A periodic optimization approach to dynamic pickup and delivery problems
with time windows

Farzaneh Karami®* Wim Vancroonenburg®?, Greet Vanden Berghe®

*KU Leuven, Department of Computer Science, CODeS & imec, Gebroeders De Smetstraat 1, 9000 Gent, Belgium
bResearch Foundation Flanders - FWO Viaanderen

Abstract

In dynamic pickup and delivery problems with time windows (PDPTWs), potentially urgent re-
quest information is released over time. This gradual data availability means the decision-making
process must be continuously repeated. These decisions are therefore likely to deteriorate in quality
as new information becomes available. It is still believed that the state-of-the-art for this problem
remains far from reaching maturity due to the distinct absence of algorithms and tools for obtaining
high-quality solutions within reasonable computational runtimes. This paper proposes a periodic
approach to the dynamic PDPTW based on buffering. More specifically, a two-step scheduling heur-
istic which consists of cheapest insertion followed by a local search. The heuristic’s performance is
assessed by comparing its results against those obtained by a Mixed Integer Linear Programming
model which operates under the assumption that all information is available in advance. Results
illustrate how the performance is impacted by urgency levels, the degree of dynamism associated
with request arrivals and re-optimization frequency. The findings indicate that increases in dynam-
ism improve solution quality, whereas increases in urgency have the opposite effect. In addition,
the proposed approach’s performance is only slightly affected by re-optimization frequency when
changing these two characteristics.

Keywords: Buffering, Dynamic pickup and delivery problems, Dynamism, Logistics, Urgency

1. Introduction

While academic scheduling is often concerned with static problems for which all information is
available beforehand, many real-world operational decision-making problems (particularly those
concerning logistics) are inherently dynamic. This means that their input is revealed or changes
over time. As per the definition offered by Ausiello et al. (2012), a static optimization problem
P is represented by a quadruple (©,S,00bj,Opt) where © is the set of instances. For any 6 €
©, S(0) is the set of feasible solutions provided by function S. Obj is a function returning the
objective value for any pair (6, s) € © x S(0), with the optimization goal being Opt € {Min, Max}.
By contrast, dynamic problems are characterized by the continuous arrival of information which
modifies the input (6 — é) Since 0 is a part of the optimization problem, the problem itself
undergoes a modification: P(0, S, Obj, Opt) — 75(é, S, 0bj, Opt). To accommodate this evolution
the new problem P must be addressed. Therefore, any algorithm for such a dynamic problem must

*Corresponding author
Email address: farzaneh.karami@cs.kuleuven.be (Farzaneh Karami)

3rd May 2020

solve a sequence of static sub-problems as re-optimization steps. At each step ¢, 6; is processed.
Each 0; is referred to as an input element. The period of time between two consecutive steps is
referred to as the execution time and is denoted by ET. This value limits the computational time
available for an algorithm to generate its solution.

Dynamic problems necessitate a mechanism to dynamic input which describes when input ele-
ments are declared over time. An input element revelation rule is a mechanism that accounts for
a dynamic problem’s updates during the process of input element construction for each optimiza-
tion step. Thus, this rule is employed to introduce a new input element 6; to the input sequence
¢=(01,02,...,0,). Two examples of input element revelation rules are: (1) each 6; is declared
at its own unique release time and (2) 6; is declared only after §;_; has been executed. Applying
different input element revelation rules to the same problem will result in different input element se-
quences. A rule set defines a number of restrictions on solution S(6;) for problem P(6;, S, Obj, Opt)
(Dunke and Nickel, 2016). These rules describe what constitutes a feasible solution. As such,
utilizing two different rule sets r and 7’ will result in two different problems: P(6;, S, Obj, Opt) and
75(92-,5’, Obj,Opt). A dynamic algorithm should therefore continuously generate input elements
while simultaneously monitoring results in order to make necessary updates.

This paper considers pickup and delivery problems with time windows (PDPTWs) as a case
study. These problems are ubiquitous throughout the logistics sector and involve the picking-up
of items from one location and their delivery to another. Requests often require handling before
a certain time. From a modeling point of view, this may be considered as the scheduling and
assigning of requests to a fleet of vehicles with the objective being to minimize tardiness. In many
real-world logistic situations no prior information is available regarding the number of requests,
their respective locations and time windows. Such contexts correspond to the dynamic PDPTW
which is characterized as uncertain due to incomplete prior information.

Handling such uncertainty remains a significant obstacle for researchers. The quality of optim-
ization decisions made with respect to the data available at that particular moment in time is likely
to deteriorate as new information becomes available. This inherent uncertainty implies that the
global solution acquired for a given problem is not necessarily optimum, even when each individual
re-optimization has been solved to optimality. There is unanimous agreement among professionals
concerning the importance of accommodating unexpected events in dynamic PDPTWs (Speranza,
2018). Further difficulty is incurred by the fact that the dynamic PDPTW has been shown to
be NP-hard and even more so in the case of data uncertainty (Kouki et al., 2009). Due to this,
modeling, optimization and solution evaluation methods for the dynamic PDPTW are still far from
reaching high-quality standards (Psaraftis et al., 2016).

While in a static context an algorithm can be assessed by its single objective value, this is
not the case in a dynamic context where there are many objective values corresponding to the
problem’s multiple steps. Having this sequence of objective values along with the objective value
at the end of scheduling horizon leads us in the direction of questions such as how well do algorithms
accommodate continuous input modifications? Do frequent problem changes affect optimization
accuracy? Another challenge is assessing a dynamic algorithm’s performance. A valid performance
measurement method must be general enough to be able to evaluate the performance of any dynamic
algorithm regardless of its particular characteristics.

Three primary questions consequently arise which motivate the present paper: (i) what is an
appropriate algorithm for dealing with input data uncertainty and how well does this algorithm

respond to continuous modifications, (ii) how do frequent request arrivals affect optimization ac-
curacy, and (iii) how should the algorithm’s performance be evaluated?

The first research question is concerned with what constitutes an appropriate algorithm for
dealing with input data uncertainty and how well this algorithm will respond to continuous modi-
fications. To address this research question, the present paper proposes an optimization approach
to the dynamic PDPTW which iteratively buffers sets of request arrivals and allocates them to
available vehicles, thereby minimizing operational expenses while maintaining high quality service
levels (Section 4, Figure 4). Data uncertainty associated with request arrivals is handled as much
as possible by way of buffering request arrivals.

The second research question considers how the frequency of request arrivals affects optimization
accuracy. To address this question, the effects of the degree of dynamism and urgency of requests
as well as the re-optimization frequency upon solution quality have been explored. In Section 5.3
these local and global effects are illustrated by Figures 8-11.

The third research question is concerned with how the algorithm’s performance should be eval-
uated. A new performance metric (Section 5.1) describes how much worse an algorithm .4 with
dynamically occurring information performs compared to an optimal algorithm B which assumes
that all information is available in advance. And while there exists no academic consensus con-
cerning how to (fairly) evaluate a dynamic algorithm’s performance, for the sake of simplicity we
will assume that algorithm A is optimum if it can equal the performance of its static counter-
part. Though this is clearly an unreasonable benchmark, it provides a tangible point of reference
concerning performance.

This paper has three main contributions. The first is a buffering-strategy-based periodic op-
timization approach to dynamic scheduling problems. In addition to extending approaches (Mahr
et al., 2010), the new algorithm takes into account request urgency levels. Second, a methodology
is proposed to clarify when uncertainty, dynamism and urgency characteristics become relevant
in terms of achieving optimality. Third, a broad set of experiments evaluate the influence of re-
optimization frequency and other parameters on solution quality. The results demonstrate that the
proposed periodic approach has a sufficiently small overhead to be used in real-world applications.

The remainder of the present paper is structured as follows. Section 2 reviews the related
literature. A formal definition of the dynamic PDPTW is introduced in Section 3 along with a
MILP formulation and the extension to its dynamic variant. Section 4 introduces a new approach
to the dynamic PDPTW. Computational results concerning a two-step scheduling heuristic are
presented in detail in Section 5. Finally, this paper ends by providing conclusions and delineating
the scope and possibilities for future research.

2. Literature review

Operational research approaches to dynamic dispatching (scheduling) in logistics date back to
the 1980’s (Psaraftis, 1980). Despite this lengthy history, significant academic advances concern-
ing dynamic logistics continue to be published frequently (Psaraftis et al., 2016). Three gen-
eral approaches are available to accommodate the inherent uncertainty associated with the dy-
namic PDPTW: rolling-horizon-based optimization, stochastic programming and robust optimiz-
ation. Rolling-horizon-based optimization accommodates uncertainty by repeatedly making de-
cisions (re-optimization) over time. Stochastic programming relies on either predictive forecasts

or knowledge concerning the probabilities of future events. The probability distributions’ gov-
erning parameters are, however, seldom available in real-world situations (Ghiani et al., 2012).
The computational effort of simulating future demand necessitates longer running times to achieve
better results than rolling-horizon-based optimization (Ulmer et al., 2017). Finally, by contrast,
robust optimization methods seek to construct a solution capable of satisfying any realization of
the uncertain parameters.

Dynamic PDPTW instances are typically characterized by their urgency level and dynamism
degree. Lund et al. (1996) originally defined the degree of dynamism as the ratio of on-line request
arrivals to the total number of known requests. In a purely dynamic context with no off-line
requests (which is the context considered by this paper) this definition of dynamism does not help
to differentiate instances. The dynamism definitions provided by Lund et al. (1996) and Larsen
et al. (2002) are only concerned with the number of request arrivals, ignoring their arrival times.
Substantially different cases may therefore be regarded as identical. van Lon et al. (2016) treat
urgency as an entirely distinct characteristic, separate from dynamism. In addition, their definition
is independent from the scheduling horizon length, making it possible to compare instances of
different horizons.

The majority of dynamic PDPTW optimization techniques focus on re-optimization to produce
high quality solutions within strict time limitations (Secomandi and Margot, 2009; Psaraftis et al.,
2016). The time interval associated with re-optimization is what distinguishes reactive, periodic
and delayed approaches (Figure 1). Reactive approaches perform re-optimization upon each request
arrival (Chang et al., 2003; Schyns, 2015), whereas periodic approaches postpone re-optimization
until a certain criterion is met (Grotschel et al., 2001). Delayed approaches, meanwhile, postpone
the initiation of the next re-optimization for an arbitrary amount of time. When enough time is
available for the calculations of an update, reactive approaches can perform a full re-optimization.
Unfortunately, in most practical applications this is not the case and therefore periodic approaches
are more commonly employed. The advantage of periodic approaches in this regard is that the
time available for re-optimization is known. However, it is less suitable for settings where requests
are urgent. Kilby et al. (1998) proposed a periodic approach wherein the scheduling horizon is
divided into fixed time slots determined based on the dynamism degree. Their approach neglects
the urgency level of requests and thus incurs a significant amount of tardiness when immediate
actions are required. Vancroonenburg et al. (2016) addressed the internal hospital logistics problem
as a specific example of the dynamic PDPTW: a reactive approach was implemented and run on
publicly available instances. Karami et al. (2018) addressed the same problem but instead developed
a periodic approach. Their results indicate that when high quality service is targeted, reactive
approaches outperform periodic approaches. Whereas when both operational expenses and high
quality service are considered a periodic approach is the better choice.

[Dynamic (re-optimization)]

[Dehyaiﬂlhmmhm] Pmiﬂm]

[Waiting strategy] [Buffering strategy]

Figure 1: Optimization approaches

Two types of strategies have been proposed for improving periodic approaches: waiting and
buffering (Figure 1). A waiting strategy, depicted in Figure 2(a) is concerned with vehicles and
aims to minimize their travel time. However, such strategies neglect request tardiness. By contrast,
buffering strategies, depicted in Figure 2(b), are concerned with requests and tend to postpone
the least urgent requests until the latest possible time. Applying a buffering strategy without
considering urgency and dynamism has its own drawbacks, as doing so may accumulate excessively
large numbers of requests for each re-optimization. When this occurs, obtaining a high-quality
solution within a reasonable time will be a difficult, if not impossible, challenge.

@@ C?__)GP Cf)@ Request arrivals
VY VY YV YV VY
®© O i O

Waiting for t,,

L 4 H : Input elements
(@@@@}[@@@é

(a) Waiting strategy

PP PP 99 9P ¢9

I i i 1 Pl Request arrivals
YY VY VYV VY VY

Buffering five requests

I Input elements
00900, EOOO®

(b) Buffering strategy

Figure 2: Two examples of the input revelation rule using a) waiting and b) buffering strategies. In both cases the
scheduling algorithm may decide to reorder or redistribute the tasks, so long as the associated vehicle has not yet
been dispatched.

Mitrovié-Minié¢ et al. (2004) proposed two waiting strategies: drive-first and wait-first which
require vehicles to either immediately drive to or wait as long as possible before driving to their
next destinations. Yang et al. (2004) and Mitrovi¢-Mini¢ et al. (2004) both concluded that although
applying wait-first strategies to the dynamic PDPTW may decrease travel time, they will likely
introduce tardiness to the solution, which is unwanted in highly urgent environments. Pureza
and Laporte (2008) later combined waiting and buffering strategies into a new algorithm which
facilitates the insertion of future requests while minimizing the travel time and the number of
rejected requests. However, as with earlier research, their approach continues to neglect request
tardiness.

Table 1 summarizes the most relevant research which has been conducted with respect to
the dynamic PDPTW as well as their corresponding deterministic optimization approaches. These
approaches can be sub-categorized by way of several characteristics: (1) objectives, (2) time window
types: soft or hard, (3) number of depots: single or multi, (4) optimization problem: routing
or scheduling, (5) data type: deterministic or stochastic, (6) uncertainty type: request arrivals,
service time/travel time and vehicle availability, (7) fleet size, (8) vehicle capacity, (9) optimization
approaches: offline or online, (10) type of data: real-world or randomly-generated, and (11) whether
or not they permit request rejection.

Most studies focus on operational decision-making with the intent of minimizing routing costs
and lateness. The costs associated with vehicle overtime are almost entirely overlooked, despite
the fact that such overtime can incur significant costs for companies. Most proposed approaches
are reactive and only one paper (Mahr et al., 2010) has ever considered a periodic approach with
a fixed step length of 30 seconds. Mahr et al. (2010) solved the drayage problem and iteratively
used a MILP model to obtain a new feasible route with newly-captured information. If no feasible
solution is generated during the interval then the last feasible interval is invoked and parsed to fix
assignments and rejections. This implies that, despite the arrival of new information, the solution
was unable to be improved. Moreover, it may even mean that a request had to be rejected which is
unacceptable in many applications. While most studies consider capacitated vehicles, Mahr et al.
(2010) focused on operational decision-making with the possibility of request rejection. However,
in many dynamic logistics applications with very urgent requests, rejecting a request will harm
customer satisfaction and is therefore not permitted. Periodic approaches are more accommodating
when it comes to responsiveness and dealing with uncertainty, however further studies concerning
the effects of re-optimization frequency upon solution quality are still needed.

sorpnys M LA dtureusp jo sorysuooerey)) T o[qe],

paywads jou
Jo ToquInu :#

“QZIWIXRUL -

“ozpuuru

:puafory
PojRIoUaS ATopueRl T ojrugur X X X X X X X X (ssouoge] puv ouryy
r Tugur I9A0 OPIPA ‘OUITy [PARI}) T
pojeIauad A[uopuel o ojruyur X X X X X X X (ssoutpaey sopoppoa puy
N : N sonbax ‘otury parIy)t

EICAELLERIN 2.

v&eﬂ” E_MMMMMM” nnu oy X X X X X x X X (eoueystp)
poretsuad A[uopuelt e oyuy X X X X X X X (Aypenb 2ota108)
i . (1800 woryerado)t
(sowry Surirem
PUE SOUI) JSAT RIJXD
pajeIduas A[mopuet I aTuy X X X x x X x ‘souIl) POTATOS
‘sauur) [oARI)
‘ssouaye| sisonbar)t
o1eI0teS A1 . (pajoaery souesip)t
pajeIduLg A[mopuel B X oyuy x X x x X X X X (sysoubox postos) |
pliom-[eax o oyrury X X X X X - - (ouy mopy aferoae)t

pojeIduas A[uopues nu X oyrury x x x x x x (ygoxd) .

poreIauas A[mopuel T X 1 X X X X X X (o Bunress

: s 3sonbox oferoae)
QOURYSIP [0ARI}

b (
meﬂwﬂwwh%wﬁ MMW ojruyur X oy X x X X x x X ‘sysonboar pajoalor #
oy THHop! ‘sopnpa #)1

(109930dsurery ysme) - « gy « « « « « « « « (sysonbox paotates #)|
PlIOM-TeT (3800 mox)t

Amammﬂ.vw» 0g1) nu oyuy x x x x x X x (ssoutpiey
PojRIoUAS ATopuRL ‘s1500 woryRIOdsTIRIY)
o i x oy x x x x x x -
eyep reydsoy [ear jeiutig oy x X x (ssourprey ‘ourry [oarI})t
sysonb sysanb; Ik
(sssonbot ¢9) Sty x ojruyur X X X x X X X X X ,Aﬁnm: o1 pagoalot 7
P1Om-[eal [es o) [oaeyy Ajduwo)
SOTOTUOA CC_QE (3s00 opryaa
,mumwwﬂ%g%mm.“\xw T oy X X X X X X X X X X 1500 1108
9)RIoUS M w:o MMH o " ‘100 nonEg0dstre:

P fop ‘ssourprey) T

(286T) woworog T X oyruygut X X X X X X X (3500 gmoa

r : U ‘uorjeroued jsonbor)t

pojeIduag A[uopuel B X oyuy X X x X X X (o) oaeay)t

pajerduas A[uopuer (s3sonbox paotazos#))

puE plIOM-Teal Bl * onuga * x * * * (80014108 pade[op ofetonr)t

pojeIduad ATmopuel U X oy X X X X X X X X X -

(sysoubox (g 0y dn) (eoueysTp [oARIY)T

PojRIoULS ATopueRl x X x x x x x x x (sysonbox poates#) |
3 A A

PaYRIDU! _Eowaﬂ - « oyuy « « « (e0wesstp oaeIy)t

puR pIOM-Teal (sysonbox poates#) |

w%”wﬂwwhmﬂﬁwwmw ojruyur ojruyur x X x x X X X (ooureystp [oaRI}) T

sysonb; —

v%”w“%% mwﬁvmw ojruyur oyuyur x X x x X X X (ooureystp [oARI})T
PlIoM-[eaI nu oyrury X X X X X X X (3800 [oaRIY ‘ssouajer)t
[eonAeue 1 1 X x X X X X x - - (puury 001ATS) T
plom-[eax B 2y | oyuy x x - - x x x x - - (3800 ToALIP) T

opdurexo [eonLMWNT T oyuy x X x X X (oury oaeIy)t
AMQEleAe OUTL; S0IAPS - S[EALLE orporad) ourO OUSLIYDOYS DIISIUIULINGO(] Burupoyog Surnoy By o8ulg 3Jog prey
SIaA owr) [PARL[, jsenbayy : o:.::O : : B : : : :
198 vIR(] SIPIYIA # _“M“HMM >W““MA__“N ad£y Ayureyeoupn oeoxddy odAy eye(y wapqold woIsa(] joda(T ECMHMM aanpelqQ

Te 90 Turereyy
(9102) 'T® 10 UOT UweA
(g108) suiyog

(¥102) ‘e 10 sowon)

(¥102) pog pue pontog

(9002) Mpoy pue tqey

(600z) mojuog pue [For]
(800z) uynIy pue [pon

(£102) T2 90 wen

(800z) @30deT] pue wzom g

(2102) ‘T 30 eySoqiog
A:omv RCREERICICOEAE)

(1102) T8 % ®erdoqog
(0102) T 90 Lpnesg
(0102) "¢ % e

(0102) 3Pog

(6002) T2 1 11

(800¢) "Te %0 Sunoy)
(L00) ‘Te 30 oseuRy
(L002) & 10 oPoTRg
(9002) " 30 P1AO[SOD)

(7007) ¢ % omseuRy

(7002) “T& 90 PIIN-DIOIITN

($00g) o110dde] pue HIUI-)IA0TIN

(¥00z) ‘e 10 uuRSP

(666T) noraeysede pue jreqing

(0002) ‘T 10 [[PMOq
(0861) styeresd

Any increase in storage capacity or computing power would translate into an increase concerning
the problem sizes that can be handled. Gendreau et al. (2006) have investigated how the solution is
affected if the number of processors is increased. As an extreme example, the memory requirement
to solve the Traveling Salesman Problem (TSP) by dynamic programming grows O(n2"), while the
CPU time grows O(n?2") (Held and Karp, 1962). By contrast, memory requirements and CPU
time evolve by only a low-power polynomial function for heuristics. This means that the greatest
beneficiary when it comes to advances concerning computing power with respect to the dynamic
PDPTW are heuristic approaches, at least from a practical perspective.

Various types of two-stage heuristic-based reactive approaches have been developed to solve
the static PDPTW. One type attempts to reduce the number of vehicles right after obtaining the
initial solution in the first stage. In the second stage, a metaheuristic is applied to decrease the
travel distance. For example, Bent and Van Hentenryck (2006) use a simple simulated annealing
algorithm at the first stage to decrease the number of vehicles, while the second stage involves
large neighborhood search (LNS) to decrease the total travel cost. Pisinger and Regpke (2007)
implemented seven different strategies for selecting requests for removal. Curtois et al. (2018)
combine local search, large neighbourhood search and guided ejection search in a novel way to
exploit the benefits of each method. While the local search and large neighbourhood search focus
on minimising travel distance, the adaptive ejection chain seeks to reduce the number of routes.

Another type attempts to minimize lateness, travel time and overtime while the number of
vehicles is fixed. For example, Gendreau et al. (2006) propose tabu search with a neighboring
structure based on ejection chains. The optimization procedure is run while the environment
remains static. When new requests arrive, or when a vehicle has finished its pickup or delivery
task, the algorithm performs its insertion and ejection moves. Beaudry et al. (2010) insert new
requests using a scheme capable of satisfying real-time requirements. Once again, the second stage
consists of a tabu search which attempts to improve the current solution. Meanwhile, van Lon et al.
(2016) utilized cheapest insertion in the first stage and 2-opt heuristics in the second for solving the
dynamic PDPTW. Finally, a third type of two-stage heuristic-based reactive approaches focuses
only on minimizing travel distance. Renaud et al. (2000) simultaneously insert each delivery and
associated pickup in the first stage. The second stage is an improvement procedure that uses the x-
Opt heuristic. The first stage of Mitrovié-Mini¢ and Laporte (2004) consists of a cheapest insertion
procedure, while the second consists of a tabu search algorithm similar to Gendreau et al. (2006).

Most research concerning the dynamic PDPTW employs a reactive approach and ignores the
tightness of inter-arrival periods. They assume the inter-arrival time to be sufficiently long. How-
ever, this assumption is likely incorrect, particularly in the case of large-scale problems. This paper
is based on the periodic approach which offers more control concerning runtime. Therefore, the
proposed approach not only calls for a trade-off between solution quality and response time but
also calls for a trade-off between solution quality and robustness.

The same level of diversity found concerning dynamic approaches also occurs with respect to the
assessment methods developed for them. The measures proposed thus far range from being entirely
problem-specific to near-general. Borodin and El-Yaniv (2005) proposed Competitive Analysis
which corresponds to the ratio of a dynamic algorithm’s outcome (over a predefined time period)
to the optimum static outcome. The more competitive a dynamic algorithm is, the better it will
approximate the optimum solution. In principle, this method requires examining all instances of a
given problem and obtaining the optimal solution for the corresponding static instances, which in

most cases relies on theoretical analysis of worst case behaviour. This is however not always possible.
Dunke and Nickel (2016) developed a method for analyzing the dynamic algorithm which consists
of a distributional analysis of both the individual outcome of an algorithm as well as its relative
outcome. Despite the extensive research carried out, the literature still lacks a comprehensive
investigation concerning the effect of instance characteristics and re-optimization frequency upon
performance.

3. Problem definition

A comprehensive definition of the dynamic PDPTW has already been offered by Berbeglia et al.
(2010). This section therefore restricts itself to providing an overview by detailing the dynamic
PDPTW’s primary components and objective function. Following this, a MILP formulation and
its adaptation to the dynamic PDPTW are introduced, the notation for which is presented in
Appendix A.

3.1. The dynamic PDPTW’s basic concepts

Each pickup and delivery corresponds to two separate tasks. The tasks’ locations and their connec-
tions are represented by an undirected graph G(N, A,C). N is the set of nodes corresponding to
all locations. A denotes the set of arcs connecting these nodes. Finally, C': A — R denotes a travel
time function, mapping each arc to its travel time. The time required to perform task ¢ is denoted
by p; and referred to as its service time. The time window of each task ¢ is expressed by way of two
values: the time window’s beginning and end which are denoted by st; and dt;, respectively. Previ-
ous studies such as by Mitrovié-Mini¢ and Laporte (2004) and Angelelli et al. (2009) assume that
task time windows are not tight or that tasks may be postponed, but in many logistic applications
time windows may in fact be very tight. A request corresponds to a transportation demand and is
denoted by r = (i,j) € R, with R corresponding to the set of all requests and ¢,j € T where T is
the set of all tasks. Each request consists of a pickup task ¢ at location n; € N and a delivery task
Jj at location n; € N. A semi-soft time window [st;, dt;) is associated with pickup task i: it may
not be scheduled before st;, however it may be scheduled after dt;. A similar time window [st;, dt;)
is also associated with delivery task j. The time at which a request r becomes known is referred
to as its arrival time a,. It is assumed that both the pickup and delivery tasks associated with a
request are known when it arrives. The information concerning a task’s pickup and delivery time
windows is available upon request arrival. An urgency window (UW), defined as the time period
from a request’s arrival until the end of either its pickup or delivery time window, is associated
with each request r € R. Requests with shorter UW lengths correspond to those which are more
urgent. Furthermore, given that the pickup UW is always shorter than or equal to the delivery
UW , we define urgency based on the pickup time window.

uw
& Pickup w & Delivery§

Figure 3: Pickup and delivery time windows and UW

a, time

Vehicles perform pickups and deliveries. Each vehicle k has an availability time window [sty, dty)
during which tasks may be assigned. There is a central depot € N which provides the fleet of vehicles

for serving the requests where all vehicles begin and end their working day. A dynamic PDPTW
instance or scenario (Gendreau et al., 2006) is a triple (7,¢,V) where 7 denotes the scheduling
horizon, V the fleet of vehicles, while e consists of all request arrival events.

This paper simulates the dynamic PDPTW in a discrete event-based framework within which
there are three event types: request arrivals, vehicle dispatches and vehicle service ends. Whenever
a request arrives, a corresponding event is generated. Similarly, when a vehicle departs towards a
pickup/delivery location, an event is generated to hold the vehicle’s current state and destination.
Finally, when a vehicle finishes a task, a service end event is generated to hold the data of the
vehicle’s current state and the task it has just finished.

The objective is to minimize the sum of three components which are weighted equally: total task
tardiness, vehicle overtime and total travel time. Request time windows are considered semi-soft: a
task may not be scheduled before the beginning of its corresponding time window, however it may
be scheduled after its end. For each task i, the difference between its completion time Ct; and its
time window end is called tardiness and is calculated as follows: [; = Max(0,Ct; — dt;). Since all
requests must be scheduled, vehicles may be assigned to requests which lie outside their availability
windows. A vehicle k’s overtime oty is the completion time of the last request performed by the
vehicle minus the end of its availability time window, or O if negative. d;; is the time it takes a
vehicle to travel from location n; € N to n; € N along the graph’s shortest path between these
two locations. A vehicle’s total travel time for a given day corresponds to the total time it takes to
travel between its various pickup and delivery locations, in addition to its travel time to and from
the depot.

3.2. A MILP formulation for the PDPTW

The MILP formulation for the PDPTW is based on the formulation presented by Savelsbergh and
Sol (1995). Consider the following input data:

Indices:

i/j pickup/delivery task at a specific location.
k wvehicle.

Sets:

R set of all requests.

TP set of all pickup tasks.

T set of all delivery tasks.

T set of all tasks (T = TP UTY).

T set of all tasks and a dummy task associated to the depot.
%4 set of all vehicles.

Parameters and constants:

Di service time of task 1.
[sti,dt;) time window of task 1.

[stk, dty) availability time window of vehicle k.

10

di; travel time from location 7 to j.

do; travel time from the depot to location j.

dio travel time from the location of task i to the depot.
wj tardiness weight of task .

M a large constant number.

The following variables are employed by the formulation:

zijr € {0,1} vehicle k advances to service j after performing service i.
xoik € {0,1} vehicle k advances to service i from its depot location.
xior € {0,1} vehicle k advances to its depot after servicing task i at the end of its route.

Sik >0 the start time of servicing task ¢ (has no meaning if 7 is not assigned to k).
;>0 tardiness of task <.
ot >0 overtime of vehicle k.
Minimize » w;-li+ Y otg+ > > dij - Tijk (1)
€T kev keV (i,j)eR

Subject to

> wg =1 vk eV 2)
ieT

inok =1 Vk eV (3)
ieT

Z%jkzzxﬂk VkeV,ieT (4)
JET jeT

szz‘jkzl VieT (5)
JeT kev

. ./ ..

Yo wigpk S Y T i#7J, (i,j) e RkEV (6)
JET J'EeT

sti- > ik < Sik VEeV,ieT (7)

JET

Sik +pi — dt; <1 VkeV,ieT (8)
Sik + pi + dio — dty, < oty VkeV,ieT 9)
Sik +pi +dij < sjp+ M- (1 — x45) VkeV,i,jeT (10)
Tijk, Toik, Tjok € {0,1} VkeV;ijeT (11)
Sik, li, ot > 0 VkeV;ieT (12)

Constraints (2), (3) and (4) are flow constraints ensuring each vehicle must begin its route from the
depot, end its route at the depot, and that after it arrives at a customer’s location it must depart
for another. Constraints (5) guarantee the assignment of each task. Constraints (6) ensure that if a
pickup is assigned to vehicle k, then its corresponding delivery is also assigned to k. Constraints (7)
enforce the commitment to the beginning of the time window. Constraints (8) and (9) derive task

11

tardiness and vehicle overtime, respectively. Inequalities (10) are precedence constraints. They
establish the relationship between a vehicle’s departure time from a customer and its following
delivery task. Finally, Constraints (11)-(12) define bounds for the decision variables.

This paper focuses on a dynamic PDPTW typically found in courier services with small-sized
items such as letters and parcels. The fleet of vehicles is assumed to be homogeneous: all vehicles
drive at a constant speed and their cargo capacity is infinite. Each instance’s scheduling horizon
ends when all of its pickups and deliveries have been handled. The objective function remains
the same throughout the scheduling horizon. Finally, given that vehicles are rarely idle in large-
scale and highly dynamic problem environments, vehicle waiting and idle times are not taken into
consideration in the present paper.

3.3. MILP formulation adapted to the dynamic PDPTW

A basic yet common strategy for formulating a dynamic problem is to adapt its static model
such that it can respond to new information, taking into account what is currently being and
has already been executed. The MILP formulation presented in Section 3.2 is therefore adapted
so as to accommodate the dynamic nature of the PDPTW. Here the concept of depot must be
reconsidered. At each re-optimization the vehicles’ current locations will serve as their depot for
the new problem. The original depot will be denoted as ‘ending depot’ and is common to all
vehicles since they must all eventually return to it. Three new sets are also required: VK, RL and
CP. VK is the set of all undispatched vehicles. RL is the set of all eligible requests, denoting all
arrived requests which have neither been serviced nor scheduled. This set replaces set R used in
the static context. C'P is a subset of eligible requests which have been scheduled and are still in
progress. A new time window constraint is also introduced to update the available time window of
all currently-dispatched vehicles:

Stk = Sik + dijxijk VkeV - VK, (Z,j) cCP (13)

4. Dynamic optimization

There are many components to dynamic algorithms which distinguish them from their static coun-
terparts. This section documents the proposed dynamic optimization algorithm and its components.

One important concept in the proposed dynamic algorithm is request state. At the beginning
of each step t every request is in one of the following four states: Unprocessed (URy), Currently-
processing (CP;), Currently-ezecuting (CEy) and Finished (FR;). Unprocessed requests are those
which have arrived but which have not yet been scheduled. The set of all unprocessed requests is
denoted by UR, ={r € R|t— ET < a, <t, t— ET > 0}. Currently-processing requests are those
which have been scheduled but which have not yet been executed. The set of all currently-processing
requests is denoted by CP, = {r € R |a, <t — ET A st, >t A !(vehicle dispatch event(r)), t —
ET > 0}, where st, is the beginning of the pickup time window. Currently-executing requests are
those which have been scheduled and are still in progress. The set of all currently-executing requests
is denoted by CE; = {r € R|a, <t—ET A st, >t A (vehicle dispatch event(r)), t — ET > 0}.
Finished requests are those which have been scheduled and their corresponding pickup and delivery
tasks have been serviced, so they no longer require processing. The set of all finished requests is
denoted by FR; = {r € R| dt, <t A (vehicle service end event(r))}, where dt, is the end of the

12

pickup time window. At the beginning of step ¢ the set of all requests eligible for (re)scheduling is
(URtUCPE,).

A visual representation of the proposed dynamic algorithm and its components is provided by
way of Figure 4. This algorithm functions as a time-based periodic approach. The input element
revelation rule employs a buffering-strategy and buffers request arrivals for a predefined length of
time. As a rule, each vehicle must serve its next scheduled task (if one exists) immediately after
completing its current task.

Step(i— 1) Input element revelation

s 2 /
* Solution
* Actions
> Update state <:|
+ Update vehicle state []

o B N R S S

Buffer i
Step (i) @ . T F
- N

H t
1 1 ~ .

=%W | _i__, Currently-processing
i requests
i
i

—@@ EECOHODE ------ * Requestarrivals
g

P

[
[
[

Ty ¥

e ——
PR
¢ ———

I
i
¥

l ———
e ———
l¢ ———
¢ ———

Solution

* Actions <::I[Scheduling policy]

Update vehicle state

v v
\ J \ — (920 HEEED HPEPETH GB® 1> Input elemery

Figure 4: The proposed periodic optimization approach employing a buffering strategy.

The algorithm is executed at predefined steps t§*°“ = ix ET fori = 0,1,2,..., [g5 |. During the
time-interval between two consecutive re-optimizations, any new request arrivals are accumulated
and form part of the input element which will be constructed at the next step.

Two sets of time-dependent variables are associated with each 6;: the set of its requests
processing states and its set of actions. The processing states (P;(t) = {(r,m)|r € 0;,m €
{UR;,CP,,CEy;, FR;}}) provide the state of 0;’s elements at time ¢ and determines whether r € 6;
is unprocessed, currently-processing, currently-executing or finished as well as the actions (a;(t) =
{(r,d)|r € 0;,d € scheduling policy’s completed decisions}).

During each re-optimization step an input element is constructed for the next step. The size of
the input element is governed by several factors: the total number of known requests, the decisions
made by the scheduling policy during previous steps, the consequent actions taken by vehicles
and the value of ET. Moreover, the input element’s size is also affected by the geographic distance
between pickup and delivery location pairs. For a fixed number of vehicles and requests, an increase
in the service area size will result in increased average travel times for all requests. Thus, a full
data investigation is required to determine an appropriate value for ET'.

The concept of problem states is introduced to explain actions. The dynamic PDPTW state
at time ¢ is denoted by state;=(si",s¢™ %), The set of all input states at time ¢ is denoted
by si", which contains an input element and all action variables associated with its requests. At
the beginning of each step ¢, sfonf includes all information regarding the problem’s configuration
and S?bj provides the objective value. State transitions triggered by events influence the algorithm
input element construction. Any services associated with either currently-executing or finished si®
requests when transitioning from input state s to s?}r pp are referred to as the state’s actions.

Algorithm 1 provides the pseudo-code of the proposed dynamic algorithm. This algorithm

13

divides the entire scheduling horizon into a number of steps of length ET. Based on previous
decisions and actions, a request queue consisting of all eligible input elements is constructed at
the beginning of each step t := i x ET for i = 0,1,2,...,[Z5]. A set of rules is then applied
which stipulates the conditions under which the scheduling policy must make decisions. Finally the
scheduling policy is executed on the constructed request queue and its objective value and actions
are stored at each step. In parallel with the scheduling policy’s execution, any new request arrivals
are buffered and will eventually be used to construct the input element for the next re-optimization
step. The re-optimization and schedule distribution are illustrated by Figure 5.

Vehicle drivers are only informed of their next assignment upon delivery of their current request
and only if the next departure is due. As a result, drivers never have full knowledge of their route.
This enables the optimization procedure to update the routes, if necessary, until the latest possible
moment in time.

Algorithm 1: The dynamic algorithm
Require: 7
Require: V
Require: ET
Require: scheduling policy
t<0
state.initialize()
while t < 7
R < request arrivals > read new request arrivals (if any)
UR < unserviced requests > collect unserviced requests from past (if any)
INPUTS = (RUUR)
state <—schedule-policy.process(state, INPUTS)
t<—t+ ET
end while
return

© O N O A W N

-
o

The time interval during which schedules at time (i-1)ET are run.

The time interval during which updated schedules at time (i)ET are run.

rd
E.'I.' ------ -...--I-B.'.T: (l+1)ET (l+2)ET N I'T/ET] ET
| } —t i t
Re-Opt. Re-Opt\ Re-Opt. Re-Opt. Re-Opt. Time

The time interval during which the re-optimization is run

Figure 5: The re-optimization and schedule distribution.

The results of the dynamic algorithm over the entire scheduling horizon can be formally rep-
resented as a triple (R,.A,C) where R is the set of all requests, A is the set of all actions and
C ={caln € N, n < [Z5]} is the set of objective values with ¢; : 6; x A; — R U {oo} where A;
denotes the set of actions taken at step i. The order in which requests appear in the sequence of
actions may differ from how they were originally ordered in the input element. The processing of
an input element is affected by the decisions made and actions taken during previous steps which
causes the input elements’ requests to transition between UR;, CP;, CE; and F'R; at each t.

14

4.1. Scheduling heuristic
The two-step scheduling heuristic employs the following components.

Cheapest insertion (CI). As seen in the pseudo-code presented in Algorithm 2, at each re-
optimization step CI inserts eligible requests to the available vehicles based on the current state,
with the goal being to minimize the negative impact upon objective value. After determining a
feasible insertion position in a vehicle’s list of scheduled tasks, the start and end times of all tasks
from this list are updated.

Algorithm 2: CI algorithm
Require: V'
Require: RL
1: for r € RL do

2: a <+ null > a list which is initially empty

3: for vehicle € V do

4: a.addItem(cost(insert(r, vehicle))) > calculate the insertion cost

5: end for

6: ¢« pop(sort(a, DESC)) > find the lowest cost value

7: vl < the vehicle corresponding to c > select the vehicle with the lowest insertion cost
8: insert r into the scheduled tasks’ list of vl

9: update > update the schedule table

10: end for

11: return

Local search (LS). The pseudo-code, detailed in Algorithm 3, corresponds to the iterative applic-
ation of the CI. At each step eligible requests are inserted into the schedule. LS’s moves (ejection,
move and reinsertion) are afterwards applied to improve the schedule. At each LS iteration, an eli-
gible request is randomly selected and ejected from its corresponding vehicle’s schedule after which
the start and end times of scheduled requests are updated. The CI policy subsequently inserts
this request into a vehicle’s schedule (this could be the same or a different vehicle). The start and
end times of the scheduled tasks assigned to these vehicles are updated again. A new schedule is
accepted only if its objective value is better than or equal to the current schedule’s objective value.
This search continues until a predefined maximum number of non-improving iterations is reached.

This paper assumes that ET is long enough to enable the search process to complete. Therefore,
the algorithm must stop either before the next step or after a maximum number of non-improving
iterations is reached. Additionally, the earliest scheduled departure time of a vehicle must occur
after ET + t, where t is the preceding step’s start time. Earlier scheduled departure times would
imply that vehicles know they must depart to a task location before the algorithm has finished its

15

calculations, which is clearly impossible.

Algorithm 3: LS algorithm
Require: RL
Require: Npqqo > maximum number of non-improving moves
Require: V'
Require: ET
1: n<0
2: currentCost < cost of the entire schedule
3: while n < Npae and elapsed time < ET do

4: select a random request r € RL

5: q < vehicle(r)

6: g.schedule.remove(r) > remove 7 from ¢’s schedule

7. gq.schedule.update() > update ¢’s schedule

8: newVehicle «+ cheapestInsertion(r, V)

9: newCost < cost(r,newVehicle) > update cost by considering request r is assigned to new Vehicle
10: if newCost < currentCost then

11: insert(r,newVehicle) > add r to the newVehicle’s schedule
12: n <+ 0

13: currentCost < newCost

14: else

15: insert(r,q)

16: n+<n+1

17: end if

18: end while

19: return

4.2. Dynamism calculation

Both a definition of dynamism and an illustrative example have been provided in detail by van
Lon et al. (2016) who state that dynamism corresponds to the continuity of request arrivals. For ex-

ample, to generate instances with different degrees of dynamism, consider A := {dy, d1, . . ., 9 E|_2} =
{arj — arilj =i+ 1AVr;,r; € €}, which represents the sequence of inter-arrival times for requests,
where | A | := |¢|] — 1. One possible example sequence is A, = {0.1,1,0.1,1,0.1,1,0.1,1,0.1}

which includes five small bursts with intervals of 0.1 unit and four of 1 unit, as shown in Fig-
ure 6(a). By changing this order, another possible sequence for request inter-arrival times is
Ay = {1,1,0.1,0.1,0.1,0.1,0.1, 1,1}, which has one large burst of request arrivals at the middle
and two individual request arrivals before and after this burst as shown in Figure 6(b). Given the
details provided by van Lon et al. (2016) Figure 6(a) has a dynamism degree of 55.5%, while Figure
6(b) has a dynamism degree of 35.1%.

16

Request arrivals
A.J A . LJ N

T .
1 2 3 a 5 Time

@ @ CGEERTD © o
P HHH i | Reguestarrivals
Yy ww \ A | N
! I 1 T T T "
o 1 2 3 4 5 Time

(b)

Figure 6: Two examples of request arrival events with five inter-arrival times of 0.1 unit and four of 1 unit.

4.3. The significance of ET

Since parameter ET affects the number of requests taken as input element at each step, a large
ET value may postpone some requests for a significant amount of time, which may consequently
contribute towards additional tardiness. Thus, ET’ should be set in accordance with the urgency of
request arrivals. Assume the urgency window of the most urgent request is denoted by UW,,,;, and
the value of ET is set to a value less than or equal to UW,,;,. As a result, there are no requests
with UW smaller than ET in the requests list. Ideally ET" should be set equal to UW,,;, because
any smaller length represents a waste of computational resources. In most dynamic applications,
UW in is unknown in advance. Therefore, some investigation is required to isolate an appropriate
value for F'T. Figure 7 illustrates the pickup time window’s relationship with ET and UW.

— W —

Sfi dti time
ET ET

h

Figure 7: A visualization of ET and UW

Dynamism and urgency are two concepts which affect the dynamic algorithm in different ways.
Therefore, in instances of the same scale, E'T" should be longer in those with less urgent request
arrivals but similar degrees of dynamism. Table 2 details all four possible combinations of the
dynamic PDPTW'’s instances’ two characteristics. It can be easily seen that for the same degree
of dynamism but different urgency levels: ET3 < ET} and ET,; < ET,. However, for the same
urgency level but different degrees of dynamism it is more difficult to arrive at a conclusion. Very
urgent instances with low dynamism appear the hardest case for an algorithm to solve given how
they often involve bursts of very urgent requests with the vehicles’ number insufficient to satisfy
them all. In such cases, tardiness is likely inevitable due to resource shortfalls.

‘ Low dynamism High dynamism

Low urgency ETy ET»
High urgency ETs ETy

Table 2: Four possible combinations of urgency levels and dynamism degrees.

17

5. Computational study

A computational study is performed to evaluate the proposed dynamic algorithm. Its decisions at
each step provide local perspectives while the decisions/solution over the entire scheduling horizon
provides the global perspective. This study will compare the dynamic algorithm’s objective values
against those of the optimum static solution obtained by the MILP.

5.1. Performance evaluation criteria
This section proposes two performance metrics: local and global dynamic gaps.

Local gap. This value denotes the difference between the LS scheduling policy’s solution and
the optimum static solution for the same input. Local gaps are calculated for each step ¢ by

LG; = 100 x (ObjLSg’gj).L;(g)PT(ei)) where OPT(0;) is the optimum objective function value for

request queue 0;, with Objrs(6;) denoting the objective value of step i obtained by LS.

Global dynamic gap (GDG). This value is the difference between the objective value incurred
by the dynamic algorithm over the entire scheduling horizon against the objective obtained by
the MILP over the same period. The global dynamic gap is therefore calculated for the entire
scheduling horizon by GDG= 100 x (Alg (0/24;9 (eo,)P T(el)) where OPT(0") denotes the optimum static
solution’s the objective value for request set ', while Alg(6’) denotes the objective of the solution
obtained when applying LS over the entire scheduling horizon.

The MILP solver has access to all information known at the time of re-optimization. In both
the local and global cases, the MILP formulation for all instances has been solved to optimality.
These results are employed to evaluate the two-stage scheduling heuristic.

5.2. Datasets

This computational study employs a dataset created by the instance generator of van Lon et al.
(2016). This dataset consists of instances whose characteristics exhibit a variety of dynamism
and urgency configurations. The generator was employed to produce instances with eight different
degrees of dynamism (20%, 30%, 40%, 50%, 70%, 80%, 90% and 100%) and five different levels
of urgency (UW = 5, 15, 25, 35 and 45 minutes). Five instances were produced for each of the
40 possible combinations, resulting in a total of 200 instances. Pickup/delivery task time windows
were randomly generated while respecting the constraints concerning different urgency levels and
arrival times. Each instance has a size of 10km x 10km with 180 requests per instance (18-30
requests per hour on average) and includes 10 vehicles with an assumed speed of 50 km/h. The
depot is located in the center of this 10km x 10km square. At the start of the scheduling horizon
all vehicles are located at the depot. The service time of each task is 5 minutes and the entire
scheduling horizon’s length is 600 minutes.

5.3. Computational results

Computational experiments were performed on an Intel Xeon, E5-2640, 2.60GHz processor with
16GB of RAM running Linux Ubuntu 16.04.3. The MILP formulation was solved by Gurobi 7

18

employing formulation (1)-(12). The scheduling policy’s runtime was limited to ET". The proposed
dynamic algorithm was coded in Java 1.8.

In order to evaluate the LS, its local and global performances were assessed by calculating LG;s
at each step in addition to the GDG. To assess the local performance at each step, first the LS
was executed on the constructed request queue and the resulting objective value was stored in
addition to all actions taken. The MILP formulation was executed on the same request queue and
its results were also stored. To assess global performance, another experiment was performed for
each instance utilizing the MILP formulation. All these experiments were conducted with the same
ET value. Finally, to study how ET affects LS global dynamic objective values and the GDG,
experiments were executed wherein E'T" was consecutively decreased by 10 min while E'T" > 5. The
computational runtime of the Gurobi solver is 1h, which is far longer than the time limit for the
local search heuristic at each re-optimization step.

Local gap. Figure 8 indicates the local solution gap obtained by LS for instances with different
urgency levels (UW lengths), wherein each box aggregates local solutions for 40 instances where
the urgency level is identical but all eight different values for dynamism occur. The right boxplot
presents the local solution gap for three dynamism degrees (low-20%, medium-50% and high-90%),
with each box aggregating the local solutions for 25 instances where the dynamism degree is identical
but all five different urgency levels occur.

Figure 8(a) shows that, on average, better local solutions can be found for instances character-
ized as ‘highly urgent’. This is expected due to the small number of requests in the eligible request
list, which makes LS more effective. It also reveals how the largest local gap decreases when either
dynamism increases or urgency decreases. The small increase in the average value of the local
gap (2%) when transitioning from urgency level 35 to 45 may be explained by the increased total
number of eligible requests at each step. It would require longer runtimes to achieve tighter gaps.

60 [3 -
40 i
< 40p s 0
= =Y
: T 1] T
| ' i i
O 20 40 20
~ * R ~
* A4
* M *
*
J B T | ol |
1 1 1
5 15 25 35 45 low-20% medium-50% high-90%
(a) UWyin (minutes) (b) Dynamism (%)

Figure 8: Local gaps (LGs) for instances with different urgency levels (UW length) 5, 15, 25, 35 and 45 minutes and
three degrees of dynamism low-20%, medium-50% and high-90%. In the left boxplot, each box aggregates LGs for
instances with three different dynamism degrees and the same urgency level. The right boxplot presents the LGs
for instances with five different urgency levels and the same dynamism degree. The average gap for each boxplot is
provided by ‘e.’

When it comes to the quality of the local solutions, a higher average LG% is expected as
dynamism increases. However, the computational results do not fully support this expectation.

19

Instead, they demonstrate a non-linear effect, as illustrated in Figure 8(b). This is evidenced by
the lack of a peak in the top right as dynamism increases. In very urgent scenarios with low
degrees of dynamism, the periodic re-optimization runs in shorter steps. Therefore, the relatively
small effect of high degrees of dynamism on the local solution’s quality LG% can be explained by
the small number of requests per buffer. Such cases often appear to be easy for the algorithms to
solve within the time limit.

Meanwhile, a higher average LG% is expected as urgency increases. Again however, the com-
putational results do not fully support this prediction, as evidenced by the lack of a peak in the top
left of Figure 8(a). This effect is due to the existence of scenarios which incorporate queues smaller
than the fleet of available vehicles, which means that requests are serviced quickly. Non-urgent
scenarios with any dynamism degree seem to be the most difficult scenarios for the algorithms to
solve. This is possibly due to request bursts associated with these scenarios. The number of vehicles
demanded by these small bursts can exceed the available fleet size, which will result in tardiness.

LG — median(%) LG — max(%)
50 60.0 50 60.0
40 | N 40
= 00 %
S 30f 1 £ 30
E E
f20p | £ 20
o 200 &
=) =
10 8 10
0 1 | | | | 00 0
20 40 60 80 100
Dynamism (%) Dynamzsm %
(a) (b)

Figure 9: Median and maximum LG values for different combinations of dynamism and urgency.

Figures 9(a) and 9(b) provide the median and maximum LG for instances with different combin-
ations of dynamism and urgency. Figure 9(a) illustrates the homogeneous behaviour of LS in more
detail, while Figure 9(b) represents the worse local behaviour of instances with different dynamism
degrees and urgency levels.

Global solutions. The dynamic algorithm is analyzed in order to determine whether or not its
objective function value and GDG depend on the degree of dynamism and the urgency level of
incoming requests.

20

3,500 [B

—e— 5(minutes)
B 15(minutes)

3,000 |- ||~ 25(minutes)
-9~ 35(minutes)

4 45(minutes)

Objective value (minutes)

2,500 - i
=} =}
20000 o *ie . .
\\;"rn\\ .
1,500 | \!\; i
| | | |
20 40 60 80
Dynamism (%)
(a)
Objective value (minutes)
3,500 [50 :
> 0
g = 80% 3,000.0
S 3,000 {|-e50% | —
< ’ \ @
S o . 0% | 8
— N & 20%| £ .
S 2,500 e 2,500.0
E ~
S 2
S 2,000] . o
52 = 2,000.0
=
© 1,500 | y
| | | | 0 1,500.0
10 20 30 40 20 40 60 80
UWpnin (minutes) Dynamism (%)
(b) (c)

Figure 10: Objective value obtained by the dynamic algorithm. Figure (a) illustrates that the objective value will
improve by increasing the degree of dynamism. Figure (b) demonstrates that the objective value will improve by
increasing the UW length. Figure (c) illustrates how often instances of varying degrees of dynamism and urgency
levels are the most/least costly.

Figures 10 provides the objective values obtained in the experiments. Figure 10(a) illustrates
how for any level of urgency (UW length) the objective value will improve whenever the degree
of dynamism increases. Figure 10(b) demonstrates how the objective value will decrease when the
urgency of request arrivals decreases for any dynamism degree. Finally, Figure 10(c) illustrates
how instances with low dynamism degrees and high levels of urgency are the most challenging and
costly for the proposed dynamic algorithm to solve. When some requests in the eligible request
queue must be handled urgently, it is natural that some delays are introduced. Furthermore, when
requests are highly urgent there is less possibility for minimizing the travel time which eventually
results in a worse objective value.

From Figure 10’s results it can be concluded that tardiness is a dominant feature for instances
with high urgency levels. It is unsurprising that a low ET typically results in re-optimization with
a very limited view. The limited view implies that the algorithm does not recognize the cost of
incoming urgent requests. This yields long travel times, but only a little tardiness. Another inter-
esting result is that tardiness increases when buffer lengths increase. This is a direct consequence
induced by buffering before conducting re-optimization and it results in a decrease in travel time.

21

a —o— 5(minutes)
35| - || = 15(minutes)
B o 25(minutes)
L v | |-+~ 35(minutes)
— 30 .
2 a- 45(minutes)
g — Avg.
O L |
= 25
O
20 o |
15 o
1 1 1 1 1

0 20 40 60 80
Dynamism (%)

(a)

GDG(%)
50.0
. ——20%
35| o 4|~ 50%
130% T 40.0
— 30| . Y9 5
= £
o g5 | | £ 30.0
S v S
O] ® \ g
20 : : =
. R = 20.0
15 e B
1 1 1 1
10 20 30 40 0 20 40 60 80 100 100
UWpnin (minutes) Dynamism (%)

(b) (c)

Figure 11: GDGs obtained by the dynamic algorithm. Figures (a), (b) and (c) demonstrate that GDGs for the
instances with different urgency levels and dynamism degrees are slightly affected by variations of these two request
arrival characteristics.

In the context of dynamic problems, an algorithm performs well if request characteristics have
a minimal impact upon its GDG. Figure 11 illustrates the primary achievement of the presented
algorithm: that the GDG is only slightly affected by the dynamism and urgency of request arrivals.
When dynamism increases for a low level of urgency, the GDG decreases. For a high level of
urgency, decreases in the GDG continue until a certain degree of dynamism is reached (50%). For
high urgency levels, the GDG increases for high degrees of dynamism while staying within the range
of 15%-37%. The main reason why this gap increases slightly for very high degrees of dynamism
is the more significant role data uncertainty plays. Another reason is increasing eligible request
queue length. A longer queue may require more computation time than ET to achieve the same
gap. Thus, eligible request queue length and ET function as two interrelated parameters which
significantly affect the GDG. If ET is too small then a large gap is likely introduced. On the other
hand, if E'T is too large then the request queue’s length may increase which will in turn also result
in large gaps.

To conduct our experiments, we employed the instance generator introduced by van Lon et al.
(2016), which provides dynamic PDPTW instances with a broad range of urgency levels and dy-

22

namism degrees. The main point of difference lies in that van Lon et al. (2016) assume that
their algorithm “will never need to or can be interrupted during calculations and it will always
give the best possible answer” (van Lon et al., 2016, p. 622). However, the validity of both these
assumptions remains unproven. This paper proposes an interruptible algorithm. We also assessed
its solution quality by calculating optimality gaps at each step (Figure 8) in addition to the gap at
the end of the planning horizon (Figure 11). Given that van Lon et al. (2016) did not provide any
evaluation information, we can not compare numerical results.

Impact of ET on the objective value. Another concern of this research is how ET impacts
objective values. First, Figure 12 shows the dynamic algorithm’s objective values for instances with
fixed urgency levels and multiple dynamism degrees. Second, Figure 13 details objective values for
instances with fixed dynamism degrees and varying urgency levels.

103 108

T T T T T T

A ——20% — 15(minutes) | | 21 & ——50% — 15(minutes
= 20% — 25 = 50% — 25

-+-20% — 35 -+-50% — 3

15 o
N s 20% — 45 Pl & 50% — 45

)
minutes minutes)
)|
)

minutes

[
t
T
A~~~

) (
) (
minutes) | (
) (

minutes minutes

I
o
T
|

0.5 | \ N

Objective value (minutes)
—

Objective value (minutes)
—
T
|

[en)
T
K
i
/
i
,/
=

ET(minutes) ET(minutes)

(a) (b)

T T T
4 ——90% — 15(minutes)
B 90% — 25(minutes)
-+-90% — 35(minutes) ||
) 2 90% — 45(minutes)

—_
[
T

<
[
T
|

Objective value (minutes)
[
T
|

o
T
I
!
!
//
|
B
1
I
|
|
4
>
|

10 20 30 40
ET(minutes)
()

Figure 12: The impact of decreasing ET on the objective value for instances with fixed urgency levels and multiple
degrees of dynamism.

23

T T T 15 [~ T T T T T T |
2} ——90% — 45(minutes) || _ e ——90% — 35(minutes)
2 ! B 50% — 45(minutes) 3 B 50% — 35(minutes)
g 15l -+~ 20% — 45(minutes) | | § w, -9-20% — 35(minutes)
\E/) \E/ 1r \ B
s s
s 1 13
S S
§ § 0.5 .
s 05 108
N)
= =
) Q
0F : 0f :
| | | | | | | | | | |
10 20 30 40 5 10 15 20 25 30 35
ET(minutes) ET(minutes)
(a) (b)
10t -10*
T T T T T T T T T
. e —o—90% — 25(minutes) . LN —o—90% — 15(minutes)
< 8 =m . m 50% — 25(minutes) || £ 3| m 50% — 15(minutes) | |
§ \ -+~ 20% — 25(minutes) § -9-20% — 15(minutes)
E 6] 1 &
s} s} 2 [1
= =
S 4l |3
S S
B S 1 i
g 20 1 3
= =
. .
O L 1 1 1 1 1 1 0 C 1 1 1 1 1]
5 10 15 20 25 4 6 8 10 12 14 16
ET(minutes) ET(minutes)
(c) (d)

Figure 13: The impact of decreasing ET on the objective value for instances with fixed dynamism degrees and
multiple urgency levels.

A high degree of dynamism results in greater input data uncertainty. Low urgency levels, mean-
while, result in longer request queues. Thus, the results illustrated throughout Figures 12 and 13
demonstrate how the highest quality (smallest GDG) solution is only achievable if the step length
is at its maximum (UW,,;y,). This is due to less data uncertainty and lengthier calculation times.
Furthermore, for instances with low urgency, decreasing E'T" will increase both the objective value
and GDG given that it introduces greater data uncertainty. Thus, Figure 13 implies that for low
degrees of dynamism (20%) the objective value is more affected by decreasing the ET than by
higher degrees of dynamism due to insufficient computation time.

6. Conclusions and future work

Almost all real-world logistics problems are characterised by the gradual release of information.
Such problems consequently require efficient and repetitive decision making over time. Although
over the last two decades considerable research effort has been allocated to dynamic problems,

24

there is no agreed framework of methods and tools for comprehensive dynamic algorithm analysis.
This paper is a response to these shortcomings and provides (i) an appropriate algorithm for
the dynamic PDPTW (ii) a comprehensive study on the effect of frequent request arrivals on
optimization efficiency and (iii) a performance assessment method.

This paper has introduced a periodic approach based on buffering for the dynamic PDPTW.
Particular attention was given to the on-line construction of high-quality schedules, not only for
each sub-problem but also at the end of the scheduling horizon. To this end, a MILP formulation for
the static PDPTW was adapted to the dynamic PDPTW. It was shown that setting re-optimization
step length equal to the maximum urgency of request arrivals outperforms all other step lengths.
Next, the proposed periodic approach’s performance was evaluated from both local and global
perspectives. Additionally, the effect of frequent request arrivals on optimization efficiency has
been studied and it was proven that the urgency level and dynamism degree of request arrivals as
well as re-optimization frequency all impact the objective value. The results indicate that solution
quality worsens when dynamism decreases and urgency increases. By contrast, solution quality
improves when dynamism increases and urgency decreases. Nevertheless, it is noteworthy that
the proposed algorithm’s performance is only slightly affected by changes as regards dynamism and
urgency. Moreover, solution quality worsens when step length decreases for instances with the same
number of vehicles. This indicates that due to the inherent data uncertainty, short re-optimization
step lengths mean that not all tasks can be efficiently handled by the available fleet.

Different aspects of the new dynamic algorithm have been studied with a view to building a
comprehensive theory. Future research directions include the adaptation of existing approaches to
large-scale real-world applications. This may be made possible by utilizing parallel computation for
multiple buffering values. A possible direction would be to initiate the algorithm with a conservative
buffer length and then adapt this length in accordance with the dynamism and urgency of request
arrivals. Nevertheless, it may necessitate simultaneous real-time data processing to conclude on
the periodic algorithm’s best re-optimization frequency. Another interesting challenge for future
research would be to consider vehicle capacity and fleet size to see how they impact operational
decisions. Finally, we assumed request rejection was not allowed. However in real-world situations
this constraint is more likely to be relaxed and a minimum value for the worst-case urgency level
must therefore be determined to decide whether to accept or reject requests.

Another promising direction would concern further improving the scheduling algorithm which
demands very fast and computationally efficient algorithms. The current state of the art with
respect to the static version of the PDPTW is Slack Induction by String Removals (SISRs), a
heuristic introduced in the forthcoming publication by Christiaens and Vanden Berghe (2020),
which is currently available as a technical report. Given SISRs’ good performance across a wide
range of vehicle routing problems, it is likely that the heuristic would perform well once it has been
adapted to accommodate the dynamic circumstances and objective we are interested in. However,
proving so would require a thorough comparison against other methods such as the algorithms
proposed by Bent and Van Hentenryck (2006); Pisinger and Rgpke (2007); Lim and Zhang (2007);
Nagata and Kobayashi (2010); Curtois et al. (2018). It would also be interesting to investigate
the applicability of MILP to solve the problem at each re-optimization. There is a risk, however,
of MILP solvers being unable to generate a feasible solution during each re-optimization step, in
which case one would have to explore alternative strategies such as delaying or rejecting requests.

25

Acknowledgements

Wim Vancroonenburg is a postdoctoral research fellow at Research Foundation Flanders - FWO
Vlaanderen. This research is funded by FWO as part of ORDinL (Operational Research and
Data science in Logistics) project under the Strategic Basic Research (SBO) program. Editorial
consultation provided by Luke Connolly (KU Leuven).

Appendix A. Terminology

0; Input element i S Set of feasible solutions
ET Execution time, re-optimization step length (C) Set of the PDPTW's instances
Di A task i’s service time 0 The PDPTW instance
[sti, dt;) Time window of task % R Set of all requests
uw Urgency window TP Set of all pickup tasks
[stk,dtr) Vehicle k ’s availability time window T4 Set of all delivery tasks
T Scheduling horizon length T Set of all tasks (T'= TP UT?)
\%4 Fleet of vehicles 14 Set of all vehicles
€ All request arrival events VK Set of all undispatched vehicles
Ct; Task i’s completion time RL Set of all eligible requests
oty Vehicle k’s overtime UR: Set of unprocessed requests at time t
dij Travel time from location i to j CP;, Set of currently-processing requests at time t
li Tardiness of task ¢ CE; Set of currently-executing requests at time t
ot Overtime of vehicle k. FR; Set of finished requests
Table A.3: List of notations
References

Angelelli, E., Bianchessi, N., Mansini, R., and Speranza, M. G. (2009). Short term strategies for a
dynamic multi-period routing problem. Transportation Research Part C: Emerging Technolo-
gies, 17(2):106-119.

Attanasio, A., Bregman, J., Ghiani, G., and Manni, E. (2007). Real-time fleet management at
ecourier 1td. In Dynamic Fleet Management, pages 219-238. Springer.

Attanasio, A., Cordeau, J.-F., Ghiani, G., and Laporte, G. (2004). Parallel tabu search heuristics
for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing, 30(3):377-387.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M.
(2012). Complexity and approzimation: Combinatorial optimization problems and their ap-
prozimability properties. Springer Science & Business Media.

Barceld, J., Grzybowska, H., and Pardo, S. (2007). Vehicle routing and scheduling models, simula-
tion and city logistics. In Dynamic Fleet Management, pages 163-195. Springer.

Beaudry, A., Laporte, G., Melo, T., and Nickel, S. (2010). Dynamic transportation of patients in
hospitals. OR Spectrum, 32(1):77-107.

Bent, R. and Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers €& Operations Research, 33(4):875—
893.

26

Berbeglia, G., Cordeau, J.-F., and Laporte, G. (2010). Dynamic pickup and delivery problems.
European Journal of Operational Research, 202(1):8-15.

Berbeglia, G., Cordeau, J.-F., and Laporte, G. (2012). A hybrid tabu search and constraint pro-
gramming algorithm for the dynamic dial-a-ride problem. INFORMS Journal on Computing,
24(3):343-355.

Berbeglia, G., Pesant, G., and Rousseau, L.-M. (2011). Checking the feasibility of dial-a-ride
instances using constraint programming. Transportation Science, 45(3):399-412.

Bock, S. (2010). Real-time control of freight forwarder transportation networks by integrating
multimodal transport chains. FEuropean Journal of Operational Research, 200(3):733-746.

Borodin, A. and El-Yaniv, R. (2005). Online computation and competitive analysis. Cambridge
university press.

Chang, M.-S., Chen, S.-R., and Hsueh, C.-F. (2003). Real-time vehicle routing problem with time
windows and simultaneous delivery/pickup demands. Journal of the Eastern Asia Society for
Transportation Studies, 5:2273-2286.

Cheung, B. K.-S., Choy, K., Li, C.-L., Shi, W., and Tang, J. (2008). Dynamic routing model
and solution methods for fleet management with mobile technologies. International Journal of
Production Economics, 113(2):694-705.

Christiaens, J. and Vanden Berghe, G. (2020). Slack induction by string removals for vehicle routing
problems. Transportation Science (to appear), available as TR, KU Leuven.

Coslovich, L., Pesenti, R., and Ukovich, W. (2006). A two-phase insertion technique of unexpec-
ted customers for a dynamic dial-a-ride problem. FEuropean Journal of Operational Research,
175(3):1605-1615.

Curtois, T., Landa-Silva, D., Qu, Y., and Laesanklang, W. (2018). Large neighbourhood search
with adaptive guided ejection search for the pickup and delivery problem with time windows.
EURO Journal on Transportation and Logistics, 7(2):151-192.

Dunke, F. and Nickel, S. (2016). A general modeling approach to online optimization with looka-
head. Omega, 63:134-153.

Fabri, A. and Recht, P. (2006). On dynamic pickup and delivery vehicle routing with several time
windows and waiting times. Transportation Research Part B: Methodological, 40(4):335-350.

Ferrucci, F. and Bock, S. (2014). Real-time control of express pickup and delivery processes in a
dynamic environment. Transportation Research Part B: Methodological, 63:1-14.

Fiegl, C. and Pontow, C. (2009). Online scheduling of pick-up and delivery tasks in hospitals.
Journal of Biomedical Informatics, 42(4):624-32.

Fleischmann, B., Gnutzmann, S., and Sandvo8, E. (2004). Dynamic vehicle routing based on online
traffic information. Transportation Science, 38(4):420-433.

27

Gan, Z., Tao, L., and Ying, Q. (2013). Automated guided vehicles dynamic scheduling based on
annealing genetic algorithm. TELKOMNIKA Indonesian Journal of Electrical Engineering,
11(5):2508-2515.

Gendreau, M., Guertin, F., Potvin, J.-Y., and Séguin, R. (2006). Neighborhood search heuristics for
a dynamic vehicle dispatching problem with pick-ups and deliveries. Transportation Research
Part C: Emerging Technologies, 14(3):157-174.

Ghiani, G., Manni, E., and Thomas, B. W. (2012). A comparison of anticipatory algorithms for the
dynamic and stochastic traveling salesman problem. Transportation Science, 46(3):374-387.

Goel, A. and Gruhn, V. (2008). A general vehicle routing problem. Furopean Journal of Operational
Research, 191(3):650—-660.

Gomes, R., de Sousa, J. P., and Dias, T. G. (2014). A grasp-based approach for demand responsive
transportation. International Journal of Transportation, 2(1):21-32.

Grotschel, M., Krumke, S. O., Rambau, J., Winter, T., and Zimmermann, U. T. (2001). Combin-
atorial online optimization in real time. Springer.

Held, M. and Karp, R. M. (1962). A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied mathematics, 10(1):196-210.

Karami, F., Vancroonenburg, W., and Vanden Berghe, G. (2018). A dynamic scheduling approach
to internal hospital logistics. In The Second International Workshop on Dynamic Scheduling
Problems, Poznan, Poland, June 26-28, pages 57—62.

Kergosien, Y., Lente, C., Piton, D., and Billaut, J.-C. (2011). A tabu search heuristic for the
dynamic transportation of patients between care units. European Journal of Operational Re-
search, 214(2):442-452.

Kilby, P., Prosser, P., and Shaw, P. (1998). Dynamic VRPs: A study of scenarios. University of
Strathclyde Technical Report, pages 1-11.

Kouki, Z., Chaar, B. F., and Ksouri, M. (2009). Extended CNP framework for the dynamic
pickup and delivery problem solving. In IFIP International Conference on Artificial Intelligence
Applications and Innovations, pages 61-71. Springer.

Larsen, A., Madsen, O. B., and Solomon, M. (2002). Partially dynamic vehicle routing-models and
algorithms. Journal of the Operational Research Society, 53(6):637—646.

Li, J.-Q., Mirchandani, P. B., and Borenstein, D. (2009). Real-time vehicle rerouting problems
with time windows. Furopean Journal of Operational Research, 194(3):711-727.

Lim, A. and Zhang, X. (2007). A two-stage heuristic with ejection pools and generalized ejection
chains for the vehicle routing problem with time windows. INFORMS Journal on Computing,
19(3):443-457.

Lund, K., Madsen, O. B., and Rygaard, J. M. (1996). Vehicle routing problems with varying
degrees of dynamism (tech. rep.). Lyngby, Denmark: IMM, The Department of Mathematical
Modelling, Technical University of Denmark.

28

Méhr, T., Srour, J., de Weerdt, M., and Zuidwijk, R. (2010). Can agents measure up? a compar-
ative study of an agent-based and on-line optimization approach for a drayage problem with
uncertainty. Transportation Research Part C: Emerging Technologies, 18(1):99-119.

Mitrovié-Minié, S., Krishnamurti, R., and Laporte, G. (2004). Double-horizon based heuristics for
the dynamic pickup and delivery problem with time windows. Transportation Research Part
B: Methodological, 38(8):669-685.

Mitrovié-Minié, S. and Laporte, G. (2004). Waiting strategies for the dynamic pickup and delivery
problem with time windows. Transportation Research Part B: Methodological, 38(7):635-655.

Nagata, Y. and Kobayashi, S. (2010). A memetic algorithm for the pickup and delivery problem
with time windows using selective route exchange crossover. In International Conference on
Parallel Problem Solving from Nature, pages 536-545. Springer.

Pisinger, D. and Rgpke, S. (2007). A general heuristic for vehicle routing problems. Computers &
Operations Research, 34(8):2403-2435.

Powell, W. B., Towns, M. T., and Marar, A. (2000). On the value of optimal myopic solutions for
dynamic routing and scheduling problems in the presence of user noncompliance. Transporta-
tion Science, 34(1):67-85.

Psaraftis, H. N. (1980). A dynamic programming solution to the single vehicle many-to-many
immediate request dial-a-ride problem. Transportation Science, 14(2):130-154.

Psaraftis, H. N., Wen, M., and Kontovas, C. A. (2016). Dynamic vehicle routing problems: Three
decades and counting. Networks, 67(1):3-31.

Pureza, V. and Laporte, G. (2008). Waiting and buffering strategies for the dynamic pickup and
delivery problem with time windows. INFOR: Information Systems and Operational Research,
46(3):165-175.

Renaud, J., Boctor, F. F., and Ouenniche, J. (2000). A heuristic for the pickup and delivery
traveling salesman problem. Computers & Operations Research, 27(9):905-916.

Savelsbergh, M. W. and Sol, M. (1995). The general pickup and delivery problem. Transportation
Science, 29(1):17-29.

Schyns, M. (2015). An ant colony system for responsive dynamic vehicle routing. Furopean Journal
of Operational Research, 245(3):704-718.

Secomandi, N. and Margot, F. (2009). Reoptimization approaches for the vehicle-routing problem
with stochastic demands. Operations Research, 57(1):214-230.

Speranza, M. G. (2018). Trends in transportation and logistics. European Journal of Operational
Research, 264(3):830-836.

Swihart, M. R. and Papastavrou, J. D. (1999). A stochastic and dynamic model for the single-vehicle
pick-up and delivery problem. Furopean Journal of Operational Research, 114(3):447-464.

29

Ulmer, M. W., Mattfeld, D. C., and Koster, F. (2017). Budgeting time for dynamic vehicle routing
with stochastic customer requests. Transportation Science, 52(1):20-37.

van Lon, R. R., Ferrante, E., Turgut, A. E., Wenseleers, T., Vanden Berghe, G., and Holvoet,
T. (2016). Measures of dynamism and urgency in logistics. European Journal of Operational
Research, 253(3):614-624.

Vancroonenburg, W., Esprit, E., Smet, P., and Vanden Berghe, G. (2016). Optimizing internal
logistic flows in hospitals by dynamic pick-up and delivery models. In Proceedings of the 11th
international conference on the practice and theory of automated timetabling, Udine, Italy,
23-26 August, pages 371-383.

Yang, J., Jaillet, P., and Mahmassani, H. (2004). Real-time multivehicle truckload pickup and
delivery problems. Transportation Science, 38(2):135-148.

30

	Introduction
	Literature review
	Problem definition
	The dynamic PDPTW's basic concepts
	A MILP formulation for the PDPTW
	MILP formulation adapted to the dynamic PDPTW

	Dynamic optimization
	Scheduling heuristic
	Dynamism calculation
	The significance of ET

	Computational study
	Performance evaluation criteria
	Datasets
	Computational results

	Conclusions and future work
	Terminology

