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As a typical harmful social behaviour, tail biting is considered to be a welfare-reducing

problem with economic consequences for pig production. Taking a computer-vision

based approach, in this study, we have developed a novel method to automatically iden-

tify and locate tail-biting interactions in group-housed pigs. The method employs a

tracking-by-detection algorithm to simplify the group-level behaviour to pairwise in-

teractions. Then, a convolution neural network (CNN) and a recurrent neural network

(RNN) are combined to extract the spatial-temporal features and classify behaviour cate-

gories. The performance of the proposed method was evaluated by quantifying the local-

isation accuracy and behaviour classification accuracy. The results demonstrate that the

tracking-by-detection approach is capable of obtaining the trajectories of biters and vic-

tims with a localisation accuracy of 92.71%. The spatial-temporal features trained by CNN

and RNN are robust and effective with a category accuracy of 96.25%. In total, our proposed

method is capable to identify and locate 89.23% of tail-biting behaviour in group-housed

pigs.

© 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
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Nomenclature

A Area ratio of two bounding boxes

AR Aspect ratio of two bounding boxes

c The confidence score of predicted bounding box

CS Confidence score of the bounding box

D Centre distance between two bounding boxes

g Labelled bounding box (Ground truth)

Lðx; c; l;gÞ Loss function of the object detection model

Lconf ðx; cÞ Classification loss

Llocðx; l;gÞ Localisation loss

l Predicted bounding box

MS Matching score

N The number of positive matches

x An indicator for matching the predicted box to

the ground truth box

a Weight for localisation loss

a1~a4 Weights of tracking model indicators

Abbreviations

CNN Convolution neural network

DNNs Deep neural networks

Fast R-CNN Fast Region-based convolution neural

network

FN False negative

FP False positive

IoU Intersection-over-union

LDA Linear discriminant analysis

LSTM Long short-term memory

mAP Mean Average Precision

MHI Motion history image

MTU Minimum tracking unit

MS-COCO Microsoft COCO dataset

OTA Object tracking accuracy

OTP Object tracking precision

PLF Precision Livestock Farming

ResNet Deep residual network

RNN Recurrent neural network

SSD Single-shot detector

TN True negative

TP True positive

VGG Visual Geometry Group (A CNN architecture)

YOLO You only look once (An object detection model)
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1. Introduction

The pig industry and the general public have in recent years

shown increased concern over pig health and welfare under

intensive farming systems (Mellor, 2016). As a result, animal

researchers have worked on establishing the relationship

between changes in pig behaviour and their health and wel-

fare status (Matthews, Miller, Clapp, Pl€otz,& Kyriazakis, 2016).

Some research has focused on tail biting which is one of the

most harmful behaviours and can result in reduction in pig

welfare and in the profitability of pig production (Sonoda et al.,

2013; Ursinus, Van Reenen, Kemp, & Bolhuis, 2014). The

physical damage caused to the tail by a bite from another pig
can lead to severe pain and secondary infection that can

spread throughout the body of the victim pig. However, the

reasons for tail biting are multifactorial, including external

factors such as nutrition, group composition, and environ-

ment (floor type, stocking density, ventilation, and lack of

enrichment) and internal factors such as genetics, sex and

health status (Taylor, Main, Mendl, & Edwards, 2010;

Zonderland et al., 2011). Therefore, it is difficult for farmers

to design buildings that prevent tail biting on their farm. As a

consequence, farmers must stay vigilant to reduce the dele-

terious effects of tail biting. However, monitoring of tail biting

is still done manually and only when there is already blood

visible in the pen and after an outbreak has already had sig-

nificant consequences for the pigs. Such daily inspections of

animals by farm stuff are laborious, subjective and come with

high risks to animal health and productivity.

An early indication that an outbreak is likely to occur could

help producers to intervene before major damage results.

Therefore, tools that continuously and automatically monitor

the risk of tail-biting outbreaks can be of high value to the

industry. Previous studies have proved that indicators like

tail-biting frequency, oral manipulation, tail position, and

activity could be used predictors for an outbreak (Larsen,

Andersen, & Pedersen, 2019; Statham, Green, Bichard, &

Mendl, 2009; Taylor et al., 2010; Zonderland et al., 2011).

Monitoring these variables with sensor technologies such as

camera systems gives the possibility to realise early warning

systems that can helpmanage tail biting (Banhazi et al., 2012).

So far, very few studies have attempted to automatically

identify tail-biting behaviour. In recent research, D’Eath et al.

(2018) identified high/low tail position as a potential indicator

of tail biting that was detectable by 3D cameras. They devel-

oped an algorithm to calculate the proportion of low to high

tail positions within a group of pigs. However, tails at low

positions were found to indicate more than just tail biting and

position varied between groups and over time, e.g. the pro-

portion of low tails increased when pigs were moved to a new

pen. Therefore, a reliable methodology to detect tailing biting

automatically is still missing.

Some related studies have been aimed at monitoring pig

aggressive behaviour. To the author’s knowledge, most of the

existing methods assumed that the activity intensity of

fighting pigs is much higher than other interactions. Based on

this assumption, most studies design image features to

quantify the changes of pixels. For example, Viazzi et al. (2014)

used motion history image and occupation index to evaluate

the activity intensity; Oczak et al. (2014) used the activity

index and occupation index to evaluate the activity intensity;

to eliminate the pixel changes caused by non-fighting pigs,

Lee, Jin, Park, and Chung (2016) excluded the lying individuals

by a height threshold in the depth image; Chen and Wang,

et al. (2019) and Chen and Zhu, et al. (2019) used the area of

the image connected area to exclude the motion of separated

single pigs since the aggressive behaviour occurred between

two pigs at least. Further, Chen et al. (2017) and Chen et al.

(2018) directly obtained motion features from aggressive pigs

by analysing connected area and adhesion index, achieving an

accuracy of 97.04%. But this method is limited by the group

scale, as the authors claimed that with the increase in the

number of pigs in the limited space, the close contact between

https://doi.org/10.1016/j.biosystemseng.2020.04.007
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pigs brings difficulties in locating aggressive pigs. Besides,

regardless of the assumption of activity intensity and the

limitation of the group scale, Chen et al. (2020) used a deep-

learning-based method to recognise the aggressive video ep-

isodes of group-housed pigs without any hand-crafted

heuristics.

Supplementary video related to this article can be found at

https://doi.org/10.1016/j.biosystemseng.2020.04.007.

The main difference between tail-biting detection and pig

aggression detection is that pigs displaying tail-biting behav-

iour will have no significant differences in activity intensity

compared to the other pigs in the pen. The behaviour is usu-

ally expressed as an oral manipulation followed by the vic-

tims’ reaction (through vocalisation and/or movement), both

of which can be quite subtle. Hence, in order to detect small

actions like tail biting, any behaviour features should be car-

ried out at the individual level. While this poses significant

challenges, addressing this problem also has the potential to

lead to the development of a universal method that not only

identifies a certain behaviour but also indicates from which

pig the behaviour originated. This has significant benefits for

industry and academia alike.

Therefore, this work aims to be the first study to develop a

method for solving two key questions:

1). How to extract individual pigs’ motion pattern in a

group of pigs? We aim to design a tracking-by-

detection algorithm that simplifies group-level pig

behaviour to pairwise interactions.

2). How to accurately detect the tail-biting behaviour?

We aim to integrate convolution neural networks

(CNNs) and recurrent neural networks (RNNs) to

monitor spatial-temporal features that are capable

of classifying the tail-biting behavioural patterns.
2. Materials and methods

2.1. Experimental materials and setup

The data set for this study was collected during a feeding

experiment at the research farm of the University of Veteri-

nary Medicine Vienna (VetFarm Medau, Pottenstein, Lower

Austria, Austria). The experiment was approved by the ethics

committee of the University of Veterinary Medicine Vienna

and the application for an animal experiment according to

national legislation (x26 of the Law for Animal Experiments,

Tierversuchsgesetz 2012) was accepted (68.205/0221-WF/V/

3b/2017). Pigs ((Landrace � Large White) � Pi�etrain cross-

breds) were housed in a fattening compartment of the testing

unit of the research farm. The fattening compartment had 6

pens, each of area 19 m2 (3.50 m � 5.48 m). Experiments were

performed in 2 of the 6 pens. There were 12 fattening pigs

housed in each of 2 pens. Thus, in total 24 undocked pigs

from two fattening pens were selected as the research sub-

jects. Pigs were fed ad libitum with one automatic feeding

station (“Compident MLP” by Schauer Agrotronic GmbH,

Prambachkirchen, Austria) per 12 animals. Water was
provided permanently via nipple drinkers, 2 in each pen.

Fattening pens had fully slatted floors and provided enrich-

ment material of types and amounts complying with the

Austrian animal welfare law. Two sisal ropes (length: 90 cm)

with three knots in each were fixed to one wall of each

experimental pen. They were renewed before they got so

short the pigs could not take them in their mouths anymore.

Furthermore, each pen was provided with a plastic hedgehog

(Spieligel, Best Farm, GFS-Top-Animal-Service GmbH,

Ascheberg, Germany), a plastic ball (Spielball grob, 30 cm,

befüllbar, GFS-Top-Animal-Service GmbH, Ascheberg, Ger-

many) and a wooden beam hanging on a chain. The fattening

compartment had an automatic ventilation system. The

animals were introduced to the pens in July 2018 at the age of

10 weeks (30 kg) and stayed until slaughter (120 kg). To assist

the labellers in identifying individual pigs, each pig was

assigned an individual pattern that was drawn on their back

with marking spray and renewed twice a week. However,

this aspect was not used in the algorithms developed in this

paper. Each fattening pen was equipped with an IP camera

(GV-BX 1300KV, Geovision Inc., Taipei, Taiwan) locked in

protective housing (HEB32K1, Videotec, Schio, Italy) hanging

5 m above the pen, giving an overhead view. Additionally,

infrared spotlights (IR-LED294S-90, Microlight, Bad Nauheim,

Germany) were installed in order to allow night recording.

The images were recorded with 1280 � 720 pixels resolution

in MPEG-4 format at 30 fps. The cameras were connected to a

PC on which Multicam Surveillance System (8.5.6.0, Geo-

vision Inc., Taipei, Taiwan) was installed. The system

allowed simultaneous recording of videos from 6 cameras.

Recordings were stored on exchangeable 3 TB hard drives.

Eight hours of original 2D video recordings from two pens

were selected for algorithm development. In pen 1, pigs (5

males, 7 females of approx. 35 kg) were recorded on day 8

after introduction to the pen, and pigs in pen 2 (6 males, 6

females of approx. 35 kg) on day 44. Animals in both pens

were showing frequent tail-biting behaviour on the days of

observation. All algorithms developed in this paper were

implemented and trained in a computer equipped with

Intel(R) i7-7700HQ CPU @2.80GHz, 16GB of RAM, and an

NIVIDIA GTX 1050Ti GPU.

2.2. Dataset description

Two datasets were prepared for training two models. The first

one, Pig Detection Dataset, was used to train the object detec-

tion model (Section 2.3.1). The LabelImg software (https://

github.com/tzutalin/labelImg) was used to label the location

of each pig by giving a bounding box to each pig, as shown in

Fig. 1. The software recorded four corner coordinates of each

box. A total of 320 imageswith around 3000 pig instanceswere

labelled and divided into training and validation sets, namely

256 images (80%) were randomly selected to train the object

detectionmodel and then the remaining 64 images (20%) were

used to evaluate the performance.

The second dataset, Pig Action Dataset, was used to train

the action recognition model (Section 2.3.4). This dataset

consisted of video segments of one-second length. Each video

segment comprised an interaction between two pigs,

including tail-biting and non-tail biting interactions.

https://doi.org/10.1016/j.biosystemseng.2020.04.007
https://github.com/tzutalin/labelImg
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Fig. 1 e An example of labelled image in the Pig Detection

Dataset. Every visible pig is manually labelled by giving a

bounding box using LabelImg software.

Fig. 2 e Frequency histogram of the duration of tail-biting

events in this study.
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To generate this dataset, first, the Interact software

(version 9 and 14, Mangold International GmbH, Arnstorf,

Germany) was used by a trained observer to label every tail-

biting event from the original video. As described in Table 1,

labelling of tail-biting events was done according to the defi-

nition of tail biting in the ethogram of Zonderland et al. (2011).

When any two pigs in the group showed tail-biting behaviour,

the start frame, end frame and duration of this biting event

were recorded. The starting frame of a tail-biting event was

determined by the time point at which the biter started to bite

or chew the victim’s tail, manifested as masticatory move-

ments. The end frame was determined by the time point at

which the victim’s tail was released by the biter for more than

one second. From the original video, a total of 247 biting

events were recorded, lasting from 1s to 10s. Figure 2 shows

the frequency histogram of the duration of tail-biting events.

Then, our proposed method (introduced in Section 2.3.1,

Section 2.3.2 and Section 2.3.3) could automatically translate

the original video into pairwise interactive sub-videos with a

length of 1s. For example, a 10s tail-biting video could be

divided into 10 sub-videos, being treated as 10 tail-biting

events. The Pig Action Dataset was generated by adding the

behaviour category information to these sub-videos. A total of

4396 interactions (742 sub-videos of tail-biting interactions

and 3652 sub-videos of non-tail biting interactions) were

extracted from the 247 tail-biting events. Note that the non-

tail biting interactions cannot be equated to the pig etho-

gram (e.g. fighting, bullying, mounting, nosing, playing, and

ear biting) in this study. These non-tail biting interactions

were generated automatically by the proposed algorithm

(Section 2.3), in which any two pigs that are close enoughwere

recursively extracted as candidate interactions. As a result,
Table 1 e Tail-biting ethogram (Zonderland et al., 2011).

Tail biting

Performed tail-biting behaviour (biter)

Received tail-biting behaviour (victim)
around 90% of these “interactions” are just two pigs close

together without any real interaction. The remaining mean-

ingful interactions include chasing/following (198 cases),

nosing (102 cases), pressing (58 cases), and head knocking (21

cases). No other violent interactions occurred in this dataset

(e.g. fighting, bullying, or mounting). Since these meaningful

interactions are too few to form a separate behaviour cate-

gory, theywere all considered as non-tail biting interactions in

this dataset.

For the balance of the data set, data augmentation was

applied to tail-biting interactions by rotating the image 90�,
180� and 270� respectively. Thus, 80% sub-videos (2374 tail-

biting and 2921 non-tail biting sub-videos) were randomly

selected as the training set and the remaining 20% sub-videos

(594 tail-biting and 731 non-tail biting sub-videos) were used

to test the performance of the action recognition model.

2.3. Algorithms

The goal of the proposedmethodwas to detect and locate tail-

biting interactions from group-housed pigs in the pen envi-

ronment using computer vision technology. The basic idea to

achieve this goal was to first simplify the group-level pigs’

behaviour into the pairwise level. Then, an action recognition

model was built based on the extracted pairwise interactions.

The overall workflow of the framework is illustrated in Fig. 3.

The first stage of the process aimed to extract sub-videos of
Description

Biting a penmate’s tail, with a sudden reaction of the penmate.

A penmate is biting the subject’s tail and elicits a reaction.

https://doi.org/10.1016/j.biosystemseng.2020.04.007
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Fig. 3 e The overall workflow of the proposed framework. (a) Visible individual pigs were detected from the background. The

location of each pig was represented by a bounding box. (b) Tracking was performed on each pig over L frames. (c) Sub-

videos of pairwise interactions were extracted using the trajectory of each pig. (d) Action recognition model was built based

on spatial-temporal features of these sub-videos.
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pairwise interactions from the original video sequences. To do

this, it was necessary to detect and track individual pigs along

the video sequence. The following two sections (Section 2.3.1

and Section 2.3.2) describe the method used to detect and

track each pig separately. Section 2.3.3 then explains steps to

detect pairwise interactions based on the tracking results and

the image pre-processing required to interface with the action

recognition model that is later applied. Finally, Section 2.3.4

introduces the architecture of the action recognition model

that takes pairwise-interaction video sequences as input, and

then outputs the corresponding action category.

2.3.1. Object detection
Object detection is the process of finding instances of pigs in

each frame. Thanks to the emergence of Deep Neural Net-

works (DNNs), established methods like YOLO (Redmon,

Divvala, Girshick, & Farhadi, 2016), SSD (Liu et al., 2016), and

Fast R-CNN (Girshick, 2015) could easily outperform all tradi-

tional methods for object detection (Zhao, Zheng, Xu, & Wu,

2019). Besides, one of the unexpected benefits of the object

detection challenge (e.g. ImageNet (Russakovsky et al., 2015),

MS-COCO (Lin et al., 2014)) is that deep architectures, trained

on a big data set, can be used for other tasks and in other

domains without it being necessary to train a model from

scratch, so-called transfer learning (Pan & Yang, 2009). The

pre-trained models are available from open source object

detection toolboxes like Tensorflow Object Detection API

(Huang et al., 2017) and MMDetection (Chen and Zhu, et al.,

2019). These technologies provide an easy-to-implement so-

lution for the purpose of locating individual animals from the

group-housed environment (Ard€o, Guzhva, Nilsson, & Herlin,

2018; Psota, Mittek, P�erez, Schmidt, & Mote, 2019). Actually,

fine-tuning a pre-trained object detection model on a custom

dataset has been successfully applied in Precision Livestock

Farming (PLF). For example, Faster R-CNN was adapted to

locate individual pigs in applications for recognition of

lactating sow postures (Zheng et al., 2018) and feeding

behaviour (Yang, Xiao, & Lin, 2018).

In this study, we assumed that images of pigs were

captured from a top-down view, which means that the size

and appearance of animals is consistent. Thus, SSD (Liu et al.,
2016) is selected to locate visible pigs considering its real-time

performance on detecting consistent targets. SSD is a one-

stage object detection algorithm. This means that, in

contrast to two-stage (e.g. Fast R-CNN (Girshick, 2015)), SSD

combined two tasks (region proposal and prediction) into one

network by utilising pre-defined boxes to look for objects. To

predict the location of an object, one can establish a regres-

sion model between the pre-defined box and the labelled box

(Fig. 1). To predict different sizes of the objects, the outputs of

multiple convolutional layers were used to pre-define region

candidates, as the deeper convolutional layers could cover

larger receptive fields and more abstract representation. The

original architecture of SSD used VGG-16 (Simonyan &

Zisserman, 2014) as the base net (one of the widely used

CNNs). In addition, Resnet-50 (He, Zhang, Ren, & Sun, 2016) is

also introduced and replaced the base net (VGG-16) in this

study. Since deeper networks are usually better for image

classification, we assume that the featuremap fromResnet-50

(50 layers) may be more distinguishable than that from VGG-

16 (16 layers). Both CNNs (VGG-16 and Resnet-50) had been

pre-trained on the MS-COCO dataset (Lin et al., 2014). The

output of the object detection module includes location of

each animal (coordination) and confidence score (0%~100%).

2.3.2. Object tracking
For the purpose of obtaining the motion pattern of the indi-

vidual pig, it is necessary to determine the position of each pig

along image sequences. In this study, a simple tracking-by-

detection algorithm was proposed for the problem of multi-

ple pig tracking, where the basic idea was to associate de-

tections (bounding boxes) across frames. Ideally, if each pig in

each frame can be properly located, the problem of multiple

pig tracking is simplified to match these detections in each

adjacent two frames. However, errors that lead to lost de-

tections are always unavoidable due to the complexity of in-

dividuals’ behaving in a group, which increased the risk of

losing the object or tracking the wrong object. Therefore, in

order to track the maximum number of pigs, an indicator

called a Minimum Tracking Unit (MTU) was applied to this

study with the aim to track stably in a short time. The MTU

represents one second segments that were extracted from the

https://doi.org/10.1016/j.biosystemseng.2020.04.007
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Fig. 4 e The schematic diagram of the minimum tracking unit.
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original video. Figure 4 illustrates the schematic diagram of

the minimum tracking unit. The reason for one second as an

MTU was that we expected that the tracking unit can at least

cover the shortest duration of one tail-biting event (according

to the statistical analysis of labelled tail-bites in our dataset,

as shown in Fig. 2). The tracking pipeline was independent of

each MTU. The first frame of each MTU was used as the

starting tracking point and the tracking process ended at the

last frame of each MTU. Bounding-boxes with a confidence

score of over 50% in the first frame were passed into the

tracking pipeline.

The tracking pipeline was developed based on an

assumption that the same object had a minor variance in the

adjacent frames in terms of position and shape. The similarity

of two boxeswasmeasured by theMatching Score (MS), which

is calculated by formula (1):

MS¼CS�
�
a1 � 1

=Dþa2 �Aþa3 �ARþa4 � IoU

�
(1)

where, CS represents the confidence score of one candidate

box in frame tþ1 when searching for the best-matching box to

a specific pig in frame t (0%~100%), D represents the centre

distance (distance in number of pixels), A is the area ratio

(0~1), AR represents aspect ratio (0~1), IoU represents

intersection-over-union (0~1, Fig. 8) and a1~a4 are the weights

of the corresponding indicator. Note that the Matching Score

is normalised to a range between 0 and 1 in each MTU for

consistency comparison, the larger the value, the higher the

degree of approximation. Figure 5 illustrates the schematic

diagram of the tracking pipeline in one MTU.

In this study, obtaining individuals’ motion trajectory is

crucial for the subsequent action recognition model, even it
Fig. 5 e The schematic diagram of the propo
was acceptable to miss a few pigs with low matching confi-

dence. To exclude those with obviously abnormal changes in

adjacent frames usually caused by missing or misdetections

(e.g. cases in Fig. 11), bounding boxes meeting the following

rules were excluded from the tracking pipeline: (1) the cate-

gory confidence is less than 50% (CS < 0.5, e.g. the first image in

Fig. 5); (2) the change in position is more than 25% (IoU < 0.75,

e.g. Figure 8); (3) the change in shape inmore than 30% (A < 0.7

or AR < 0.7); (4) the matching confidence in less than 50%

(MS < 0.5). Note that the position and the shape differences of

a fast running pig in adjacent frames are even imperceptible

by the naked eye.

If no box was matched to the target pig under the above

conditions, then this one was considered as tracking failure

and excluded from the current MTU. In addition, the object

detector might lose one pig in a few frames and re-detect that

pig in the following frames, resulting in lost tracking. To

compensate for this kind of error, the trackingmodel searched

for the best matching box frame by frame in the next 10

frames when there was no matching box in the adjacent

frame. The third image in Fig. 5 shows an example, in which

the object detector lost one pig (in red) while the tracking

model found it in the fourth frame. Then, the lost pig was

predicted by linear interpolation. The first image in Fig. 6

shows an example of the tracking result, in which seven out

of ten pigs were tracked and visualised in different colours.

2.3.3. Pairwise interactions
As an interactive behaviour, tail biting must occur between

two pigs. Section 2.3.1 and Section 2.3.2 provided approaches

to obtain the trajectory of each pig within MTUs. To translate

the individual’s motion trajectory into the pairwise
sed object tracking pipeline in one MTU.

https://doi.org/10.1016/j.biosystemseng.2020.04.007
https://doi.org/10.1016/j.biosystemseng.2020.04.007


Fig. 6 e Extracting pairwise interactions from outputs of object tracking pipeline.

Fig. 7 e The architecture of the action recognition model. (a) The overall architecture. (b) A LSTM unit.

Fig. 8 e Example of how IoU is calculated. Predictions with IoU >0.75 were considered accurate in this study.
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interactions, only two pigs’ trajectories needs to be extracted

while blocking all the others. This process needed to be

repeated multiple times until it traversed all interactive pairs.

Suppose that there are N pigs being tracked in one MTU, then

N(N-1)/2 pairwise interactions can be extracted. Figure 6

shows an example where seven out of ten pigs are tracked

successfully. A total of 21 pairwise interactions were obtained,

where most of them are actually not “interactive behaviour”
(e.g. Pig No.2 and Pig No.6). The distance of two bounding

boxes can be used for filtering out those obvious non-

interactive combinations. In the case shown in Fig. 6, only

four valid interactions were left by applying the following two

rules:

1). The average value of intersection-over-union (IoU) in

an MTU should be greater than 0.
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2). The margin distance of two bounding boxes should

always be less than a threshold (30 pixels in this

study). The margin distance is the external space

separating two boxes.

Rule 1 operates on the frame sequences as a whole by

calculating the average IoU but cannot ensure the two boxes

are close enough at every moment, and Rule 2 is a supple-

ment, making sure the boxes are close enough in an interac-

tive process.

Besides, in order to obtain sub-videos with the same size,

each extracted sub-frame is filled with 0 to a consistent shape

(400*400 pixels).

2.3.4. Action recognition
A tail-biting interaction contains both spatial and temporal

information. In the spatial domain (2D image), the biters’ head

must be close to the victims’ tail (e.g. pig No. 3 with pig No.4 in

Fig. 6). In the temporal domain (frame sequences), during a

biting event, biters chase the escaping trajectory of victims (as

described in Table 1). In this paper, both spatial and temporal

featureswere learnedwithout any hand-crafted heuristics. The

architecture of the CNN þ LSTM model is shown in Fig. 7a,

including:

(1) The convolutional neural networks (CNNs) were

employed to extract spatial features by encoding

every 2D image into a 1D vector (convolutional

feature). Then, the CNN features of every frame are

combined into a sequence signal. Any position or

posture changes in adjacent frames will result in

differences in this sequence. Different sequence

signals represent different types of interactions;
Fig. 9 e The metric for evaluating the performance of VGG-

16 and ResNet-50. The total loss (blue in the left) and mAP

curves (red in the right) are illustrated by 35,000 steps of

training. In each step, number of Batch_Size samples are

processed (Batch_Size ¼ 12, Learning Rate ¼ 0.04, gradient

descent with momentum). (For interpretation of the

references to colour in this figure legend, the reader is

referred to the Web version of this article.)
(2) The long short-term memory (LSTM) network

(Hochreiter & Schmidhuber, 1997) receives this

sequence signal as input. By training on the labelled

Pig Action dataset, LSTM can distinguish the differ-

ences in the signal variation pattern. The architec-

ture of LSTM unit is composed of one cell and three

“regulators”, namely input gate, output gate and

forget gate (as shown in Fig. 7b). The cell is respon-

sible for keeping track of the dependencies between

the elements in the sequence signal. The input gate

controls the extent to which a new value flows into

the cell, the forget gate controls the extent to which a

value remains in the cell and the output gate con-

trols the extent to which the value in the cell is used

to compute the output activation of the LSTM unit.

The weights and activations of the “regulators” need
to be learned during training, to make the cell

remember values over arbitrary time intervals. The

LSTM network was designed to classify, process and

make predictions on entire sequences of data, such

as speech recognition (Sak, Senior, & Beaufays, 2014)

and action recognition (Donahue et al., 2015);

(3) A fully-connected neural net is concatenated at the

end for categorical prediction.

As one of the hot topics in computer vision, action recogni-

tion has developed rapidly over the past few years. Deep-

learning based approaches are highlighted (e.g. CNN þ LSTM

(Donahue et al., 2015), two-stream networks (Feichtenhofer,

Pinz, & Zisserman, 2016), and 3D CNNs (Tran, Bourdev, Fergus,

Torresani, & Paluri, 2015)). To the author’s knowledge, there

are so far few studies that attempt to test the feasibility of these

models for animal behaviour. In this study, we did not focus on

the state-of-the-art model. CNN þ LSTM was chosen to verify

the feasibility because its structure is relatively simple and easy

to converge for a small-scaledataset.TheCNNpart canusepre-

trained networks again, unlike other action recognitionmodels

thatneed tobe trained fromscratch.The LSTMpartwas trained

from scratch. Besides, in order to verify whether the deeper

CNN architecture had a better abstraction on spatial domain,

ResNet-50 was also tested in addition to VGG-16.
3. Results

3.1. The performance of object detection models

The Pig Detection Dataset was used to train and validate the

object detectionmodel. The process of training themodel is to

minimise the loss function which is defined by formula (2):

Lðx; c; l; gÞ¼ 1
N

�
Lconf ðx; cÞþaLlocðx; l; gÞ

�
(2)

where, Llocðx; l; gÞ measures the localisation loss between the

predicted bounding box l and the ground truth box g; a is the

weight for the localisation loss; Lconf ðx; cÞ is the loss in making

a class prediction where the penalisation is conducted on the

confidence score; and x2{1,0} is an indicator for matching

the default box to the ground truth box (labelled box). If the
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Fig. 10 e Comparison of detecting results with different back-end CNN model. (a) Result of ResNet-based SSD. (b) Result of

VGG-based SSD. Both models are able to detect all pigs, and ResNet-based SSD is better at confidence score.
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IoU > 0.5 between the default box and the ground truth box,

then x ¼ 1, otherwise x ¼ 0. N is the number of positive

matches.

The performance can be evaluated by the mean Average

Precision (mAP) (Everingham, Van Gool, Williams, Winn, &

Zisserman, 2010), which is a comprehensive metric

including category confidence scores (Average Precision, AP)

and localisation precision (Intersection-over-Union, IoU). The

higher the IoU, the more accurate the bounding box is (Fig. 8).

The lower limit value of 0.75 was applied in this study because

only high-accuracy locating made sense for subsequence

tracking and behaviour recognition.

Figure 9 shows the loss curve and the mAP curve. The

loss function drops rapidly and both models have been

fitted at about 15,000 steps. This means that the transfer

learning is feasible in this task, with some systematic sim-

ilarities between the source domain (MS-COCO) and the

target domain (Pig Detection Dataset). The object detection

models learned how to extract the features during the pre-

training phase. Then, the network further learned how to

classify these features during the fine-tuning phase. As a

result, transfer learning greatly improved the efficiency of

training an object detection model as it normally takes
Fig. 11 e Fail cases of tracking tail-biting pigs. It is
weeks and millions of images to fit a deep model if training

from scratch.

Figure 10 shows the output of the same sample in two

models. Both of them can properly locate all pigs, and the

ResNet-based model has a higher degree of confidence for

some targets. The better performance of the ResNet-based

SSD is mainly because ResNet provides skip-connections be-

tween convolutional blocks, thus diminishing the effects of

vanishing gradient, allowing networks to go deeper. Normally,

deeper CNNs help improve the performance of SSD, which is

consistent with the conclusion from the image classification

challenge (Russakovsky et al., 2015).

3.2. The performance of tracking models and pairwise
interception

As a tracking-by-detection algorithm, the performance of

the tracking model is heavily dependent on the detection

results. In addition, once one pig can be properly tracked,

its interactions with other pigs will certainly be extracted.

The Object Tracking Precision (OTP) is utilised for the

evaluation of tracker characteristic, which is computed by

formula (3):
mainly because of errors in object detection.
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OTP¼
P

MTUi
Boxesi;f¼30P

MTUi
Boxesi;f¼1

(3)

This indicates the ability of the tracker to follow objects

detected in the first frame within each MTU. Boxesi;f¼1 is the

number of bounding boxes in the first frame of the ith MTU.

Boxesi;f¼30 is the number of bounding boxes in the last frame of

the ith MTU. Object Tracking Accuracy (OTA), indicates the

ratio of properly tracked biting pigs accounted for all biting

pigs (number of biters and victims being tracked/total number

of biters and victims).

The performance of the tracking model is calculated in

the case where the formula (1) has equal weights

(a1~a4 ¼ 0.25). Table 2 summarises the results. Only 68.83% of

detected pigs can be tracked properly, but 92.71% of tail-

biting pigs are covered. The reasons behind the low OTP

are: firstly, the camera had a fisheye effect, which caused the

individuals at the image edge to deform. Unfortunately, pigs

in this study preferred to crowd in the pen corner, probably

to keep warm. Secondly, we deliberately did not label the

individuals that were lying and occluded. But these in-

dividuals are occasionally detected due to the generalisation

ability of the model. As a result, most of the failure cases are

in group lying state, but fortunately, most of the tail-biting

pigs could be successfully tracked. Figure 11 shows exam-

ples of fail cases. Note that OTP and OTA would drop to

52.35% and 71.23% respectively if only searching for the best

match in the next one frame instead of ten frames (as

described in Section 2.3.2). As the foundation of the frame-

work, the most important component is to ensure that the

tail-biting pigs can be detected and tracked precisely and this

was achieved with an OTA of 92.71%.
Fig. 12 e Feature map and heat map extracted by ResNet-50. Th

were presented by (Length*Width*Number).

Table 2 e Tracking model metrics.

Metrics Data Set Value

OTP (10 frames) Pig Action Dataset (4396 samples) 68.83%

OTP (1 frames) 52.35%

OTA (10 frames) 247 tail-biting events (Fig. 1) 92.71%

OTA (1 frames) 71.23%
3.3. Spatial-temporal features analysis

In this section, the ResNet-based action recognition model

was taken as an example to analyse the spatial-temporal

features. The feature map (also called activation map/layers

output) and the heat map were used to explain the construc-

tion of a behaviour feature vector by a video segment. The

feature maps are the outputs of each CNN layer. They are

obtained by performing convolution operation over the array

of image pixels with a filter matrix. The heat map is the vis-

ualisation tool that interprets the patterns learned by con-

volutional layers (Selvaraju et al., 2017). For a particular

feature map, the corresponding heat map could visualise

which part of an image a CNN is looking at.

Figure 12 illustrates the process of extracting spatial fea-

tures by ResNet-50. In the first layer, the feature map retained

most of the information present in the original image and

acted as edge detector, and the CNN focused on large regions

with similar texture patterns. In deeper layers, the feature

map showed a more abstract representation of the original

image. From the output of the heat map, each feature map is

an abstract representation of a specific image region. A total of

2048 feature maps from the 49th convolutional layer were

used for spatial feature representation of the original image.

They were then transferred into a 2048-dimension feature

vector by average pooling in the last layer as the input to

LSTM. Note that even if the pre-trained CNN has never seen

our dataset before, it is still able to extract valid spatial

features.

The LSTM learned temporal information by taking the

convolution feature sequences as input. Figure 13 shows the

changing pattern of the feature/heatmaps in a time sequence.

The feature map sequence showed significant sequence in-

formation, which is the result of the pigs’ movement pattern.

Meanwhile, the heat map pointed out that the feature maps

actually track the displacement of a certain sub-region over

time. For example, in Fig. 13a, the heatmaps changedwith the

displacement of the two pigs which means the CNN always

looked at the pigs’ body. And the two pigs in Fig. 13b remained

motionless, so the heat map had not changed.

Therefore, the CNN could extract the spatial features of the

individual pig from image sequences, which made it possible
e image size and the number of feature maps for each layer
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Fig. 13 e The changes of convolution features in the time sequence. (a) A tail-biting segment. (b) A non-tail biting segment.
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to learn themotion pattern of tail-biting behaviour by training

the LSTM network.

3.4. Action recognition results

The Pig Action Dataset was used to train and validate the ac-

tion recognition models. Figure 14a, b show the accuracy and

loss curves when training the CNN þ LSTM model. Since the

CNN model was frozen (act as spatial features extraction),

only parameters of the LSTM were trained and that allowed

themodels to converge on the scale of data used in this study,

otherwise a much larger data set might have been needed.

With the same network architecture, the VGG þ LSTM

network converged to a validation accuracy of 92.24% after 20

iterations, but then over-fitted, and the ResNet þ LSTM

network converged to a validation accuracy of 96.35% after 60

iterations without over-fitting. The feature dimension of VGG-

16 and ResNet-50 is 25,088 and 2480 respectively. Thus, for

higher dimensional CNN features, it is necessary to either

reduce the number of nodes of LSTM or enrich the training

data.

In Fig. 14a, the validation accuracy can remain flat while

the loss gets worse as long as the output value does not cross

the threshold where the predicted class changes. A deep

neural network is overfitted when progress in training is

accompanied by increasing loss function and stable precision

on the validation dataset. Vice versa, when the loss function
decreases with a stable precision for the validation dataset,

then the network capacity is weak and the model complexity

needs to be increased.

Table 3 summarises the evaluation metrics of the ResNet-

based action recognition result, including true positive (TP),

true negative (TN), false positive (FP), false negative (FN),

sensitivity (¼ TP
TPþFN� 100%), specificity (¼ TN

TNþFP� 100%), pre-

cision (¼ TP
TPþFP� 100%), and accuracy (¼ TPþTN

TPþTNþFPþFN� 100%). It

can be seen that the proposed behaviour recognition model

has good performance in recognition of the tail-biting

interaction.
4. Discussion

The work in this paper provides a state-of-the-art method for

monitoring tail-biting behaviour in a group. In comparison to

previous research, in which tail posture was employed as an

indirect indicator of tail-biting breakout (D’Eath et al., 2018),

the current algorithm more effectively monitors the spatial-

temporal characteristics of the tail-biting pattern by using

deep-learning techniques. Comparing to related research,

such as pig aggressive behaviour (Chen et al., 2017, 2018; Lee

et al., 2016; Oczak et al., 2014; Viazzi et al., 2014), our

approach not only extended monitoring to individual level

but also enriched the capacity to capture better the
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Fig. 14 e Process of training LSTM. (a) Training with VGG-16 convolution features. (b) Training with ResNet-50 convolution

features. (Batch_Size ¼ 12, Learning Rate ¼ 0.01, gradient descent with Adam, Loss function with cross entropy).

Table 3 e The evaluation metrics of the ResNet-based action recognition model.

TP TN FP FN Sensitivity Specificity Precision Accuracy

2288 2813 86 108 95.49% 97.03% 96.38% 96.35%
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behavioural characteristics. Although, Chen et al. (2020)

achieved an accuracy of 98.4% by submitting video epi-

sodes of the group-level aggressive behaviour into the

CNN þ LSTM model, the accuracy was only 52% when

repeating the same method on tail-biting behaviour. This

indicates that the CNN þ LSTMmodel might not be sufficient

to deal with the small actions that occur in the group.

Therefore, themultiple object tracking algorithm is crucial to

recognising tail-biting behaviour.

As a deep-learning based approach, 247 tail-biting events

from 8 h raw video may seem insufficient to train a deep

network. From an algorithm perspective, behaviour recog-

nition on pairwise interaction level is a much more specific

task than on the group level. By separating these pairs, the

model only pays attention to the spatial-temporal features

without considering the location. Thanks to the transfer

learning techniques, a complex model can achieve good

performance on the limited dataset. From the perspective of

animal behaviour, providing toys in the pen will reduce the

occurrence of tail-biting behaviour and thereby the size of

the data sets. When collecting a large-scale animal behav-

iour dataset in the future, pens without toys should be

considered.

There were three reasons for the failure in tail-biting

location and recognition in this study:

(1) Loss of tail-biting pigs by the detecting or tracking

model

There are several factors that may reduce the performance

of the object detection model. One is the pigs’ body change

during a feeding cycle. Another one is the background
changes of the pig pen (e.g. facilities and illumination). All of

these problems could be addressed by enhancing the dataset.

A large-scale video dataset is necessary for future research,

covering the whole process of pig growth from day to night

(with infrared camera), from nursery to fattening period, and

crossing different farms and herd sizes. Increased diversity of

the dataset can improve the generalisation ability of the object

detector.

The tracking error actually originated from the object

detectionmodel. This could be improved by either eliminating

the fisheye effect by correcting lens distortion, or utilising a

depth sensor to completely remove the background. More-

over, the advanced object detection model (e.g. YOLO v3

(Redmon & Farhadi, 2018)) or an instance segmentation (e.g.

DeepMask (Pinheiro, Collobert, & Dollar, 2015)) approach

could be applied in the future.

(3) Misclassification of action recognition model

Figure 15 shows the typical examples of the classification

result. It can be seen that:

(1) the relative position and the posture of interactive

pigs are the key factor in determining behaviour

category, since FP cases (False positive cases in

Fig. 15a) show similar spatial characteristics to TP

cases (Fig. 15c), and FN cases (Fig. 15b) have unusual

postures compared to the typical tail-biting interac-

tion (Fig. 15c);

(2) Themain reason for FN recognition is when two pigs

have a tail-biting interaction without obvious

escaping and chasing motion (as shown in Fig. 15b);

https://doi.org/10.1016/j.biosystemseng.2020.04.007
https://doi.org/10.1016/j.biosystemseng.2020.04.007


Fig. 15 e Typical examples of the behaviour recognition result. (a) Examples of the false positive; (b)Examples of the false

negative; (c) Examples of the true positive; (c) Examples of the true negative.
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(3) The main reason for FP recognition is when one pig

wiggles its head around another pig’s tail (as shown

in Fig. 15a).

In conclusion, the CNN þ SLTM model is applicable to

tail-biting interactions with escaping and chasing motion.

However, one of the tail-biting signals at a really early

stage is that tail manipulation does happen while the pigs

are lying down and does not necessarily invoke a reaction

from the victim pig. The proposed method is defective in

this respect according to the experimental results. A

possible solution is that some novel action recognition

models could learn spatial-temporal features synchro-

nously, as this has been proved to be better than the

CNN þ LSTM model (e.g. two-stream networks

(Feichtenhofer et al., 2016) and 3D CNNs (Tran et al., 2015)).

However, due to the lack of a large-scale public dataset on

pig behaviours, it is not possible to test these methods

currently. Whether they are better than CNN þ LSTM

model or not needs to be verified in future work.
5. Conclusion

The method proposed in this paper attempted to provide a

solution to locating and recognising typical harmful tail-

biting behaviour in pigs. A major contribution of this

method was to simplify group-level activities as pairwise

interactions by a tracking-by-detection algorithm, which

allowed precise localisation of the spatial position of the

target interactions within the pig pen. Another contribution

of this study was confirmation that the deep learning

methods for human action recognition could also be feasible

in animals. The proposed method has the potential to be

used for monitoring multiple social behaviours in group-

housed pigs.

Results demonstrate that the tracking-by-detection al-

gorithm is capable of extracting 92.71% (229/247) tail-biting

interactions from the raw video. Then, the accuracy of ac-

tion recognition on the pairwise interactions reaches

96.25%. In conclusion, the proposed method can identify
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and locate 89.23% of tail-biting interactions from group-

housed pigs, which should meet the requirement of prac-

tical applications. This paper provides a solution to the early

warning system of the tail-biting behaviour, which might

help improve pig welfare and the profitability of pig

industries.
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