (4.4)

consisting of only bivariate copulas,

cV |1,...,p(v|u{1,...,p}) = cV,1(v, u1) (4.4)

×
p∏

p′=2

cV,p′;1,...,p′−1

(
CV |1,...,p′−1(v|u{1,...,p′−1}), Cp′|1,...,p′−1(up|u{1,...,p′−1})

)
.

The order of the indices in (4.4) corresponds to a specific variable order

from U1 to Up; reshuffling the predictive variables will lead to a different

copula density representation of V given U1 = u1, . . . , Up = up. Obviously,

the C-vine representation is not unique.

An example of the conditional density of V given U corresponding to a

4-dimensional C-vine with a predetermined order of variables, is presented

in Table 4.1. The conditional quantile function C−1
V |1,...,p is rewritten re-

cursively using the inverse of the h-functions (Czado, 2019; Joe, 1997).

Example 4.3.1 illustrates a decomposition under the simplifying assump-

tion for the 4-dimensional C-vine of Table 4.1.
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4.3.3 Nonparametric estimators of the copula densities and

h-functions

Here, we explain how the h-functions are estimated in a nonparametric

way. By the simplifying assumption, hV |Uj ;UD(v|uj ;uD) = ∂
∂uj

CV,j;D(v, uj)

can be estimated by the pair (V,Uj) conditioned on UD. Recall that UD

is the subvector of U of which the components’ indices belong to the set

D ⊂ {1, . . . , p}. Thus, it is sufficient to show the estimation procedure

for the h-function hV |U . Consider a pair (U, V ) of which the h-function

hV |U = CV |U can be estimated by the following rescaled estimator

ĈV |U (v|u) =

∫ v

0
ĉV,U (ṽ, u)dṽ

/∫ 1

0
ĉV,U (ṽ, u)dṽ, (4.6)

where ĉV,U is the nonparametric estimator of the bivariate copula density

of (U, V ).

Example estimators of the copula density ĉV,U are the transformation

estimator (Charpentier et al., 2007), the transformation local likelihood

estimator (Geenens et al., 2017), the tapered transformation estimator

(Wen and Wu, 2015), the beta kernel estimator (Charpentier et al., 2007),

and the mirror-reflection estimator (Gijbels and Mielniczuk, 1990). Among

the above-mentioned kernel estimators, the transformation local likelihood

estimator (Geenens et al., 2017) considered in this chapter, was found by

Nagler et al. (2017) to have an overall best performance. The estimator

is implemented in the R packages kdecopula and rvinecopulib using

Gaussian kernels.

For completeness we revise the construction of the transformation local

likelihood estimator below. Let the n× 2 transformed sample matrix be

D = (S, T ) (4.7)

where the transformed samples Di =
(
Si = Φ−1(Ui), Ti = Φ−1(Vi)

)
, i =

1, . . . , n, and Φ denotes the Gaussian cumulative distribution function.

The logarithm of the density fS,T of the transformed samples (Si, Ti), i =



4.3. C-vine copula based quantile regression model 143

1, . . . , n is approximated locally by a polynomial expansion Pam of order

m with intercept ãm,0 such that the approximation denoted by

f̃S,T (Φ−1(u),Φ−1(v)) = exp
{
ãm,0(Φ−1(u),Φ−1(v))

}
.

The transformation local likelihood estimator is then defined as

c̃(u, v) =
f̃S,T (Φ−1(u),Φ−1(v))

φ(Φ−1(u))φ(Φ−1(v))
. (4.8)

To get the local polynomial approximation, we need a kernel function

K with 2×2 bandwidth matrix Bn. For some pair (š, ť) close to (s, t),

log fST (š, ť) is assumed to be well approximated, locally, by, for instance,

a polynomial with m = 1 (log-linear)

Pa1(š− s, ť− t) = a1,0(s, t) + a1,1(s, t)(š− s) + a1,2(s, t)(ť− t),

or m = 2 (log-quadratic)

Pa2(š− s, ť− t) = a2,0(s, t) + a2,1(s, t)(š− s) + a2,2(s, t)(ť− t)

+a2,3(s, t)(š− s)2 + a2,4(s, t)(ť− t)2 + a2,5(s, t)(š− s)(ť− t).

The estimated coefficient vector

ãm(s, t) = arg max
am

{ n∑
i=1

K

(
B−1/2
n

(
s− Si
t− Ti

))
Pam(Si − s, Ti − t)

−n
∫ ∫

R2 K

(
B
−1/2
n

(
s− š
t− ť

))
exp

(
Pam(š− s, t− t)

)
dšdť

}
(4.9)

While it is well-known that kernel estimators suffer from the curse of di-

mensionality, in the C-vine construction only two-dimensional functions

need to be estimated, this thus avoids problems with high-dimensionality.

We next explain as in Geenens et al. (2017) how a bandwidth selection is

obtained. Consider the principal component decomposition for the n × 2
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sample matrix D = (S, T ) in (4.7), such that

(Q,R)> = WD> (4.10)

where each row of W is an eigenvector of D>D. We obtain an estimator

of fST through the density estimator of fQR which can be estimated based

on a diagonal bandwidth matrix diag(h2
Q, h

2
R). Selecting the bandwidths

hQ uses samples Qi, i = 1, . . . , n as

hQ = arg min
h>0

{∫ ∞
−∞

{
f̃

(p)
Q

}2
dq − 2

n

n∑
i=1

f̃
(p)
Q(−i)(Q̂i)

}
(4.11)

where f̃
(p)
Q (p = 1, 2) are the local polynomial estimators for fQ, and f̃

(p)
Q(−i)

is the “leave-one-out” version of f̃
(p)
Q computed by leaving out Qi. The pro-

cedure of selecting hR is similar. The bandwidth matrix for the bivariate

copula density is then given by Bn = K
(p)
n W−1diag(h2

Q, h
2
R)W−1 where

K
(p)
n takes n1/45 for the local log-quadratic case (p = 2). Selection for the

k-nearest-neighbour type bandwidth is similar. The k-nearest-neighbour

bandwidths denoted by h′Q and h′R are obtained by restricting the mini-

mization in (4.11) in the interval (0, 1), i.e.,

h′Q = arg min
h′Q∈(0,1)

{∫ ∞
−∞

{
f̃

(p)
Q

}2
dq − 2

n

n∑
i=1

f̃
(p)
Q(−i)(Q̂i)

}
.

Estimating fQR at any (q, r) is obtained by using its k = K
(p)
n · h′Q · n

nearest neighbours where K
(p)
n takes n−4/45 for p = 2.

4.3.4 Consistency of the conditional quantile estimator

Example 4.3.1 gives an intuition on expressing the conditional quantile

function C−1
V |1,...,p recursively by the inverse of h-functions for fixed vari-

able orders. The conditional quantile function on the original scale in

(4.2) requires the inverse of the marginal distribution function of Y . Fol-

lowing Kraus and Czado (2017); Noh et al. (2013), the marginal cumulative



4.3. C-vine copula based quantile regression model 145

distribution functions FY and the Fj ’s are estimated nonparametrically to

reduce the bias caused by model misspecification. When also all inverses

of the h-functions are estimated nonparametrically, we establish the con-

sistency of the conditional quantile estimator F̂−1
Y |1,...,p in Proposition 4.1

for fixed variable orders.

Proposition 4.1. Let the inverse of the marginal distribution functions

FY and Fj, j = 1, . . . , p be uniformly continuous and estimated nonpara-

metrically, and let the inverse of the h-functions expressing the condi-

tional quantile estimator C−1
V |1,...,p be uniformly continuous and estimated

nonparametrically in the interior of the support of bivariate copulas, i.e.,

[δ, 1− δ]2, δ → 0+.

1. If estimators of the inverse of marginal functions F̂−1
Y , F̂−1

j , j =

1, . . . , p, are uniformly strong consistent on the support [δ, 1−δ], δ →
0+, and the estimators of the inverse of h-functions composing the

conditional quantile estimator C−1
V |1,...,p are uniformly strong consis-

tent, then the estimator F̂−1
Y |1,...,p(τ |x{1,...,p}) is also uniformly strong

consistent.

2. If estimators of the inverse of marginal functions F̂−1
Y , F̂−1

j , j =

1, . . . , p, are at least weak consistent, and the estimators of the in-

verse of h-functions are also at least weak consistent, the the estima-

tor F̂−1
Y |1,...,p(τ |x{1,...,p}) is weak consistent.

Remark: The uniform strong consistency result in 1 requires addition-

ally that all estimators of the inverse of marginal distributions involved,

i.e., F̂−1
Y , F̂−1

j ’s, are uniformly strong consistent on a truncated compact

interval [δ, 1 − δ], δ → 0+. Although not directly used in the proof of

Proposition 4.1 in Section 4.8, the truncation is an essential condition for

guaranteeing the uniform strong consistency of all estimators of the in-

verse of the marginal distributions (i.e., estimators of quantile functions),

see Cheng (1995); Van Keilegom and Veraverbeke (1998); Cheng (1984).

The inverse of the nonparametric estimators above inherit the con-

sistency of the original nonparametric estimators FY , Fj ’s, and the h-
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functions. Example of nonparametric estimators estimating the marginal

distributions FY and Fj ’s are the continuous kernel smoothing estimator

(Parzen, 1962) and the transformed local likelihood estimator in the uni-

variate case (Geenens, 2014). When choosing a Gaussian kernel function

for the nonparametric estimators in Parzen (1962); Geenens (2014), estima-

tors of the marginal distributions FY , Fj ’s are uniformly strong consistent.

The inverse of the h-functions can be obtained through a nested se-

quence of bivariate copula densities (see section 4.4.2 for details). Here,

we consider the transformed local likelihood estimator in Geenens et al.

(2017), which inherits uniformly (weak or strong) consistency from the esti-

mator f̃S,T in (4.8). Using a product of univariate Gaussian kernels for the

kernel function K in (4.9) for estimating f̃S,T is discussed in Geenens et al.

(2017) and implemented in the R packages kdecop and rvinecopulib.

Proposition 4.1 shows the uniform consistency and gives an indication

on the performance of the conditional quantile estimator F̂−1
Y |1,...,p for fixed

variable orders, while combining the consistent estimators of FY , Fj ’s and

the bivariate copula densities. Extensive studies on numerical performance

of F̂−1
Y |1,...,p will be presented in Section 4.5.

4.3.5 Implementation

Implementation of the quantile prediction is based on the R package vinereg

(Nagler and Kraus, 2018). An outline of the main estimation procedure

for predicting the conditional quantile τ of the response Y given predictive

variables X is described in the following five steps. Our main contribu-

tion in this implementation compared to Kraus and Czado (2017); Chang

and Joe (2019) is the variable ordering algorithm in Step 2 as described

in Section 4.4, taking trees of the next level into consideration while max-

imizing the conditional log-likelihoods for selecting a root node for each

level of trees. An additional contribution is the pair-copulas construction

complying with the C-vine copulas structure.
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Step 1 Obtain nonparametric estimators of marginal distributions of pre-

dictive variables X·j ’s and the response variable Y , denote the non-

parametric estimators by F̂j , j = 1, . . . , p, and F̂Y . Then, trans-

form all variables marginally by Uj = F̂j(X·j), j = 1, . . . , p, and

V = F̂Y (Y ).

Step 2 Select a variable order by maximizing the conditional log-likelihood

of V based on the selection procedure in Section 4.4.

Step 3 Estimate the C-vine based on the selected variable order in Step 2.

Step 4 Reuse the bivariate copulas estimated in Step 3 to evaluate the

inverse h-functions in (4.5) at new samples.

Step 5 Reuse the estimated marginal distribution of Y to transform the

predicted conditional quantile from the u-scale to its original scale,

i.e., from C−1
V |1,...,p to F−1

Y |1,...,p by (4.2).

4.4 Procedure of variable ordering

The main idea of ordering variables follows Czado et al. (2012) maximizing

the conditional log-likelihood gradually; though we propose in this chapter

a “one-step-ahead” maximization approach by taking trees of the next

level into account when selecting the root node for each level. Denote

by k∗1 the index of that variable among the predictive variables having

the highest dependency with all other variables including the response

variable V ; then by conditioning on Uk∗1 , the variable indexed by k∗2 among

the remaining variables has the highest dependency with other variables.

The goal is to find an order of variables in a C-vine while taking into

account the dependency with V . In other words, we find an order for the

predictive variables U1, . . . , Up according to the maximum of the values of

the conditional log-likelihood of V given the ordered Uj ’s.

Meanwhile, (4.4) suggests that the order of Uj ’s that V conditions on,

decides the values of the conditional density cV |1,...,p(v|u{1,...,p}) and con-



148
CHAPTER 4. C-VINE COPULA BASED QUANTILE

REGRESSION

structs different C-vines. To find the order of the variables, we maximize

the conditional log-likelihood of V sequentially. The first variable is se-

lected by maximizing
∑n

i=1 log cV |1,...,p(vi|ui,k1 , ui,j) over k1 ∈ {1, . . . , p},
where j ∈ {1, . . . , p}\{k1}; by this method, we select the root node with

the highest dependence between the response variable and one of the re-

maining variables. It is worth mentioning that, instead of summing up all j

ranging in {1, . . . , p}\{k1} while calculating the conditional log-likelihood

for each k1, we calculate the conditional log-likelihood for a single j at a

time here; in total p · (p − 1) log-likelihoods are calculated in this step,

since we have p choices for k1. Denote the selected first variable as Uk∗1 ,

the second variable is selected by maximizing
∑n

i=1 log c(vi|ui,k∗1 , ui,k2 , ui,j)

where j ∈ {1, . . . , p}\{k∗1, k2}, k2 ∈ {1, . . . , p}\{k∗1}. Under this regime,

we order the variables such that their conditional dependence with the

response variable is taken into account.

4.4.1 Pre-selection based on partial correlation

Constructing an appropriate C-vine and finding the root node order relies

on the pairwise dependence structure. We allow both p ≤ n and p > n.

However, we need to calculate p · (p− 1) + (p− 1) · (p− 2) + . . .+ 2 · 1 =

(p− 1) · p · (p+ 1)/3 times a log-likelihood before completing the ordering

of the variables; and this becomes computationally demanding in cases

where p > n. To reduce the computational complexity, we perform a

pre-selection based on the partial correlation measures, motivated by the

fact that the correlation measures such as Kendall’s τ and Spearman’s

ρ can be expressed in terms of pair-copulas (Haff et al., 2010). In the

latter context, we consider Spearman’s rho denoted as ρkt,V ;k∗1 ,...,k
∗
t−1

where

kt ∈ {1, . . . , p}\{k∗1, . . . , k∗t−1} and the k∗t ’s are the selected variables in the

previous steps. An exception is the pre-selection for the first variable where

the partial correlation measures are replaced by unconditional correlation

measures.

The partial Spearman’s ρ is calculated using Theorem 2.14 in Czado
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(2019) by

ρj1,j2;{1,...,p}\{j1,j2} = (4.12)

ρj1,j2;{1,...,p−1}\{j1,j2} − ρj1,p;{1,...,p−1}\{j1}ρj2,p;{1,...,p−1}\{j2}√
1− ρ2

j1,p;{1,...,p−1}\{j1}

√
1− ρ2

j2,p;{1,...,p−1}\{j2}

,

where ρj1,j2;{1,...,p′}\{j1,j2} denotes the correlation of Uj1 and Uj2 given

Uj , j ∈ {1, . . . , p′}\{j1, j2}, ρj′,p′;{1,...,p′−1}\{j1} denotes the correlation of

Uj′ and Up′ given Uj ∈ {1, . . . , p′−1}\{j1}, j′ = j1, j2, p′ = p−1, p. Estima-

tion is facilitated with estimated quantities based on the PIT transformed

data V and Uj ’s. We show an example of partial correlation calculation for

an additional variable reduction in higher dimensions in the construction

of the first C-vine tree in Section 4.4.2.

4.4.2 Construction in more detail

First C-vine tree

We first select K candidate variables with indices k1,1, . . . , k1,K as the can-

didate of the first root variable. The selection is based on the unconditional

correlation of the variables Uj and the response V . The conditional log-

likelihood allowing for two truncated C-vine likelihoods with root nodes

Uk1,r and Uj|k1,r
based on data {(Vi, Ui,k1,r , Ui,j), i = 1, . . . , n} is given as

n∑
i=1

li,k1,r,j(vi, ui,k1,r , ui,j) =

n∑
i=1

{
log cV,k1,r(vi, ui,k1,r)

+ log cV,j;k1,r(CV |k1,r
(vi|ui,k1,r), Cj|k1,r

(ui,j |ui,k1,r))
}
, (4.13)

for j ∈ {1, . . . , p}\{k1,r}, r = 1, . . . ,K.

The truncated C-vine likelihood in (4.13) takes one step ahead as com-

pared to Kraus and Czado (2017) by taking an additional variable Uj into
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consideration. The first selected variable corresponds to

arg max
k1,r

r∈{1,...,K}

max
j

j∈{1,...,p}\{k1,r}

n∑
i=1

li,k1,r,j(vi, ui,k1,r , ui,j).

To evaluate the log-likelihood here, the main components are the cop-

ula density cV,k1,r , the conditional c.d.f’s, i.e., CV |k1,r
and Cj|k1,r

, and the

conditional copula density cV,j;k1,r . The copula density cV,k1,r can be esti-

mated nonparametrically by kernel estimators of the copula density, and

the conditional copula density cV,k1,r can be estimated similarly once we

obtain the pseudo-samples

ui,V |k1,r
= CV |k1,r

(vi|ui,k1,r)

and

ui,j|k1,r
= Cj|k1,r

(ui,j |ui,k1,r)

based on evaluating the conditional c.d.f.’s CV |k1,r
and Cj|k1,r

at the ith

observations of V and the Uj ’s.

The variable among the K candidates which has the largest estimated

conditional log-likelihood defined in (4.13) is chosen, and the corresponding

index of the chosen variable is denoted as k∗1. Meanwhile, we record the

log-likelihood values for
∑n

i=1 li,k1,r,j(vi, ui,k1,r , ui,j), as well as the pseudo-

samples

ui,V |k∗1 = CV |k∗1 (vi|ui,k∗1 )

and

ui,j|k∗1 = Cj|k∗1 (ui,j |ui,k∗1 )

for i = 1, . . . , n. The pseudo samples will be reused when calculating the

conditional log-likelihood for the following trees.
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Uk1,r

V Uj

Figure 4.1: Finding a root node Uk∗1 for the first C-vine tree by calculating∑n
i=1 li,k1,r,j(vi, ui,k1,r , ui,j) based on c(vi|ui,k1,r, ui,j), where r = 1, . . . ,K,

j ∈ {1, . . . , p}\{k1,r}, and i = 1, . . . , n. The node Uk1,r is a candidate root
node, whereas nodes corresponding to the response V and an additional
variable Uj are leafs.

Additional variable reduction in higher dimensions

The search procedure described above requires, for K variables as can-

didates entering the root node of the first C-vine tree, calculating j ∈
{1, . . . , p}\{k1,r}, leading to a total calculation of (p−1)×K log-likelihoods.

In cases where p is large, this search procedure would cause a heavy com-

putational burden. Hence, we suggest two additional variable reduction

methods based on partial correlation ρV j;k1,r , for all j ∈ {1, . . . , p}\{k1,r}.
The basic idea is similar to the pre-selection in Section 4.4.1. The calcula-

tion of the partial correlation ρV j;k1,r is based on (4.12) and follows

• Calculate the unconditional correlation ρV j using data V and Uj .

• Calculate unconditional correlations ρV,k1,r using data V and Uk1,r ,

and ρj,k1,r using Uj and Uk1,r .

• Calculate the partial correlation using (4.12) by

ρV j;k1,r =
ρV j − ρV,k1,r · ρj,k1,r√

1− ρ2
V,k1,r

·
√

1− ρ2
j,k1,r

.

For Uk1,r , we order Uj , j ∈ {1, . . . , p}\{k1,r} according to the partial Spear-

man correlation. Reducing the number of choices for the variable Uj can

be based on either only partial correlation, or a combination of partial

correlation and random selection. The selection method and the size of
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reduction can be decided by the users.

Second C-vine tree

Similar to the procedure of constructing the first C-vine tree, we first select

K candidate variables denoted as k2,1, . . . , k2,K with the largest absolute

value of the partial correlations ρj,v;k∗1
, j ∈ {1, . . . , p}\{k∗1}; the partial cor-

relation is described in Section 4.4.1. For a fixed variable k2,r, we calculate

the conditional log-likelihood

n∑
i=1

li,k∗1 ,k2,r,j(vi, ui,k∗1 , ui,k2,r , ui,j) =

n∑
i=1

{
log cV,k∗1 (vi, ui,k∗1 )

+ log cV,j;k∗1
(
CV |k∗1 (vi|ui,k∗1 ), Cj|k∗1 (ui,j |ui,k∗1 )

)}
+

n∑
i=1

{
log cV,j;k∗1 ,k2,r

(
CV |k∗1 ,k2,r

(vi|uk∗1 , ui,k2,r), Cj|k∗1 ,k2,r
(ui,j |ui,k∗1 , ui,k2,r)

)}
for j ∈ {1, . . . , p}\{k∗1, k2,r}, r = 1, . . . ,K. The first two terms on the right-

hand side of the expression of
∑n

i=1 li,k∗1 ,k2,r,j(vi, ui,k∗1 , ui,k2,r , ui,j) above

reuse the recorded values calculated while constructing the first tree using

(4.13).

Notice that the conditional c.d.f.

CV |k∗1 ,k2,r
(vi|uk∗1 , ui,k2,r) =

∂

∂w
CV,uk2,r

;uk∗1
(ui,V |k∗1 , w)|w=ui,k2,r |k∗1

where the pseudo samples ui,V |k∗1 and ui,k2,r|k∗1 were recorded while calculat-

ing the first C-vine tree. Estimating the conditional distribution CV |k∗1 ,k2,r

and evaluating at the ith observation can be done by combining the esti-

mators defined in (4.8) and (4.6).

The second selected variable corresponds to

arg max
k2,r

r∈{1,...,K}

max
j

j∈{1,...,p}\{k∗1 ,k2,r}

n∑
i=1

li,k∗1 ,k2,r,j(vi, ui,k∗1 , ui,k2,r , ui,j)
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The index of the selected variable is denoted as k∗2.

Uk∗1Uk2,r

Uk∗1V Uk∗1Uj

Figure 4.2: Finding a root node for the second C-vine tree by cal-
culating

∑n
i=1 li,k∗1 ,k2,r,j(vi, ui,k∗1 , ui,k2,r , ui,j) based on c(vi|ui,k∗1 , ui,k2,r , ui,j)

where r = 1, . . . ,K, j ∈ {1, . . . , p}\{k∗1, k2,r}, and i = 1, . . . , n. The node
Uk1∗Uk2,r is a candidate root node where Uk2,r is the variable to be selected.
The node Uk∗1V with the response V is a leaf.

Higher order C-vine tree

The selection of the next ordered variable in the higher order trees is

similar to that in Section 4.4.2. The expression of the log-likelihood is cal-

culated gradually based on the conditional copula density in (4.4). More

specifically, the first selected variable is based on the conditional copula

density c(v|uk1 , uj), the second selected variable is based on the condi-

tional copula density c(v|uk∗1 , uk2 , uj), the tth variable selected is based

on c(v|uk∗1 , . . . , uk∗t−1
, ukt , uj); in each selection step, the selected variable

maximizes the corresponding conditional log-likelihood derived from the

conditional copula density. Computationally, the additional term of the

log-likelihood selecting the tth variable, compared to that selecting the

(t− 1)th variable, is calculated from the conditional c.d.f (the h-function)

from the previous selection step.

In the tth step, the candidate tree is as follows
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Uk∗t−1
Ukt,r;Uk∗1 . . . Uk∗t−2

Uk∗t−1
V ;Uk∗1 . . . Uk∗t−2

Uk∗t−1
Uj ;Uk∗1 . . . Uk∗t−2

Figure 4.3: Finding a root node for the tth C-vine tree by
calculating

∑n
i=1 li,k∗1 ,...,k∗t−1,kt,r,j

(vi, ui,k∗1 ,, . . . , ui,k∗t−1
, ui,kt,r , ui,j)

based on c(vi|ui,k∗1 , . . . , ui,k∗t−1
, ui,kt,r , ui,j) where r = 1, . . . ,K,

j ∈ {1, . . . , p}\{k∗1, . . . , k∗t−1, kt,r}, and i = 1, . . . , n. The node
Uk∗t−1

Ukt,r;Uk∗1 . . . Uk∗t−2
is a candidate root node where Ukt,r is the

variable to be selected. The node with the response V is always a leaf.

4.5 Simulation

We set up the following simulation settings. Each setting is replicated

for R = 100 times. In each simulation replication, we randomly gener-

ate ntrain samples used for estimation described in Steps 1 – 4 in Sec-

tion 4.3.5; additionally, another neval = 1
2ntrain samples for setting (a) –

(f) and neval = ntrain for setting (g), (h) are generated for predicting the

conditional quantile as described in Step 5. Settings (a) – (f) are designed

to test the quantile prediction accuracy of nonparametric C-vine quan-

tile regression in cases where p ≤ n; hence, we set ntrain = 1000 or 300.

Settings (g) and (h) test the quantile prediction accuracy in cases where

p > n; hence, we set ntrain = 100. For settings with homoscedastic noises,

i.e., Yi = g(Xi·) + εi, i = 1, . . . , n with g(·) being some mapping and the

standard deviation of εi’s denoted by σ (see Setting (a), (g), (h)), we also

report signal-to-noise ratios (SNR) defined as

SNR =

∑n
i=1 g(Xi·)/n

σ
.

(a) Simulation setting M5 from Kraus and Czado (2017) where Y =√
|2X·1 −X·2 + 0.5|+(−0.5X·3+1)(0.1X3

·4)+σε with ε ∼ N(0, 1), σ ∈
{0.1, 1}, (X·1, X·2, X·3, X·4) ∼ N4(0,Σ), and the (i, j)th component

of the covariance matrix (Σ)i,j = 0.5|i−j|. The SNR is 10.33 (1.03)
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when σ = 0.1(1).

(b) (Y,X·1, . . . , X·5) follows a mixture of two 6-dimensional t-copulas

with degrees of freedom equal to 3 with mixture probabilities 0.3

and 0.7; association matrices R1, R2 as in Table 4.3 and marginal

distributions as given in Table 4.4.

R1 =



1 0.6 0.5 0.6 0.7 0.1
0.6 1 0.5 0.5 0.5 0.5
0.5 0.5 1 0.5 0.5 0.5
0.6 0.5 0.5 1 0.5 0.5
0.7 0.5 0.5 0.5 1 0.5
0.1 0.5 0.5 0.5 0.5 1



R2 =



1 −0.3 −0.5 −0.4 −0.5 −0.1
−0.3 1 0.5 0.5 0.5 0.5
−0.5 0.5 1 0.5 0.5 0.5
−0.4 0.5 0.5 1 0.5 0.5
−0.5 0.5 0.5 0.5 1 0.5
−0.1 0.5 0.5 0.5 0.5 1


Table 4.3: Association matrices for simulation setting (b)

Y X·1 X·2 X·3 X·4 X·5
N(0, 1) t4 N(1, 4) t4 N(1, 4) t4

Table 4.4: Marginal distributions for simulation setting (b)

(c) Linear and heteroscedastic (Chang and Joe, 2019): Y = 5(X·1 +

X·2 +X·3 +X·4)+10(U1 +U2 +U3 +U4)ε where (X·1, X·2, X·3, X·4) ∼
N(0,Σ), Σi,j = 0.5I{i 6=j}, ε ∼ N4(0, 0.5), and Uj , j = 1, . . . , 4 are

obtained from X·j , j = 1, . . . , 4 by the probability integral transform.

(d) Nonlinear and heteroscedastic (Chang and Joe, 2019):

Y = U1U2e
1.8U3U4 + 0.5(U1 + U2 + U3 + U4)ε
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where Uj , j = 1, . . . , 4 are probability integral transformed from

N4(0,Σ), Σi,j = 0.5I{i 6=j}, and ε ∼ N(0, 0.5).

(e) Sampling from an R-vine copula (Czado, 2019): (Y,X·1, . . . , X·4)

follows a R-vine copula structure with R-vine matrix
1 1 1 4 4

5 5 1 1

4 5 3

3 5

2

 .

Details on R-vine matrix representation are in Section 4.10. The

graphical representation of this R-vine is in Figure 4.5 in Section 4.12.

The corresponding parameter matrix of pair-copulas of the R-vine is

introduced in Section 4.11. The pair-copula families correspond to
0 3(4.8) 1(0.5) 1(0.9) 4(3.9)

0 0 4(1.9) 24(2.6) 24(6.5)

0 0 0 23(5.1) 3(0.9)

0 0 0 0 1(0.2)

0 0 0 0 0

 ,

where 1 corresponds to a Gaussian copula, 3 a Clayton, 4 a Gumbel,

23 a rotated 90 degree Clayton, and 24 a rotated 90 degree Gumbel;

numbers in the parentheses represent the corresponding parameters

of the copulas. For example, the (1, 2)th element 3(4.8) represents

that the unconditional pair copula C1,5 is a Gaussian copula with

parameter 4.8.

(f) Similar to (e), while (Y,X·1, . . . , X·4) follows a D-vine copula struc-
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ture with R-vine matrix
5 5 4 3 2

4 5 4 3

3 5 4

2 5

1

 .

The graphical representation of this D-vine is in Figure 4.4 in Sec-

tion 4.12. The pair-copula families are the same as (e).

(g) Similar to setting (a).

Y =
√
|2X·1 −X·2 + 0.5|+ (−0.5X·3 + 1)(0.1X3

·4)

+(X·5, . . . , X·110)(0, . . . , 0)> + σε,

where (X·1, . . . , X·110) ∼ N110(0,Σ) with the (i, j)th component of

the covariance matrix (Σ)i,j = 0.5|i−j|, ε ∼ N(0, 1), and σ ∈ {0.1, 1}.
Same as setting (a), the SNR is 10.33 (1.03) when σ = 0.1(1).

(h) Similar to (g); the true model is Y = (|X·1|1/2, . . . , |X·110|1/2)β + ε

where the first 5 entries of β are equal to 1, the remaining 105 entries

of β are equal to 0, and ε ∼ N(0, 0.1). The SNR is 41.08 (4.11) when

σ. = 0.1(1).

Since the true regression quantiles are difficult to obtain in most set-

tings, we consider the averaged check loss (Kraus and Czado, 2017; Ko-

munjer, 2013) and the interval score (Chang and Joe, 2019; Gneiting and

Raftery, 2007), instead of the out-of-sample mean averaged square error

in Kraus and Czado (2017), to evaluate the performance of the estimation

methods. The averaged check loss is defined as

ĈLτ =
1

R

R∑
r=1

{
1

neval

neval∑
i=1

{
ρτ
(
Y eval
r,i − q̂τ (Xeval

·r,i )
)}}

. (4.14)

A smaller value of the averaged check loss suggests that the corresponding
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estimator used for prediction gives a lower value of the loss, this usually

suggests that estimator is closer to the global minimizer of the loss function.

The interval score for the (1− τ)× 100% prediction interval is defined as

ÎSτ =
1

R

R∑
r=1

{
1

neval

neval∑
i=1

{(
q̂τ/2(Xeval

r,i· )− q̂1−τ/2(Xeval
r,i· )

)
+

2

τ

(
q̂1−τ/2(Xeval

r,i· )− Y eval
r,i

)
I{Y eval

r,i ≤ q̂1−τ/2(Xeval
r,i· )}

+
2

τ

(
Y eval
r,i· − q̂τ/2(Xeval

r,i· )
)
I{Y eval

r,i > q̂τ/2(Xeval
r,i· )}

}}
, (4.15)

and smaller interval scores are better. This expression of interval scores

consists of two elements; i.e., the length of the interval corresponding to

the first term in (4.15), and a score of if the observations miss the interval

corresponding to the last two terms in (4.15). A combination of narrower

intervals and lower score on the observations missing intervals leads to a

smaller interval score suggesting a more accurate prediction.

For settings (a) – (f), we do not perform pre-selection as described in

Section 4.4.1, i.e., we calculate the conditional log-likelihoods of all possible

combinations in each searching step corresponding to each level of C-vine

trees in Step 2 in Section 4.3.5. On the contrary, due to the computational

burden in the search steps for settings (g) and (h), we set the number of

candidate variables indexed by k to be K = 5, and reduce the choices of

the variable indexed by j to 20% of all possible choices where 10% are

variables having the highest partial correlation with the response variable

and the remaining 10% are chosen randomly from the rest of the variables.

The performance of C-vine quantile regression is compared with D-vine

quantile regression as in Kraus and Czado (2017). The performance of the

two methods, evaluated by the averaged check loss at the 5%, 50%, 95%

quantile levels and the interval score for the 95% prediction interval, are

recorded in Table 4.5. All densities are estimated nonparametrically which

should give an honest comparison.

Table 4.5 shows that the C-vine copulas based quantile prediction com-
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bining the variable ordering in Step 2 in Section 4.3.5 outperforms the

D-vine quantile prediction from Kraus and Czado (2017). One excep-

tion is setting (b) where the data are generated from a mixture of two

6-dimensional t3 copulas. Noteworthy, in setting (f) where the true data

are generated from a D-vine, our proposed C-vine quantile regression still

outperforms its D-vine quantile counterpart on the averaged check loss at

quantile levels 5% and 50%.

In high dimensional settings, the D-vine copulas based quantile regres-

sions only outperforms our proposed method in setting (h) on the averaged

check loss at quantile level 5%. Another general observation is that our

proposed C-vine quantile regression with the “one-step-ahead” variable

ordering technique could largely improve the performance of the D-vine

quantile regression, especially in cases where the standard deviation of the

regression errors is σ = 0.1. Intuitively, the observations are less disturbed

by errors; hence, better performance indicates a more accurate capture

of the correlation structure of the predictive variables and the response

variable.

4.6 Real data examples

In this section, we test the proposed method on two real datasets, i.e., the

abalone dataset (Nash et al., 1994) from Dua and Graff (2019) correspond-

ing to n ≥ p, and the riboflavin dataset from Bühlmann and van de Geer

(2011) corresponding to n < p. For both datasets, performances of the

proposed C-vine based quantile regression will be evaluated by the aver-

aged check loss defined in (4.14) at 5%, 50% and 95% quantile levels, as

well as the 95% prediction interval score defined in (4.15), by randomly

splitting the dataset into training and evaluation sets 100 times. Perfor-

mance of the proposed method will be compared with the D-vine based

quantile regression in Kraus and Czado (2017).
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ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95

Setting ntrain C-vine D-vine C-vine D-vine C-vine D-vine C-vine D-vine

(a) 300 39.034 52.171 0.416 0.605 0.107 0.162 0.384 0.500

σ = 0.1 1000 39.662 54.822 0.419 0.649 0.093 0.157 0.365 0.495

(a) 300 146.350 150.409 1.553 1.605 0.447 0.457 1.549 1.582

σ = 1 1000 154.538 159.004 1.617 1.673 0.421 0.435 1.602 1.640

(b) 300 119.063 115.588 1.297 1.259 0.415 0.415 1.300 1.274

1000 123.665 123.257 1.348 1.345 0.397 0.399 1.346 1.342

(c) 300 1429.667 1449.607 14.838 15.182 4.417 4.517 15.058 15.185

1000 1520.353 1529.319 15.479 15.625 4.195 4.236 15.752 15.814

(d) 300 85.467 87.901 0.866 0.878 0.247 0.252 0.955 0.996

1000 90.078 91.578 0.936 0.943 0.226 0.231 0.958 0.981

(e) 300 9.208 9.564 0.086 0.102 0.023 0.028 0.105 0.097

1000 9.410 9.382 0.086 0.098 0.022 0.024 0.107 0.094

(f) 300 4.952 4.919 0.048 0.049 0.012 0.013 0.053 0.053

1000 4.679 4.706 0.044 0.044 0.011 0.011 0.050 0.051

(g) σ = 0.1 100 19.631 36.568 0.238 0.520 0.245 0.457 0.253 0.394

σ = 1 100 53.638 57.115 0.689 0.772 0.670 0.714 0.652 0.656

(h) σ = 0.1 100 39.162 55.183 0.474 0.252 0.490 0.690 0.505 1.127

σ = 1 100 61.104 68.819 0.752 0.525 0.764 0.860 0.776 1.196

Table 4.5: Out-of-sample prediction ÎS0.05, ĈL0.05, ĈL0.5, ĈL0.95 by C-
and D-vine quantile regression in setting (a) – (h). Lower values, indicat-
ing better performance among the two, are highlighted in yellow.
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4.6.1 Abalone dataset

The abalone (a type of shellfish) dataset from UCI machine learning repos-

itory (Dua and Graff, 2019) was used in Chang and Joe (2019) as an ex-

ample covering both regression and classification. The dataset has in total

4177 samples including female, male, and infant abalone. Our objective

is to obtain quantile predictions of the age of 1528 male abalone, deter-

mined by the number of rings counted, using the remaining 7 continuous

physical measurement variables. We randomly split the dataset into a

training set with 1228 samples and an evaluation set with 300 samples;

the random splitting is repeated 100 times. Performance of the proposed

C-vine based quantile regression, compared with D-vine based quantile

regression (Kraus and Czado, 2017), is evaluated by several performance

measurements and is reported in Table 4.6. We see that the proposed

C-vine quantile regression and the D-vine quantile regression have a close

performance. However, the proposed C-vine quantile regression slightly

outperforms the D-vine quantile regression on the averaged check loss at

the 5% and 50% quantile levels.

Model ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95

C-vine 308.016 2.560 0.780 3.674

D-vine 304.677 2.637 0.813 3.571

Table 4.6: Table recording performance of C- and D-vine quantile re-
gression for the Abalone dataset. Out-of-sample prediction ÎS0.05, ĈL0.05,
ĈL0.5, ĈL0.95 calculated based on R = 100 times randomly split the dataset
into training set with 1228 samples and evaluation set with 300 samples.
Lower values indicating better performance, among the two are highlighted
in yellow.

4.6.2 Riboflavin dataset

The riboflavin dataset, available in the R package hdi, aims at quantile

predictions of log-transformed production rate of Bacillus subtilis using
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log-transformed expression levels of 4088 genes. To reduce the computa-

tional burden, we perform a pre-selection of the top 100 genes with the

highest variance (Bühlmann and van de Geer, 2011), resulting in a sub-

set with p = 100 log-transformed gene expressions and n = 71 samples.

A random splitting of the subset into a training set with 61 samples and

an evaluation set with 10 samples, is repeated 100 times. Additionally,

to further reduce the computational burden but to keep the accuracy of

the fitted C-vine copula model, we perform the pre-selection described in

Section 4.4.1 by setting the number of candidate variables indexed by k

to be K = 10. Further, we reduce the choice of the variables indexed

by j to 25% of all possible choices, where 15% of them are the variables

that have the highest partial correlations with the log-transformed Bacillus

subtilis production rate. The other 10% of the variables were randomly

chosen from the remaining variables. The performance of the C- and D-

vine based quantile regressions are reported in Table 4.7, where we see that

the proposed C-vine copula based quantile regression consistently outper-

forms the D-vine based quantile regression in Kraus and Czado (2017) to

a large extent, i.e., scores of D-vine are approximately 1.5 times of those

of C-vines for all four scores.

Model ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95

C-vine 29.849 0.390 0.373 0.356

D-vine 43.948 0.507 0.549 0.592

Table 4.7: Table recording performance of C- and D-vine quantile regres-
sion for the Riboflavin dataset. Out-of-sample prediction ÎS0.05, ĈL0.05,

ĈL0.5, ĈL0.95 calculated based on R = 100 times randomly split the dataset
into training set with 61 samples and evaluation set with 10 samples. Lower
values indicating better performance, among the two are highlighted in yel-
low.
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4.7 Flexible conditional mean estimator

In the previous sections we derived a conditional quantile estimator of

F−1
Y |1,...,p(τ |x1, . . . , xp) based on C-vine copula modelling. There is an im-

mediate connection between a conditional quantile and a conditional mean.

Indeed, by taking τ = FY |1,...,p(y|x1, . . . , xp) and by the change of variable

theorem, it holds that∫ 1

0
F−1
Y |1,...,p(τ |x1, . . . , xp)dτ =

∫ ∞
−∞

ydFY |1,...,p(y|x{1,...,p}). (4.16)

The right-hand side of (4.16) corresponds to the conditional mean of the

response variable Y , and a discrete approximation of the left-hand side

offers a flexible estimator of the conditional mean of Y in the following

way,

ÊY |1,...,p

[
Y |x1, . . . , xp

]
=

L∑
l=1

1

L
F̂−1
Y |1,...,p(αl|x1, . . . , xp)

After the conditional quantile estimators for the different levels α1, . . . , αL

are constructed, the corresponding conditional mean estimator follows di-

rectly. Here, we evaluate the performance of such a conditional mean esti-

mator by an out-of-sample mean prediction via the mean averaged squared

error

M̂ASEmean =
1

R

R∑
r=1

{
1

neval

neval∑
i=1

{ L∑
l=1

1

L
q̂

(r)
l/11(Xeval

r,i· )− Y eval
r,i )

}2
}
, (4.17)

where the conditional mean ÊY |1,...,p is approximated by averaging condi-

tional quantile estimators at L = 10 equally spaced quantile levels, i.e.,

1/11, . . . , 10/11. This estimator can be seen as a model averaging estima-

tor using equal weights 1/10.

Table 4.8 reports the comparison of the performance of the conditional

mean estimator based on C-vine copulas with the (1) corresponding es-

timator based on D-vine copulas; (2) the ordinary least squares (OLS)

estimator in settings (a) – (f), or the Lasso estimator in settings (g), (h).
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Tuning parameters of the Lasso estimators are selected by 10-fold cross-

validation, i.e., the one minimizes mean cross-validation errors on a grid;

(3) the nonparametric regression implemented in R package np (Hayfield

and Racine, 2008) with the least squares cross-validated bandwidths. Ta-

ble 4.8 shows that modelling a conditional mean using the proposed C-vine

copula method has overall the best performance when there exists a strong

non-linearity between the predictive variables and the response variable.

The proposed C-vine copulas outperform the D-vine copula method in all

settings. However, using the OLS or the Lasso to modelling the conditional

mean in Setting (b), (c), and (g) with σ = 1, lead to the lowest prediction

error, especially in Setting (c) which is a linear model with heteroscedastic

errors for which the least squares estimators should perform best.

4.8 Discussion

We proposed a C-vine copula based nonparametric quantile regression

model which uses a novel root node order selection algorithm, namely

a “one-step-ahead” selection. This “one-step-ahead” selection approach

maximizes the conditional log-likelihood of one level of C-vine tree, taking

the subsequent level of C-vine tree into account. The pair-copula densities

of the C-vine copulas are estimated nonparametrically, which maximizes

the flexibility of the model. The proposed model does not impose addi-

tional model assumptions; hence it is especially suitable for dealing with

an unknown correlation structure of the response variable and the predic-

tive variables or with heteroscedastic errors. The simulation and real data

results for both low- and high dimensional settings show a superior finite

sample performance of the proposed C-vine copulas models, compared to

the D-vine copulas models proposed in Kraus and Czado (2017).

There are still questions to be answered. To ensure the uniqueness of

the copulas, we assume in this chapter that all marginal distributions are

continuous. However, Chang and Joe (2019) proposed to an R-vine based

conditional distribution modeling allowing discrete marginal distributions.
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Setting ntrain C-vine D-vine OLS NP

(a) 300 0.161 0.259 1.444 0.887

σ = 0.1 1000 0.160 0.259 1.425 1.854

(a) 300 1.288 1.368 2.393 1.103

σ = 1 1000 1.142 1.233 2.421 1.823

(b) 300 1.180 1.208 0.986 1.236

1000 1.069 1.095 0.975 1.126

(c) 300 142.222 155.671 123.430 589.393

1000 129.919 133.794 119.422 581.218

(d) 300 0.508 0.536 1.099 2.084

1000 0.429 0.450 1.102 2.065

(e) 300 0.004 0.010 0.013 0.178

1000 0.004 0.006 0.013 0.176

(f) 300 0.001 0.003 0.004 0.159

1000 0.001 0.001 0.004 0.160

Setting ntrain C-vine D-vine Lasso NP

(g) σ = 0.1 100 0.474 1.532 1.505 0.962

σ = 1 100 2.904 3.392 2.752 2.901

(h) σ = 0.1 100 1.520 2.787 17.656 1.631

σ = 1 100 3.677 4.627 18.662 3.578

Table 4.8: Prediction M̂ASEmean by C- and D-vine copulas, OLS in set-
tings (a) – (f) and the Lasso in settings (g), (h), and nonparametric regres-
sion. Lowest values, indicating stronger out-of-sample prediction ability,
are highlighted in yellow.

Schallhorn et al. (2017); Nagler and Kraus (2018) further incorporated dis-

crete marginal distributions in the D-vine based quantile regression. In-

corporating a mix of discrete and continuous distributions in the proposed

C-vine based quantile regression would lead to a much more powerful al-

gorithm.

Another question is related to the pre-selection for reducing the com-

putational complexity in high dimensions, i.e., to reduce the number of

pair copulas to be calculated in each searching step. This pre-selection

is based on the partial Spearman’s ρ of the predictive variables with the
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response variable. Although Haff et al. (2010) showed the link between

partial correlation with log-likelihood, there is no guarantee suggesting

that the selected candidate predictive variables are the maximizers of the

conditional log-likelihoods in each selection step. Other pre-selection ap-

proaches that are more directly relevant to the conditional log-likelihoods

should be investigated further.

Also, the current “one-step-ahead” algorithm follows a sequential maxi-

mization procedure, which maximizes a truncated conditional log-likelihood

in each step. This procedure does not ensure that the resulting root node

order is the maximizer of the complete conditional log-likelihood. A back-

ward selection procedure could be incorporated. Another issue regarding

root node order selection is that we do not incorporate stopping criteria at

the moment, i.e., we include all candidate predictive variables in the final

model, which could be time-consuming in ultra-high dimensions.

Further extensions of the algorithm could include more than one step

ahead. The cost of an increased computational complexity is to be com-

pared to a potential better selection. Theoretical results regarding the

construction of the C-vine with one or more steps ahead in the order se-

lection procedure could shed light to this issue. Such theory is beyond the

scope of this work.

Appendix

4.9 Proof of Proposition 4.1

Proof. We first show 1 in Proposition 4.1 on the uniform strong consistency

of the inverse of conditional quantile estimator.

By (4.2), the estimator

F̂−1
Y |1,...,p(τ |x{1,...,p}) = F̂−1

Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
,

where ûj = F̂j(xj), j = 1, . . . , p denote variables on the u-scale. To avoid
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heavy notation, n referring to the sample size will be omitted here. Follow-

ing Wied and Weißbach (2012); Silverman (1978), to show the uniformly

strong consistency of F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
, we show

sup
τ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣→ 0 a.s.

For all ε ≥ 0,

1 ≥ P
(

sup
τ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ ε)
= P

(
supτ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
+F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ ε)
≥ P

(
supτ

{∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣
+
∣∣∣F̂−1
Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣} ≤ ε)
= P

(
supτ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣
+ supτ

∣∣∣F̂−1
Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ ε)
≥ P

((
supτ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 3
4ε
)

⋂(
supτ

∣∣∣F̂−1
Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 1
4ε
))

= P

(
supτ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 3
4ε

∣∣∣∣
supτ

∣∣∣F̂−1
Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 1
4ε

)
·P
(

supτ

∣∣∣F̂−1
Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 1
4ε

)
(4.18)
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Denote the event

A = sup
τ

∣∣∣F̂−1
Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 1

4
ε,

then P (A) = 1 holds by the uniform strong consistency of the estimator

of F−1
Y . We now show that the conditional probability in (4.18) is equal

to 1. We start by rewriting the conditional probability.

P

(
sup
τ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 3

4
ε

∣∣∣∣A)
= P

(
supτ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F−1

Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
+F−1

Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
+F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 3
4ε

∣∣∣∣A)
≥ P

(
supτ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F−1

Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)∣∣∣
+ supτ

∣∣∣F−1
Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)
− F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣
+ supτ

∣∣∣F−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 3
4ε

∣∣∣∣A)

This conditional probability is equal to 1, since the first and second supre-

mum are less than or equal to 1
4ε by conditioning on A and due to the

uniform consistency of F̂−1
Y . The last supremum is less than or equal to

1
4ε by Bartle and Joichi (1961, Thm.2) on almost uniform convergence,

applied to the continuous inverse distribution function F−1
Y , and taking

the measurable space to be the probability space. First,

P

(
sup
τ

∣∣∣(Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
−
(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ 1

4
ε

)
= 1,

which can be obtained similarly to (4.18) using the uniform consistency
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and continuity of the inverse of the h-functions. Next, (4.18) states

P

(
sup
τ

∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
−F̂−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ ε) = 1.

We conclude that F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
is uniformly strong consistent.

To prove the weak consistency in 2, by Wied and Weißbach (2012); Silver-

man (1978), we only need to show

P

(∣∣∣F̂−1
Y

(
Ĉ−1
V |1,...,p(τ |û{1,...,p})

)
− F−1

Y

(
C−1
V |1,...,p(τ |u{1,...,p})

)∣∣∣ ≤ ε)→ 1

Using the same technique in (4.18) and a similar argument for proving 2 of

Proposition 4.1 with Theorem 2 on convergence in measure in Bartle and

Joichi (1961), the weak consistency can be obtained.

4.10 Vine matrices representation

As examples shown in Table 4.2 and 4.1, vines can be illustrated by graph-

ical representations using nodes and edges. The graphical representation

of vines is comprehensible, but is inconvenient especially when the number

of variables involved gets large. An alternative choice is a matrix represen-

tation using a single upper triangular matrix to represent a vine structure

(Czado, 2019; Kurowicka, 2009; Dißmann, 2010).

An R-vine with p variables Uj , j = 1, . . . , p can be represented by an

upper diagonal matrix M = (ml′,l) ∈ Rp×p. The matrix can be interpreted

as follows: variables Uj ’s are elements of the matrix M. The element ml′,l

in the matrix, i.e., the element on the l′th row and lth column of the

matrix, is connected to the element ml′,l′ , given the variables ml′′,l, l
′′ =

1, . . . , l′ − 1. For the l′th tree, edges are [ml′,l,ml,l|ml′′,l, l
′′ = 1, . . . , l′ − 1],

for l′ + 1 ≤ l ≤ p, e.g., there is an edge between variables on the ml′,lth

and ml,lth elements of M, given variables on ml′′,l, l
′′ = 1, . . . , l′ − 1.

For example, the C-vine with graphical representation in Table 4.9,
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can be represented by


1 1 1 1

2 2 2

3 3

4

, where the numbers corresponds to

the indices of variables, e.g., 1 represents U1. Then, the edges in the

first C-vine tree takes l′ = 1, the edges are [m1,l,ml,l], l = 2, . . . , 4, i.e.,

[1, 2], [1, 3], [1, 4]. The edges in the second C-vine tree takes l′ = 2, the edges

are [m2,l,ml,l | ml′′,l, l
′′ = 1], l = 3, 4, i.e., [2, 3|1], [2, 4|1]. The edges in the

third C-vine tree takes l′′ = 3, the edge is [m3,l,ml,l | ml′′,l, l
′′ = 1, 2], l = 4,

i.e., [3, 4|1, 2].

Tree 1 Tree 2 Tree 3

1

2 3 4

12

13 14

23;1

24;1

Table 4.9: The graphical representation of a C-vine (d = 4). To simplify
the notation in the graphical representation, variable Uj is denoted by its
subscript j in the graph; e.g., “1” in Tree 1 represents variable U1, “12”
in Tree 2 represents the bivariate copula of U1 and U2, “23;1” in Tree 3
represents the bivariate copula of U2 and U3 given U1.

4.11 Parameter matrices corresponding to vine

matrices

A parameter matrix Θ = (θl′,l) corresponding to the parameters of pair

copulas in each level of trees in an R-vine, is usually given for an R-

vine matrix for simulating data. A procedure of simulating vine copulas

from an R-vine matrix, see Section 4.10, is described in detail in Czado

(2019, Section 6.5). A parameter matrix Θ = (θl′,l) can be interpreted

as follows: we first reorder the variables, such that the diagonal of the

R-vine matrix M, corresponding to the indices of the variables, follows
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an ascending order, i.e., the index of the mllth element is l. Then, the

(l′, l)th element θl′,l of Θ corresponds to the parameter of the pair copula

Cml′,l,ml,l;m1,l,...,ml′,l , l
′ < l ≤ p.

4.12 Visualization of the R- and D-vine in Sec-

tion 4.5

See Figure 4.5, 4.4 for visualizing the R- and D-vine matrix in setting (e),

(f), respectively.
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Figure 4.4: Visualization of the D-vine matrix in setting (e) in Sec-
tion 4.5. This D-vine has 4 levels of trees. The numbers correspond to
indices of variables; the edges correspond to pair copulas and are condi-
tional on the common variable (number).
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Figure 4.5: Visualization of the R-vine matrix in setting (f) in Sec-
tion 4.5. This R-vine has 4 levels of trees. The numbers correspond to
indices of variables; the edges correspond to pair copulas and are condi-
tional on the common variable (number). For example, the edge involving
”5, 1” and ”4, 1” refers to a pair copula C45;1 between





Outlook

This thesis contributes to quantile regression, as well as its model-averaged

and composite versions, in high dimensions.

The main contribution of Chapter 1 is the asymptotic normality of the

model-averaged quantile prediction with fixed weights for high dimensional

linear models with fixed dimensions, under the perfect selection assump-

tion assuming variables with true nonzero components (a.k.a., the active

set) are selected. An oracle-type weight expression is derived to achieve

the lower bound of the asymptotic variance of the active set. However,

a major concern is that the perfect selection assumption ignores selection

uncertainty. To relax this assumption, Chapter 2 considered the robust ap-

proximate message passing (RAMP) algorithm, which provides the expres-

sion of the asymptotic mean squared error (AMSE) of the l1-regularized

estimators with an arbitrary convex non-differentiable loss function. The

main contribution of Chapter 2 is an AMSE-type weight choice achieving

the lower bound of the AMSE of the regularized model-averaged and com-

posite estimator. However, theories of the above two Chapters are derived

based on assuming fixed weights, ignoring the correlation of the weights

and estimators. A possible extension would be a data-driven weight consid-

ering the joint distribution of the weight and estimator. Additionally, both

chapters do not consider the selection uncertainty of the tuning parameter

of regularization, which is worth further investigation. Another limitation

is that we only consider a linear model with homoscedastic errors in the

first two chapters. An adaptation of the proposed methodologies to models

175
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with relaxed assumptions (e.g., heteroscedastic or auto-correlated errors)

or with a more general form (e.g., generalized linear models, moment con-

dition models in Belloni et al. (2018) for Chapter 1) would be relevant and

interesting too.

Chapter 3 further makes use of the asymptotic normality of a sequence

β̃(t) with iteration indexed by t from the RAMP algorithm in Chapter 2.

We propose a computational approach constructing componentwise confi-

dence intervals, two-sided individual, and multiple hypothesis tests using

β̃(t) at convergence. Since Chapter 3 only discussed a single l1-regularized

estimator, the confidence intervals and hypothesis testing for regularized

model-averaged and composite estimators is a logical extension. A contro-

versial condition of the RAMP algorithm assumes that the components of

the design matrix are independent and identically Gaussian distributed.

Relaxing this condition by allowing more general design matrices is tech-

nically challenging but is of research interest. Also, multiple testing is

constructed by adjusting p-values using a conservative Bonferroni-type cor-

rection, which can be improved further by other corrections or constructing

other test statistics. Another critical development in classical regression

is the information criteria, which are underdeveloped in high dimensions

due to issues such as a debate about how to properly define the complexity

of the models, including a correct specification of the degrees of freedom.

It would be interesting to derive different information criteria using the

debiased estimators.

The above three chapters assume a sparse high dimensional linear model

under strong distributional and moment assumptions, which are often vi-

olated in practice. A flexible modeling approach for quantile prediction

using nonparametric C-vine couplas (i.e., a bivariate copulas construction

obtained by recursive conditioning) is introduced in Chapter 4. The pro-

posed model can be adapted to both low and high dimensional data. How-

ever, the major concern is that the proposed algorithm is computational

and can only be evaluated by finite sample performance. One possible

development would be a study of the asymptotic theory of the proposed
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method. Additionally, the proposed model does not perform variable selec-

tion, i.e., the final C-vine copulas include all candidate variables, which is

computationally inefficient when the number of variables is large. Develop-

ing stopping criteria is an interesting research topic. Another limitation is

that we perform a pre-selection based on partial correlations of the candi-

date variables with the response variable for reducing computational com-

plexity. However, this pre-selection approach is purely computational and

excludes most variables in each step. Due to this pre-selection and stepwise

optimization, a large proportion of C-vine copulas are overlooked. Thus,

the global optimality of the final C-vine copulas is not guaranteed. A pos-

sible extension is to consider other pre-selection methods or to incorporate

backward selection for including overlooked C-vine copulas.

We have seen in the first three chapters that regression-based approaches

dealing with high dimensional data has a steady theoretical guarantee,

whereas the vine copulas based modeling is more appealing when the objec-

tive is prediction. Another popular approach modeling dependence struc-

tures is graphical models with the possibility of regularization selecting

edges, which are parameters of graphical models. A regularized compos-

ite graphical model can be proposed to obtain a robust estimator of the

parameters with sparse representation. In addition, a similar debiasing

approach, as used in the regression models, was proposed in Janková and

van de Geer (2018) for graphical models. Developing information criteria

based on the debiased graphical model is another interesting aspect that

worth investigating.
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ÎS0.05, ĈL0.05, ĈL0.5, ĈL0.95 calculated based on R = 100

times randomly split the dataset into training set with 1228

samples and evaluation set with 300 samples. Lower val-

ues indicating better performance, among the two are high-

lighted in yellow. . . . . . . . . . . . . . . . . . . . . . . . 161



List of tables 189

4.7 Table recording performance of C- and D-vine quantile re-

gression for the Riboflavin dataset. Out-of-sample predic-

tion ÎS0.05, ĈL0.05, ĈL0.5, ĈL0.95 calculated based on R =

100 times randomly split the dataset into training set with

61 samples and evaluation set with 10 samples. Lower val-

ues indicating better performance, among the two are high-

lighted in yellow. . . . . . . . . . . . . . . . . . . . . . . . 162

4.8 Prediction M̂ASEmean by C- and D-vine copulas, OLS in set-

tings (a) – (f) and the Lasso in settings (g), (h), and non-

parametric regression. Lowest values, indicating stronger

out-of-sample prediction ability, are highlighted in yellow. . 165

4.9 The graphical representation of a C-vine (d = 4). To sim-

plify the notation in the graphical representation, variable

Uj is denoted by its subscript j in the graph; e.g., “1” in

Tree 1 represents variable U1, “12” in Tree 2 represents the

bivariate copula of U1 and U2, “23;1” in Tree 3 represents

the bivariate copula of U2 and U3 given U1. . . . . . . . . . 170





Bibliography

Ando, T. and Li, K.-C. (2014). A model-averaging approach for high-

dimensional regression. Journal of the American Statistical Association,

109(505):254–265.

Ando, T. and Li, K.-C. (2017). A weight-relaxed model averaging approach

for high-dimensional generalized linear models. The Annals of Statistics,

45(6):2654–2679.

Bartle, R. G. and Joichi, J. T. (1961). The preservation of convergence of

measurable functions under composition. Proceedings of the American

Mathematical Society, 12(1):122–126.

Bates, J. M. and Granger, C. W. J. (1969). The combination of forecasts.

Operational Research Quarterly, 20:451–468.

Bayati, M., Erdogdu, M. A., and Montanari, A. (2013). Estimating Lasso

risk and noise level. In Proceedings of the 26th International Conference

on Neural Information Processing Systems - Volume 1, pages 944–952.

Bayati, M. and Montanari, A. (2011a). The dynamics of message pass-

ing on dense graphs, with applications to compressed sensing. IEEE

Transactions on Information Theory, 57(2):764–785.

Bayati, M. and Montanari, A. (2011b). The LASSO risk for Gaussian

matrices. IEEE Transactions on Information Theory, 58(4):1997–2017.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding

191



192 BIBLIOGRAPHY

algorithm for linear inverse problems. SIAM Journal on Imaging Sci-

ences, 2(1):183–202.

Bedford, T. and Cooke, R. (2001). Monte Carlo simulation of vine depen-

dent random variables for applications in uncertainty analysis. ESREL

2003.

Bedford, T. and Cooke, R. M. (2002). Vines–a new graphical model for

dependent random variables. The Annals of Statistics, 30(4):1031–1068.

Belloni, A. and Chernozhukov, V. (2011). `1-penalized quantile regression

in high-dimensional sparse models. The Annals of Statistics, 39(1):82–

130.

Belloni, A., Chernozhukov, V., Chetverikov, D., and Wei, Y. (2018).

Uniformly valid post-regularization confidence regions for many func-

tional parameters in z-estimation framework. The Annals of statistics,

46(6B):3643.

Bernard, C. and Czado, C. (2015). Conditional quantiles and tail depen-

dence. Journal of Multivariate Analysis, 138:104–126.

Bickel, P. J., Ritov, Y., Tsybakov, A. B., et al. (2009). Simultaneous anal-

ysis of lasso and dantzig selector. The Annals of Statistics, 37(4):1705–

1732.

Bloznelis, D., Claeskens, G., and Zhou, J. (2019). Composite versus model-

averaged quantile regression. Journal of Statistical Planning and Infer-

ence, 200:32 – 46.

Bradic, J. (2016). Robustness in sparse high-dimensional linear models:

Relative efficiency and robust approximate message passing. Electronic

Journal of Statistics, 10(2):3894–3944.

Bradic, J., Fan, J., and Wang, W. (2011). Penalized composite quasi-

likelihood for ultrahigh dimensional variable selection. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 73(3):325–

349.



BIBLIOGRAPHY 193

Bradic, J. and Kolar, M. (2017). Uniform inference for high-dimensional

quantile regression: linear functionals and regression rank scores. arXiv

preprint arXiv:1702.06209.
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of Statistics, Series A, pages 426–443.



194 BIBLIOGRAPHY

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Aver-

aging. Cambridge University Press, Cambridge.

Claeskens, G., Magnus, J., Vasnev, A., and Wang, W. (2016). “The fore-

cast combination puzzle: A simple theoretical explanation”. Interna-

tional Journal of Forecasting, 32:754 – 762.

Czado, C. (2019). Analyzing Dependent Data with Vine Copulas: A Prac-

tical Guide With R. Lecture Notes in Statistics. Springer International

Publishing.

Czado, C., Schepsmeier, U., and Min, A. (2012). Maximum likelihood es-

timation of mixed C-vines with application to exchange rates. Statistical

Modelling, 12(3):229–255.

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresh-

olding algorithm for linear inverse problems with a sparsity constraint.

Communications on Pure and Applied Mathematics: A Journal Issued

by the Courant Institute of Mathematical Sciences, 57(11):1413–1457.
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