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Summary

Pseudomonas virus vB_PaeM_PA5oct is proposed
as a model jumbo bacteriophage to investigate
phage-bacteria interactions and is a candidate for
phage therapy applications. Combining hybrid
sequencing, RNA-Seq and mass spectrometry
allowed us to accurately annotate its 286,783 bp
genome with 461 coding regions including four non-
coding RNAs (ncRNAs) and 93 virion-associated pro-
teins. PA5oct relies on the host RNA polymerase for
the infection cycle and RNA-Seq revealed a gradual
take-over of the total cell transcriptome from 21% in
early infection to 93% in late infection. PA5oct is not
organized into strictly contiguous regions of tempo-
ral transcription, but some genomic regions tran-
scribed in early, middle and late phases of infection
can be discriminated. Interestingly, we observe
regions showing limited transcription activity
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throughout the infection cycle. We show that PA5oct
upregulates specific bacterial operons during infec-
tion including operons pncA-pncB1-nadE involved in
NAD biosynthesis, ps/ for exopolysaccharide biosyn-
thesis and nap for periplasmic nitrate reductase pro-
duction. We also observe a downregulation of T4P
gene products suggesting mechanisms of superin-
fection exclusion. We used the proteome of PA5oct
to position our isolate amongst other phages using a
gene-sharing network. This integrative omics study
illustrates the molecular diversity of jumbo viruses
and raises new questions towards cellular regulation
and phage-encoded hijacking mechanisms.

Introduction

The discovery of very large microbial viruses infecting
bacteria and protozoa has dramatically expanded the
range of known viral genome sizes, starting around 2 kb
and ending upward of 2 Mb. These so-called jumbo
viruses can have genomes that are larger than those of
parasitic bacteria and archaea, thereby bridging the for-
mer classical divide between cells and viruses in terms of
genome size (Claverie and Abergel, 2009; Koonin et al.,
2015). Importantly, these uncharacterized viral genomes
are diverse, and most of their genes lack nucleotide simi-
larity to other functionally characterized or indeed even
known sequences that can be accessed in public data-
bases. As such, they have been aptly described as ‘Viral
Dark Matter and there is room for the exploration of this
untapped functional sequence space (Hatfull, 2015).
Bacteriophages with genome sizes beyond 200 kbp are
defined as jumbo phages, sometimes also referred to as
giant phages. They have been isolated from a multitude of
environments, including water, soil, plants and animal tis-
sues (Yuan and Gao, 2017). A subset of 152 of them have
been sequenced to date (February 2020, Supporting
Information Table S1), including 141 myoviruses,
10 siphoviruses and 1 unclassified phage. Most infect
Gram-negative bacteria with only a few that can infect
Gram-positive bacteria (11 jumbo phages), mostly Bacillus
strains. The tiny plaques typically formed by these
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large-sized phages are smaller than 0.5 mm on 0.7% soft
agar and are easily overlooked during classical propaga-
tion assays. Their large virion size can also lead to their
loss during filtration procedures that are standard in many
phage isolation protocols (Serwer et al., 2007), suggesting
biases against their isolation. Interestingly, other large bac-
teriophages currently lacking isolates have been reported
using culture-free, deep metagenomics sequencing
approaches, with assembled genome sizes up to 735 kbp
(Al-Shayeb et al., 2020).

Although jumbo phages have proven to be interesting
for structural analysis and have provided insights into
infection processes (Fokine et al., 2005; 2007; Wu et al.,
2012), the understanding of their functional genetics and
genome organization has often remained limited to the
results of in silico predictions of genomes assembled
from short-reads sequencers such as lllumina machines.
However, investigations into their basic (molecular)
microbiology, including elucidating their transcriptional
schemes, or the mechanisms of their coevolution with
their host must be pursued further if we are to acquire
new insights (Hendrix, 2009). RNA-Seq has proven to be
an important tool in that respect, allowing a detailed
molecular elucidation of phage transcriptional schemes,
and the discovery of regulatory elements and sRNAs, but
also providing clues towards the host response during
phage infection and its evolutionary implications
(Ceyssens et al., 2014; Chevallereau et al., 2016; Blasdel
et al., 2017; 2018a).

Pseudomonas virus phiKZ, the first sequenced jumbo
phage (Mesyanzhinov et al., 2002), serves as a model
phage in this regard. In particular, its transcription
scheme is independent from the host transcriptional
machinery and is governed by the consecutive action of
phage-encoded, non-canonical multisubunit RNA poly-
merases (RNAPSs) [virion associated (VRNAP)], distantly
related to bacterial p and p subunits, that are co-
packaged alongside the genome and co-injected upon
infection to bootstrap the transcription of other RNAP
genes present in the phage genome (Ceyssens
et al., 2014).

Here, we present a detailed molecular analysis of the
jumbo Pseudomonas virus vB_PaeM_PA5oct, a
myovirus infecting Pseudomonas aeruginosa (Drulis-
Kawa et al., 2014) that lacks a phage-encoded RNAP
and thus represents a fundamentally different transcrip-
tion mode from phage phiKZ. PA5oct is close to the
recently described Pseudomonas phage MIJ3. The geno-
mic proximity between these two isolates is discussed in
the paper by Imam and colleagues (2019), in which they
highlight a few peculiar genetic features unique to this
phage species, including the presence of 2 host-like pro-
teins (FtsH and TilS), as well as the absence of the
machinery thought to be conserved across jumbo phages

for the construction of a phage nucleus during the replica-
tion cycle. PA5oct, along with MIJ3, represents a new
species within a new phage genus that appears to be
geographically dispersed and genomically stable, and we
propose here to further characterize its molecular
biology.

Our investigation was driven by combining short and
long read sequencing, temporal transcriptomics and
structural proteomics. Taken together, these molecular
techniques allowed us to elucidate the genome organiza-
tion of this phage species and the response it elicits
during infection of its host P. aeruginosa PAO1. Further-
more, we establish the evolutionary relationships
between PA5oct and other characterized phages using a
gene-sharing network analysis.

Results

Basic genome properties of Pseudomonas phage
PA5oct

Phage PA5oct has a linear, A+T-rich (33.3% GC-con-
tent), double-stranded DNA genome of 286,783 bp with
461 putative coding DNA sequences (CDSs) as shown in
Fig. 1. The analysis of the genome sequence shows that
this isolate possesses little sequence homology to other
phages in the currently known, that is, sequenced and
published, phage universe except with the Pseudomonas
phage MIJ3 (Imam et al., 2019) with which it shares 99%
DNA identity and coverage and with which it forms a new
viral species.

The genome of PA5oct has long direct terminal repeats
(DTRs) of an estimated 39,080 bases (see Supplemen-
tary Report 1), a characteristic also found in previously
published jumbo phages (Yoshikawa et al., 2018). Inter-
estingly, the DTR region includes 105 genes, many of
which are highly transcribed in the early phase of the
infection (Fig. 2).

Aside from 445 protein-coding sequences, the phage
genome also contains 12 transfer RNAs (tRNAs) [Met
(CAT), Leu (TAA), Asn (GTT), Thr (TGT), Met (CAT), Leu
(TAA), Arg (TCT), Met (CAT), Pro (TGG), Gly (TCC), Ser
(TGA) and Ser (GCT)].

Using the alignment of the RNA-Seq data to the
PA5oct genome (presented in the next section), we vali-
dated the annotation of the tRNA sites and uncovered
four actively transcribed regions lacking putative open
reading frames (ORFs) or known promoters that have
been annotated as non-coding RNA (ncRNA) (Table 1).
This alignment of the RNA-Seq data also enabled the
manual curation and discovery of 49 additional CDSs on
top of the 412 CDSs initially identified by the automated
in silico RAST annotation pipeline (McNair et al., 2018),
bringing the total to 461 CDSs.
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Fig. 1. Circular representation of PA5oct genome and its transcriptome. The two inner circles display a histogram of the GC-skew followed by a
graph of the GC content along the genome of PA5oct. It is followed by a stranded depiction of the CDSs and ncRNAs indicating that most features
are encoded on the positive strand (in green) with intermittent regions encoding on the negative strand (in purple). Structural proteins confirmed by
ESI-MS/MS analysis are marked with red dots. The three outer rings depict normalized RNA read counts for each of the annotated feature. Each
annotated feature is represented to size, with for example gp128 and gp300 being the largest proteins encoded by PA5oct. Contiguous regions with
limited amounts of transcripts detected across multiple timepoints are encased in dotted lines. The two host-like proteins FtshH and TilS reported in
Imam and colleagues (2019) are annotated in blue-colored text. The figure was created using the software Circos (Krzywinski et al., 2009).

Transcription of the PA5oct genome and its temporal period just over 40 min, with a burst size of about 30—40
regulation phage particles per infected bacterial cell (Supporting

) ) Information Fig. S1). Based on these parameters, we
In accordance with the results from Drulis-Kawa and col- selected timepoints 5, 15 and 25 min as proxies for early,
leagues (2014), we calculated that PA5oct has a latent middle and late infection respectively.
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Fig. 2. RNA-Seq analysis of PA5oct transcriptome after P. aeruginosa PAO1 infection. Genome-wide overview of reads mapped to the PA5oct
genome for samples taken 5, 15 and 25 min post-infection.

A. Coverage of samples 5 min and 25 min (15 min omitted) show a limited number of regions which dominate the transcription landscape.

B. Zooming in on the samples by capping the strongly transcribed regions allows to delineate regions differentially transcribed throughout the
infection. Six marginally transcribed regions are highlighted with blue bars. Each of the three timepoints was normalized to reflect the depth
across the triplicates. The four tracks at the bottom of the graph (B) indicate the features annotated on both the positive strand (in red) and nega-
tive strand (in green), these features have been further subdivided in two sets of tracks in order to highlight the structural features identified by

the ESI-MS/MS technique. The figure was created using the python software pyGenomeTracks.

Table 1. Identified non-coding RNA species.

Percentage of phage reads

Name Location Strand Early Middle Late
ncRNAO0O1 8263...8498 + 2.40 5.07 4.68
ncRNA002 21951...22401 + 4.65 5.04 1.23
ncRNAO003 103065...103368 + 0.01 0.05 0.03
ncRNA004 246116...246734 + 0.08 0.03 0.02

Four non-coding RNAs have been identified based on RNA-Seq data from transcripts aligning to genomic loci that lack plausible ORFs.

Importantly, when 400 ug mi~" of rifampicin, a host
RNAP transcription inhibitor, is added prior PA5oct infec-
tion, the progeny phage production is completely
suppressed (Supporting Information Fig. S1).

Throughout the infection, it appears that the PA5oct
transcripts progressively come to dominate the host tran-
scription. They represent 21% of total non-rRNA tran-
scripts after the early infection timepoint (5 min), increase
to 69% by middle infection (15 min) and culminate to 93%
during late infection (25 min) (Supporting Information -
Table S2). The strand specificity of the results revealed
that early transcription is almost exclusively occurring
from the Watson strand. We also observe localized
section of the genome with high transcription levels that
dominate the transcription landscape of PA5oct (Fig. 2A).

Most of the genes contained within the long DTR
between gp34 and gp105 (uncharacterized proteins,
except gp39, 48 and 51, which are structural proteins),
but also gp450, were each found to be highly transcribed
at this stage and can be defined as early genes.

Phage PA5oct appears to have few genomic regions
that can be distinguished between the middle and late
phase of transcription as captured at 15 min onwards
(Fig. 2B). Many of the (functionally annotated) gene fea-
tures transcribed in those middle and late time points were
predicted to be responsible for structural proteins as well
as DNA metabolism and replication. Two of the four non-
coding RNAs located in the DTR region (ncRNA1 and
ncRNAZ2), and which lack similarity to any known primary
DNA sequence in the GenBank database (release 235)

© 2020 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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with the exception of the isolate MIJ3, were highly tran-
scribed throughout the infection cycle (Figs 1 and 2).

Remarkably, six genomic regions, including two of the
three major regions transcribed on the crick strand
(Fig. 2B, boxes 1-6), showed limited transcription under
our laboratory growth conditions, despite a high sequenc-
ing depth (between 11M and 21M reads mapping for
each individual sample). These six regions correspond
primarily to genes that encode structural proteins (Fig. 1,
gene products marked in red) and which have been
detected by electrospray ionization tandem mass spec-
trometry (ESI-MS/MS) (described in the Transcriptome
and proteome-based functional annotations section).

A total of 32 putative promoters with highly conserved,
AT-rich intergenic motifs (5-TATAATA-3) and (5'-
TTGAC-3') were identified around transcription start sites
(Supporting Information Table S3) whereas 36 putative
factor-independent terminators with conserved stem
loops could be identified around transcription stop sites
(Supporting Information Table S4).

Transcriptome and proteome-based functional
annotations

The ESI-MS/MS technique allowed us to identify a total
of 93 gene products linked to the phage virion particles,

Table 2. Putative peptidoglycan degradation proteins.

Gene ESI-

product MS/MS Functional analysis (bioinformatics)

gp133 Yes Baseplate hub subunit with tail-
associated lysozyme homologous to
the gp5 of Escherichia coli
bacteriophage T4 which has a
needle-like structure attached to the
end of the tail tube serving in the
injection process (Kanamaru et al.,
2005).

Glycosyl hydrolase, lysozyme-like
protein with a 159 amino acids long
domain (11-170 aa).

Baseplate hub and tail muramyl-
pentapeptidase

Cell-wall hydrolase domain protein
with an N-acetylmuramyl-L-alanine
amidase SleB domain cleaving the
bond between N-acetylmuramoyl
and L-amino acid residues. It is
potentially an endolysin given that it
was not recognized during ESI-MS/
MS analysis

Murein hydrolase, peptidase M23, with
a 103 amino acids long domain
(30-133 aa).

gp173 Yes

gp245 Yes

gp368 No

gp441 No

Five proteins are predicted to be associated with the degradation of
the peptidoglycan layer. For each protein we indicate (i) the related
CDSs by its gene product (gp) number, (ii) whether they were
detected during the ESI-MS/MS analysis and (iii) their bio-
informatically predicted function.

Integrative omics analysis of phage PA5oct 5

comprising 7 virion-unrelated enzymes, 13 virion-
associated proteins and 73 other gene products
(Supporting Information Fig. S2 and Table S5). Com-
bined with the bioinformatics analysis of the genome and
the transcriptome, we could functionally annotate a third
of the CDSs found in PA5oct.

Three capsid proteins were predicted, including the por-
tal vertex protein of the head (gp149), the prohead core
scaffolding protein and protease (gp152) and the precursor
to the major head subunit (gp154). An additional protein,
assigned as a putative head completion protein (gp200),
was annotated based on sequence similarity to Klebsiella
phage vB_KleM_RaK2 head completion protein. More-
over, several proteins associated with the tail apparatus
were annotated, including a neck protein (gp193) and four
tail proteins, a phage tail fiber protein H (gp159), a tail
sheath stabilizer and completion protein (gp162), another
tail fiber protein (gp165) and a tail sheath monomer
(gp195) as well as three baseplate proteins, gp129, gp130
and gp133 (baseplate wedge, baseplate protein, base-
plate hub subunit and tail lysozyme respectively). Gp159,
the putative phage tail fibre protein H, has a putative endo-
N-acetylneuraminidase region on its C-terminus
(868-1008 aa), suggesting a (2->8)-alpha-sialosyl linkage
hydrolase function of oligo- or poly(sialic) acids, activity
associated with the tail spikes and exopolysaccharide
depolymerases (Kwiatkowski et al., 1983).

PA5oct also encodes several genes predicted to be
associated with peptidoglycan layer degradation, includ-
ing three detected products gp133, gp173, gp245, and
two that were not detected: gp368 and gp441. Their puta-
tive function was analysed using BLASTP, HHpred,
HMMER, InterPro and Phyre2 (Table 2).

Gene-sharing relationships to other bacteriophages

Viruses lack a universal marker gene that would enable
an integrated taxonomy. In order to represent genetic
relationships between Pseudomonas phage PA5oct, the
jumbo phages and the other viral genomes available in
RefSeq, a gene-sharing network was built using the
approach described in Jang and colleagues (2019). In
such networks, nodes are virus genomes, edges
between nodes indicate the gene content similarities
between genomes and viruses sharing a high number of
genes [i.e., homologous protein clusters (PCs)] localize
into viral clusters (VCs, approximating the genus-rank
viral groups) (Jang et al., 2019).

Using the Cytoscape software, we removed discon-
nected components (or subnetworks that did not contain
jumbo phages) from our gene-sharing network to simplify
its visualization on Fig. 3 [see, e.g., fig. 2C of Jang et al.,
2019 for a full gene-sharing network of all known
phages]. The resulting network was composed of 1355

© 2020 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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viral genomes (nodes) belonging to the Myoviridae,
Siphoviridae and Podoviridae families, or uncharacterized
phages and 37,955 relationships (edges) between them.

A subset of 23 jumbo phages were placed into the larg-
est connected component (LCC) that predominates the
double-stranded DNA phages, whereas 22 others were
placed into three isolated components (Fig. 3). Note that
phage K64-1 was excluded from our gene content-based
analyses (Figs 3 and 4A and B) since its incomplete pro-
tein annotation (accession No. NC_027399.1; only
includes 64 proteins from a total of 300 predicted pro-
teins) can lead to underestimating its genetic relationship
to the other phages.

We observe that a majority (18) of the 23 jumbo
phages in the LCC, which includes PA5oct, are related to
the T4-like viruses belonging to the Tevenvirinae (upper
right in Fig. 3; Supporting Information Table S6). Of these
viruses, five jumbo phages including Pseudomonas
phage PA5oct, Escherichia phages 121Q/PBECO
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4, Klebsiella phage RaK2 and Cronobacter phage
GAP32 showed stronger connections to each other but
weaker connections outside the group due to their more
common genes (PCs) than the rest of the network
(Fig. 4A and B, Supporting Information Table S6). Nota-
bly, further inspection of their relationships uncovered
that PA5oct shares less common PCs (~11-15%) to the
remaining members (Fig. 4B), indicating its distant rela-
tionships as an outlier genome (Jang et al., 2019).

The visualization of the gene-sharing network and the
analysis of gene content relationships of the jumbo
phages shows us that most of the jumbo phages are
related to two major groups including the T4-like viruses
belonging to the Tevenvirinae and the PhiKZ-like
viruses to the Phikzvirus, Elvirus, Agrican357virus or
Rsl2virus, respectively, while the others form evolution-
ary distinct clades (Yamada et al., 2010; Gill et al.,
2012) (Figs 3 and 4A and B; Supporting Information
Table S6).

PhiKZ-like Jumbo phages
Pseudomonas phages phiKZ/phiPA3/201phi2-1

Ralstonia phages RSF1/RSL2
Salmonella phage SPN3US
Yersinia phage phiR1-37
Cronobacter phage CR5
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Fig. 3. Protein-sharing network of PA5oct and other jumbo phages. A network was built for 2304 bacterial and archaeal virus genomes retrieved
from ViralRefSeq v.85 (see Experimental procedures section). We removed several disconnected components or subnetworks that do not con-
tain the jumbo phages or their relatives for clarity, resulting in 1355 viral genomes (nodes) and 37,955 relationships (edges) between genomes.
Each node is depicted as a different shape, representing bacteriophages belonging to the Myoviridae (rectangle), Podoviridae (diamond),
Siphoviridae (circle) or uncharacterized phages (triangle). Edges between two nodes indicate statistically weighted pairwise similarities with simi-
larity scores of = 2. The positions of 45 selected jumbo phages (red node) and two major viral groups they belong to are indicated for illustrative
purposes. The network consists of multiple disconnected components. On the left-hand side is the component that contains the largest number
of nodes, including with the phages from the RaK2-like clade in which we find PA5oct (highlighted and annotated with the isolates names). The
other components on the right-hand side of the figure are smaller clusters of related phages that could not be connected are disconnected from
to the rest of the network. Amongst those, three separate clusters comprise jumbo phages. The network representation was produced using the
edge-weighted spring embedded layout of Cytoscape version 3.5.1. The Supporting Information Table S6 contains the list of phages and
assigned VCs.
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A. Enlarged view of the Tevenvirinae-related subnetwork (Fig. 3) comprising phage PA5oct and its relatives. Each node indicates an individual
viral genome. Nodes are colored according to the VC to which they belong. Viruses belonging to this section of the network are overwhelmingly
of the Myoviridae family (legendary box). Edge thickness is proportional to similarity values estimated with the hypergeometric equation (see
Experimental procedures section; Bolduc et al., 2017a,b). Note that due to the lower number of common genes, Pseudomonas phage PA5oct
was identified as a distant relative (outlier; Jang et al., 2019) to five phages including 121Q, K64-1, PBECO4, GAP32 and Rak2.

B. Module profiles showing the presence (dark) and absence (light) of homologous PCs across genomes. Each row represents a given virus iso-
late and each column represents a PC. The genomes were hierarchically grouped based on hierarchical patterns of gene sharing (Upper). A
table showed the average shared PC percentage (proteome similarity; see Experimental procedures section) between five viruses (Bottom). Note
that phage K64-1 was excluded from our gene content-based analyses (Figs 3 and 4A and B) since its incomplete protein annotation in NCBI
(i.e., only includes 64 proteins from a total of 300 predicted proteins) can lead to incorrect estimation of genetic relationships of K64-1 to others.

PA5oct-specific differential gene expression of the host
genome

In order to visually summarize the results of the differen-
tial gene expression, we created a MA plot in which we
compare the late infection conditions (t = 25 min) to the
uninfected cell (Fig. 5). In total, 698 genes were found to
be differentially expressed (Supporting Information -
Table S7). In this work, we highlight the host-mediated
transcriptional response described in the next paragraph,
and a few genomic systems of interest that are part of
the phage-specific transcriptional response and are of rel-
evance to phage microbiology or phage therapeutic set-
tings. Further dissection of the results is possible, and we
have made the data publicly available for that purpose
(see Data availability statement section).

The conserved PAO1 host-mediated transcriptional
response to phage infection present during the infection
by phages 14-1, PEV2, YuA and LUZ19 and described
by Blasdel and colleagues (2018a) is also found in the
infection with PA5oct and we used it to annotate our
results on Fig. 5. Briefly, this conserved response was
uncovered by infecting P. aeruginosa PAO1 with strictly

lytic phages from divergent clades and studying the com-
monalities in the transcriptional response of the host to
these infections using RNA-Seq. Using this technique,
Blasdel and colleagues (2018a) showed that around
5.5% of the CDSs of P. aeruginosa PAO1, including
genetic systems that reduce the efficiency of the lytic
phage cycle, were differentially transcribed and could be
defined as part of a host-mediated stress response.

PA5oct also appears to elicit several phage-specific
impacts on transcript abundance, which result in a unique
differential expression pattern of specific host genes.
PA5oct progressively dominates the non-ribosomal RNA
environment of the cell and this shift from host transcripts
to phage transcripts (Fig. 5) depletes all host transcripts
0.08-fold relative to the total in the cell. Note that this
global depletion of host transcripts relative to the total
phage/host transcript population is not accounted for in
the Log, (Fold Change) values we report (Fig. 5,
Supporting Information Table S7), as described previ-
ously (Blasdel et al., 2017; 2018a). Doing this allows us
to illustrate the impact of PA5oct on host transcripts rela-
tive to other host transcripts, rather than relative to the
total.
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Other genes
e Host-mediated expression
(Blasdel et al. 2018)

o Pfl-like prophage
4- @ napABCDE
e pslA-L
© PA4918-4920 °
o Type IV pilus 0 O,

Log? (Fold Change)

-1 0 1

2 3 4

Log10 (Mean Expression)

Fig. 5. MA plot highlighting the differential expression of host genes from P. aeruginosa PAO1 during PA5oct infection. We compared the gene
expression between the late infection timepoint (t = 25 min) and the uninfected or control timepoint (t = 0 min) to identify host features that are dif-
ferentially transcribed. We found that 698 genes from PAO1 were differentially transcribed, of which 281 were downregulated, and 417 were
upregulated. In addition to the host-mediated stress response to phage infection identified by Blasdel and colleagues (2018a), we observe a
PA5oct-specific differential expression of host genes during PA5oct infection. Specifically, we see a PA5oct-specific upregulation of the ps/E-J
part of the ps/A-L exopolysaccharide operon, the napABCDE operon which encodes the periplasmic nitrate reductase, parts of a Pf1 prophage
and the operon PA4918-4920 involved in NAD biosynthesis. We also observe a downregulation of Type IV pili genes which have been shown to
be a necessary receptor to initiate PA5oct infection (Olszak et al., 2019). The exhaustive list of differentially expressed genes can be found in the

Supporting Information Table S7.

As shown on Fig. 5, the strongest upregulation is that
of the PA4918-PA4920 operon, which contains an
enzyme involved in NAD biosynthesis (Okon et al.,
2017). Another operon specifically upregulated during
PA5oct infection encodes a part of the ps/ A-L gene clus-
ter (psl/E-J), which is involved in the production of Psl
exopolysaccharide (Jackson et al., 2004). PA5oct also
manipulates the host into upregulating the transcription of
the napABCDEF operon, which encodes a periplasmic
nitrate reductase. Interestingly, several genes associated
with the biosynthesis of Type IV pili are downregulated
relative to other host transcripts. As appears to be com-
mon in different infection settings with other virulent
phages (Blasdel et al., 2018a), PA5oct appears to mobi-
lize the transcription of genes of a potentially cryptic Pf1
prophage (family /noviridae) encoded from ORF PA0618
to PAOG42.

Discussion
Insights from the integration of multiple omics analyses

Phage PA5oct has currently the third largest genome
amongst the sequenced Pseudomonas jumbo phages in
available databases, after 201$2-1 1 (316.674 kbp,
Thomas et al., 2008) and phiPA3 (309.208 kbp, Monson
et al., 2011). To date, the largest myovirus isolate known
is Bacillus megaterium phage G (497,513 bp genome,
Supporting Information Table S1). It is important to keep
in mind that some jumbo phages, especially those
reported prior to the 1990s, were identified only by elec-
tron microscopy (e.g., Gluconobacter phage GW6210)
(Ackermann and Nguyen, 1983; Abbasifar et al., 2014)
and that ongoing sequencing efforts of these isolates, or
metagenomics (Al-Shayeb et al., 2020) efforts will likely
disrupt the rankings of jumbo phage genome sizes.
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In terms of annotation, functions could be attributed for
a third of PA5oct proteins and a large portion of predicted
CDSs are unique, lacking sequence-based similarity to
the genomes available in the public database GenBank
(r235) with the notable exception of the same species
isolate, Pseudomonas phage MIJ3 (Imam et al., 2019).
For this reason, the functional characterization of phage
orphan genes is an important endeavour to undertake in
order to elucidate basic phage biology as well as phage
application safety when thinking of therapeutic settings
(Yuan and Gao, 2017).

Leveraging RNA-Seq for a whole genome analysis is a
powerful way to elucidate differential expression of gene
features across different conditions but also delineate
possible phage transcriptional modules. By experimen-
tally defining the timing and expression levels of tran-
scripts in both phage and host, directional RNA-Seq
helps to discover and accurately annotate novel
sequences, particularly for ncRNAs that are difficult to
predict using genomics data only, but also for small
phage peptides that fall below gene prediction thresholds
of annotation pipelines (Ceyssens et al., 2014). In this
manner, we could refine annotations of existing coding
sequences, correcting and adding about 10% of the total
predicted ORFs from those predicted in silico as well as
annotating four ncRNA regions of high interest for future
investigation. Interestingly, we also discovered a ribonu-
clease H-like protein on the genome of PA5oct (gp325)
that is putatively involved in the transitioning of the host
by processing the transcripts during the infection cycle.

ESI-MS/MS allowed us to identify 93 structural proteins
of PA5oct, including 4 structural head-related proteins,
1 neck protein, and 4 tail-related proteins. This is a similar
result to that seen with giant Pseudomonas 201phi2-1
(89 structural proteins, Thomas et al., 2010). However,
other jumbo phages can possess a much smaller number
of structural proteins, such as Pseudomonas virus phiKZ
(62), Aeromonas virus phiAS5 (26) or Ralstonia virus
phiRSL1 (25) (Lecoutere et al., 2009; Yamada et al., 2010;
Kim et al., 2012). Interestingly, it is known that the capsid
of jumbo phages can have very complex structures, as we
can observe in the case of phage phiKZ (30 head struc-
tural proteins), where in the middle of the capsid there is
an ‘inner body’, a spool-like protein structure that plays an
important role in DNA packaging and genome ejection dur-
ing, respectively, phage virion assembly and subsequent
virion adsorption (Wu et al., 2012).

Importantly, the large capsids seen in jumbo phages
can hold sizeable genomes allowing these phages to
possess many accessory genes comparing to small
phages (Mesyanzhinov et al., 2002; Hertveldt et al.,
2005; Kiljunen et al., 2005; Thomas et al., 2007; Gill
et al., 2012; Ceyssens et al., 2014; Yuan and Gao,
2017). As such, the capsid can accommodate a genome
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with DTRs that are longer (39,080 bp) than entire phage
genomes, and which encodes a large set of virion-
associated proteins, some of which appear to be barely
transcribed. PA5oct's genome also contains 12 tRNA
genes that likely increase the translation -efficiency
(Bailly-Bechet et al., 2007). This is not uncommon, as we
show in the Supporting Information Table S1 with other
jumbo phages that are known to possess numerous
tRNA genes, such as Xanthomonas virus XacN1 with its
record 56 tRNAs. As expected, the difference in GC con-
tent between P. aeruginosa PAO1 (66%) and PA5oct
(33%) is reflected in alternate codon usage (see
Supporting Information Table S8). However, this codon
bias is not fully explained by the phage-encoded tRNAs.

Hijacking the transcriptional environment of the host

The strategy of phage transcriptional mechanisms
depends primarily on the presence or absence of a
phage RNAP (Yang et al., 2014). After careful analysis of
PA5oct genes, no RNAP-like proteins could be identified.
Taken together with the absence of phage production in
the presence of rifampicin and the host’s apparent ability
to mount a conserved host-mediated transcription-level
defence response, this suggests that PA5oct depends on
host transcriptional mechanism (though we cannot rule
out the possibility that an unknown but essential phage
protein is also sensitive to rifampicin). The main role in
phage gene transcription is thus likely played by the large
DNA-dependent RNAP of bacterial host, a 400-kDa pro-
tein complex composed of five subunits (a2, B, p',0), that
transcribes mRNA following binding to the DNA template
(Tagami et al., 2014; Murakami, 2002). This process is
often supported by phage-encoded o factors forming a
holoenzyme with RNAP (a2, B, f',, o) (Wiliams et al.,
1987; Pavlova et al., 2012).

Some phages can also implement other transcriptional
strategies, for example, viral gene transcription may rely
on both the host RNAP along with a single-subunit phage
RNAP (Enterobacteria virus T7, T3, Pseudomonas virus
phiKMV and Xanthomonas oryzae virus Xp10). The
single-subunit RNAP is then responsible for transcription
of phage genes in the middle and late stage of infection,
whereas early genes are transcribed by the host RNAP
(Semenova et al., 2005; Savalia et al., 2010; Yang et al.,
2014). A similar situation is observed in the case of
Enterobacteria virus N4, where early and middle stage of
transcription depends on two phage-encoded RNAPs
and the late genes are transcribed by host RNAP
(Haynes and Rothman-Denes, 1985; Willis et al., 2002).
Another example is the giant Pseudomonas virus phiKZ
that can infect its host independently of the host RNAP
by using a virion-associated phage RNAP active in early
transcription, and a non-virion-associated phage RNAP,

© 2020 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,

Environmental Microbiology



10 C. Lood et al.

important for late and possibly middle transcripts
(Ceyssens et al., 2014; Yakunina et al., 2015).

Phage transcription patterns

PA5oct progressively dominates host transcription. After
5 min, PA5oct transcripts represented 21% of total non-
rRNA transcripts, eventually proceeding to 69% and then
92% by middle and late infection. This possibly reflects a
globally accelerated degradation of RNA in the cell as
described by Chevallereau and colleagues (2016). In a
similar fashion to giant Pseudomonas virus phiKZ
(Ceyssens et al., 2014), giant Yersinia virus phiR1-37
(Leskinen et al., 2016) and giant Bacillus virus AR9
(Lavysh et al., 2017), PA5oct is not organized into strictly
contiguous regions of temporal transcription. In the early
time point, we observe a lot of transcription in the DTR
region (Fig. 2). These early coding sequences are classi-
cally understood to be involved in the transitioning from
host to phage metabolism. Distinctive regions of early,
middle and late expression are scattered throughout the
genomes, a feature that increasingly appears to be char-
acteristic of phages with large genomes, including the
168 kbp Escherichia virus T4.

We also report six regions with low levels of transcrip-
tion that encode for unknown structural genes correlated
to baseplate and tail that were confirmed to be translated
and incorporated into phage particles by ESI-MS/MS
(a very sensitive technique), suggesting either a notably
efficient translation or a novel and unknown bias during
RNA-Seq. It is tempting to speculate that the expression
of these structural proteins may be conditional, for exam-
ple, based on environmental cues which result in altered
tail-receptor proteins to be displayed. Indeed, these spe-
cific structural proteins are not conserved between
phages within the protein-sharing network, hinting at
functions associated with specificity. These genes could
have been captured from other phages and be part of the
accessory genetic content of these jumbo phages.

The unique host-like proteins FtsH and TilS discovered
previously in the jumbo phage MIJ3 and hypothesized to
be involved in the maintenance of host viability during the
infection (Imam et al., 2019) can also be found in PA5oct,
and are both shown to be transcribed throughout the
infection cycle (Fig. 1).

Comparative genome analysis and protein-sharing
network

To examine the genetic relationships between PA5oct
and other Myoviridae, Siphoviridae and Podoviridae
viruses, a protein-sharing network was constructed. This
technique allowed us to locate our isolate within the phy-
logenetic clade of Rak2-like viruses, named after the

Klebsiella phage vB_KleM-RaK2 (Simolitinas et al.,
2013), and which also includes Escherichia viruses
121Q/PBECO4, Klebsiella virus K64-1 and Cronobacter
virus vB_CsaM_GAP32 and has since been shown to
include other jumbo phages (Yoshikawa et al., 2018).
This clustering is consistent with the more targeted phy-
logeny of Pseudomonas phage MIJ3 from Imam et al.
(2019) in which they used a multiple sequence alignment
of the amino acid sequences from the major capsid and
terminase proteins to build a more phylogeny using a
neighbour-joining tree method.

With respect to other jumbo phages, the overall gene-
sharing network (Fig. 3) identifies informative connec-
tions. For example, the Phicbkvirus, and phages RSLI1,
PaBG and Lu11 form two isolated components (Fig. 3).
This discontinuous structure of two viral groups, due to
their distinct gene pools, is indicative of their evolutionary
relationships as separate viral lineages (Yamada et al.,
2010; Gill et al., 2012) whereas the connection of jumbo
phages to their relatives having smaller genomes
(<200 kbp) such as Bacillus phage G, phages of the
Phikzvirus, Elvirus, Agrican357virus and Rsl2virus, and
Bacillus phages 0305phi8-36 (Fig. 3A and Supporting
Information Table S6) supports evolutionary links
between jumbo phages and smaller-genome phages
(Hendrix, 2009; Adriaenssens et al., 2012; Jang et al.,
2013). Furthermore, PA5oct, PBECO4, GAP32, T5,
FelixO1 appear to be distantly diverged members of
Tevenvirinae. The T5 and FelixO1 phages appear to act
as bridge for T4-related components due to their links to
other phage groups.

Unlike the marker genes of bacteria (i.e., 16S rRNA
genes), which can be used for their taxonomic classifica-
tion, viruses lack universal genes. Thus, traditional
single-gene-based phylogenies, such as those based on
major capsid proteins, will always be limited to related
subsets of the total virus universe. Protein-sharing net-
works, as presented here, introduce an alternative
approach, which provides a more global view that is also
consistent with current taxonomic groupings. Using this
approach informs about the possible genetic relation-
ships for PA5oct and includes all the giant viruses within
the entire population of viruses.

Host stress response during PA5oct phage infection

Phages have a substantial impact on bacterial cellular
systems, including transport/export, energy production/
conversion, ribosomal proteins, cell wall modification,
conversion of ribonucleotides to deoxyribonucleotides,
cold shock and osmotic stress response (Ravantti et al.,
2008; Fallico et al.,, 2011; Ainsworth et al., 2013;
Leskinen et al., 2016). In total, 698 genes of the PAO1
host were found to be differentially expressed.
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We observed that PA5oct upregulates the operon
encoding ps/E-J, responsible for production of Psl
exopolysaccharide. Psl is essential for initiating and
maintaining biofilm architecture in both mucoid and non-
mucoid strains. It is responsible for the formation of a
fabric-like matrix that holds cells closely together,
thereby impeding migration within the biofilm (Ma et al.,
2009). This may lead to increased matrix production,
reducing the relative abundance of lipopolysaccharide
(LPS) phage receptors, hence secondary phage
infections.

The napABCDEF operon, involved in the production of
a periplasmic nitrate reductase, is upregulated during
PA5oct infection. This protein is required for anaerobic
growth in cystic fibrosis (CF) sputum invitro. In a CF
environment, P. aeruginosa prefers anaerobic growth
that significantly enhances its biofilm formation and anti-
biotic resistance (Yoon et al., 2002). Under these anaero-
bic conditions, P. aeruginosa modifies the structure of its
LPS from a highly electronegative surface to a neutral
surface (Sabra et al., 2003; Palmer et al., 2007). This
suggests that phage PA5oct may influence Pseudomo-
nas biofilm formation. While the purpose and mechanistic
origin of this upregulation is unclear, it would seem to
suggest that PA5oct may be well adapted to the environ-
ment of human-associated Pseudomonas biofilms, an
interesting prospect for phage therapy given this phage’s
broad host-range.

The upregulation of the operon PA4918-4920 can be
linked to NAD biosynthesis, an important molecule that
mediates the transfer of energy in the cell and likely part
of the phage mediated conversion of the bacterial cell
into an optimized phage production system.

We observed here again an upregulation of prophage
pf1, a key filamentous prophage that is linked to the path-
ogenicity of P. aeruginosa in lung infections (Burgener
et al., 2019). This upregulation appears to be ubiquitous
during phage infection and has been observed in other
transcriptomics assays of phage infection with phiKZ
(Ceyssens et al., 2014), as well as with phages LUZ19,
PEV2, PakP3 and PakP4 (Blasdel et al., 2018a). It can
reasonably be proposed to be the result of a general
stress response of phage Pf1 that is unrelated to superin-
fection exclusion mechanisms.

Since PA5oct downregulates biosynthesis of Type
IV pili and indirectly modifies bacterial LPS, the signal-
ling networks might also influence the overproduction
of nitrate reductase. As it was proven in our related
manuscript, Type IV pili and LPS structures serve as
phage PA5oct receptors (Olszak et al., 2019). Recep-
tor downregulation possibly functions as a tactic to
reduce losses of clonal phages through secondary
adsorption to already phage-infected bacteria
(Abedon, 2017).
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Experimental procedures
Bacteriophage propagation, purification and morphology

In all experiments, phage PA5oct was propagated using
the P. aeruginosa strain PAO1 as previously described
(Danis-Wlodarczyk et al., 2015). Phage lysate was puri-
fied by 0.45 and 0.22 um filtration and incubation with
10% polyethylene glycol 8000 (PEG 8000)-1 M NaCl
according to standard procedures (Ceyssens et al.,
2006). Finally, CsCl-gradient ultracentrifugation was
applied (Ceyssens et al., 2008) and the resulting phage
preparation dialyzed three times for 30 min against
250 volumes of phage buffer using Slide-A-Lyzer Dialysis
Cassettes G2 (Thermo Fisher Scientific, Inc., MA, USA).
The phage titer was assessed using the double-agar
layer technique (Adams, 1959) and purified samples
were stored at 4°C.

One-step growth curve and rifampicin growth assay

One-step growth curves were established according to
the method of Pajunen and colleagues (2000), with modi-
fications. An equal volume of P. aeruginosa PAO1 bacte-
rial culture in LB medium at ODgqo of 0.3 was infected
with phage PA5oct (10° pfu mi~") to obtain a multiplicity
of infection (MOI) of 0.01. Phages could adsorb for 8 min
at 37°C, after which the mixture was diluted to 10~ to
limit post-adsorption to uninfected bacteria. Triplicate
samples were taken every 5 min during 1-1.5 h for titra-
tion, (Danis-Wlodarczyk et al., 2015). The burst size was
calculated as the ratio of the final amount of liberated
phage particles to the initial number of phages in the
infected culture. Where appropriate, rifampicin (Sigma)
was added to a final concentration of 400 pg mi~".

DNA isolation and hybrid sequencing

Phage genomic DNA was prepared using a modified pro-
tocol for lambda DNA isolation according to Ceyssens
and colleagues (2009) and sequenced using the lllumina
MiSeq platform available at the Nucleomics Core (VIB,
Belgium) as previously described by Danis-Wlodarczyk
and colleagues (2015). The phage genomic DNA was
also prepared for long reads sequencing using Oxford
Nanopore Technology (ONT) 1D library protocol as
described in Kakabadze and colleagues (2018). The
library was sequenced in-house on a MinlON equipped
with a R9.4.1 flowcell (ONT).

RNA extraction and sequencing

Pseudomonas aeruginosa strain PAO1 was grown over-
night in 5 ml LB medium at 37°C. Next, cells were diluted
1:100 in 50 ml fresh medium and further grown at 37°C
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unti an ODgyp of 0.3 was reached (around
1.2 x 108 CFU mI~", early exponential phase). The cul-
ture was infected with PA5oct at a MOI of 50. To estab-
lish a synchronous infection, we ensured that less than
5% of bacterial survivors remained after 5 min post-infec-
tion. Biologically independent samples were collected in
triplicates at 5 min (early), 15 min (middle) and 25 min
(late) into infection and processed as described previ-
ously (Chevallereau et al., 2016; Blasdel et al., 2017).

Genome analysis

The genome of PA5oct was reconstructed using both
Nanopore and lllumina reads with the integrated hybrid
assembler Unicycler v0.4.7 (Wick et al., 2017). After
assembling in a single circular contig, the ends of the
genome were determined by mapping the sequencing
reads to the genome using bwa-mem v0.7.17 (Li, 2013),
and by analysis of lllumina reads with PhageTerm v0.12
(Garneau et al., 2017). The genome architecture was
also confirmed by investigating potential structural varia-
tions using the long nanopore reads with a combination
of the tools ngmir and sniffles (Sedlazeck et al., 2018)
and the genome browser ribbonviewer (Nattestad
etal., 2016).

The search for potentially related genome sequences
was performed using the blastn tool against the nr/nt
nucleotide database (NCBI Resources Coordinators,
2016), and further inspected as described in Protein fam-
ily clustering and construction of the relationships net-
work section.

The genome annotation was performed by integrating
the results of the RAST phage annotation tool (McNair
et al.,, 2018) with a manual curation using standard
genome annotation methods (Danis-Wlodarczyk et al.,
2015; 2016). tRNAs were identified using tRNAscan-SE
(Lowe and Chan, 2016). The annotation of the CDSs
was further inspected visually with UGENE
(Okonechnikov et al., 2012) using the stranded RNA-Seq
reads, mapped to the phage genome (see Transcriptome
analysis section).

The detection of regulatory sequences extracted using
a custom python script in the region up to 100 nt
upstream of the CDSs was done using the MEME soft-
ware v5.0.5 with defaults parameters (Bailey et al.,
2015), and we used the software ARNold to identify puta-
tive factor-independent terminators with default parame-
ters (Naville et al., 2011). The analysis of the codon
usage was performed by concatenating the CDSs of
PAO1 and separately of PA5oct, before using the
Sequence Manipulation Suite (SMS) tool Codon Usage
(Stothard, 2000).

Transcriptome analysis

The RNA-Seq reads were aligned to both the phage and
host genomes using the software TopHat v2 (Kim et al.,
2013a,b) and the resulting alignments were then summa-
rized strand-independently into count tables using
HTSeq-Count (Anders et al., 2015). Finally, the counts of
each features were normalized using transcripts per mil-
lion. The alignments were parsed in order to count the
number of reads mapping to the chromosome of PAO1
and the chromosome of PA5oct respectively using the
idxstats function within the software package Samtools
v1.9 (Li et al., 2009).

For the differential expression of the host features,
each statistical comparison presented was performed
using the DESeqg2 (Love et al., 2014) R/Bioconductor
package to normalize host transcript populations to host
transcript populations, or phage to phage, before testing
for differential expression as described by Blasdel and
colleagues (2018b).

ESI-MS/MS analysis on virion particle proteins

Phage proteins were isolated from a purified phage
lysate (10° pfuml™) by a single methanol/chloroform
extraction (1:1:0.75, vol./vol./vol.) (Acros Organics) and
precipitated by addition of an equal volume of methanol
(14,000 x g, 6 min). The phage proteins were separated
on a 12% SDS-PAGE gel and analysed by ESI-MS/MS
as previously described (Ceyssens et al., 2014).

Protein family clustering and construction of the
relationships network

To build a gene-sharing network, we retrieved 231,166
protein sequences representing the genomes of 2304
bacterial and archaeal viruses from NCBI RefSeq (ver-
sion 85) and used the network analytics tool, vConTACT
(version 2.0; https://bitbucket.org/MAVERICLab/
veontact2) (Jang et al., 2019), as an app at iVirus
(Bolduc et al., 2017b). Briefly, including protein
sequences from PA5oct, a total of 231,627 sequences
were subjected to all-to-all BLASTp searches, with an E-
value threshold of 10™#, and defined as the homologous
PCs in the same manner as previously described
(Bolduc et al., 2017a). Based on the number of shared
PCs between the genomes, vConTACT v2.0 calculated
the degree of similarity as the negative logarithmic score
by multiplying hypergeometric similarity p value by the
total number of pairwise comparisons. Subsequently,
pairs of closely related genomes with a similarity score of
=1 were grouped into VCs, with default parameters of
vConTACT v2.0 (Jang et al., 2019). The network was
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visualized with Cytoscape (version 3.5.1; http:/
cytoscape.org/), using an edge-weighted spring embed-
ded model, which places the genomes or fragments shar-
ing more PCs closer to each other. The taxonomic
affiliation was taken from the International Committee on
Taxonomy of Viruses (ICTV Master Species List v1.3;
http://www.ictvonline.org/virusTaxonomy)  incorporated
2017 ICTV updates (Adams et al., 2017; Adriaenssens
et al., 2017). As previously described (Bolduc et al.,
2017a; Jang et al., 2019), the fraction of PCs between
two genomes (i.e., proteome similarity) was computed
using the geometric index (G). The proteome similarity
was estimated as

Gas=N(A)NN(B)|/(IN(A)] x [N(B)])

where N(A) and N(B) indicate the numbers of PCs and
singletons in the genomes of A and B respectively.
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Supplementary Table S1 List of jumbo phages reported in
the literature.

Supplementary Table S2. The RNA-seq alignments were
parsed in order to count the reads mapping to either the
chromosome of the Pseudomonas aeruginosa PAO1 host,
and the chromosome of PA5oct. For each timepoint
(5 min, 15 min, and 25 min), we averaged the % of reads
mapping to PA5oct compared to the total amount of
reads mapping.

Supplementary Table S3. Alignments of PA5oct promoters.
Conserved AT-rich intergenic motifs: —10 box (5’- TATAATA
- 3) and — 35 box (5° - TTGAC - 3'). The corresponding
sequence logos from MEME/MAST are depicted below the
alignments. ORFs in front of which promoters are located
are listed on the left side, whereas the corresponding
sequence locus in the phage genome is indicated on the
right side.

Supplementary Table S4. Phage PA5oct predicted termina-
tors with palindromes marked blue. From the left-hand side:
list of ORFs after which terminators are located by ARNold
with strandedness, location in phage genome, motif of termi-
nator, terminator sequence with conserved stem-loop struc-
tures marked blue.

Supplementary Table S5. List of the detected proteins by
ESI-MS/MS, based on the analysis of denatured phage
PA5oct particles after fractionation on SDS-PAGE gel.
Supplementary Table S6. List of jumbo phages (yellow
color) and relevant phages that belong to the viral clusters
(VCs) and their ICTV taxonomy.

Supplementary Table S7. The differential expression of
non-rBRNA gene features within Pseudomonas aeruginosa
PAO1 genome by late PA5oct infection.
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Supplementary Table S8. The codon usage of PAO1 and
PA5oct are compared side by side, together with the specific
codons encoded on PA5oct highlighted.

Supplementary Figure S1 Left-hand figure: PA5oct growth
curve at MOI 0.01 on P. aeruginosa PAO1. The numbers
of PFU mI™" in chloroform-treated cultures shown in pres-
ence and absence of rifampin (RIF) at 400 ug ml~". Right-
hand side figure: PA5oct growth curve in the presence
of RIF.
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Supplementary Figure S2 The SDS-PAGE pattern of PA5oct
structural proteome against LMW Ladder (Thermo Scientific)
in the first lane. The corresponding molecular weight is men-
tioned left. The numbered fractions on the right, correspond to
gel slices analyzed individually by ESI-MS/MS. The proteins
are mentioned in the slice in which they were most abundantly
present (see Band no. in Supplementary Table S5).

Supplementary Report S1. Report of the termini of PA5oct
identified by the software PhageTerm (Garneau et al., 2017)
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