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ABSTRACT

This work proposes a methodology for in-situ parameter identification using system-level measurements of
(flexible) multibody systems (FMBS), opposed to dedicated component-level identification. The sensitivity infor-
mation employed for the optimization is obtained using the Adjoint Variable Method (AVM). This method has the
advantage of obtaining sensitivity information at a computational cost independent of the amount of model pa-
rameters. The underlying flexible multibody formulation employed is a novel approach called the flexible natural
coordinates formulation (FNCF). This formulation combines the advantageous properties of the floating frame of
reference formulation (FFRF) and the generalized component mode synthesis (GCMS) methods and results in a
constant mass and stiffness matrix with quadratic constraint equations. This work shows how the specific structure
of equations obtained through FNCF drastically reduces the complexity of the AVM as the simulation derivatives
can be readily obtained and are of limited order. The proposed approach has been implemented in an in-house
object-oriented Matlab multibody code. The methodology is illustrated by identifying thirteen model parameters of
a MacPherson suspension model, in-situ and using system-level measurements.

1 Introduction
Mechatronic systems of industrial complexity generally include complex, nonlinear components such as bushings,

dampers, non-ideal joints, etc... Because these elements have a high impact on the dynamic loads and vibrations trans-
ferred through the system, models of these parts should often be included in multibody simulations in order to reach the
desired accuracy. However, in current practice the characterization of these components for operationally representative
boundary conditions and load cases is lacking. Experimental parameter identification methods exist, but these are typically
limited to isolated identification on dedicated test rigs [1–3], such that their in-situ representatives is often limited. Therefore,
the authors focus on parameter identification techniques that can be applied on a system level.
Optimization routines often employ sensitivity information in order to obtain faster convergence [4]. However, the generation
of this information comes at a cost, which depends on the employed sensitivity method. There exist a variety of methods, of
which finite differences (FD), the direct differentiation method (DDM) [5, 6], the AVM [6–8] and automatic differentiation
(AD) [9] are most notable. The efficiency and accuracy of these methods with respect to each other depend heavily on the
problem that needs to be optimized. The authors propose to exploit the AVM method for obtaining the sensitivity informa-
tion, because using this approach the computational complexity is relatively unaffected by the amount of model parameters,
which makes it very well suited for problems with a large design space. The AVM requires backward integration in time of
the adjoint equations, which are described by differential algebraic equations (DAE). The use of a (flexible) multibody for-
mulation for which terms in the adjoint equations drop out, or are of low complexity to evaluate, reduces the computational
cost of the sensitivity information. It is therefore proposed to exploit the FNCF, recently introduced by Vermaut et al. [10].
The specific structure of equations obtained through FNCF drastically reduces the complexity of the AVM as the simulation
derivatives can be readily obtained and are of limited order.
An important aspect related to parameter identification exercises, is the identifiability of the design parameters. Although
important, for sake of brevity this will not be the focus of this manuscript. The interested reader is referred to other works
such as [5, 11, 12].
The paper is organised as follows. Section 2 discusses an overview of the parameter identification. Section 3 presents a brief
summary of the flexible natural coordinates multibody formulation. Section 4 focuses on applying this formulation with the
AVM. Section 5 illustrates this methodology on the identification of the parameters of a suspension strut and discusses the
corresponding results. Finally, Section 6 concludes this work.

2 Parameter identification of multibody models
Parameter identification is an optimization process that minimizes an objective function for a number of model parame-

ters ρρρ . In this work the objective function ψ is the integrand of a least squares error g between a simulated quantity y and a
measured quantity ŷ during an user defined time window starting from T0 and ending at TF :

ψ =
∫ TF

T0

g(q, q̇, q̈,λλλ ,ρρρ)dt =
∫ TF

T0

(y(q, q̇, q̈,λλλ ,ρρρ)− ŷ(t))2 dt. (1a)

Furthermore, it is assumed that the objective function has no specific constraints at time TF . The simulated quantities depend
in general on the generalized coordinates q =

[
q1 q2 · · · qnq

]
∈ Rnq , velocities q̇ ∈ Rnq , accelerations q̈ ∈ Rnq , Lagrange

multipliers λλλ ∈ Rnλ and the model parameters ρρρ ∈ Rnρ . Where q, q̇, q̈,λλλ are determined by the solution of the multibody
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systems’ equations of motion (EOM) h and constraint equations φφφ :

{
h(q, q̇, q̈,λλλ ,ρρρ) = 0
φφφ (q,ρρρ) = 0

(2)

In this work the subscript []T0
denotes the evaluation at time T0, the subscript []TF

the evaluation of the variables at time TF

and the operator (̇) the time derivative of that specific variable. Furthermore, in this work it is assumed that time T0 and TF
are fixed.

2.1 Sensitivity analysis
Sensitivity analysis provides us with information on how the objective function changes due to a change in the model

parameters. Sensitivity information can be obtained by different methods, of which finite differences (FD), direct differ-
entiation method (DDM), adjoint variable method (AVM) and automatic differentiation (AD) are the most notable. The
advantages and disadvantages of each method are briefly discussed in the following sections.

2.1.1 Finite differences
The finite difference approximation is a numerical method where the sensitivity is obtained by small perturbations of

each model parameter. In the case of a first order forward differentiation the sensitivity is defined as

dψ

dρi
≈

(ψ(ρρρ +δpei)−ψ(ρρρ))

δp
, for i = 1, ..., nρ (3)

with δpei a small perturbation of the i-th model parameter. The advantage of this method is the very limited and straightfor-
ward implementation to obtain sensitivity information. However, the downside of this method is (i) the accuracy depends on
the perturbation step-size δp, (ii) even for an optimal perturbation step the results for the sensitivity are less accurate than the
function evaluation itself, (iii) for each model parameter a forward simulation must be performed [13].

2.1.2 Direct differentiation method
The direct differentiation method obtains the sensitivity information by taking the variation of the objective function ψ:

δψ =
∫ TF

T0

(
∂g
∂q

δq+
∂g
∂ q̇

δ q̇+
∂g
∂ q̈

δ q̈+
∂g
∂λλλ

δλλλ +
∂g
∂ρρρ

δρρρ

)
dt. (4)

The terms which are not readily available or computable are the variations of the state variables, that are defined as follows:

δq =
dq
dρρρ

δρρρ, δ q̇ =
dq̇
dρρρ

δρρρ, δ q̈ =
dq̈
dρρρ

δρρρ, δλλλ =
dλλλ

dρρρ
δρρρ. (5)

The derivatives of the state variables dq
dρρρ

, dq̇
dρρρ

, dq̈
dρρρ

and dλλλ

dρρρ
are obtained from the integration of the differentiated equations

of motion with respect to the model parameters, and using the initial conditions
[

dq
dρρρ
, dq̇

dρρρ
, dq̈

dρρρ
, dλλλ

dρρρ

]
T0

[6]. These equations

are solved simultaneously with the equations of motion. This results in the disadvantage that the computational cost of
the gradient computation scales directly with the amount of model parameters. The advantage of this method is that the
sensitivity information is exact and is obtained with the same accuracy as the objective function evaluation [7].

2.1.3 Automatic differentiation
Automatic differentiation computes the sensitivity information by applying the chain rule of differentiation repeatedly to

the performed operations. Typically AD can be divided into a forward and reverse method. The forward method scales with
the amount of model parameters, but not with the amount of objective functions. The reverse method scales with the amount
of objective functions, but not with the amount of model parameters. The advantages are that the sensitivity information
is computed up to machine precision and, depending on the platform, the limited implementation complexity due to the
available toolboxes. The disadvantage is the immense data storage needed in case of the reverse method [4].

3 Copyright c© by ASME



2.1.4 Adjoint variable method
The adjoint variable method adds the equations of motion, defined in Eq.(2), to the objective function using Lagrange

multipliers µµµ and µµµφφφ , which are also called adjoint variables. The equations of motion must be fulfilled at every instance of
time between T0 and TF :

ψ =
∫ TF

T0

g dt−
∫ TF

T0

µµµ
Th dt−

∫ TF

T0

µµµ
T
φφφφφφ dt. (6)

Variation of the objective function and applying partial integration in order to rewrite δ q̇ and δ q̈ in terms of δq , [δq,δ q̇]T0
and [δq,δ q̇]TF

, gives:

δψ =
∫ TF

T0

(
∂g
∂q
−µµµ

T ∂h
∂q
−µµµ

T
φφφ

∂φφφ

∂q

)
δqdt+

[(
∂g
∂ q̇
−µµµ

T ∂h
∂ q̇

)
δq
]

TF

−
[(

∂g
∂ q̇
−µµµ

T ∂h
∂ q̇

)
δq
]

T0

−
∫ TF

T0

(
d
dt

(
∂g
∂ q̇

)
− µ̇µµ

T ∂h
∂ q̇
−µµµ

T d
dt

(
∂h
∂ q̇

))
δqdt+

[(
∂g
∂ q̈
−µµµ

T ∂h
∂ q̈

)
δ q̇
]

TF

−
[(

∂g
∂ q̈
−µµµ

T ∂h
∂ q̈

)
δ q̇
]

T0

−
[(

d
dt

(
∂g
∂ q̈

)
− µ̇µµ

T ∂h
∂ q̈
−µµµ

T d
dt

(
∂h
∂ q̈

))
δq
]

TF

+

[(
d
dt

(
∂g
∂ q̈

)
− µ̇µµ

T ∂h
∂ q̈
−µµµ

T d
dt

(
∂h
∂ q̈

))
δq
]

T0

+
∫ TF

T0

(
d2

dt2

(
∂g
∂ q̈

)
− µ̈µµ

T ∂h
∂ q̈
−2µ̇µµ

T d
dt

(
∂h
∂ q̈

)
−µµµ

T d2

dt2

(
∂h
∂ q̈

))
δqdt

+
∫ TF

T0

(
∂g
∂λλλ
−µµµ

T ∂h
∂λλλ

)
δλλλdt+

∫ TF

T0

(
∂g
∂ρρρ
−µµµ

T ∂h
∂ρρρ
−µµµ

T
φφφ

∂φφφ

∂ρρρ

)
δρρρdt.

(7)

Key in this method is to compute the adjoint variables that eliminate the coefficients of δq and δλλλ . In this way the need
for calculating δq and δλλλ , which is done using the direct differentiation method, is circumvented. This results in a system
of differential algebraic equations (DAE) of index three, called the adjoint equations, to be solved backwards in time for
the adjoint variables µµµ and µµµφφφ . Furthermore, the ‘initial conditions’ for these equations at time TF are obtained by the
elimination of [q, q̇,λλλ ]TF

, for more information the reader is referred to [14].
The main advantages of the AVM is that it generates highly accurate sensitivity information, and that the computational

cost of solving the adjoint system is relatively independent from the amount of model parameters. The disadvantage of this
method is an error-prone implementation, and the data storage needed for the state variables which are obtained during the
forward simulation. Furthermore, the computational cost scales with the number of objective functions to be minimized.

3 Flexible Natural Coordinates Formulation (FNCF)
FNCF is a small deformation flexible multibody formulation that results in a simple structure of equations of having

constant mass and stiffness matrices with quadratic constraint equations. Moreover, no quadratic velocity term appears as is
the case when using a floating frame of reference (FFR) multibody formulation, nor a term which is nonlinear in the flexible
deformation as is the case when using a generalized component mode synthesis (GCMS) multibody formulation. The cost
of obtaining this structure of equations is the introduction of redundancy in the set of generalized coordinates. This work
summarizes the main concepts of the FNCF approach which will be exploited to set up the AVM parameter identification
framework. For further details on this method the interested reader is referred to [10].

3.1 Kinematics of a single body
The generalized coordinate vector q =

[
σσσ πππ γγγ δδδ

]T used in this and the following Section 3.2 contains only the gener-
alized coordinates associated with a single flexible body. The assembled system is considered from Section 3.3 onwards.
The flexible body is represented by a finite element (FE) model that is described with a stiffness matrix KFE ∈ RN×N and
lumped mass matrix MFE ∈ RN×N. The generalized coordinate vector of a single body consists of 4 ‘types’ of coordinates.
First, σσσ ∈ R3 which defines the position of the reference frame of the body. Second, πππ ∈ R9 are redundant coordinates that
parametrize the rotation matrix of the body. Third, δδδ ∈Rnδ are the modal participation factors of the modes ΨΨΨ ∈RN×nδ used
to reduce the FE model , with nδ the amount of modes. These participation factors describe the deformation in the body-
fixed reference frame, as in the FFR multibody formulation. Fourth, the FNCF introduces new, but redundant, coordinates γγγ

∈ R9nδ , computed from πππ and δδδ using a Kronecker product:

γγγ = δδδ ⊗πππ (8)
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These coordinates enable a linear relationship between the generalized coordinates q and the position u(p) of a point p on a
deformable body, using a constant projection matrix r(p)

q ∈ R3×(12+10nδ ) :

u(p) =
[
I3 r(p)

πππ r(p)
γγγ 03×nδ

]
σσσ

πππ

γγγ

δδδ

= r(p)
q q ⇒

{
u̇(p) = r(p)

q q̇
ü(p) = r(p)

q q̈
(9)

The rotation matrix of a point p, describing rigid body rotation and the rotation due to the small deformation, can be
written using the linear combination:

R(p) =
9

∑
i=1

Piπi +
9nδ

∑
i=1

R(p)
γ,i γi (10)

wherein Pi ∈R3×3 and R(p)
γ,i ∈R3×3 are both constant shape matrices and πi and γi are scalar values representing the ith index

of πππ and γγγγγγγγγ respectively. This results in a rotation matrix being linear in the generalized coordinates q. This is not the case
using another multibody formulation such as FFR or GCMS, of which the rotation matrix is nonlinear in the generalized
coordinates.

3.2 Dynamics of a single body
The deformations of the flexible bodies are assumed small, such that the linear finite element (FE) mass and stiffness

matrices, MFE and KFE respectively, are constant. It is assumed that MFE is a lumped mass matrix. The FE mass matrix can
be reduced to the reduced generalized mass matrix Mqq using the constant projection matrix rq :

Mqq = rT
qMFErq, (11)

this matrix is a generalization of the projection matrix r(p)
q , for all nodes in the FE model. Note that the reduced mass matrix

is constant and thus independent of the generalized coordinates q. Because the projection matrix rq is nonlinear in the case
of the FFR multibody formulation, it ends up with a nonlinear reduced mass matrix [15].

The computation of the reduced stiffness matrix Kqq is similar to the FFR multibody formulation:

Kqq =

[
0(12+9nδ )×N

ΨΨΨT

]
KFE [0N×(12+9nδ ) ΨΨΨ

]
. (12)

where the matrix is constant and thus independent of the generalized coordinates q. The GCMS formulation on the other
hand ends up with a nonlinear reduced stiffness matrix, since these local coordinates are not included in the generalized
coordinate vector [16].

This illustrates the reason for introducing redundant flexible coordinates δδδ and γγγ in the generalized coordinate vector
q. Because the ‘FFR’ flexible coordinates δδδ are used to derive the constant reduced stiffness matrix, while the ‘GCMS’
coordinates σσσ , πππ and γγγ are used to derive the constant reduced mass matrix.

3.3 FNCF constraints
The constraint equations of a (flexible) multibody systems can be divided into two groups. The first group apply to a

single (flexible) body, e.g. the orthonormality constraints of the body’s rotation matrix and the introduction of the redundant
coordinates γγγ , the latter given by Eq.(8), which are both quadratic in the generalized coordinates. The second group are
applied between different (flexible) components. These constraints are often called joint constraints and are assumed to be
holonomic in this work. They enable the modelling of ideal joints. In FNCF, the larger part of these constraints can be
expressed as a linear or quadratic function of the generalized coordinates as well.
Since the complete set of constraint equations are at most quadratic in the generalized coordinates, it is possible to write the
constraint equations as a Taylor expansion around q = 0:

φφφ = C0 +J0q+
1
2

(
∑

i
H0,iqi

)
q = 0 (13)
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wherein J0 and H0,i are constant matrices.

3.4 Equations of motion
The reduced mass matrix Mqq and stiffness matrix Kqq of the flexible bodies can now be assembled in the mass and

stiffness matrix of the complete multibody system, denoted as M and K respectively. The fully assembled equations of
motion can be summarized as:

{
Mq̈+ ∂φφφT

∂q λλλ = f
φφφ = 0

(14)

with:

f = fgra−Cq̇−Kq+ fext + fint (15)

where fext is the generalized force vector of the externally applied loads, fint is the generalized force vector of the internal
loads acting between the components. The reduced damping matrix is denoted as C, which is constant for Rayleigh damping
on the deformations. The generalized force vector fgra of the gravity force is constant because of the constant projection
matrix rq, it can be written as follows: fgra = rT

qMFEg, with g the gravitational acceleration for each mode.
Note that the projection matrices between the external loads applied in a local or global frame υυυext and the generalized
external force vector fext are constant or linear in the generalized coordinates. This is not the case when using either a FFR
or GCMS multibody formulation, since these end up with complex nonlinear projection matrices.

4 Adjoint Variable Method using FNCF
The properties of FNCF will now be applied to the adjoint equations derived for a general multibody formulation,

obtained from [14]. The simple structure of equations of FNCF results in the elimination of M̈, Ṁ and ∂M
∂q in the adjoint

equations. These terms do appear in the equations when using FFRF. The resulting adjoint system reduces to the following
set of equations:


MT

µ̈µµ +
∂ f
∂ q̇

T

µ̇µµ +

(
∂ 2φφφ

∂q∂q

T

⊗λ − ∂ f
∂q

+
d
dt

(
∂ f
∂ q̇

))T

µµµ +
∂φφφ T

∂q
µµµφφφ =

∂g
∂q

T

− d
dt

(
∂g
∂ q̇

T
)
+

d2

dt2

(
∂g
∂ q̈

T
)

∂φφφ

∂q
µµµ =

∂g
∂λλλ

T
(16)

that must be solved backwards in time for the adjoint variables µµµ and µµµφφφ , by using the ‘initial’ conditions at time TF which
are obtained from solving:

[
MT

µ̇µµ +
∂ f
∂ q̇

T

µµµ +
∂φφφ T

∂q
γγγ +

(
∂ 2φφφ

∂q∂q
⊗ q̇+

∂ 2φφφ

∂q∂ t

)T

ηηη

]
TF

=

[
d
dt

(
∂g
∂ q̈

T
)
−

(
∂g
∂ q̇

T
)]

TF

(17a)

[
MT

µµµ +
∂φφφ T

∂q
ηηη

]
TF

=

[
∂g
∂ q̈

T
]

TF

(17b)

[
∂φφφ

∂q
µµµ

]
TF

=

[
∂g
∂λλλ

T
]

TF

(17c)

[
∂φφφ

∂q
µ̇µµ +

∂φ̇φφ

∂q
µµµ

]
TF

=

[
d
dt

(
∂g
∂λλλ

T
)]

TF

(17d)
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The sensitivity of the objective function ψ w.r.t. the model parameters ρρρ is given by:

∇ρρρ ψ
T =

[(
d
dt

(
∂g
∂ q̈

)
− ∂g

∂ q̇
− µ̇µµ

TM−µµµ
T ∂ f

∂ q̇

)
dq
dρρρ

]
T0

−
[(

∂g
∂ q̈
−µµµ

TM
)

dq̇
dρρρ

]
T0

+
∫ TF

T0

(
∂g
∂ρρρ
−µµµ

T
(

∂M
∂ρρρ
⊗ q̈+

∂ 2φφφ T

∂q∂ρρρ
⊗λλλ − ∂ f

∂ρρρ

)
−µµµ

T
φφφ

∂φφφ

∂ρρρ

)
dt

(18)

The terms
[

dq
dρρρ
, dq̇

dρρρ

]
T0

are obtained through direct differentiation of the equations of motion and its initial conditions at

time T0 [6].

4.1 Derivatives of the constraint equations
Because the constraint equations, defined in Eq.(13), are quadratic in the generalized coordinates, the first order par-

tial derivative with respect to the generalized coordinates q results in a linear dependence of the generalized coordinates.
Similarly, the second order partial derivatives result in a constant matrix:

∂φφφ

∂q
= J0 +

(
∑

i
H0,iqi

)
(19a) ∂ 2φφφ

∂qi∂q
= H0,i i = 1, 2, . . . , nq (19b)

4.2 Derivatives of the generalized forces
This section focuses on the derivatives of the terms in the generalized force vector. The following derivatives appear in

the adjoint equations:

fq =
∂ f
∂q

=−K+
∂ fext

∂q
+

∂ fint

∂q
(20a)

fq̇ =
∂ f
∂ q̇

=−C+
∂ fint

∂ q̇
(20b)

ḟq̇ =
d
dt

(
∂ fint

∂ q̇

)
(20c)

fρρρ =
∂ f
∂ρρρ

=
∂ fgra

∂ρρρ
− ∂K

∂ρρρ
− ∂C

∂ρρρ
+

∂ fint

∂ρρρ
(20d)

As indicated in Section 3.4, is the projection matrix between fext and υυυext at most a linear function of the generalized
coordinates. Resulting in ∂ fext

∂q at most constant and ∂ fext
∂ q̇ being zero. Moreover ∂K

∂q is eliminated, similar to using FFRF, but
e.g. not with GCMS. Furthermore, no derivatives of the quadratic velocity terms must be computed, which would be the
case when using FFRF.

4.2.1 Effect of FNCF on the generalized internal force
This section elaborates the computation of the internal loads, the projections to obtain the generalized internal force

vector and the accompanied partial derivatives. The simple kinematics of FNCF, described in Section 3.1, leads to first order
partial derivatives ∂R

∂qi
and ∂u

∂qi
which are constant, and thus second order partial derivatives which are eliminated.

d
dt

(
∂R
∂qi

)
= ∑

n

∂ 2R
∂qi∂qn

q̇n = 0 (21a)

∂ 2R
∂qj∂qi

= 0 (21b)

∂ 2u
∂qj∂qi

= 0 (21c)

∂ u̇
∂qi

= 0 (21d)

Furthermore, these properties also reduce the complexity of computing the Jacobians ∂g
∂q , ∂g

∂ q̇ , ∂g
∂ q̈ , ∂g

∂λλλ
and ∂g

∂ρρρ
, especially

of objective functions incorporating position, velocity or acceleration measurements.

This section analysed the main advantages of using FNCF for sensitivity analysis using AVM. The implementation
is less error-prone, and there is a reduction in computational complexity as various terms and accompanying derivatives
can be easier obtained. However, as discussed in Section 3 , the disadvantage of using FNCF is an increased amount of
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generalized coordinates due to the redundant flexible coordinates. This means that the adjoint equations must be solved
for more adjoint variables, because there are as many adjoint variables as generalized coordinates. This means a more
computational demanding matrix factorization during implicit time integration, and an increase in data-storage needs for the
state vector and adjoint variables.
The authors focus on obtaining the various terms in the adjoint equations analytically, because this is often the most efficient
method. Reverse automatic differentiation can serve as a good alternative, especially when it is difficult to come up with
analytical expressions for these terms. In this way the adjoint variable method and reverse automatic differentiation are used
in a combined way. Note that this results in a large reduction of memory usage with respect to the use of reverse automatic
differentiation discussed in Section 2.1.3, where the forward simulation code is differentiated.

5 Application case: MacPherson suspension
This methodology has been illustrated on a MacPherson suspension test rig shown in Fig.1. The authors want to em-

phasize that the goal of this demonstrator is not of finding the most accurate model for the suspension strut, but to illustrate
that this methodology is an efficient approach for identifying a significant number of parameters that minimizes a prescribed
objective function, and this in a general multibody model setting.

5.1 Test rig and parametrized model
The test rig is connected to a frame, which is assumed to be rigid, at the locations where the suspension is connected

to the chassis of a car. The load enters the system through the tire contact patch, which is excited by a 6 degree of freedom
(DOF) hydraulic shaker, as shown in figure 1.
The MacPherson suspension test rig consists of 5 bodies which are the control arm, steering knuckle, tierod, lower strut and
upper strut. The steering knuckle and control arm are considered to be flexible components. Both components are reduced
using component mode synthesis [17] by the Craig-Bampton technique [18]. The steering knuckle is then connected to the
lower strut by a rigid joint and to both the tierod and the control arm by two additional spherical joints. Finally, the lower
strut and upper strut are connected to each other by a cylindrical joint. The system has hence one global degree of freedom
corresponding to the global vertical motion. The MacPherson suspension and its model are given in the Fig.1.

The suspension strut is composed of a spring and damper. The spring is modelled using a linear spring element with
stiffness k and free length L. The damper is modelled by a viscous friction fv f in combination with a nonlinear friction model
fn f :

fstrut = k (x−L)+ fv f + fn f (22a)

with the model parameter c representing the viscous friction part and parameters a f , b f , c f and e f representing the
nonlinear friction part that is based on the Pacejka formula [19]. Furthermore, the latter five parameters can differ during the
compression-rebound stroke of the suspension. This is indicated with a subscript 1 for rebound and 2 for compression:

{
fv f = c1v if v ≥ 0
fv f = c2v if v < 0

(22b)

{
fn f = a f1sin

(
c f1tan−1

[
b f1(1− e f1)v+ e f1tan−1(b f1v)

])
if v ≥ 0

fn f = a f2sin
(
c f2tan−1

[
b f2(1− e f2)v+ e f2tan−1(b f2v)

])
if v < 0 .

(22c)

For the simulation model, the external loads are considered to be applied at the wheel center (WC) which is a point rigidly
attached to the knuckle and is also highlighted in Fig.1. These external loads consist of three forces and three moments along
and about the three global axes. The applied WC loads are obtained from a load cell mounted on the experimental setup,
as shown in Fig.1. The load cell is interposed between the knuckle and the tire rim hence it directly measures the loads
providing the input signals applied to the model. While being rigidly connected on the knuckle side, the load cell includes
bearings as well as a rotating spindle on the tire rim side such that the rolling motion of the tire is allowed.

The objective function is based on the spring-damper deflection measurements obtained from a displacement sensor,
shown on Fig.1. The deflection is initialized to zero at the start of the measurement campaign. Because of this initialization,
an offset value y0 is subtracted from the simulated spring deflection that computes the absolute distance between the two
measurement points:

g =
(([

0 0 1
]

RT (u2−u1)− y0
)
− ŷ(t)

)2
, (23)

with R the rotation matrix of a local coordinate system that has the z-axis aligned with the suspension strut. This matrix
transforms the position difference of the spring ends positions u2 and u1 from a global reference frame to the local axis
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Fig. 1: Pictures of the test setup, and on the right the corresponding model [20]

frame. Furthermore, since the offset value y0 is unknown, it will be identified as well during the parameter identification
process.

5.2 Practical considerations in identification setup
The optimizer that has been used is IPopt [21]. This optimizer uses the interior-point algorithm and uses the BFGS

method [4] for the Hessian approximation.
Scaling has been applied in order to prevent numerical issues. First, the residual of the objective function which is

obtained using the initial guess of the parameters, is used to normalize the residuals during the optimization. Furthermore,
this scaling would be applied to all measurement quantities in case more than one would be used. This results in the
possibility to treat different measurement quantities the same way in one objective function. Using weighting factors it is
then possible to give more importance to specific measurement quantities. Second, the model parameters are scaled with si.
This scaling value is based on the span of the parameter’s specific upper and lower bound interval, denoted by ρmax

i and ρmin
i

respectively. : si =
2

(ρmax
i −ρmin

i )
.

5.3 Identification framework
Figure 2 illustrates the process of parameter identification on the MacPherson suspension, using the adjoint variable

method for sensitivity analysis. The input to the test rig is the displacement of the shaker, that lifts the tire up and down. The
load cells measures the resulting forces at the wheel center. These dynamic loads are then used as an input to the model.
First the initial conditions [q, q̇, q̈,λλλ ]T0

and its derivatives
[

dq
dρρρ
, dq̇

dρρρ

]
T0

are computed. Afterwards the equations of motions

are solved and the residual of the objective function is computed. Next, the gradient computation starts with determining[
µµµ, µ̇µµ, µ̈µµ,µµµφφφ

]
TF

by solving Eq.(17d), followed by the backward integration of the adjoint equations. This integration process
uses the solution of the forward simulation, q, q̇, q̈,λλλ , and functionality of the multibody model in order to compute the terms
appearing in Eq.(16). The sensitivity is computed using Eq.(18) and passed on to the optimizer. If the tolerance criteria of
the optimizer are not met, which means that the optimizer did not converge, a new iteration starts with a new guess ρρρ* ∈Rnρ

of the model parameters. If the optimizer converges to a local minimum, it will output the converged parameter values.
The constraint equations φφφ are for this application independent of the model parameters ρρρ . Furthermore, the least

squares objective function, defined in Eq.(23), only depends on the generalized coordinates q and the model parameters
ρρρ . Moreover, the system mass matrix M is also independent of the model parameters. The expression for obtaining the
sensitivity information, given in Eq. (18), can then be condensed to:

∇ρρρ ψ
T =

[(
−µ̇µµ

TM−µµµ
T ∂ f

∂ q̇

)
dq
dρρρ

]
T0

−
[(
−µµµ

TM
) dq̇

dρρρ

]
T0

+
∫ TF

T0

(
∂g
∂ρρρ
−µµµ

T
(
− ∂ f

∂ρρρ

))
dt (24)

5.4 Results
Table 1 shows the initial guess, the lower and upper bounds and the optimized value of the model parameters. Fur-

thermore, the table also shows the sensitivity information using finite differences, the adjoint variable method for the first
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Fig. 2: Parameter identification framework

Table 1: Startvalues and optimized values of model parameters. Sensitivity analysis using finite differences and AVM at start
iteration process

Parameter Initial value Lower bound Upper bound Optimized value FD result AVM ratio
k 23500 22000 24000 23999.75 -3.9307 E-3 -3.9285 E-3 1.0006
L 0.343 0.34 0.35 0.3424 -7.1227 E2 -7.1178 E2 1.0007
c1 2000 500 5000 2344.78 8.6009 E-4 8.6038 E-4 0.9997
c2 3000 500 5000 3116.36 -6.9682 E-4 -6.9883 E-4 0.9971
a f1 100 0 500 67.99 1.4470 E-2 1.4414 E-2 1.0039
b f1 50 10 2000 71.33 1.9617 E-3 1.9871 E-3 0.9871
c f1 1.2 1 1.9 1.888 -3.1490 E-1 -3.1642 E-1 0.9952
e f1 −10 -50 1 −12.35 -1.4108 E-3 -1.4092 E-3 1.0011
a f2 100 0 500 214.17 -1.3007 E-2 -1.2994 E-2 1.0009
b f2 50 10 2000 68.17 -9.7895 E-4 -9.7673 E-4 1.0022
c f2 1.2 1 1.9 1.395 3.3045 E-1 3.3193 E-1 0.9955
e f2 −10 -50 1 −11.89 1.9807 E-4 1.9795 E-4 1.0006
y0 −0.21445 -0.22 -0.21 −0.21650 -7.8054 E2 -7.8058 E2 0.9999

iteration, and the ratio of the sensitivity analysis using AVM with respect to finite differences. Different perturbation sizes
need to be applied in order to obtain reliable finite difference sensitivities. This table demonstrates the validity of the sensi-
tivity information obtained through the AVM approach with underlying FNCF. As the spring stiffness k, its free length L and
the offset value y0 were known parameters, the upper and lower bounds span a relative small interval.

Figure 3 shows the spring deflection during a time interval of three seconds. Three lines are shown, which are the
measured deflection of the spring, the result of the simulation using the initial values of the optimization and the simulation
using the optimized values. This figure clearly demonstrates the improvement in model fit as a result of the optimized
model parameters. Moreover, it is clear that the current model structure does not allow to simulate the (nonlinear) effects
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encountered initially during low excitation levels.
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Fig. 3: Spring deflection of the measurement, the simulation
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Figure 4 shows the residual during the optimization. As discussed in Section 5.2, the residual is normalized at the start
of the optimization routine.

Figure 5 shows the variation of the model parameters during the optimization, relative to the initial values. The opti-
mization process was terminated after 51 iterations, where the parameter variation was below the specified threshold value.
Both Fig.4 and Fig.5 demonstrate rapid and consistent convergence using the AVM approach in the multibody model, even
over significant parameter variations.

Figure 6 illustrates the property of the AVM that the total computation time for the sensitivity information is relatively
invariant of the model parameters. The terms in Eq.(24) that do scale with the amount of model parameters are

[
dq
dρρρ
, dq̇

dρρρ

]
T0

,
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∂ f
∂ρρρ

and ∂g
∂ρρρ

. In this application, the latter term is only different from zero for the y0 parameter and is therefore not included

in the figure. Furthermore, its evaluation time was only 15.5 ms. It must be noted that the computation of
[

dq
dρρρ
, dq̇

dρρρ

]
T0

does

not scale with the length of the time signal, however evaluating the integral and the computation of ∂ f
∂ρρρ

does scale with the
length of the time signal used for the optimization. Although, the cost is relatively small compared to the time needed for
backward integration of the adjoint equations. Overall in this case, for each iteration, we observed a computational load of,
on average, three times the load for a single forward simulation, close to independent of the number of model parameters to
identify. This demonstrates the large power of the AVM approach combined with the FNCF modelling scheme in order to
tackle practical application where numerous parameters typically need to be determined.

6 Conclusions
This work proposes a technique for the in-situ identification of parameters of flexible multibody systems using system-

level measurements. The sensitivity information is obtained using the adjoint variable method, of which the evaluation of
the terms in the adjoint equations benefit from the advantageous properties of the underlying Flexible Natural Coordinates
Formulation.
The proposed approach of using FNCF results in a significant decrease in the implementation and computational complexity
with respect to alternative approaches based on other multibody formulations, as the various terms in the equations of motion
and their partial derivatives can be readily obtained and are of limited order. A trade-off for the reduction of computational
complexity is the increased amount of generalized coordinates due to the redundant flexible coordinates present in the FNCF
method. This means that the equations of motion and adjoint equations must be solved for more unknowns, what translates
in a more demanding matrix factorization during implicit time integration, and an increase in storage needs for the state
vector and adjoint variables.
The proposed methodology is demonstrated on a MacPherson suspension test rig where thirteen model parameters have been
identified that minimized the spring deflection difference between measurements and simulation.
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