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Summary

The popularity of the mixed model can be explained by its flexibility in modelling
complex hierarchical data. Since the introduction of the basic mixed models—the
linear mixed model (LMM), generalized linear mixed model (GLMM) and non-
linear mixed model (NLMM)—a great variety of extensions have been suggested.
For longitudinal studies, the mixed model consists of a fixed part expressing the
effect of covariates on the mean evolution over time and a random part repre-
senting the variation of the individual curves around the mean curve. Selecting
the appropriate fixed and random effect parts is an essential modelling exercise
when choosing the best mixed model. As such, we considered three Bayesian
model selection criteria: the Pseudo-Bayes factor (PSBF), Deviance Information
Criteria (DIC) and Watanabe-Akaike Information Criterion (WAIC). Since there
is little agreement in the statistical literature on the most suitable choice among
these model selection criteria, it a useful exercise to evaluate their performance.
The above criteria can be classified according to the way the random effects

are handled: given the random effects (conditional likelihood) resulting in con-
ditional model selection criteria; or integrating out the random effects (marginal
likelihood), resulting in the marginal model selection criteria. Although the con-
ditional criteria have been criticized in the statistical literature, applied Bayesians
still use the conditional criteria since they are built-in standard Bayesian software.
The marginal model selection criteria have been advocated, but less attention

has been paid to the LMM. Besides, it is surprising that almost no mention is
made of the suboptimality of the conditional criteria. Therefore, we compared
via extensive simulations the performance of the conditional and marginal ver-
sions of DIC, WAIC and PSBF on the classical LMM, to create also awareness
of the problem. We also considered extensions of the classical LMM. The results
confirm the superiority of the marginal criteria in all settings and scenarios of our
simulations. To promote the usage of the marginal criteria among practitioners,
we provided an R function capable of computing the three marginal and condi-

ix
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tional criteria with a minimal computational cost.
We further determined the effect of vague priors on the performance of the

above Bayesian model selection criteria. More specifically, we evaluated the im-
pact of vague priors for the covariance matrix of the random effects on selecting
the correct LMM. For two or more random effects, we considered five different
specifications of the Inverse-Wishart (IW) prior, four different separation tech-
niques, one hierarchical prior and a joint prior. We showed that the choice of a
vague prior has a relatively low to minimal impact on the marginal criteria, in
contrast to the conditional criteria. But if the conditional criteria are to be used,
then it is best to use a separation or a joint prior.
Furthermore, we extended our exploration to check the performance of the

model selection criteria to GLMMs for longitudinal count data. Since a GLMM
does not have a closed-form likelihood like LMM, we, therefore, searched for
efficient ways to compute the marginal criteria. Our computational procedure
is based on the replication sampling approach in combination with importance
sampling. We also provided an R function that computes the marginal model
selection criteria for longitudinal Poisson models and their extensions.
Finally, we explored the performance of the Bayesian model selection criteria

in the context of multilevel mediation models, namely for the 1-1-1 mediation
model. We again demonstrated the superiority of the marginal selection criteria
over their conditional counterparts in the mediated longitudinal settings through
simulation. We also showed that the above R function for LMM needs only little
modification for multilevel mediation models.
In total, we used four longitudinal clinical data sets and one longitudinal non-

clinical data set to further illustrate the performance of the marginal and con-
ditional criteria. These are Jimma infant survival study, Potthoff & Roy dental
study and Nigeria indigenous datasets for both LMM and priors sensitivities pa-
pers. We used Epilepsy seizure data set for GLMM count data paper. For the me-
diation paper; we made use of data from the LASA (Longitudinal Aging Study of
the Amsterdam) study. We made use of the Bayesian software package JAGS in
combination with R. The relevant code can found on https://ibiostat.be/online-
resources/bayesian and in the supplementary material of the papers.



Samenvatting

Het gemengd model is populair omdat het op een flexibele manier complexe hier-
archische data kan modelleren. Vanaf de introductie van de klassieke gemenged
modellen – het lineair gemengd model (LMM), het veralgemeend lineair gemengd
model (GLMM) en het niet-lineaire gemengd model (NLMM) – werden een grote
varieteit van uitbreidingen voorgesteld. Toegepast op longitudinale data, bestaat
het gemengd model uit een populatiegedeelte, genaamd ‘fixed effecten’, wat het
effect van covariaten op de gemiddelde evolutie over de tijd weergeeft en een
stochastisch gedeelte dat de variatie van de individuele kurven rond de gemid-
delde kurve beschrijft, genaamd ‘random effecten’. De keuze van de geschikte
fixed en random effecten is een essentieel onderdeel van het statistisch mod-
elleren van het gemengd model. In die context hebben we drie Bayesiaanse
model selectiecriteria uitgekozen, namelijk de Pseudo Bayes Factor (PSBF), het
Deviance Informatie Criterium (DIC) en het Watanabe-Akaike Informatie Cri-
terium (WAIC). Aangezien er onenigheid is in de statistische literatuur omtrent
het meest geschikte criterium, leek het ons nuttig na te gaan welke van deze
criteria meest performant is voor het selecteren van een gemengd model.
De bovenvermeldde criteria kunnen onderverdeeld worden aan de wijze waarop
de random effecten behandeld worden. Namelijk men kan de random effecten in
het statistisch model houden, dan spreekt men van een conditionele likelihood,
om het met een Engelse term te benoemen. Deze resulteren dan in conditionele
model selectiecriteria. Een andere manier is de random effecten uit de likelihood
uit te integreren, men krijgt dan een marginale likelihood en dit resulteert dan in
marginale model selectiecriteria. Hoewel dat de conditionele criteria bekritiseerd
werden in de statistische literatuur, worden zij nog steeds het meest gebruikt door
de toegepaste Bayesiaanse statistici vooral omdat deze criteria in de Bayesiaanse
software ingebouwd werden.
De marginale model selectiecriteria werden in de statistische literatuur aanbev-
olen, maar hierbij is er tot nu weinig aandacht gegeven aan het lineair gemengd

xi
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model. Bovendien is het verrassend te zien dat praktisch nooit de suboptimaliteit
van de conditionele criteria wordt vermeld. We hebben daarom de performantie
van de conditionele en marginale versies van DIC, WAIC en PSBF vergeleken
met behulp van extensieve simulaties op het klassieke LMM, gedeeltelijk om ook
de statistici te wijzen dat men best afstapt van de conditionele criteria. Verder
hebben we ook extensies bekeken van het klassieke LMM.
Onze resultaten bevestigen de eerder bekomen superioriteit van de marginal cri-
teria in alle simulatiescenarios. Om het gebruik van de marginale criteria te
promoten hebben we verder een R functie ontwikkeld die de drie conditionele
en marginale criteria zonder veel extra inspanning berekent. Voorts hebben we
het effect van vage prior verdelingen nagegaan op de effectiviteit van bovenver-
meldde Bayesiaanse model selectiecriteria. Meer specifiek hebben we het impact
van vage priors op de covariantie matrix van de random effecten geevalueerd op
het selecteren van het correcte LMM. Wanneer 2 or meer random effecten in het
LMM aanwezig waren, hebben we vijf verschillende specificaties van de Inverse
Wishart (IW) prior bekeken, en verder vier verschillende separatie technieken, een
hierarchische prior en een gezamenlijke prior. We hebben dan aangetoond dat de
keuze van een vage prior weinig of geen impact had op de marginale criteria, in
tegenstelling tot de conditionele criteria. Maar als we noodgedwonden een con-
ditioneel criterium moeten gebruiken, dan bleek uit de simulatieresultaten dat
een separatie of een gezamenlijke prior te verkiezen is.
In een volgende stap, hebben we ons onderzoek naar de performantie van de
model selectiecriteria uitgebreid naar GLMMs for longitudinale data. Omdat
een GLMM geen analytische resultaten toelaat zoals bij het LMM, hebben we
naar efficiente methodes gezocht voor de berekening van de marginale criteria.
Onze computationele procedure is gebaseerd op de replicatiemethode in com-
binatie met importance sampling. We hebben dan ook weer een R programma
geschreven dat voor deze modellen de conditionele en marginale criteria berekent.
We hebben tot slot ook de performantie bekeken van de Bayesiaanse model selec-
tiecriteria voor een multilevel mediatie model, namelijk voor het 1-1-1 mediatie
model. En weer heb-ben we de superioriteit van de marginale criteria aange-
toond opnieuw gebruik makende van extensieve simulatiestudies. Een kleine
aanpassing van het bestaande R programma voor een LMM was nodig om de
criteria te berekenen voor dit mediatie model. We maak-ten in deze thesis ge-
bruik van vier longitudinale data sets, namelijk: Jimma Infant Survival study,
Potthoff & Roy en Nigeria indigenous Chicken data sets voor klassieke LMM
en prior gevoeligheid artikel. We gebruikten epilepsie-aanvalsgegevensset voor
GLMM-telgegevens artikel. Voor het mediatie artikel maakten we gebruik van
data verzameld in de LASA (Longitudinal Aging Study of the Amsterdam) studie.
Tot slot, alle progammas were ge-schreven in R in combinatie met JAGS. De code
van de programma’s kan men vinden op de website: https://ibiostat.be/online-
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resources/bayesian en in supplementair materiaal van de artikels.
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Chapter 1
General Introduction

Medical and epidemiological research applications often involve longitudinal stud-
ies which employ repeated measures to monitor individuals over time. The re-
sponse of interest in a longitudinal study may be continuous, count, binary,
categorical or a combination of two or more outcomes. Regardless of the nature
of the response, mixed models are one of the most popular tools for analysing
longitudinal data.
Mixed models combine fixed effects with random effects. Since the introduction
of the basic mixed models: the linear mixed model (LMM), generalised linear
mixed model (GLMM), and non-linear mixed model (NLMM), a great variety
of extensions have been suggested. For example, the classic mixed model with
the normality assumption for either the random and/or measurement error parts
of the model has been extended to encompass a variety of distributions such as
skew-normal and skew-t-distributions (Sahu et al., 2003; Arellano-Valle and Gen-
ton, 2005; Arellano-Valle et al., 2007; Arellano-Valle and Genton, 2010; Huang
and Dagne, 2012). Others have utilised a joint model where the repeated out-
come is analysed simultaneously with the time-to-dropout (Ivanova et al., 2016;
Rizopoulos, 2012, 2011), with the repeated outcome being analysed jointly with
the missing data process (Molenberghs et al., 2004; Ivanova et al., 2017). Mixed
models have also been suggested for dealing with the presence of over-dispersion
or under-dispersion in the longitudinal outcome (Ivanova et al., 2014; Aregay
et al., 2013; Molenberghs et al., 2010, 2007). These extensions were made un-
der both the frequentist and the Bayesian paradigms. Given a data set, a variety
of mixed-effect models can be considered—hence, there is a need for model se-
lection.
Three popular Bayesian model selection criteria often allow comparing Bayesian
mixed models in practice. One of the earlier selection criteria suggested in the
literature is Bayes’ factor (Kass and Raftery, 1995). This criterion would be a

1



logical choice; however, it is severely influenced by choice of prior as well as hav-
ing severe computational issues. Some alternatives have been proposed (see for
example De Santis and Spezzaferri, 1997) and the most popular is the Pseudo-
Bayes factor (PSBF). The PSBF first updates the (improper) prior to a proper
posterior and then computes the Bayes’ factor using the generated posterior as
the prior. This alternative criterion, although relatively easy to compute, is not
yet commonly used. Indeed, the popular choice is the Deviance Information
Criterion (DIC), although it has been demonstrated that DIC might be problem-
atic in practice (see Spiegelhalter et al., 2014, and the discussions therein). For
instance, when the effective degrees of freedom are estimated to be negative,
DIC cannot be used. A promising alternative to DIC is the Widely Applicable
Information Criteria (WAIC) (Watanabe, 2013), which has been singled out as
a worthy successor to DIC (Spiegelhalter et al., 2014). This criterion estimates
the predictive accuracy of the model. It includes a bias correction for the data to
be able to be used twice, i.e., to estimate the model and evaluate its accuracy.
The computation of the criteria mentioned above (i.e. DIC, WAIC and PSBF) is
based on the models’ likelihood, which can either be the conditional likelihood or
the marginal likelihood. The distinction between these likelihoods has been made
previously in the literature. In their original paper, Spiegelhalter et al. (2002)
discussed the conditional/marginal DIC where they refer to the issue as "model
focus" (see also Celeux et al., 2006; Millar, 2009). For the conditional likelihood,
the model is based on fixed and random effects, while for marginal likelihood, the
random effects have been integrated out. Gelman et al. (2014) point out that
there is a choice to be made when defining the likelihood for Bayesian information
criteria between the conditional and marginal versions since both versions give
different results under the same or similar settings. However, most researchers are
often not aware of this distinction and only rely on the default software (Merkle
et al., 2018).
The choice between the conditional and the marginal model selection criteria is
based on whether we wish to measure the predictive ability of the model on new
units from either the same or a new cluster respectively. That is to say, if we
want our model to make predictions for new units from the same clusters as in
our original data, then the conditional likelihood is appropriate, and we must then
deal with conditional DIC (cDIC), conditional PSBF (cPSBF), and conditional
WAIC (cWAIC). Conversely, the marginal likelihood will be an appropriate choice
if we measure the predictive ability of our model for new units from clusters not
in the original data, and in which case we would then deal with marginal DIC
(mDIC), marginal PSBF (mPSFB), and marginal WAIC (mWAIC). The choice
should be motivated by the research question (Vaida and Blanchard, 2005).
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Studies have advocated the use of marginal criteria (Chan and Grant, 2016a;
Quintero and Lesaffre, 2018; Merkle et al., 2018; Millar, 2018; Li et al., 2016) for
different models; however, less attention has been given to the LMM. Therefore,
our study opts to compare the performance of the conditional and marginal ver-
sions of DIC, WAIC, and PSBF in LMM but also to its extensions to skew-normal
and skew-t distributions for either (or both) random effects and measurement er-
ror. To promote the usage of marginal criteria among the practitioners, we
provided an easy-to-use R function which computes both the marginal and con-
ditional criteria with only a minimal computational cost. Building upon previous
results, we evaluated the effect of vague priors on the Bayesian model selection
criteria. More specifically, we assessed the impact of vague priors for the covari-
ance matrix of the random effects on the selection of the correct LMM. For two
or more random effects, we considered five different specifications of the conju-
gate Inverse-Wishart (IW) prior, four different separation techniques (separation
priors), and one joint prior.
Furthermore, we conducted the research utilising a GLMM for longitudinal

count data. Since a GLMM does not have a closed-form likelihood, we con-
sidered sampling procedures (replication and importance sampling methods) to
compute the marginal criteria for a GLMM. We also provided an R function that
renders these computations flexible. Additionally, we illustrated the performance
of the conditional and marginal criteria in multilevel mediation models. These
topics have been introduced and explained using four longitudinal medical data
sets alongside one non-medical longitudinal data set.

1.1 Medical Introduction

The ability of any patient to respond to treatments (vaccine/drug) depends on
several factors. For example, a Covid-19 patient’s recovery depends on multiple
factors like age, underlying health issues, the efficacy of their immune system,
and the viral load of the patient. Regardless of the health care received by the
patient, these patient-specific factors are essential in the recovery process. As
such, an individual-specific random effects model is essential in modelling data
sets generated in these situations.
In trying to understand the nature of a disease and developing a new drug/
vaccine, researchers often employ a longitudinal study by repeatedly monitor-
ing an individual over time. Still on the Covid-19 example, the research may
track some vital signs of the patient at intervals over a specific period (i.e. the
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virus incubation period). These vital signs could take different forms, such as,
count (patients’ hearth beat), continues (body temperature) and binary (the pres-
ence/absence of a sign). Mixed model effects (individual-specific mixed models)
are the most popular tools for analyzing this repeated data, see Section 1.0 for
more information.
When the model under consideration contains the random effects (individual-
specific effects), the definition of likelihood is not straightforward. The questions
are, what type of likelihood should be used? Should the random effects be
counted as a parameter or not? Indeed, the answer to these questions depends
on the focus of the research. With the Covid-19 example, the question is, should
we ignore or consider the effect of an individual patient in forecasting the efficacy
of the new drug? The answer indeed depends on the researcher and the aim of
the research.
As efforts are ongoing to find a drug/vaccine for this pandemic, the distinc-
tion between the choice of the conditional and marginal criteria should be made.
When the focus is to measure the effect on a new drug on patients in a treatment
centre (hospital), then the conditional criteria may be used. Conversely, if the
focus is upon the overall treatment effect of the new drug/vaccine leaving aside
the individual-specific factors (which is often the case in most medical research),
we argued that the use of conditional criteria should be discouraged. Preferably
the marginal criteria should be used. In the marginal criteria, the main objec-
tive is to measure the efficacy of the new drug/vaccine on patients in a new or
similar treatment centre (hospital) rather than only within the treatment centres
in the data set. As such, we are motivated to make a clear distinction between
the conditional and the marginal criteria. We have also shown the superiority
of the marginal criteria in most settings and scenarios. We are aware that some
researchers may be reluctant in the use of conditional criteria. Consequently, we
provided R functions that compute both the conditional and marginal criteria for
researchers’ judgement.

1.2 The linear mixed model with extensions

Linear mixed models (LMMs) are popular to analyze repeated measurements with
a Gaussian response. These models represent an extension of the linear regres-
sion framework, in which model coefficients for predictive variables are permitted
to vary randomly between individuals or groups. Since its introduction by Laird
and Ware (1982), several extensions have been proposed in the literature, and
thorough reviews of this topic are given by Verbeke and Molenberghs (2000) and
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McCulloch et al. (2008) among others.
Let assume that there are n subjects (independent) and each is repeatedly mea-
sured mi times. Let Yij be the observation of the jth response of the ith subject
for j = 1, . . . ,mi and i = 1, . . . , n and let xij = (1, xij,1, xij,2, . . . , xij,p)T and
zi,j = (1, zij,1, zij,2, . . . , zij,q)T be the corresponding (p+ 1)× 1 and (q + 1)× 1
predictor vectors. Let us assume that the data satisfy the LMMs
Yij = β0 + β1xij,1 + · · · + βpxij,p + bi0 + bi,1zij,1 + · · · + bi,qzij,q + εi,j, where
β = (β0, . . . , βp)T is a (p+ 1)−dimensional vector of unknown fixed-effects co-
efficients, bi = (bi,0, . . . , bi,q)T is a (q+1)−dimensional random effect belonging
to the ith subject with zij,1 instead of xij,1 : bi ∼ N(q+1)(0,D) and εi,j are the
random errors for j = 1, . . . ,mi, i = 1, . . . , n. Alternatively, the classical LMM
can be expressed in matrix notation as

Yi = Xiβ + Zibi + εi, (1.1)
where Yi is an mi-dimensional response vector of measurements for the i-th
subject, (i = 1, . . . , n). Xi and Zi are mi × (p + 1) and mi × q-dimensional
covariate matrices, respectively, and β is a (p + 1)-dimensional vector of fixed
effects. The residual component vector εi is distributed as Nmi(0,Σi), where
Σi is an mi × mi positive-definite covariance matrix. It is usually assumed
that Σi = σ2

ε Imi , where Imi denotes the identity matrix of dimension mi. The
(q+1)-dimensional random-effects vectors bi are assumed independent from the
residuals and distributed as Nq(0,D), where D is a (q + 1) × (q + 1) positive-
definite covariance matrix.
A great number of extensions have been made to the LMMs. For example, in lon-
gitudinal studies on HIV patients, both viral load response and CD4 cell counts
are highly skewed, it might be more realistic to assume a multivariate skew-
normal for both random effects and measurement error (Huang and Dagne, 2011,
2012). Hence, Arellano-Valle and Genton (2005) extended LMMs by assuming
that both the random effects and measurement error follow a skew-normal linear
mixed model (SNLMM) (see also Sahu et al., 2003; Arellano-Valle et al., 2007;
Huang and Dagne, 2012; Lachos et al., 2013, 2010). Arellano-Valle et al. (2007)
also suggested a skew-t distribution whereby the t-distribution replaces the clas-
sical Gaussian distribution.

1.3 Prior sensitivity

An essential step in the Bayesian modelling is the choice of priors for the model
parameters. When prior knowledge is available, an informative prior is typically
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chosen while in the absence of prior information, a vague prior must be used.
In many situations, vague prior distributions are selected with the intention that
they should have little or no impact on inference. However, a naive choice of a
vague prior may have unwillingly a significant effect on posterior inference espe-
cially when the data set is small (Lambert et al., 2005).
For a mixed model (e.g. LMM), a vague prior is mostly taken for the fixed effects
and the variance components. In this thesis, we have taken vague normal priors
for fixed effects while will focus on the effects of different vague priors for the
covariance matrix of the random effects. We consider the univariate case of a
random intercept and the multivariate case of several random effects. For the
univariate case, various vague priors have been suggested for the level-2 variance
(variance of random intercept) of the Gaussian hierarchical model. This model
is a special case of the LMM with only a random intercept. In that case, (1.1)
can be written as

Y i ∼ N(Xiβ + 1mibi, σ2
ε ) i = 1, . . . , n. (1.2)

with 1mi is a mi × 1 vector of ones, and where the random intercept bi ∼
N(0, σ2

b ). The improper prior p(σ2
b ) ∝ 1/σ2

b , suggested by Jeffreys for the simple
case of N(µ, σ2) yields an improper posterior for model (1.2) if applied to σ2

b .
This was recognised a long time ago, see e.g Lesaffre and Lawson (2012). Hence,
we considered different vague priors for σb and evaluate their impact on the per-
formance of the conditional and marginal criteria in identifying the appropriate
model.
Specifying an appropriate prior for a covariance matrix has been the topic of
intensive research in the last two decades. The IW distribution gives the math-
ematically convenient prior for a covariance matrix. This prior is often used in
Bayesian modelling for an unknown covariance matrix due to its conditional con-
jugacy and its implementation in most of the Bayesian statistical software. Still,
there are practical problems with this prior. In Chapter 4.5.2, we review the
issues involved with the IW prior, then we discuss some generalizations of this
prior to improve convergence properties and its ability to represent (absence of)
prior knowledge in an appropriate manner.
To address the problems with the IW prior, different separation strategies (Barnard
et al., 2000) have been proposed including: Cholesky decomposition (Wei and
Higgins, 2013), spherical decomposition (Pinheiro and Bates, 1996), Fisher’s
z-transformation (Daniels and Kass, 1999), partial prior (Barnard et al., 2000)
among others. Often, priors for error variance and variance-covariance matrix of
the random effects are independently modelled. However, it has been shown by
Demirhan and Kalaylioglu (2015) and by Kalaylioglu and Demirhan (2017) that
a joint prior for these variance terms is more appropriate. Hence, we compare
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the performance of IW, separation priors and a joint prior on the performance of
the conditional and marginal criteria in selection true data-generating models.

1.4 The generalized linear mixed model

Generalized linear mixed models (GLMMs) have become popular in analyzing lon-
gitudinal data with a non-Gaussian longitudinal response. The fitting of GLMMs
to a longitudinal data structure, has been the subject of a great deal of re-
search over the past decades see also Breslow and Clayton (1993), Engel and
Keen (1994), Wolfinger and O’Connell (1993) ,Verbeke and Molenberghs (2000),
Dean and Nielsen (2007), Tuerlinckx et al. (2006) and Molenberghs et al. (2002).
Let Yij be the jth outcome for subject i = 1, . . . , n, j = 1, . . . ,mi where mi

measurements into vector Yi, given (q+ 1)-dimensional random effects bi, then
yij’s are independent with model

fi(yij|bi,β, φ) = exp
{
φ−1[yijλij − ζ(λij)] + c(yij, φ)

}
,

η[ζ ′(λij)] = η[E(yij|bi,λ)] = xTijβ + zTijbi
(1.3)

where xij and zij are (p+ 1)-dimension and (q+ 1)-dimension covariate, vectors
β is a (p+ 1)-dimension vector of unknown fixed effects parameters, φ is a scale
(overdispersion) parameter and η(·) is a known link function. Assume that the
density of the random effects bi is given as f(bi|D), then the marginal likelihood
function is:

L(Θ,D) =
n∏
i=1

∫ mi∏
j=1

fij(yij|Θ,bi)f(bi|D)dbi. (1.4)

Here, Θ represents all model parameters for Yi given bi. The integral (1.4)
most often cannot be computed analytically. Hence the need for an alternative
approach to compute the marginal likelihood.

1.5 Mediation Analysis

Mediation analysis enables researchers to investigate how exposure affects an
outcome in the presence of a mediator. The concept of mediation has broad
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applications in both biomedical and social science research. For example, in the
Longitudinal Ageing Study of Amsterdam (LASA), processing speed has been in-
vestigated as a mediator of the relationship between age and cognitive function
(Robitaile et al., 2013).
Mediation analysis may present complex-mediated relationship where a mediator
influences the outcome. For example, in a study of the relationship between hep-
atitis C progression, alcohol consumption may affect adherence to antiretroviral
therapy, which, in turn, affects the viral load. However, heavy alcohol consump-
tion may affect liver function. If the study aims to evaluate the total effect of
an exposure (main independent variable) on an outcome (dependent variable),
a linear mixed model could be fit to the data (Blood et al., 2010; Blood and
Cheng, 2011).
Let i be the index of a first-level unit and j be index of a second level unit. A
two-level mediation model can be expressed as

Mij = β1j + αjXij + eMij

Yij = β2j + βjMij + τ
′

jXij + eYij ,
(1.5)

and level 2 is given as

β1j = β3 + u1j

aj = α + u2j

β2j = β4 + u3j

βj = β + u4j

τ
′

j = τ
′ + u5j,

where eMij
and eYij are level 1 error terms for M and Y respectively; the param-

eters β1j and β2j are random intercepts, and αj, βj and τ ′
j are random slopes.

The parameters β2 and β3 are population (or average) effects. For multilevel
modelling, the first-level residuals eMij

and eYij are assumed to be independent
and follow normal distribution, that is eMij

∼ N(0, σ2
eMij

) and eYij ∼ N(0, σ2
eYij

)
and the second-level residuals uj = (u1j, u2j, u3j, u4j, u5j)T follow a multivariate
normal distribution uj ∼ N(0,D) where D is 5× 5 covariance matrix.
In multilevel mediation, the average indirect effects in the population are often of
primary interest. Yuan and MacKinnon (2009) gave the average indirect effects
(applies to models with only random slopes) formula to be

ab = E(αjβj) = αβ + σαjβj , (1.6)
where σαjβj denotes the covariance between αj and βj.
MacKinnon (2008) and Kenny et al. (2003) also showed that the total effect in
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a fully random, lower mediated multilevel model is

c = τ
′ + αβ + σαjβj (1.7)

and the relative average indirect effect can be expressed as

ab/c =
αβ + σαjβj

τ ′ + αβ + σαjβj
. (1.8)

The above statistic is often called the proportion mediated in the literature see
Ditlevsen et al. (2005); Ananth (2019). Its main setback is that it cannot be
used when the direct and indirect effects have a different sign (i.e. the mediation
model is inconsistent). This setback implies that the proportion mediated model
can exceed 1 and can be negative. This renders its interpretation meaningless.

1.6 Motivating data sets

1.6.1 Jimma Infant Survival Study

In this data set, 495 newborns from the Jimma town in Ethiopia born in the
period: 11-9-1992 until 10-9-1993 were examined from birth and approximately
every two months for their height, weight and arm circumference. This epidemi-
ological cohort study aims at relating demographic and other variables on the
child’s first year’s weight and height evolution. The measured covariates are the
gender of the child, age of the mother in the first year, cultural practices applied
to the child, etc. There are many missing values due to children that die or get
lost-to-follow-up. Besides, the visits are only approximately taken at equal time
lags. Furthermore, when weight is regressed on height and other covariates, one
has to take into account that height is measured with error. For a reference, see
Lesaffre et al. (1999).

1.6.2 Potthoff & Roy dental data set

We considered a well known balanced longitudinal dental study analyzed by Pot-
thoff and Roy (1964). Dental measurements on eleven girls and sixteen boys at
four different ages (t1 = 8, t2 =10, t3 = 12, and t4 = 14) were taken. Each
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measurement is the distance, in millimetres, from the centre of the pituitary to
pteryo-maxillary fissure. Other authors have considered this data in the literature
(Baey et al., 2017; Al-Rawwash and Pourahmadi, 2013).

1.6.3 A Clinical Trial in Epileptic Patients

Epilepsy data set is a public data set of 89 patients who have epilepsy. The
data is from a randomized, double-blind, parallel-group, multi-centre study for
the comparison of placebo with a new anti-epileptic drug (AED), in combination
with one or two other AED’s (Faught et al., 1996). Patients were randomized
after a 12-week stabilization period for the use of AED’s, and during which the
number of seizures was counted. After that run-in period, 45 patients were as-
signed to the placebo group, 44 to the new treatment. Patients were measured
weekly and followed (double-blind) during 16 weeks; thereafter, they entered
a long-term open-extension study. Some patients were followed for up to 27
weeks.
The experiment compares the number of seizures experienced by the patients
among the groups. Booth et al. (2003) used this data set as an illustrating
example when modelling longitudinal counts data with overdispersion and corre-
lation. Other authors Aregay et al. (2013); Rakhmawati et al. (2016); Iddi and
Doku-Amponsah (2016) have used this data and for more elaborate discussions,
refer to Faught et al. (1996) and Molenberghs et al. (2007). The outcome of
interest is the number of epileptic seizures experienced during the last week, i.e.,
since the last time the outcome was measured.

1.6.4 The Longitudinal Aging Study Amsterdam (LASA)

LASA data set is a longitudinal study that started in 1992 to determine the
predictors and consequences of ageing. It consists of a national representative
sample of 3,805 older adults stratified according to the year of birth, sex and
geographical locations of people born between 1908 and 1937. Data relating to
physical, emotional, cognitive and social functioning in late life, the connections
between these components, the changes in these components that occur with
time within and between respondents, and the consequences of these changes
were measured every 11 months by trained medical and psychology interviewers.
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Attrition in LASA can be attributed for the most significant part to mortality,
and a lesser extent to refusal, or other reasons (Huisman et al., 2011). For a
further description of the data set, see Huisman et al. (2011).

1.6.5 The Nigerian Indigenous Chicken (NIC) data set

The Nigerian Indigenous Chicken data set describes the longitudinal evolution of
the body weight (BW) of chickens of different breeds raised in a Federal Uni-
versity of Agriculture, Abeokuta Nigeria experimental farm. Four hundred and
sixteen chickens were measured every week from hatching up to 20 weeks. While
some chickens live up to the completion of the study, some die before 20 weeks,
hence creating an unbalanced data set. The study aimed to evaluate the growth
of different chicken breeds. Here we considered two classes of progenies. Two
hundred and seventy chickens were produced from the same parent stock (pure
breed), while 146 chickens have different parents (cross breed). The rationale
for the study and the experimental design can be found in Adeleke et al. (2011).

1.7 Thesis contribution

The main aim of this thesis is to provide practical guidelines for practitioners,
especially for clinical researchers, on the use of appropriate Bayesian model se-
lection criteria for the analysis of longitudinal data. More specifically, this thesis
evaluates the operational performance of the conditional and the marginal ver-
sions of DIC, PSBF and WAIC in selecting the correct data-generating model.
We were triggered to conduct this research based on the fact that (1) researchers
are reluctant to use the marginal criteria despite their advantages shown in the
literature and (2) the criteria have not yet been extensively checked for their
performance in commonly used LMMs. To this end, we explored: (i) the proper-
ties of Bayesian model selection criteria in LMMs with some extension, and (ii)
measured the impact of the prior on both versions of the criteria, (iii) evaluated
the performance of these criteria when the likelihood is not analytically available
in GLMMs and (iv) illustrated the usefulness of these exercises in multilevel me-
diation models. Five longitudinal data sets were used as motivating data sets
for the simulation setups. For this purpose, we addressed the following specific
objectives:

11



1. Study the performance of the conditional and marginal versions of the
Deviance Information Criteria, Pseudo-Bayes factor and Widely Applica-
ble Information Criteria in identifying the correct data-generating model in
LMM.

2. Extend objective (1) in the skew-normal LMM (SNLMM) and the skew-
t LMM (STLMM) for either or both random effects and measurement error.

3. Evaluate the impact of vague priors for the variance of the univariate and
multivariate random effects on the performance of the marginal and con-
ditional model selection criteria.

4. Extend the objectives above to a generalized linear mixed model especially
with over-dispersed count data.

5. Evaluate the performance of two sampling techniques (replication and im-
portance sampling methods) in computing the marginal criteria.

6. Evaluate the selection criteria on multilevel mediation models.

1.8 Overview of the subsequent chapters

This thesis is structure as follows: Chapter 2 presents a general introduction to
Bayesian inference discussing the central methodology used in the thesis. The
four subsequent chapters correspond to published or submitted manuscripts that
address the specific objectives of this thesis. In the last chapter, some general
conclusions are presented as well as it exhibits a discussion of the limitations of
our research and it discusses a possible future research topics.
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Chapter 2
Bayesian Inference

2.1 Bayesian Inference

Statistical inference is the ensemble of activities of using data to extract informa-
tion on the probability distribution that generated the data. Statistical inference
is made via at least two mainstream paradigms: (i) the frequentist approach and
(ii) the Bayesian approach.
The frequentist approach to inference is based on exploring the repeated sam-
pling properties of test statistics given an unknown but fixed (actual) value of
the model parameters Θ. Conversely, Bayesian inference considers parameters
Θ as stochastic, and the probability statements are conditional on the observed
value of y. The probability statements about these parameters (Θ given y) are
derived from the model providing a joint probability distribution for Θ and y,
given by

p(Θ,y) = p(Θ)p(y|Θ),
where p(Θ) is referred to as the prior distribution and p(y|Θ) = L(Θ|y) the
sampling distribution evaluated in Θ, also called the likelihood function evalu-
ated in Θ given y. Together with p(Θ,y) = p(Θ|y)p(y) yields Bayes’ rule and
the posterior density:

p(Θ|y) = p(Θ)p(y|Θ)
p(y) , (2.1)

where p(y) =
∫
p(Θ)p(y|Θ)dΘ in the case of continuous Θ. The denominator

p(y) does not depend on Θ and is regarded as a normalizing constant. The prior
distribution p(Θ) can be described based on past evidence, previous studies or
expert opinion. When such information is not available, the use of vague prior
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may be an option.
The posterior distribution (2.1) combines the prior belief p(Θ) with the likeli-
hood L(Θ|y) to carry out the inference. The main interest in Bayesian inference
is to summarise p(Θ|y) and draw inference (conclusions) about the model pa-
rameters. To achieve this, summary statistics such as the posterior mean and
the standard deviation are obtained. The credible interval (also called Bayesian
confidence interval) contains the most plausible values of the model parameters.
There are two commonly used credible interval: the equal tail credible interval
and the highest posterior density credible interval. The posterior distribution
(2.1) parameter has a closed-form in case of a conjugate prior distribution of the
model. For example, when counts follow a Poisson distribution and the mean rate
(λ) is assigned a Gamma prior, the posterior distribution of (λ) has a Gamma
density. This ensures a more straightforward computation of the posterior sum-
mary measures. Conversely, when the analytic determination of the posterior is
not possible, i.e. when p(y) =

∫
p(y|Θ)p(Θ)dΘ is not analytically available,

then one needs numerical techniques such as numerical integration and Monte
Carlo sampling to compute the posterior probability distribution.

2.2 Prior Distribution

The prior distribution of Θ represents the distribution of possible parameter
values imperative of the observed data. There are mainly two kinds of prior dis-
tributions: non-informative prior and informative prior distributions. With non-
informative priors the data mainly determine the posterior distribution. Some
examples of non-informative priors include: (i) locally uniform prior (Hartigan
et al., 1996) (ii) Jeffreys invariant priors (Jeffreys, 1961), (iii) reference priors
(Berchialla et al., 2009), (iv) probability matching priors (Mukerjee and Ghosh,
1997), other examples are described in Kass and Raftery (1995).
It is important to note that no prior is completely non-informative (see for ex-
ample Lambert et al., 2005; Ariyo et al., 2019a) as the name is a misnomer.
When prior knowledge is available, either from previously analyzed data or from
an expert’s opinion, an informative prior distribution may be used. An infor-
mative prior dominates the likelihood, that is when using an informative prior,
data are allowed to “speak” for itself and that has an impact on the posterior
distribution. Gelman and Hill (2007) and Gelman et al. (2004b) advocated the
use of informative priors for final analysis after initial model development using
non-informative priors.

14



2.2.1 Conjugate priors

Raiffa and Schlaifer (1961) proposed the formal definition and concept of con-
jugate prior distributions. The formal definition is given as follows:
If F is a class of sampling distribution p(y|Θ), and P is a class of prior distri-
bution for Θ, then the class P is conjugate for F if

p(Θ | y) ∈ P for all p(· | Θ) ∈ P and p(·) ∈ P .

The conjugate prior has computational advantages and easily interpretable as
additional data.

2.3 Markov chain Monte Carlo sampling

In many applications, the analytical calculation of the posterior distribution (and
its summary measures) is often not feasible due to the difficulty in determining
the integration constant p(y). In this case, numerical integration methods may
be used but they fall short for dimensions above 10. An often more attractive
approach is to sample from the posterior. The most popular class of sampling
algorithms is called Markov chain Monte Carlo (MCMC) methods.
Markov Chain Monte Carlo sampling generates a sequence Θ1,Θ2, . . . ,ΘK sat-
isfying the Markov property, i.e. p(Θk+1|Θk,Θk−1, . . . ,y) = p(Θk+1|Θk,y).
This property means that given the current Θk, the value Θk+1 is independent
from the previous elements in the sequence.
MCMC techniques have been used in the simulation of stochastic systems. They
are also useful for estimating integrals in situations where a closed-form analyt-
ical solution cannot be attained. This is often the case in Bayesian methods,
where the problem is multidimensional, and integration is not possible. Integrals
are also to determine the marginal distribution of a random variable or taking its
expected value. The two most important MCMC procedures are (a) the Gibbs
sampler and (b) the Metropolis(-Hastings) algorithm.
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2.3.1 The Gibbs sampler

Gibbs sampling (Geman and Geman, 1984) has become very popular in statistics
when Gelfand and Smith (1990) showed its applicability in the Bayesian frame-
work. It is a special case of the Metropolis-Hastings algorithm and based on
the property that a multivariate distribution is uniquely determined by its condi-
tional distributions. Gibbs sampling is often easy to implement. Given a starting
position Θ0 = (Θ0

1,Θ0
2, . . . ,Θ0

d), the method samples from the full conditional
distributions at iteration (k + 1) with the following d steps:

• Sample Θ(k+1)
1 from p(Θ1|Θk

2,Θk
3, . . . ,Θk

d,y)

• Sample Θ(k+1)
2 from p(Θ2|Θ(k+1)

1 ,Θk
3, . . . ,Θk

d,y)
...

• Sample Θ(k+1)
d from p(Θd|Θ(k+1)

1 ,Θ(k+1)
2 , . . . ,Θ(k+1)

(d−1),y).

It has been shown (see for details Lesaffre and Lawson, 2012) that under mild
regularity conditions and from iteration k0, the Gibbs sampler generates a se-
quence Θk0+1,Θk0+2, . . . ,Θk0+K which can be regarded as observations from
the posterior distribution p(Θ|y).

2.3.2 Metropolis-Hastings (MH) algorithm

The Metropolis-Hastings (MH) algorithm is an MCMC method for obtaining a
sequence of random samples from a probability distribution which is difficult to
obtained directly. Its main difference from the Gibbs sampler is that it does not
require the full conditionals. The idea is to obtain the posterior distributions
through a proposal density q which is straightforward to sample from. Let sup-
pose that when exploring p(Θ|y), the Markov chain is at position Θk at the kth
iteration. Then, we sample Θ̃ from a proposal density q(Θ̃|Θk) and compute
the acceptance probability as

α(Θk, Θ̃) = min
(
p(Θ̃|y)q(Θk|Θ̃)
p(Θk|y)q(Θ̃|Θk)

, 1
)
,

with the next value Θ(k+1) equal to either the sampled Θ̃ with probability
α(Θk, Θ̃) or equal to Θk with probability 1 − α(Θk, Θ̃). Therefore, Θ(k+1)
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is likely to stay at the same position as Θk when Θ̃, presents a low value for
p(Θ̃|y). The multivariate normal distribution with equal mean to the current
position Θk and a well-chosen covariance matrix Σ is a popular choice, but also
a multivariate t-distribution is often used. For a good performance of the MH
algorithm, the proposal covariance matrix Σ should be chosen such that the ac-
ceptance probability is ≈ 45% for d = 1, and ≈ 24% for d > 1.

2.4 Convergence of the MCMC Algorithms

The main idea of the MCMC algorithm is to create a Markov chain that has
a stationary distribution equal to the posterior distribution. However, it not
straightforward to determine whether convergence has been realized in practice.
Convergence is evaluated using dedicated tests often by checking stationarity of
the chain (e.g.,Geweke test) or by checking mixing of the multiple chains,(Brooks-
Gelman-Rubin diagnostic).
To access the stationary, a simple graphical tool is the traceplot: a time series
plot with the iteration number on the x-axis and the sampled value on the y-axis.
When convergence is concluded, the traceplot appears as a horizontal strip where
individual movements across iterations are hardly discernible.

2.5 Software

The development of MCMC algorithms has popularized the use of Bayesian statis-
tics. Nowadays, many applied statisticians make use of BUGS software, after its
release in 1989. The realization of different Bayesian R packages after that has
facilitated the coding of algorithms to the sample from the posterior distribu-
tions.
Just Another Gibbs Sampler (JAGS); an alternative Bayesian package based on
(an extended version of) the BUGS language has become popular in recent years.
The motive for JAGS development can be summarised as: (i) to have a cross-
platform engine for the BUGS language, (ii) to be extensible, allowing users to
write their functions, distributions and samplers and (iii) to be a platform for
experimentation with ideas in Bayesian modelling.
All the models considered in this thesis were implemented in JAGS running inter-
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actively from R using the rjags package. The relevant code can be found online
as supplementary material of the published papers and in the Appendix of this
thesis.
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Chapter 3
Bayesian model selection in linear
mixed models for longitudinal
data

This chapter has been published as:

Ariyo, O., Quintero, A., Muñoz, J., Verbeke, G., and Lesaffre, E.
(2019). Bayesian model selection in linear mixed models for
longitudinal data. Journal of Applied Statistics 47 (5), 890-913.
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Abstract

Linear mixed models (LMMs) are popular to analyze repeated measurements
with a Gaussian response. For longitudinal studies, the LMMs consist of a fixed
part expressing the effect of covariates on the mean evolution in time and a
random part expressing the variation of the individual curves around the mean
curve. Selecting the appropriate fixed and random effect parts is an impor-
tant modeling exercise. In a Bayesian framework, there is little agreement on
the appropriate selection criteria. This paper compares the performance of the
deviance information criterion (DIC), the pseudo-Bayes factor and the widely
applicable information criterion (WAIC) in LMMs, with an extension to LMMs
with skew-normal distributions. We focus on the comparison between the condi-
tional criteria (given random effects) versus the marginal criteria (averaged over
random effects).In spite of theoretical arguments, there is not much enthusiasm
among applied statisticians to make use of the marginal criteria. We show in an
extensive simulation study that the three marginal criteria are superior in choos-
ing the appropriate longitudinal model. In addition, the marginal criteria selected
most appropriate model for growth curves of Nigerian chicken. A self-written R
function can be combined with standard Bayesian software packages to obtain
the marginal selection criteria.

3.1 Introduction

Longitudinal studies have become central in a great variety of research areas. The
longitudinal study design is the only study design that allows to relate determi-
nants measured at the start of the study to changes in the subjects’ condition over
time. Numerous books have recently appeared on longitudinal study designs, e.g,
Anderson (2018); Funatogawa (2017); McArdle and Nesselroade (2014); Gayle
and Lambert (2018); Hoffman (2015). When the response is Gaussian, linear
mixed-effects models (LMMs) are one of the most popular tools to analyze lon-
gitudinal data. Since its introduction by Laird and Ware (1982), the LMM has
been applied in a great variety of research areas and extended in many ways, e.g.
to generalized linear mixed-effects models and non-linear mixed-effects models.
Its popularity has much to do with its ability to describe both the impact of
covariates on the mean longitudinal evolution as well as how individual profiles
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differ over time from the mean curve. The impact on the mean longitudinal
curve is evaluated by their regression coefficients, which are referred to as the
fixed effects. The subject-specific profiles are expressed as latent variables, called
random effects. In this way, the LMM fits subject-specific profiles and accounts
for correlation among responses from the same subject. Another important fea-
ture is that the LMM allows for unbalanced data, i.e., when the number and
timing of the observations per subject differ between subjects.
The LMM parameters may be estimated using a frequentist approach. The prop-
erties of the estimated model parameters are then based on (restricted) maximum
likelihood theory (Verbeke and Molenberghs, 2000). Alternatively, one could use
the Bayesian framework. In the Bayesian approach prior information on the model
parameters is combined with information coming from the data. Using Bayes’
theorem, an updated idea on the model parameters is obtained from the posterior
distribution. The posterior distribution provides all information that is needed,
and hence there is no need to refer to asymptotic normality properties for infer-
ence on the model parameters. This is especially useful in longitudinal studies
with a small number of subjects and when the data are unbalanced (Raudenbush
and Bryk, 2002). Since most posterior distributions are analytically intractable,
they need to be determined in a numerical way. Most popular numerical tech-
niques are based on sampling from the posterior distribution. The Markov chain
Monte Carlo (MCMC) techniques provide an important class of such methods.
In this paper we focus on fitting Bayesian LMMs to longitudinal data and com-
pare the performance of different selection criteria. While in a Bayesian model
all parameters are stochastic (and thus random), we will (as many others) still
use the standard terminology of fixed and random effects.
A variety of LMMs can be fitted to the data at hand depending on several

aspects such as: (i) the covariates that are considered in the fixed part of the
model, (ii) the random effects structure to be included, e.g., random intercepts
and/or random slopes, and (iii) possible transformations of the response. When
considering several LMMs, it is important to select a parsimonious model that
fits adequately the current and also future data. Unfortunately, there is little
agreement on what criterion to choose for Bayesian model selection.
One of the first model selection criteria suggested in the literature is the Bayes
factor (Kass and Raftery, 1995), which is defined as the ratio of the marginal
likelihood of two competing models. Although this criterion has a natural in-
terpretation, its computation remains difficult in practice and the results can be
sensitive to the choice of the prior distributions, presenting difficulties especially
with improper priors. Gelfand and Dey (1994) proposed the pseudo-Bayes factor
(PSBF), which updates the (improper) prior to a proper posterior and calculates
the Bayes factor using the generated posterior as prior. This alternative criterion,
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although relatively easy to compute, is not yet commonly used.
The most popular Bayesian model selection criterion is the deviance information
criterion (DIC) (Spiegelhalter et al., 2002). The DIC is similar to the AIC often
used in the frequentist framework, i.e., it represents a trade-off between model
fit and model complexity. The aim of DIC is to estimate the predictive ability of
the fitted model to future samples from the same population. More recently, the
widely applicable information criterion (WAIC) was proposed (Watanabe, 2010)
for model selection in the Bayesian framework. This criterion estimates the pre-
dictive accuracy of the model and includes a bias correction for using the data
twice, i.e., to estimate the model and to evaluate model’s accuracy. It has also
been argued that WAIC is a more fully Bayesian approach (compared to DIC)
and is suitable for singular models, such as LMMs for longitudinal data when the
random effects are considered as parameters in the model (Gelman et al., 2014).
Apart from the above three model selection criteria, a wide variety of (Bayesian)
statistical approaches have been suggested to select the most appropriate LMM.
While it is not the aim of this paper to give a comprehensive overview, the
reader should be aware of the large number of alternative approaches proposed
in the literature. For instance, a popular alternative approach is to use Bayesian
variable selection techniques, often based on the SSVS approach of George and
McCulloch (1993). Examples of this approach can be found in Chen and Dunson
(2003), Cai and Dunson (2006) and Gong et al. (2015). Bayesian software for
hierarchical models most often makes use of the data augmentation (DA) algo-
rithm. For the LMM, this implies that the random effects are estimated jointly
with the other parameters. Hereby, the DA algorithm avoids to take the integral
over the distribution of the random effects, which is the classical approach in the
frequentist framework. Thus, in the frequentist approach classically the marginal
version of the LMM is fitted to the data, while in the Bayesian approach the
hierarchical or conditional version of the LMM is usually fitted.
Whether the marginal or the conditional version of the LMM is fitted to the data,
it has an impact on the performance of the model selection criteria even when the
conditional and marginal LMM essentially lead to the same model. The model
selection criteria applied to the hierarchical specification of the LMM is referred
to as the conditional criterion. Hence, one has the conditional DIC (cDIC), and
similarly the conditional PSBF (cPSBF) and the conditional WAIC (cWAIC). On
the other hand when the model selection criterion is applied to the marginal spec-
ification of the LMM, one speaks of the marginal DIC (mDIC), marginal PSBF
(mPSFB) and marginal WAIC (mWAIC). As will be shown in Section 3.5, these
two versions of the model selection criteria are associated with different aims:
cDIC (and similarly for cPSBF and cWAIC) considers the random effects as pa-
rameters of focus in the model whereas for mDIC (also mPSBF and mWAIC) the
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population of random effects represents the focus. In practice, this implies for
mixed effects models that the conditional selection criteria evaluate the perfor-
mance of the model when the population consists of all (future) measurements
of the subjects included in the current study, while the marginal version of the
criteria measures the performance of the model for all (future measurements of
all) future subjects from the same population.
The problem is that in practice, model selection is most often based on cDIC
(cPSBF, cWAIC) because of computational convenience. Indeed, cDIC can be
immediately calculated using the conditional likelihood and it is automatically
reported by WinBUGS (Spiegelhalter et al., 2003) and other Bayesian software.
However, most researchers are interested in knowing how well the model per-
forms in the future. That is why one argues that conditional model selection
criteria have the wrong focus, see e.g.Vaida and Blanchard (2005). Apart from
not having the correct focus, model selection based on cDIC is questionable be-
cause the properties of DIC are based on the log-concavity of the likelihood, a
condition that is violated in hierarchical models when the latent variables are
considered as parameters in the model (Li et al., 2013b). The implication of
using cDIC as model selection has been documented via simulations for financial
volatility models (Chan and Grant, 2016a). The authors concluded that in con-
trast to mDIC, cDIC tends to select overly complex models. For overdispersed
count data,Millar (2009) pointed out that the conditional-level DIC is an unre-
liable tool for model selection, while the same is true for the conditional WAIC
(Millar, 2018). Merkle et al. (2018) advocated the use of marginal information
criteria for item response models, and show that mWAIC corresponds to leave-
one-cluster-out, whereas cWAIC corresponds to leave-one-unit-out.
While we focus in this paper on Bayesian model selection, we note that also
in the frequentist paradigm the performance of the conditional versus marginal
model selection criteria has been compared extensively. A broad overview of a
wide range of model selection criteria for the LMM is discussed in Müller et al.
(2013) for model selection in a frequentist content, including conditional and
marginal information criteria. A short section in that paper is devoted to the
Bayesian paradigm. Further, Fan et al. (2014) showed that the marginal AIC
(mAIC) is asymptotically equivalent to the leave-one-cluster-out cross-validation
while the conditional AIC (cAIC) is asymptotically equivalent to the leave-one-
observation-out cross-validation. Srivastava and Kubokawa (2010) derived three
conditional AICs and showed theoretically and by simulations that their proposals
outperform cAIC and mAIC of Vaida and Blanchard (2005).Finally, Säfken et al.
(2018) introduce the R-package cAIC4 for the calculation of the cAIC for LMMs
estimated with lme4. To determine the marginal criteria extra computations are
needed, which renders them less popular.
In practice, researchers are often not aware of the difference between the marginal
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and conditional version of the information criteria, therefore, rely on default soft-
ware (Merkle et al., 2018). That is why we have set up a simulation study that
compares the performance of the two versions of the selection criteria for LMMs
with longitudinal data. The first set of simulations makes use of the classical
model LMM assumptions, i.e. when the random effects and measurement errors
have a normal distribution. In the second set of simulations, we have simulated
from LMMs with a skewed-normal and t-distribution for the random effects and
measurement errors. Finally, we considered settings were we select both fixed and
random effect jointly. All these sets of simulations clearly show the superiority of
the marginal selection criteria. Moreover, in the analysis of a real data set, we
again illustrate that the conditional criteria choose the least appropriate LMM.
In order to promote the use of the marginal criteria for LMMs, we have written
R software for the LMMs considered in our simulation study that can easily be
combined with classical Bayesian software to compute the criteria mDIC, mPSBF
and mWAIC for LMMs.
The rest of the article is organized as follows. In Section 3.2 we present the

classical linear mixed model for longitudinal data. In Section 3.3 we treat the
skew-normal LMM. The model selection criteria are introduced in Section 3.4
and the difference between conditional and marginalized versions is discussed
in Section 3.5. In Section 3.6 we compare the criteria in an extensive simula-
tion study, in order to give some practical recommendations. We also compared
alternative versions of DIC and WAIC as suggested in the literature. In the
same section we discuss the simulation results when the normality assumption in
the LMM is relaxed. A comparison of the conditional and marginal criteria on
a real data set is done in Section 3.7. We give concluding remarks in Section 3.8.

3.2 The linear mixed-effects model

The classical LMM Laird and Ware (1982) for longitudinal data can be expressed
as

Yi = Xiβ + Zibi + εi, (3.1)

where Yi is an mi-dimensional response vector of measurements for the i-th
subject, (i = 1, . . . , n). Xi and Zi are mi× p and mi× q-dimensional covariate
matrices, respectively, and β is a p-dimensional vector of fixed effects. The resid-
ual component vector εi is distributed as Nmi(0,Σi), where Σi is an mi ×mi

positive-definite covariance matrix. It is usually assumed that Σi = σ2
ε Imi , where
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Imi denotes the identity matrix of dimension mi.
The q-dimensional random-effects vectors bi are assumed independent from the
residuals and distributed as Nq(0,D), where D is a q × q positive-definite co-
variance matrix. Model (3.1) is called a mixed-effects model because it combines
the fixed-effects structure β with the subject-specific random effects b1, . . . ,bn.
The LMM is advantageous because the data are not required to be balanced,
and additionally, the within- and between-individual variations can be explicitly
modeled through Σi and D, respectively.
In the frequentist setting, the model parameters are estimated from the marginal-
ized model for the response, after integrating out the random effects (Verbeke
and Molenberghs, 2000). The marginalized distribution has a closed form for
model (3.1), namely

p(yi|β,D,Σi) = Nmi(Xiβ,ZiDZ′i + Σi). (3.2)

In the Bayesian framework, inference is usually based on the hierarchical for-
mulation of the model. In the first hierarchical stage, the response follows the
conditional distribution p(yi|β,Σi,bi) = Nmi(µi,Σi) = Nmi(Xiβ + Zibi,Σi),
whilst in the second stage, the subject-specific effects are specified with distri-
bution p(bi|D) = Nq(0,D).

3.3 The skew-normal linear mixed model

A m−dimensional random vector Y follows a m-variate skew-normal (SN) dis-
tribution with location vector µ0 ∈ IRm, m×m positive definite scale matrix H
and m× q skewness matrix ∆, if its density function is given by

f (y|µ0,H,∆) =2qφm (y|µ0,H + ∆∆′)

×Φq

(
∆′ (H + ∆∆′)−1 (y− µ0)|0,

(
Iq + ∆′H−1∆

)−1
)
,

(3.3)
where φm and Φq are the density function and the cumulative distribution func-
tions of them-dimensional and q-dimensional normal distribution, respectively. If
we substitute ∆ = 0, equation (3.3) reduces to the usual symmetric multivariate
distribution Nm(µ0,H).
Arellano-Valle and Genton (2005) denote Y ∼ SNm,q(µ,H,∆) and Y ∼
SNm(µ,H,∆) when m = q. Also, when m = q, ∆ = diag (δ1, . . . , δm) and
H diagonal, equation (3.3) reduces to the multivariate skew-normal distribution,
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(see e.g. Sahu et al., 2003). In practical settings, when the response and the
covariate are highly skewed distributed, it might be more realistic to assume a
multivariate SN for both random effects and measurement error (Huang and
Dagne, 2012).
The classical LMM (3.1) can be extended by assuming that

bi ∼ SNq (0,D,∆b) and εi ∼ SNmi (0,Ψi,∆εi) , i = 1, . . . , n,

all independent. This results in the following skew-normal linear mixed model
(SNLMM):

yi|bi,β,Ψi,∆εi ∼ SNmi (X iβ +Zibi,Ψi,∆εi)
bi|D,∆b ∼ SNq (0,D,∆b) ,

where D = D(α) is a dispersion matrix, usually associated with the between-
units variances, with α unknown parameters in D. In addition, ∆εi and ∆b are
diagonal matrices with unknown elements δεi1 , . . . , δεimi and δb1 , . . . , δbq , respec-
tively. These components correspond to the skewness parameters. The marginal
version of the SNLMM was shown by Arellano-Valle et al. (2007) to be equal to

fYi(yi|Θ,ϑ) = 2mi+qφni(yi|X iβ,Ψi)Φmi+q(µ2i − Γiµ1i|0,Ri + ΓiΛiΓ′i),

where for i = 1, . . . , n:

Ψi = (δ2
ε + σ2

ε )Imi + Zi(∆2
b + D)Z′i, µ1i = ΛiZ′i(yi −Xiβ)

δ2
ε + σ2

ε

,

µ2i =
 δε√

σ2
ε (δ2

ε + σ2
ε )

(yi −Xiβ)
 , Γi =

 δε√
σ2
ε (δ2

ε+σ2
ε )

Zi

−∆b(∆2
b + D)−1

 ,
Ri =

(
Imi 0
0 (Iq + ∆bD−1∆b)−1

)
, Λi =

(
(∆2

b + D)−1 + Z′iZi

δ2
ε + σ2

ε

)
.

Note that Arellano-Valle et al. (2007) also suggested a skew-t distribution
whereby the basic Gaussian distribution is replaced by the t-distribution.

3.4 Bayesian criteria for model selection

Let θ represent all model parameters of the LMM. For the marginal LMM, this
includes the fixed effects and the parameters making up the covariance matrix of
the random effects augmented with skewness parameters for the SNLMM. With
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the conditional LMM the random effects are part of θ. Further, we denote the
collected (longitudinal) responses by y and the obtained covariate values by the
matrix X. The posterior distribution is p(θ | y,X) = p(y | θ,X)p(θ)/p(y | X).
Since the posterior distribution does not have a closed form for the LMM, it is
approximated using MCMC methods. Namely, K (dependent) values θ1, . . . ,θK

are sampled from the posterior distribution. The true posterior summary mea-
sures can then be approximated by their sampled versions.
When describing longitudinal data, a set of well-justified models can be estab-
lished with different specifications for the fixed effects, random effects, covariance
structure of the random effects and measurement error. Therefore, a model se-
lection procedure is necessary to find an adequate model that explains current
and future data. A variety of model selection procedures has been proposed in
the Bayesian framework, but there is no consensus about the best criterion. Here
we discuss the most popular criteria; they are also relatively easy to compute in
practice.

3.4.1 The pseudo-Bayes factor

The Bayes factor (BF) could be viewed as the Bayesian equivalent of the like-
lihood ratio test. The Bayes factor can be used for testing the hypothesis that
y is generated by model M1 with parameters θ1 versus the alternative model
M2 with parameters θ2. Hereby BF measures the change from prior to posterior
odds in favor of the null model, namely

BF1,2 = p(M1 | y)
1− p(M1 | y) = p(M1 | y)

p(M2 | y) = p(y | M1) p(M1)
p(y | M2) p(M2) ,

where p(M1) and p(M2) are the prior model probabilities, commonly set as
p(M1) = p(M2) = 0.5. In that case, the Bayes factor in favor of model M1 is
given by BF1,2 = p(y | M1)/p(y | M2) where p(y | Mr) =

∫
p(y | θr,Mr) p(θr |

Mr) dθr for r = {1, 2}. The use of the Bayes factor is, however, limited in
practice since it has been shown to be quite sensitive to the choice of the prior
distributions p(θr | Mr) and is not defined for improper priors (e.g. Gelfand and
Dey, 1994).

Several alternatives for BF have been suggested to reduce the impact of
p(θr | Mr). One proposal is PSBF, which is based on the partitions of the
data set as follows. For the ith subject, one partitions the data set into a learn-
ing set yL = {yi : i ∈ L} and a testing set yT = {yi : i ∈ T} (Geisser and
Eddy, 1979), whereby the testing and learning parts are defined respectively as
T = {i} and L = {1, ..., i− 1, i+ 1, ..., n}. The pseudo-Bayes factor in favor of
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model M1 with respect to model M2 is then obtained as

PSBF1,2 =
∏n
i=1 p(yi | y(i),M1)∏n
i=1 p(yi | y(i),M2) ,

where y(i) is the total sample without yi. The component p(yi | y(i),Mr) is
the probability of observing yi given the model Mr fitted with all observations
in the sample except yi. Thus, the PSBF makes use of pseudo-marginal likeli-
hoods in the numerator and denominator instead of the classical marginal like-
lihoods. The product terms are called conditional predictive ordinates (CPOs)
Gelfand and Dey (1994). For the ith subject under model Mr, CPOr,i is de-
fined as CPOr,i = p(yi | y(i),Mr). CPOr,i is computed from the sampled values
θ1
r, . . . ,θ

K
r under model Mr as follows:

CPOr,i ≈
[

1
K

K∑
k=1

1
p(yi | θkr ,Mr)

]−1

.

This statistic can be highly unstable for a very small value of the likelihood
(Raftery et al., 2007). To ensure stability, different approaches have been pre-
scribed in the literature (Raftery et al., 2007; Gelfand and Dey, 1994; Dey et al.,
1997; Congdon, 2005). However, there is no perfect approach due to computa-
tional issues (Lachos et al., 2013).
The log-pseudo marginal likelihood is then for each model equal to LPMLr =∑n
i=1 log(CPOr,i). Therefore, the PSBF1,2 in favor of model M1 respect to model

M2 can be computed as

PSBF1,2 = exp(LPML1 − LPML2).

3.4.2 The deviance information criterion

The DIC suggested by Spiegelhalter et al. (2002) is based on the predictive ac-
curacy of the estimated model defined as

DIC = −2 log p(y|θ̄) + 2pDIC , (3.4)

where pDIC corresponds to the effective number of parameters, given by

pDIC = −2 Eθ|y[log p(y|θ)] + 2 log[p(y|θ̄)],

which quantifies the number of parameters to be estimated after incorporating
the prior information into the model. As seen above, the point estimator is
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the posterior mean of the parameters, but other estimates such as the median
have also been suggested. Defining the deviance as D(θ) = −2 log{p(y|θ)} +
2 log{f(y)}, the effective number of parameters can alternatively be written as
pD = D(θ)−D(θ̄) where D(θ) is the posterior mean of the deviance.
For practical purposes, we can ignore f(y). The mean deviance D(θ) can be ap-
proximated by 1

K

∑K
k=1D(θk) and the plug-in deviance D(θ̄) by D( 1

K

∑K
k=1 θ

k).
This criterion is popular because it is easy to compute once we have an MCMC
sample and can be directly obtained in several Bayesian packages such as Win-
BUGS. However, DIC has been criticised, (see Spiegelhalter et al., 2014) for
details. For instance, DIC is not invariant to non-linear transformations of θ and
negative values for pDIC can occur in some cases.

3.4.3 The widely applicable information criterion

The widely applicable information criterion (WAIC) (Watanabe, 2010) is a fully
Bayesian estimator that averages over the posterior distribution of θ instead of
conditioning on a point estimator θ̂(y) as done for DIC. For a future observation
ỹi, this criterion measures the predictive accuracy of the model based on the
log-posterior predictive distribution log pθ|y(ỹi) of the parameter vector θ. Since
ỹi is unknown, predictive accuracy is defined by the expected log-predictive dis-
tribution (elpd) as

elpdi = Ef [log pθ|y(ỹi)] =
∫

log pθ|y(ỹi)f(ỹi)dỹi,

where f is the unknown distribution under the true model. For each observation
of a new data set, elpd is computed to establish the predictive accuracy of that
data set. This is called the expected log-pointwise predictive density (elppd)
defined as elppd = ∑n

i=1Ef [log pθ|y(ỹi)].
Predictive accuracy can also be defined with a point estimate θ̂(y), often

θ̂(y) = E(θ|y), as the expected log predictive distribution given the point esti-
mator elpdθ̂(y) = Ef (log p(ỹ|θ̂(y)) =

∫
log pθ|y(ỹi)f(ỹi)dỹi. The log pointwise

predictive distribution (lppd) based on the observed data is calculated as follows

lppd = log
n∏
i=1

pθ|y(yi) =
n∑
i=1

log
∫
θ
p(yi|θ)p(θ|y)dθ.

In practice, lppd can be estimated using an MCMC sample from the posterior
distribution as
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̂lppd =
n∑
i=1

log
[

1
K

K∑
k=1

p(yi|θk)
]
.

With the WAIC criterion, the expected log pointwise predictive density elppd is
estimated as the log pointwise predictive distribution lppd with a bias correction
êlppdWAIC = ̂lppd − pWAIC . The measure pWAIC corresponds to an estimate
of the effective number of parameters given by

pWAIC = 2
n∑
i=1

[
log

(
1
K

K∑
k=1

p(yi|θk)
)
− 1
K

K∑
k=1

log p(yi|θk)
]
.

Note that, WAIC can be alternatively expressed as

WAIC = −2 ̂lppd + 2pWAIC ,

similar to DIC in (3.4).
One of the strengths of WAIC is its invariability to the scale of the model parame-
ters, which implies that WAIC does not change when θ is replaced by ψ = h(θ),
with h a strictly monotone function.

3.5 Marginal and conditional criteria

In practice, the choice between conditional and marginal information criteria
should be motivated by the aim of the study (Vaida and Blanchard, 2005). Most
often, this means that the marginal model selection criteria should be used since
they estimate the predictiveness of the model when new clusters (in longitudinal
studies, this implies new subjects) are involved, whereas the conditional criteria
estimate the predictiveness of the model when new elements in the cluster (in
longitudinal studies, new observations from the existing subjects) are involved.
Nevertheless, when it comes to selecting the correct LMM it might still be that
conditional criteria do a good job. In other words, it might be that the relative
ordering of preference models is basically the same for both the conditional and
marginal criteria. All of these comments apply to all three considered model
selection criteria, but since cDIC is obtained automatically in most Bayesian
software, it is the standard criterion in practice. Therefore, the literature shows
some focus on DIC when examining the performance of conditional and marginal
criteria. Despite the popularity of DIC, many have shown that the asymptotic
justification of DIC (Spiegelhalter et al., 2002) does not hold for hierarchical
models, see e.g. Li et al. (2013a).
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3.6 Simulation studies

We have carried out three simulation studies. In the first two studies we based
the simulated data on two classical data sets: the Potthoff and Roy data set
(Potthoff and Roy, 1964) and the Jimma Infant Growth study (Lesaffre et al.,
1999). They were chosen because the first is representative for a balanced longi-
tudinal study, while for the second study the time points are (somewhat) irregular
and subjects drop out from the study. Using the fitted LMMs as population mod-
els, the performance of the conditional and marginal versions of DIC, PSBF and
WAIC are contrasted using simulations.
mDIC can be obtained from a WinBUGS run by working with the marginal

model instead of the hierarchical model. To avoid specifying the marginal model
in the estimation process, an R function was implemented, which computes the
marginalized version of DIC, PSBF and WAIC for a Gaussian, skew-normal and
skew-t distribution of the random effects and measurement error. This R func-
tion takes the parameters sampled in the MCMC procedure from any Bayesian
package and calculates the marginalized version using the closed form (3.2) and
its extensions allowing for skew-normal and skew-t distributions. In addition, the
conditional version of the three criteria is also computed by this function.
The main objective of the simulation study is to assess how well PSBF, DIC

and WAIC select the correct model. According to the minimum value strategy,
the model with the minimum value for the criterion is selected. Several simula-
tion studies examining the performance of AIC and BIC, see e.g. Lesaffre and
Lawson (2012), suggest to select the more complex model only if they differ in
the criterion value with more than 5. This will be referred to as the absolute
difference strategy. We will apply this strategy to all criteria. However, there is
no evidence that this criterion is justified outside DIC.

3.6.1 The data sets and population models

In the dental study analyzed by Potthoff and Roy (1964), the distance in (mm)
from the pituitary to the pterygomaxillary fissure was measured at years 8, 10,
12, and 14 on 11 girls and 16 boys. We fitted the following linear mixed model
as a function of age and sex (0= Female, 1=Male):

yij = β0 + β1sexi + β2ageij + b0i + εij, (i = 1, . . . , 27; j = 1, . . . , 4), (3.5)
where yij is the distance (mm) measure of child i at time j and b0i is a random
intercept assumed to follow b0i ∼ N(0, σ2

b ). Using the SAS procedure MIXED
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(Littell et al., 2007), we obtained the following maximum likelihood estimates:
β̂0 = 24.9688, β̂1 = 1.4831, β̂2 = −2.3210, σ̂2

b = 2.0495 and σ̂2
ε = 3.2668.

These values were used as true parameters in this simulation study. The
Jimma Infant Growth data set is based on the growth characteristics of about
8000 live births from South-West Ethiopia examined between September 1992
and September 1993. The growth characteristics height, weight and arm cir-
cumference of the babies were examined approximately every 60 days, but there
were occasional deviations from the planned visits. Also, some children dropped
out from the study for a variety of reasons such as relocation of their parents
during the study or death of the child. This creates an unbalanced structure
for the data. For the purpose of this simulation study, we have taken weight as
response with covariates age and sex (0=Girls, 1=Boys) of the child, and age of
the mother at delivery (agem). The details of the original analysis can be found
in Lesaffre et al. (1999, 2000) where a sample of 495 children was selected to
fit the model. This subset will also be the basis for this simulation study. The
weight evolves in a non-linear way. To make use of an LMM, the time variable
age was transformed into newageij = √ageij − (ageij + 1)− 0.02× ageij using
fractional polynomials Lesaffre et al. (2000). Initially, our population model is
based on the following random intercept and slope model:

yij = β0 + β1sexi + β2newageij + β3agemi + b0i + b1i × newageij + εij, (3.6)

assuming (b0i, b1i)′ ∼ N(0,D). Again, the estimates from this model (see
Appendix) are used as the true values for the parameters in the simulation.

3.6.2 Simulation study 1

In the first simulation study, we consider the most popular setting of assuming
normality for the random effects and measurement error. We believe that it is
essential to show the performance of the selection criteria in this most popular
setting. The performance of the model selection criteria may depend on whether
the models differ in the fixed components or the random effects structure. There-
fore, we examined the performance of the conditional and marginal criteria under
two scenarios. For each of the two data sets we considered two scenarios. In
Scenario I we assumed that the random effects structure is known but that the
considered models differ from the true model in the fixed part. For Scenario II
we assumed that the fixed part is known but the random effects part is unknown.
Regarding the prior distributions, we assigned independent vague normal priors,
N(0, 10002) for the regression coefficients and a vague inverse gamma prior for
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the residual variance, i.e. σ2 ∼ IG(0.001, 0.001). The conditionally conjugate
prior for the random-effects covariance matrix is the inverse Wishart distribution,
but this choice has been shown to be problematic when the number of clusters
(here subjects) is small (Gelman, 2006; Quintero and Lesaffre, 2017). Therefore,
we have taken uniform priors U(0, 100) for the standard deviation of the ran-
dom effects, (see Gelman, 2006). For the models with at least random intercept
and slope, we assigned a uniform prior distribution U(−0.5, 0.5) for all pairwise
correlations between random effects to ensure positive definiteness of the covari-
ance matrix D (Plummer, 2011) following a proof in Coakley and Rokhlin (2013).

The balanced case: the Potthoff and Roy data set
As indicated above, we have considered two scenarios:

Scenario I: We assumed that the random effects structure is correct and
considered models that differ in the fixed part. Besides the true data-generating
model (3.5), we considered an overspecified model, which includes the interac-
tion of age with sex and an underspecified model, which ignores the effect of sex.
Hence, the alternative models are

• yij = β0 + β1ageij + β2sexi + β3ageij × sexi + b0i + εij (overspecified),

• yij = β0 + β1ageij + b0i + εij (underspecified).

Scenario II: We assumed that the fixed structure is correct and considered
models that differ in the random effects. The overspecified model includes an
additional random slope whereas the underspecified alternative ignores the ran-
dom intercept in the data, more specifically

• yij = β0 + β1ageij + β2sexi + b0i + b1i × ageij + εij (overspecified),

• yij = β0 + β1ageij + β2sexi + εij (underspecified).

We simulated 500 data sets based on model (3.5). The covariate age was
taken as in the original data set and sex was generated from a Bernoulli dis-
tribution with probability of success equal to 0.6, where 0.6 is the proportion
of boys in the original data set. All the models in this simulation study were
estimated based on three chains of 15, 000 iterations (discarding the first 5, 000
as a burn-in) and thinning equal to 10. Convergence of the MCMC samples
was assessed with the Brooks-Gelman-Rubin (BGR) diagnostic. In cases where
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BGR was larger than 1.1, a new MCMC sample was selected with 10, 000 extra
iterations until obtaining convergence.
In Table 3.1, we present for each criterion and for the two selection strategies,
the percentage of times the correct, the overspecified or the underspecified model
was chosen. The performance of the marginalized criteria is clearly better than
the conditional counterparts in all cases.
For instance, when using the minimum value selection rule, in most cases the

percentage of correct selection for the marginalized version is almost twice that
of the conditional counterpart.
In addition, note that for the absolute difference rule in Scenario I, the per-

centage of correct model selections for the conditional version of DIC and of
WAIC is basically zero. This strategy seems to work well also for PSBF and
WAIC in Scenario II, but not in Scenario I. In Scenario II, the conditional ver-
sions of DIC, PSBF and WAIC favor overspecified models with additional random
effects as also observed in Chan and Grant (2016a) for financial volatility models.

Table 3.1: Simulation study 1: Performance of the Bayesian model selection
criteria for the Potthoff & Roy data set.

Minimum value Absolute difference
Scenario criteria Over Correct Under Over Correct Under
I cDIC 18.6 67.6 13.8 2.4 1.0 96.6

mDIC 16.8 76.4 6.8 1.4 55.2 43.4
cPSBF 27.0 43.0 30.0 18.6 29.8 51.6
mPSBF 17.6 75.2 7.2 2.8 65.2 32.0
cWAIC 19.8 31.0 49.2 2.6 0.0 97.4
mWAIC 18.8 75.0 6.2 1.4 58.4 40.2

II cDIC 46.2 53.8 0.0 10.4 89.6 0.0
mDIC 15.0 85.0 0.0 0.6 99.4 0.0
cPSBF 52.4 47.6 0.0 32.0 68.0 0.0
mPSBF 14.4 85.6 0.0 1.2 98.8 0.0
cWAIC 63.2 36.8 0.0 16.0 84.0 0.0
mWAIC 18.0 82.0 0.0 0.8 99.2 0.0
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The unbalanced case: the Jimma Infant growth study
Again we considered two scenarios:

Scenario I: We assumed that the random effects structure is correct and
considered the following models that differ in the fixed part parameters, namely

• Model (3.6) and including the interaction newage× sex (overspecified),

• Model (3.6) but ignoring the covariate sex (underspecified).

Scenario II: We assumed that the covariates in the fixed part are correct and
considered the following models that differ in the random effects structure, i.e.

• Model (3.6) and including an additional random slope for newage2 (over-
specified),

• Model (3.6) but ignoring the random slope for newage (underspecified).

Table 3.2: Simulation study 1: Performance of the Bayesian model selection
criteria for the Jimma Infant Growth data set.

Minimum value Absolute difference
Scenario Over Correct Under Over Correct Under
I cDIC 34.4 34.0 31.6 15.2 29.0 55.8

mDIC 21.2 58.0 20.8 0.8 32.4 66.8
cPSBF 33.0 32.8 34.2 47.0 31.8 21.2
mPSBF 21.0 57.8 21.2 3.0 44.0 53.0
cWAIC 36.2 31.2 32.6 14.4 26.4 59.2
mWAIC 21.2 58.2 20.6 0.8 32.6 66.6

II cDIC 63.2 36.8 0.0 43.2 56.8 0.0
mDIC 26.4 73.6 0.0 0.2 99.8 0.0
cPSBF 55.2 44.8 0.0 51.8 48.2 0.0
mPSBF 28.0 72.0 0.0 2.8 97.2 0.0
cWAIC 66.0 34.0 0.0 49.2 50.8 0.0
mWAIC 27.4 72.6 0.0 0.2 99.8 0.0

We generated 500 data sets from model (3.6). The covariate age was taken
as in the original data set (i.e 8,10,12,14) and sex was generated from a Bernoulli
distribution with probability of success equal to 0.6, where 0.6 is the proportion of
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boys in the original data set. The age of the mother was generated from a normal
distribution agemi ∼ N(24.49, 6.29) and we have taken 0, 60, 120, . . . , 360 days
as the moments of measurements. We created an unbalanced data set by allowing
subjects to drop out randomly at days 240, 300 or 360.
As shown in Table 3.2, the marginalized criteria strongly outperform their

conditional counterparts in both scenarios and selection strategies. We see again
for Scenario II that all conditional criteria support the overspecified alternative
with an additional random slope and that in this scenario the absolute difference
strategy also works for PSBF and WAIC. With the minimum value rule, the
probability of correctly selecting the data-generating model is about 1/3 with the
conditional criteria. Hence, carrying out model selection based on the conditional
criteria performs worse than selecting the models at random.

3.6.3 Simulation study 2: additional simulations for the
balanced case

We first evaluated the sensitivity of the results to some changes in the population
model based on the Potthoff and Roy data. First, we varied the signal-to-noise
ratio in model (3.5) by setting the value of σ2

ε to be 1
4 ,

1
2 , 1, 2 and 4 times of

the estimated residual variance as specified in Section 3.6.1. Table 3.3 displays
the results on model selection. Again, the marginal criteria outperform their
conditional counterparts irrespective of the scenario and selection strategy. Note
that the performance of mDIC decreases with increasing residual variance and
using the absolute difference strategy.
Second, we varied the number of subjects in the study as 25, 50, 75 and 100.

As shown in Table 3.4, the marginal criteria perform best regardless of the sam-
ple size. Note also that the performance of the marginal criteria increases with
increasing sample size in both scenarios and selection strategies, which is not the
case for the conditional criteria. For instance, the percentage of correct model
selection for cDIC decreases with sample size for Scenario II with both selection
rules. Our results are in line with the findings in Li et al. (2013b), who pointed
out asymptotic problems with cDIC. Our simulation study also indicates that
cWAIC is not better in this sense.
We additionally evaluated the model selection performance for alternative ver-
sions of DIC and WAIC. We denote as DIC1 the criterion advocated in Spiegel-
halter et al. (2002) where the complexity (pDIC1) is defined in Section 3.4.2. The
alternative version DIC2 is the approximation to DIC1 (Gelman et al., 2004a).
The complexity penalty (pDIC2) is a function of the variance of the deviance
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calculated as

pDIC2 = 2varθ|y(log{p(y|θ)}). (3.7)

Further, we modified DIC by letting the penalty term depend on the sample size.
It has been suggested in Jones (2011) that the penalization should be defined
based on the effective sample size ne, which depends on the within-subjects error
structure. In the context of the LMM, statistical software like SAS defines ne as
the total number of (independent) subjects, i.e. ne = n. Otherwise, ne is defined
as the number of total data points, ne = nT .
We defined the following DIC criteria as DIC3 and DIC4 with effective degrees
of freedom defined as pDIC3 = log(n) pDIC1 and pDIC4 = log(nT ) pDIC1, re-
spectively. These modifications are more a BIC-type as pointed out by a referee,
however, we believe that it will be a useful exercise to evaluate their performance
in this context.
The effective number of parameters of WAIC can be estimated in two ways (Gel-
man et al., 2014); pWAIC1 as defined in Section 3.4.3 and the alternative version
pWAIC2 given as the variance of the log posterior distribution as

pWAIC2 =
n∑
i=1

varθ|y(log p(yi|θ)).

We notice from Table 3.5 that Spiegelhalter’s DIC (DIC1) outperforms DIC2 for
the conditional versions. This may be expected since the alternative definition
(3.7) is explicitly based on approximate posterior normality, which is likely not
satisfied in the hierarchical version of the model. The marginal versions of DIC1
and DIC2 perform similarly.
As expected, DIC4 penalizes model complexity more heavily than DIC3. Regard-
less of the selection strategy, we observed that by increasing the penalization,
the percentage of correct model selection decreases under the marginal versions
and increases under the conditional versions.
As for the different versions of WAIC, we observed that the percentage of

correct selection for WAIC2 is slightly higher in the conditional version whereas
the performance of the marginal versions is similar irrespective of the scenario.
Absolute difference, however, is not a good alternative to the conditional version
of DIC and WAIC alternatives.
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Table 3.3: Simulation study 2: Percentage correct selection when changing the
residual variance in the Potthoff & Roy data set.
Scenario Minimum value Absolute difference

Criteria 0.25 0.5 1 2 4 0.25 0.5 1 2 4
I cDIC 64.6 70.2 77.0 77.8 79.2 0.6 1.2 3.2 10.8 24.6

mDIC 81.6 83.0 83.0 82.8 82.0 93.0 92.8 92.6 88.6 78.6
cPSBF 31.8 36.6 40.8 58.4 68.0 30.3 38.2 39.0 39.6 39.4
mPSBF 91.2 94.0 83.2 90.8 87.8 95.4 97.8 93.0 97.8 94.0
cWAIC 41.4 36.6 39.4 38.4 39.0 0.4 0.2 0.2 0.4 0.2
mWAIC 81.2 81.6 82.4 82.0 81.6 92.2 93.0 92.8 89.0 79.0

II cDIC 44.4 47.4 50.8 51.6 55.4 86.2 86.2 87.2 88.4 89.0
mDIC 80.4 82.4 83.6 85.4 86.4 99.2 99.4 99.6 99.6 90.2
cPSBF 60.4 58.4 44.8 62.2 73.4 52.0 55.8 65.8 67.5 69.6
mPSBF 83.8 86.8 84.2 84.0 83.8 98.7 97.9 97.6 91.2 86.4
cWAIC 34.4 32.8 34.2 36.6 36.2 81.4 81.8 83.4 81.0 82.6
mWAIC 77.6 81.0 82.6 82.0 82.4 97.6 99.2 99.2 99.0 92.2

3.6.4 Simulation study 3: extra simulation for possible ex-
tensions of LMM

Simulation study: jointly selection of both fixed and random effects
Depending on the data at hand, researchers are usually faced with the challenge
of choosing the correct model. It is therefore important to select a parsimonious
model that fits the data accurately. Since there is minimal agreement on which
criteria to choose for Bayesian model selection, we evaluated the performance of
the marginal and conditional criteria in choosing the correct model among other
alternative models. Based on Potthoff & Roy data, we generated 500 data sets
from Equation (3.5) and considered five possible alternative models for the data.
We considered, namely, (i) different scale of the covariates (ii) distributional
assumptions not satisfied for either or both random-effects and measurement
error (iii) the nature of measurement error (heteroscedastic or heteroscedastic)
(iv) wrong random effects structure. The following models were considered jointly
with the model given by Equation (3.5).

• C1: The model generating data specified in Equation (3.5).

• C2: Equation (3.5) with age replaced by age2 and including an additional
random slope for age.
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Table 3.4: Simulation study 2: Percentage correct selection when changing the
sample size in the Potthoff & Roy data set.
Scenario Minimum value Absolute difference

Criteria 25 50 75 100 25 50 75 100
I cDIC 67.6 77.0 79.0 80.6 1.0 3.2 7.2 19.0

mDIC 76.4 83.0 84.2 82.8 52.2 92.6 98.4 99.0
cPSBF 43.0 40.8 49.4 45.4 0.0 0.4 0.8 0.0
mPSBF 75.2 83.0 84.4 83.0 83.1 93.0 93.2 96.1
cWAIC 31.0 39.4 41.4 43.8 0.0 44.8 44.6 40.6
mWAIC 75.0 82.4 83.8 82.0 56.2 92.8 98.8 98.8

II cDIC 53.8 50.8 47.4 41.0 89.6 87.2 87.2 84.8
mDIC 85.0 83.6 86.2 83.8 99.2 99.6 99.2 99.4
cPSBF 47.6 44.8 47.8 53.0 65.2 65.8 66.2 65.8
mPSBF 85.6 84.2 86.0 83.0 90.2 97.6 97.6 97.9
cWAIC 36.8 34.2 34.2 31.8 83.8 83.4 83.2 82.6
mWAIC 82.0 82.6 84.6 80.2 99.4 99.2 99.2 99.3

• C3: Equation (3.5) age replaced by age2.

• C4: Equation (3.5) age replaced by log(age).

• C5: Equation (3.5) with the normality assumption for random effects re-
placed by the skew-normal assumption.

• C6: Equation (3.5) with the normality assumption for random effects re-
placed by the skew-normal assumption and heteroscedastic measurement
error is assumed.

As seen in Table 3.6, the marginal criteria select the data-generating model (C1)
in about 70% of the times contrary to the conditional criteria which select the
true model in about 10% of the time. It is interesting to note that the condi-
tional criteria select C5 (the model that assumes a skew-normal distribution for
the random effects) in about 65% while the marginal criteria choose C5 in about
2%. The results show the superiority of the marginal criteria in selecting the true
data-generating model.

Simulation study: normality assumption for the random effects and mea-
surement errors are relaxed
We also assessed the performance of the model selection criteria when the nor-
mality assumption for the random effects and measurement errors are relaxed.

39



For this simulation study, we generated 500 data sets from the model.

yij = β0 + xiβ1 + tijβ2 + b0i + εij, i = 1, . . . , n = 200, j = 1, . . . , 6 (3.8)

where tij = j, β1 = 2, β2 = 1 and εij ∼ SN1(0, 0.52, 4). First, we assumed
that β0 + b0i ∼ N(4, 4), i.e, β0 = 4 and b0i ∼ N(0, 4). In addition, to show the
advantages of the skew-normal distribution for the random effect it is penchant
to accommodate skewness.
Second, we have taken the previous one except now we generated the β0 +

b0i according to Gamma(2, 1) distribution (as done also in Arellano-Valle et al.
(2007) and Lachos et al. (2010)) with probability density f(x) = x exp(−x)
yielding a highly skewed distribution. The subject-specific covariate xi is binary
with xi = 1 if i ≤ n/2 and is zero otherwise, while tij represents a covariate
with values varying within individuals and the same for all individuals.

For each of the 500 simulated data sets, model (3.8) was fit under alternative
models as described in Section 3.6.2. We sampled 7000 iterations after discard-
ing the initial 3000 iterations. The thinning factor was at 7 to avoid correlation
problems in the generated chains.
The following vague priors were assigned: β ∼ N(0, 102), σ2

ε ∼ IG(0.001, 0.001),
σ2
b ∼ IG(0.001, 0.001), δε ∼ N(0, 102)IIδε > 0, δb ∼ N(0, 102)IIδb > 0. The

marginal distribution corresponding to Equation (3.8) is expressed in the closed
form, as seen in Section 3.3.
The simulation results shown in Table 3.7 confirm the results obtained above
under the Gaussian distribution. Finally, we repeated the above simulation when
(i) both random effects and random error have a skew-normal distribution and
when (ii) the random error follows a t(3) distribution. The results (not shown)
confirm the above simulation results.

3.7 Application

The Nigerian indigenous chicken (NIC) data set describes the longitudinal evolu-
tion of the body weight (BW) of chickens of different breeds raised in a university
experimental farm. Four hundred and sixteen chickens were measured every week
from hatching up to 20 weeks. The study aimed to evaluate the growth of dif-
ferent chicken breeds. Here we considered two classes of progenies.
Two hundred and seventy chickens were produced from the same parent stock
(pure breed), while 146 chickens have different parents (cross breed). The ra-
tional for the study and the experimental design can be found in Adeleke et al.
(2011).
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Figure 3.1: Nigerian indigenous chicken data set: Longitudinal profiles of body
weight for 416 chickens highlighting 10 randomly chosen chickens

See Figure 3.1 for the evolution of weights of the chickens over time. Assum-
ing a quadratic growth model with subject-specific random intercept and slopes,
we fitted an LMM model to the weight at the jth measurement time of the ith
chicken as

yij = β0 + β1breedi + β2ageij + β3age
2
ij + b0i + b1iageij + b2iage

2
ij + εij, (3.9)

where yij is the chicken body weight (kg); breedi is the breed indicator
(1=pure breed, 2=cross breed), the ageij represents the age (standardized).

For the purpose of this study, we limited the chicken’s age to 13 weeks since
after that age a considerable amount of chicken died. Thus, xij = (1, breedi, ageij, age2

ij)′,
bi = (b0i, b1i, b2i)′ and Zij = (1, ageij, age2

ij), i = 1, . . . , 416, j = 1, . . . , 13.
We first used model (3.9) together with the classical Gaussian assumptions as
model to fit the weights of the chickens over time, and we refer to this as Model
3.9(a).
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Based on the model fit, Figure 3.2 shows histograms and the corresponding
Q-Q plots of the standardization posterior means of bi and εij, whereby the
posterior means were divided by their corresponding posterior standard deviations.
The plots show that there is apparently a non-normal pattern for subject-specific
intercepts and slopes.
Also, the residual plot suggests deviation from normality. We note that such

plots may be difficult to interpret because the shrinkage effect depends on the
number of measurements per subject,(see e.g. Verbeke and Lesaffre, 1996). But
here there were no missing responses up to week 13 and standardisation was
applied.

Nevertheless, these plots triggered us to consider three additional models
with the same fixed effects structure but differing in the error and random effects
distribution:

• Model 3.9(b): LMM with a univariate skew-normal distribution for mea-
surement error and a trivariate Gaussian distribution for the random effects.

• Model 3.9(c): LMM with model with a trivariate skew normal random
effects with Gaussian measurement error.

• Model 3.9(d): LMM with a univariate skew-normal distribution for mea-
surement error and a trivariate skew-normal distribution for the random
effects.

The vague priors used are the same as those described in Section 3.6.4. We
used 25,000 iterations after discarding the first 10,000 and thinning was set to
10. Convergence of the MCMC samples was assessed with the BGR criteria.
Resulting parameter estimates are shown in Table 3.8.
It can be observed from Table 3.8 that the conditional criteria support Model
3.9(b), which seems to be an incorrect model based on Figure 3.2. In contrast,
the marginal criteria favor Model 3.9(d), which appears to be also the most ap-
propriate model here. We further evaluated the effect of the quadratic term in
the fixed and random effects.
The results (results not shown) of both versions of the criteria show that age2 is
more important in the random effects part than in the fixed part and there is an
agreement between the conditional and the marginal criteria on this.

42



Table 3.5: Simulation study 2: Performance of alternative criteria for the Potthoff
& Roy data set.

Minimum value Absolute difference
Scenario Criteria Over Correct Under Over Correct Under
I cDIC1 18.6 67.6 13.8 2.4 1.0 96.6

cDIC2 11.8 36.0 52.2 1.6 0.0 98.4
cDIC3 3.2 85.0 11.8 0.6 22.8 76.6
cDIC4 4.2 40.4 55.4 1.4 19.6 79.0
cWAIC1 19.8 31.0 49.2 2.6 0.0 97.4
cWAIC2 16.8 41.2 42.0 2.6 0.0 97.4
mDIC1 16.8 76.4 6.8 1.4 55.2 43.4
mDIC2 16.8 73.8 9.4 1.4 52.2 46.4
mDIC3 1.8 65.4 32.8 0.2 34.0 65.8
mDIC4 2.8 53.2 44.0 0.2 24.0 75.8
mWAIC1 18.8 75.0 6.2 1.4 58.4 40.2
mWAIC2 17.8 75.2 7.0 1.4 56.2 42.4

II cDIC1 46.2 53.8 0 .0 10.4 89.6 0.0
cDIC2 0.6 99.2 0.2 0 .0 99.4 0.6
cDIC3 0.0 47.8 52.2 0.0 36.8 63.2
cDIC4 0.0 0.8 99.2 0 .0 0.6 99.4
cWAIC1 63.2 36.8 0.0 16.0 84.0 0.0
cWAIC2 55.8 44.2 0.0 10.4 89.6 0.0
mDIC1 15.0 85.0 0.0 0.6 99.4 0.0
mDIC2 8.0 92.0 0.0 0.2 99.8 0.0
mDIC3 2.4 97.6 0.0 0.2 99.6 0.2
mDIC4 0.4 99.6 0.0 0.0 99.2 0.8
mWAIC1 18.0 82.0 0.0 0.8 99.2 0.0
mWAIC2 15.4 84.6 0.0 0.8 99.2 0.0

Table 3.6: Simulation study 3: Percentage of times the criteria selection select
the required model described in Section 3.6.4 in the Potthoff &Roy data set.

Model
Criteria C1 C2 C3 C4 C5 C6
cDIC 12.8 7.0 3.6 4.0 70.6 2.0
cWAIC 13.2 8.4 8.0 4.6 64.2 1.6
cPSBF 10.8 10.6 6.0 5.8 66.8 0.0
mDIC 76.2 18.4 1.2 2.8 1.4 0.0
mWAIC 67.4 20.4 2.2 3.0 4.2 2.8
mPSBF 74.8 8.6 11.4 3.4 1.8 0.0
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Table 3.7: Simulation study 3: Performance of the Bayesian model selection
criteria for Gamma(2,1) for random error and N(0,4) for random effect.

Minimum Value Absolute difference
Scenario Criteria Over Correct Under Over Correct Under
I cDIC 29.6 43.2 27.2 39.8 60.2 0.0

mDIC 13.0 60.8 26.2 22.4 77.6 0.0
cPSBF 59.0 28.2 12.8 46.6 52.4 1.0
mPSBF 11.0 67.4 21.6 44.2 55.8 0.0
cWAIC 25.4 51.4 23.2 32.6 67.4 0.0
mWAIC 11.0 62.4 26.6 20.2 79.8 0.0

II cDIC 18.2 26.4 55.4 38.2 61.8 0.0
mDIC 18.2 64.4 17.4 15.6 84.4 0.0
cPSBF 19.2 56.4 37.2 47.2 51.4 1.4
mPSBF 14.6 70.2 15.2 19.2 78.8 2.0
cWAIC 15.6 20.4 64.0 32.2 67.8 0.0
mWAIC 18.2 66.0 15.8 14.4 85.6 0.0
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Emperical Bayes estimate of subject−specific slopes
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Figure 3.2: Nigerian indigenous chicken data set: Histogram and normal Q-Q
plots for standardised posterior means of random effects based on Model 3.9(a):
Subject-specific intercepts in the first row, subject-specific slope of age in the
second row, subject-specific slope for the age2 in the third row and residual in
the fourth row.
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3.8 Discussion

We have compared three Bayesian selection criteria in the context of LMM for
longitudinal data. In addition, we extended these settings to the skew-normal
and t(3) distribution for random effects and measurement error. The simulation
studies show that the marginal criteria outperform their conditional counterparts.
Our results confirm the results of Chan and Grant (2016a) for volatility models,
Merkle et al. (2018); Millar (2018); Li et al. (2016) for item response models
and Quintero and Lesaffre (2018) in hierarchical models.
It is important to remark that calculating the marginalized criteria does not repre-
sent an additional computational effort for LMM since the marginalized likelihood
can be written in a closed form at least for a number of important distributions
for the random effects and measurement errors. However, for generalized lin-
ear mixed models computing the marginalized likelihood is more involved and
numerical integration methods are needed (Quintero and Lesaffre, 2018). The
performance of the conditional criteria will be examined in a subsequent paper.
We examined two selection rules: minimum value and absolute difference for all
criteria. However, our results did not show justification for absolute difference
outside DIC.
In our simulation study, the performance for the marginalized versions of DIC,
WAIC and PSBF is similar. However, in contrast to DIC, WAIC and PSBF have
the advantage of being non-invariant to non-linear transformations of the pa-
rameters in focus. For this reason, our advice is to base model selection on the
marginal versions of WAIC or PSBF.
Nevertheless, our R function computes both the marginal and conditional ver-
sions of all three selection criteria with no additional computational efforts. The
function can be downloaded from https://ibiostat.be/online-resources/bayesian.
Another useful exercise is to evaluate the performance of the selection criteria
when varying the vague prior for the covariance matrix of the random effects.
This is under current examination.
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Abstract

We explore the performance of three popular Bayesian model-selection criteria
when vague priors are used for the covariance parameters of the random effects
in a linear mixed effects model (LMM) using an extensive simulation study. In
a previous paper, we have shown that the conditional selection criteria perform
worse than their marginal counterparts. It is known that for some ‘vague’ priors,
their impact on the estimated model parameters can be non-negligible e.g for
the priors of the covariance matrix of the random effects in a longitudinal LMM.
We evaluate here the impact of vague priors for the covariance matrix of the
random effects on selecting the correct LMM using classical Bayesian selection
criteria. We consider marginal and conditional criteria. For the random intercept
case, we assign different vague priors to the variance parameters. With two
or more random effects, we considered five different specifications of Inverse-
Wishart (IW) prior, five different separation priors and a joint prior. The results
show again the better performance of the marginal over the conditional criteria
and the superiority of joint and separation priors over IW in all settings. We also
illustrate the performance of the selection criteria on a practical data set.

4.1 Introduction

The linear mixed-effects model (LMM) is a popular model to analyse longitudinal
data with a Gaussian response, especially when the outcomes have been recorded
at irregular time points. The model consists of fixed effects and random effects.
The fixed effects represent the effect of covariates on the population average,
while the random effects represent individual-specific deviations in profiles and
account for the correlation among responses from the same individual. Selecting
the appropriate LMM implies determining the appropriate fixed effects part and
random effects part such that the model fits the current and future data well.
In a Bayesian framework, there is little agreement on the appropriate model

selection criteria. Three criteria are currently popular in practice. The deviance
information criterion (DIC) is by far the most popular criterion because it can
be easily obtained with the popular Bayesian software packages WinBUGS and
OpenBUGS. The pseudo-Bayes factor (PSBF) and the widely applicable informa-
tion criterion (WAIC) are increasingly in use but are not automatically obtained
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in the classical Bayesian packages, except for WAIC which is provided by Stan
(Carpenter et al., 2017). These three model selection criteria may be computed
on the hierarchical specification of the LMM, i.e. given the random effects. This
then leads to the conditional version of the selection criteria.
However, the marginal version of the LMM, i.e. the model averaged over the

distribution of the random effects, can be analytically determined. Selection cri-
teria based on this marginal likelihood are then referred to as marginal selection
criteria. It is most popular, but also in general easier, to fit the hierarchical
version of the LMM in Bayesian software thereby making use of the data aug-
mentation algorithm. Indeed, the conditional version of DIC is provided by most
Bayesian statistical packages, but also for the other selection criteria the condi-
tional version is easy to compute from the generated Markov Chain Monte Carlo
(MCMC) samples. Consequently, marginal versions of the selection criteria are
basically never reported.
The conditional criteria have, however, been criticized in the literature (Chan

and Grant, 2016a; Ariyo et al., 2019b; Merkle et al., 2018). Theoretical argu-
ments and simulation results point out that model selection based on conditional
criteria is inferior to model selection based on marginal criteria. This was for
instance shown in Ariyo et al. (2019b) for the LMM.
Here, we examine the impact of vague priors on the model parameters on the
performance of the model selection criteria. Given the inferior results of the
conditional selection criteria, we are particularly interested to see whether the
marginal selection criteria highly depend on the chosen vague priors for the model
parameters. However, since we realize that the conditional selection criteria will
remain popular despite the theoretical and empirical evidence, we also checked
the impact of the vague priors on the conditional selection criteria.
While for the fixed effects most often normal priors with a large variance are

chosen, there is no standard choice for the vague prior of the variance terms of
the random effects in LMMs (Kass et al., 2006). The impact of a vague prior
on the posterior distributions can also be more pronounced when the data set is
small and/or the number of units contributing to the estimation of the between-
unit variation is small (Lambert et al., 2005). In this situation, Lambert et al.
(2005) argued that informative prior distributions are required.
When the LMM involves two or more random effects, a prior on their covariance
matrix is required. The Inverse Wishart (IW) distribution is the natural choice
for a covariance matrix due to its conditional conjugacy. However, problems have
been reported with the use of the IW prior as it assumes the same amount of
prior information for every variance parameter. More importantly, it assumes a
prior relationship between the variances and correlations (Alvarez et al., 2014).
These issues have a larger impact when the dimension of the covariance matrix
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increases.
Several alternative priors for the covariance matrix have been suggested in the
literature. Firstly, the IW prior has been given an hierarchical structure. Sec-
ondly, various priors have been suggested separating the priors on the variance
and correlation parameters. Such separation priors has been shown in the lit-
erature to be more efficient than the classical IW prior (Alvarez et al., 2014;
Huang et al., 2013). Among the merits of separation priors is their flexibility in
incorporating informative prior information. However, things become somewhat
more complicated with three or more random effects because certain restrictions
must be imposed in order to ensure positive definiteness of the covariance matrix
(Hurtado Rúa et al., 2015; Barnard et al., 2000; Wei and Higgins, 2013; Huang
et al., 2013). Other priors in which the variance terms of both the measure-
ment errors and the variance-covariance of random effects are modelled jointly
have been suggested.These priors have been shown to reduce bias and improve
efficiency in the posterior inference (Demirhan and Kalaylioglu, 2015; Kalayli-
oglu and Demirhan, 2017). Just like for separation priors, certain restrictions are
needed to ensure the positive-definite of the covariance matrix.
The aim of this study is to ascertain if the choice of the vague prior, espe-

cially on variance and covariance parameters, is important for model selection.
More specifically, we wish to measure how much different vague priors impact
the marginal selection criteria, but given their popularity we also checked this for
the conditional criteria.
The remainder of this article is organized as follow. In Section 4.2 we introduce
the Bayesian linear mixed model for longitudinal data. We present the model
selection criteria in Section 4.3. In Section 4.4 previous findings are discussed
while in Section 4.5 we explore the vague prior for the covariance matrix of the
random parameters. In Section 4.6, we assess the sensitivity of different vague
covariance priors on random effects on the performance of the above-mentioned
model selection criteria using a simulation study. An illustration on a practical
data set is shown in Section 4.7. Main conclusions and a discussion are given in
Section 4.8.

4.2 The linear mixed-effects model (LMM)

Let Yi = (ymii . . . , ymi,i)T be an mi-dimensional response vector of (longitudi-
nal) measurements for the i-th (independent) individual, Xi and Zi are (mi×p)
and (mi× q)-dimensional covariate matrices, respectively and β a p-dimensional
vector of fixed effects. The classical LMM is then given as (Laird and Ware, 1982)
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Yi = Xiβ + Zibi + εi, (i = 1, . . . , n), (4.1)
with the residual component vector εi ∼ Nmi(0,Σi), where Σi is an (mi ×mi)
positive-definite covariance matrix with Σi = σ2

ε Imi where Imi denotes the iden-
tity matrix of dimension mi. The q× 1 random effects vectors are also assumed
normally distributed, i.e. bi ∼ Nq(0,D), where D is a (q × q) positive-definite
covariance matrix.
Model (4.1) is called the linear mixed-effects model because it combines the

fixed-effects structure β with the subject-specific random effects b1, . . . ,bn.
Inference may be focused on the regression coefficients β, the unit-specific coef-
ficients bi or the variance components (Σi = σ2Imiand D). Model (4.1) is the
hierarchical version of the LMM, which provides the conditional LMM likelihood.
The marginal version of the LMM is obtained as follows. Let f(Yi|bi) and

f(bi) be the (Gaussian) density functions of Yi and random effects respec-
tively, then the marginal density function of Yi is given by f(Yi|β, σ2,D) =∫
f(Yi|bi,β, σ2)f(bi|D)dbi. It can easily be shown that, with Gaussian densi-

ties, the marginal version of (4.1), is a multivariate normal distribution given by

Yi ∼ Nmi(Xiβ,ZiDZT
i + Σi), (i = 1, . . . , n). (4.2)

The Bayesian LMM is obtained when prior distributions are given for all model
parameters. Hence, additional to model (4.1) or equivalently model (4.2) we
specify priors for β,D and σ2. Classical choices for these priors are: β ∼
Np(β0,B0),D ∼ IW (k,V) and σ−2 ∼ Gamma(v0, δ0).
Typically, one needs MCMC methods to estimate the model parameters, such
as Gibbs sampling or Metropolis-Hastings algorithm (Geman and Geman, 1984;
Lesaffre and Lawson, 2012).

4.3 Bayesian model selection

Model selection is an important step in a statistical modelling exercise. In a
frequentist context one distinguishes model selection for nested models versus
model selection with non-nested models. In the first case formal tests, most
often likelihood ratio tests, are used, while in the second case typically information
criteria such as Akaike’s Information Criterion (AIC) and Bayesian Information
Criterion (BIC) are in use. In a Bayesian context, the same model selection
criteria apply for nested and non-nested models.
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The Deviance Information Criterion (DIC) is an adaptation of AIC to the Bayesian
context. DIC is the most popular Bayesian model selection criterion, because it
has been implemented in the popular software WinBUGS, and later also in other
popular Bayesian software such as OpenBUGS.
However, the literature has been critical about its theoretical foundations. This
is sometimes reflected in practice when the associated degrees of freedom, pDIC ,
is estimated negative thereby making the criterion useless (Spiegelhalter et al.,
2014). As a result, there has been increasing interest to use other criteria, such as
the pseudo-Bayes factor (PSBF) and the Widely Available Information Criterion
(WAIC). WAIC has been recently advocated as having a similar flavor as DIC but
with better properties (Watanabe, 2010; Millar, 2018). There is, however, still
no consensus about the best criteria for model selection in a Bayesian context.
For reasons of completeness, we will discuss the three most popular Bayesian
model selection criteria in more detail.

4.3.1 The deviance information criterion

The deviance information criterion (Spiegelhalter et al., 2002) was developed
for Bayesian model selection and is derived from AIC by replacing frequentist
concepts by their Bayesian counterparts. As such, DIC expresses the predictive
accuracy of the model in a Bayesian way. The frequentist mean is replaced by
the posterior mean of the model parameter, i.e. θ̄ = E(θ|y), and frequentist
integration is replaced by Bayesian integration. DIC is then defined as

DIC = −2 log p(y|θ̄) + 2pDIC , (4.3)

where pDIC corresponds to the effective number of parameters, given by

pDIC = −2 Eθ|y[log p(y|θ)] + 2 log[p(y|θ̄)],

which quantifies the number of parameters to be estimated after incorporating
the prior information into the model.
From (4.3) it is clear that low values of DIC indicate a better fit of the model
to the data. DIC is popular in practice because it is a by-product of the MCMC
calculations and implemented in popular Bayesian software. Namely, with the
deviance given by D(θ) = −2 log p(y|θ), pDIC and DIC can be approximated by
making use of θ1, . . . ,θK , which are the sampled values of θ from a converged
MCMC chain.
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We then have pDIC = D(θ)−D(θ̄) and DIC = D(θ̄) + 2pDIC , where D(θ) ≈
1
K

∑K
k=1D(θk) and D(θ̄) ≈ D( 1

K

∑K
k=1 θ

k). We note that there are different
versions of DIC implemented in the popular Bayesian packages, where the differ-
ence is primarily due to a different definition of pDIC .
DIC (and pDIC) have received considerable criticism in the statistical literature.
First of all, DIC is not invariant to monotonic parameter transformations, i.e.
DIC changes value when based on ψ = h(θ) rather than on θ. Furthermore, it
has been shown that the asymptotic properties upon which DIC is based, are not
fulfilled in hierarchical models (Li et al., 2013b), see also Section 4.4. Note also
that it is not clear how to compute DIC when there are missing responses. For
this reason, different versions of DIC have been explored in Celeux et al. (2006).

4.3.2 The pseudo Bayes factor

A natural Bayesian selection mechanism is to choose the model with the largest
posterior probability. Suppose that there are L models M1, . . . ,ML to choose
from, with prior probabilities p(M1), . . . , p(ML), respectively. The posterior
probability of model M` is determined by computing the marginal likelihoods
p(y|M`) =

∫
p(y|θ`,M`) p(θ`|M`) dθ` (` = 1, . . . , L) and is given by

p(M`|y) = p(M`)p(y|M`)∑
k p(Mk)p(y|Mk)

= p(M`)BF1,2[M` : Mb]∑
k p(Mk)BF1,2[Mk : Mb]

, (4.4)

where BF1,2[M` : Mb] is the Bayes factor, which compares model M` to a
reference model Mb and is given by

BF1,2[M` : Mb] = p(y|M`)
p(y|Mb)

.

The classical Bayes factor is difficult to use in practice because: (1) the marginal
likelihood is not defined for improper priors, (2) priors must be well chosen other-
wise the classical Lindley-Bartlett paradox (Bernardo, 1980) comes into play and
(3) its computation can be very demanding, sometimes even worse than com-
puting the posterior distribution (Lesaffre and Lawson, 2012)[p. 273]. Several
versions of the original Bayes factor have been suggested to make the computa-
tions feasible and practical. A popular version is the pseudo-Bayes factor (PSBF),
where the numerator and denominator in (4.4) are replaced by the product of
the marginal likelihoods over all subjects, whereby the marginal likelihood for the
ith subject is evaluated in yi and is based on the posterior of the model param-
eters obtained from all other subjects, i.e. from y(i). This yields a ratio of two
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pseudo-likelihoods, each being the product of n conditional predictive ordinates
(CPOs)(Gelfand and Dey, 1994). The CPO for subject i under model M` is the
probability of observing yi given model M` fitted with all observations in the sam-
ple except for yi i.e CPOi,` = p(yi|y(i),M`). The conditional predictive ordinate
can be approximated making use of the converged MCMC sample θ1, . . . ,θK as
follows:

CPOi,` ≈
[

1
K

K∑
k=1

1
p(yi|θk` ,M`)

]−1

.

To compute the PSBF, the log-pseudo likelihood (LPML) for each model is com-
puted by summing up CPOi,` across the n subjects, i.e, LPML` = ∑n

i=1 log(CPOi,`).
Then to compare two models M1 and M2, the pseudo-Bayes factor PSBF1,2 fa-
vors model M1 to model M2 when PSBF1,2 = exp(LPML2− LPML1) < 1. Note,
that we have adapted the original definition of PSBF in order that small values
imply better models. In contrast to DIC, the PSBF is invariant to monotonic
parameter transformations.

4.3.3 The widely applicable information criterion

The widely applicable information criteria (WAIC)(Watanabe, 2010) measures
the predictive accuracy of the model based on the log-posterior predictive distri-
bution log pθ|y(ỹi) of the parameter vector θ for a future observation ỹi. The
predictive accuracy for a future unknown ỹi is expressed by the log-predictive
distribution (elpd) as elpdi = Ef [log pθ|y(ỹi)] =

∫
log pθ|y(ỹi)f(ỹi)dỹi, and f is

the unknown distribution under the true model. The measure of predictive accu-
racy can also be described with a point estimate θ̄, often taken equal to E(θ|y),
as the expected log predictive distribution given the point estimator elpdθ̄ =
Ef (log p(ỹ|θ̄)). The log pointwise predictive distribution (lppd) based on the
observed data y1,y2, ...,yn, is calculated as follows lppd = log∏n

i=1 pθ|y(yi) =∑n
i=1 log

∫
θ p(yi|θ)p(θ|y)dθ. In practice, lppd can be estimated with the con-

verged MCMC sample θ1, . . . ,θK from the posterior distribution as ̂lppd =∑n
i=1 log

[ 1
K

∑K
k=1 p(yi|θk)

]
. The expected log pointwise predictive density elppd

is estimated as the log pointwise predictive distribution lppd with a bias cor-
rection using the WAIC criterion êlppdWAIC = ̂lppd − pWAIC . The measure
pWAIC corresponds to the estimate of the effective number of parameters given
by pWAIC = 2 ∑n

i=1

[
log

( 1
K

∑K
k=1 p(yi|θk)

)
− 1
K

∑K
k=1 log p(yi|θk)

]
. WAIC

can be alternatively expressed as ̂lppd = ∑n
i=1 log

[ 1
K

∑K
k=1 p(yi|θk)

]
. WAIC =
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−2 ̂lppd + 2pWAIC . As for PSBF, WAIC does not change when θ is replaced by
ψ = h(θ), with h a strictly monotone function. As for DIC, smaller values of
WAIC indicate a better model.

4.4 Previous findings

In this paper, we evaluate the dependence of vague priors on the performance of
Bayesian selection criteria for the linear mixed model. As seen in, e.g. Quintero
and Lesaffre (2018), the selection criteria can be based on the hierarchical or
conditional version of the LMM given by model (4.1) or on the marginal version
of the LMM based on model (4.2). In the first case, one speaks of a conditional
selection criterion. We have for the above three popular criteria the conditional
DIC (cDIC), the conditional PSBF (cPSBF) and the conditional WAIC (cWAIC).
In the second case, we have the marginal versions of the criteria denoted here
as: mDIC, mPSBF and mWAIC. It has been argued that the choice of likelihood
(conditional or marginal) should be motivated by the aim of the study (Vaida
and Blanchard, 2005). For example, in a clinical trial that evaluates a new drug
on patients enrolled within an hospital, cDIC may be used to conduct model
selection if the interest lies on the efficacy of the new drug at the hospitals of
the study. However, mDIC is the appropriate model selection criterion when one
wishes to evaluate the efficacy of the new drug in all hospitals.
In the statistical literature, there is evidence of the better performance of the
marginal model selection criteria. In a slightly different setting, Chan and Grant
(2016a) observed in a simulation study that cDIC usually selects an overfitted
model but that mDIC performs better. In general hierarchical models, Quin-
tero and Lesaffre (2018) concluded via a simulation study that mDIC selects
(much) more often the correct model than cDIC. They also provided R software
to compute the marginal criteria via a dedicated sampling algorithm. The same
result was obtained for cWAIC by Millar (2018) and therefore he recommended
to use mWAIC. There is also evidence that the same is true for an item response
model (Li et al., 2016; Millar, 2018; Merkle et al., 2018). Furthermore, Ariyo
et al. (2019b) compared the conditional and marginal versions of DIC, PSBF
and WAIC for the Gaussian LMM, the skew-normal LMM (SNLMM) and the
skew-t linear mixed model (STLMM) via an extensive simulation study. Both
the balanced as well as the unbalanced case was studied for longitudinal data.
Both the random intercept case as well as the 2- and 3-dimensional case for the
random effects part were considered. The simulation results showed a strong
advantage of the marginal criteria in selecting the true data-generating model.
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Since the marginal likelihood for the LMM, SNLMM and STLMM have a closed
form it is relatively easy to compute these marginal criteria. In addition, the
model selection performance of the conditional criteria decreases with increasing
sample size (increasing number of random effects), while the performance of the
marginal criteria improves with increase in sample size. Furthermore, to facilitate
the computations of the marginal criteria in practice, R functions were developed,
which can be downloaded from https://ibiostat.be/online-resources/bayesian.
In the course of this study, it was observed that the choice of the prior may affect
the ability of the criteria to select the appropriate data-generating model, espe-
cially for small sample sizes. The appropriateness of vague priors is most often
checked by evaluating their effect on estimation, but here we check their impact
on the performance of DIC, PSBF and WAIC in selecting the correct model. More
specifically, we wish to check for the conditional and marginal criteria: (1) the
impact of vague priors on selecting the best model and (2) whether there is a best
vague prior in this context. In principle, we could have limited ourselves to the
marginal version of the criteria since the conditional criteria showed repeatedly
not to perform well. But, since many will continue to use the conditional criteria
because of their practical advantage, the above aims are of practical interest.

4.5 Vague prior distributions for the LMM

An essential step in statistical modelling is the choice of the appropriate statistical
model for the data at hand. This is not only an essential step, but also a
notoriously complex part of statistical modelling involving statistical tools and
substantive knowledge. In this paper we look at model selection in a Bayesian
context. That is, we assume that we have a rather limited number of models to
choose from. In the model selection step it is customary to choose vague priors
for the model parameters. In contrast, informative priors are typically chosen
when an appropriate model is already available. For a LMM (vague) priors must
be specified for the fixed effects and the variance components. For the fixed
effects we have taken vague normal priors. Here we focus on the vague priors for
the covariance matrix of the random effects. We consider the univariate case of
a random intercept and the multivariate case of several random effects.
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4.5.1 Vague priors for the random intercept

Various vague priors have been suggested for the level-2 variance of the Gaussian
hierarchical model. This model is a special case of the LMM with only a random
intercept. In that case, (4.1) can be written as

Y i ∼ N(Xiβ + 1mibi, σ2
ε ) i = 1, . . . , n. (4.5)

with 1mi is a mi × 1 vector of ones, and where the random intercept bi ∼
N(0, σ2

b ). The improper prior p(σ2) ∝ 1/σ2, suggested by Jeffreys for the simple
case of N(µ, σ2) yields an improper posterior for model (4.5) if applied to σ2

b .
This was recognized long time ago, see e.g Lesaffre and Lawson (2012). In the
early days of the development and use of WinBUGS, this improper prior was
replaced by σ2

b ∼ IG(0.001, 0.001), where IG(ε, ε) refers to an inverse gamma
distribution with two parameters equal to ε. Later on, it was realised that the
posterior on σ2

b depends much on the choice of the value of ε. This was a
trigger to suggest alternative vague but proper priors for σ2

b . We note that, in
contrast to above Jeffreys prior, the proper vague priors depend on the scale of
the data. Hence, the vague prior distributions for σb listed below are not invariant
to change of scale in the data. The following vague but proper priors for σ2

b have
been considered in the literature:

1. 1
σ2
b
∼ Gamma(0.001, 0.001). This was a popular prior distribution for

variance terms used initially in the WinBUGS Examples I and II documents
(Lunn et al., 2000);

2. log(σ2
b ) ∼ Uniform(−10, 10). This prior distribution was suggested in the

analysis of cluster randomized trials (Spiegelhalter, 2001);

3. 1
σ2
b
∼ Pareto(1, 0.001). This prior was suggested in genetic epidemiology

models (Burton et al., 1999; Scurrah et al., 2000) and is equivalent to
Uniform(0, 1000) on the variance scale;

4. σb ∼ Uniform(0, 100). This prior was recommended by Spiegelhalter et al.
(2004);

5. σb ∼ half−t(0, 1, 1). Gelman (2006) suggested the use of half-t prior with
df=1 (half-Cauchy) on the standard deviation when the number of groups
is small. Since a half-t prior appear to be completely harder to work with
(Huang et al., 2013), we give the precision parameter a scaled gamma
distribution which is equivalent to a half-Cauchy prior (with mean zero) on
the standard deviation (Wand et al., 2011).
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Note that the above priors are appropriate for the scale of the simulated data,
but also for the scale of the data in the analysis of the chicken data set in Section
4.7. Furthermore, the prior for the variance of the measurement error, σ2

ε is given
an IG(0.001, 0.001) prior, which is a classical choice.

4.5.2 Vague priors for the covariance matrix of the random
effects

Specifying an appropriate prior for a covariance matrix has been the topic of in-
tensive research in the last two decades. The mathematically convenient prior for
a covariance matrix is given by the Inverse Wishart (IW) distribution. This prior
is often used in Bayesian modelling for an unknown covariance matrix due to its
conditional conjugacy and its implementation in most of the Bayesian statistical
software, but there are practical problems with this prior.
In next subsections we review the problems involved with the Inverse Wishart
prior, then we discuss some generalizations of this prior to improve convergence
properties and its ability to represent (absence of) prior knowledge in an appro-
priate manner. Note that the same inverse gamma prior for σ2

ε will be taken as
in Section 4.5.1.
The Inverse Wishart prior and variations

The conditional conjugate prior for the covariance matrix D in the linear mixed
model (4.1) is the IW distribution (Lesaffre and Lawson, 2012; Schervish, 2012)

D ∼ IW (k,V ),

where V is a q × q positive semi-definite scale matrix and k(≥ q) is the df. V
is used to position the IW distribution in the parameter space, and k sets the
certainty about the prior information in the scale matrix (Hurtado Rúa et al.,
2015). For instance, to obtain a minimally informative prior, k ≈ q appears
appropriate (Gelman et al., 2014; Gelman and Hill, 2007). When k = q + 1, the
marginal distribution of the correlations is uniform, but their joint distribution
is not (Tokuda et al., 2011). Further, the larger k, the more informative is
the IW distribution (Gelman et al., 2014; Gelman and Hill, 2007). In JAGS,
the standard choice is to take small values for the diagonal elements of V with
the degrees of freedom set equal to the dimension of the matrix. However,
setting the diagonal elements to larger values also influences the position of the
IW (Schnell et al., 2016). In other words, specifying an IW prior distribution
requires balancing the size of V and the value of k, but it is not clear how to
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choose the diagonal elements in V . In addition, varies studies have shown that
the IW prior is problematic, namely: (1) there is over-dependence in the posterior
distribution of the covariance matrix when data is sparse (i.e small number of
clusters), (Quintero and Lesaffre, 2017; Gelman, 2006); (2) the uncertainty for all
variances is controlled by a single degree of freedom parameter (Gelman et al.,
2004b); (3) there is a priori dependence between the standard deviations and
the correlation (Tokuda et al., 2011) and (4) the marginal distribution for the
variances has low density in a region near zero (Gelman, 2006). In addition,
convergence may be difficult with the IW prior. This triggered Gelman et al.
(2008) to suggest parameter expansion techniques, which primarily improve the
convergence of the MCMC algorithm.
Variations of the classical IW prior have been suggested to improve convergence
of the MCMC computations, and to better express (absence of) prior information.
O’Malley and Zaslavsky (2008) suggested the scaled Inverse Wishart prior, which
is based on the IW prior but with additional parameters to better specify the prior
information on the variances. Another variation is suggested by Huang et al.
(2013), who suggested an hierarchical Inverse Wishart prior for D:

D | d1, . . . , dq ∼ IW(v + q − 1, 2vdiag(1/d1, . . . , 1/dq)),
dk ∼ IG(1/2, 1/A2

k), k = 1, . . . , q,
(4.6)

where diag(1/d1, . . . , 1/dq) denotes a diagonal matrix with 1/d1, . . . , 1/dq on
the diagonal and v, A1, . . . , Aq are positive scalars. The authors showed that
(4.6) produces half-t(v,Ak) distributions for each standard deviation of D and
that it is a matrix generalisation of the half-t prior of Gelman (Gelman, 2006).
Large values of Ak imply a weakly informative prior on standard deviations as in
Gelman (2006). Huang et al. (2013) also showed that the choice of v = 2 leads
to marginal uniform distributions for correlation terms ρj,k, j 6= k. This prior will
be evaluated in our simulated study and will be referred to as HIW prior, more
specifically as HIW(v,A), with A = {A1, . . . , Aq}. The performance of both
variations on the IW prior has been evaluated in a simulation study (Alvarez et al.,
2014), who concluded that these priors show good performance and are definitely
much better than the classical IW when the true variance is small relative to the
prior mean, which holds for larger sample sizes.

Separation strategies for modelling covariance matrices

Another class of priors are based on the separation strategy, first suggested by
Barnard et al. (2000). The idea is to decompose the variance covariance matrix
D as D = S

1
2RS

1
2 , where S

1
2 is a diagonal matrix with standard deviations as

elements and R is a q × q matrix of correlations. The next two vague priors are
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based on this separation technique. The two correlation priors will be combined
with uniform priors on [0,100] for the elements of S, i.e. the variances. In the
first proposal, the correlation matrix R is factorised as R = LTL, where L
is a q × q upper-triangular matrix. A prior is then placed on the q(q + 1)/2
elements in L, i.e. the Cholesky factors Lij (i = 1, . . . , q, i ≤ j). The following
prior ensures unconstrained estimation of variance-covariance matrix and that
the positive semi-definite condition is satisfied (Wei and Higgins, 2013):

L1j ∼ U(−1, 1),

Ljj =

√√√√1−
j−1∑
i=1

L2
ij,

Lij = U

−
√√√√1−

j−1∑
i=1

L2
kj,

√√√√1−
j−1∑
i=1

L2
ij

 , i < j

(4.7)

for j = 2, . . . , q, with L11 = 1 to ensure uniqueness. This prior will be referred
to as the Chol prior.
Another approach is to use the spherical decomposition of the correlation matrix
first suggested by Pinheiro and Bates (1996). In this approach, the Cholesky
decomposition is parametrized by sine and cosine functions as follows. Setting
L11 = 1 and let k = 2, . . . , q, we have

Lk1 = cos(φk2),
Lk2 = sin(φk2)cos(φk3),

...
Lk,k−1 = sin(φk2)sin(φk3) . . . cos(φkk),
Lk,k = sin(φk2)sin(φk3) . . . sin(φkk).

Uniform (0, π) priors, with π = 3.1415, are given to the φkm parameters in-order
to ensure the uniqueness of the spherical parametrization. Note that the (i, j)th
element of R is the inner product LTi Lj and LTkLk = 1, where Lk is the kth
column of L. This prior is referred to as Spherical prior.
Daniels and Kass (1999) proposed a separation prior that puts a distribution
on the correlations so that they will end up shrinking toward 0. To this end,
they proposed a normal distribution for the Fisher’s z-transform on each of the
q(q − 1)/2 correlations ρ: z(ρ) = 1

2 log(1+ρ
1−ρ). To guarantee a positive define

matrix D, the foregoing normal distributions on the z-transformed correlations
needs to be truncated over the relevant values of the correlations (Daniels and
Kass, 1999). For a single ρ, assumed here and representing compound symmetry,
a half-normal distribution for z(ρ) is assumed. When the correlations are allowed
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to differ, the constraints to satisfy positive definiteness are more complicated.
Further, the authors assigned a prior on the unknown variance σ2

ρ and flat pri-
ors on the diagonal elements of D. Christiansen and Morris (1997) considered
a hyper-prior on σ2

ρb
, with π(σ2

ρb
) ∝ (c + σ2

ρb
)−2 and c is a constant that rep-

resents a variance. For instance, c can be set to be 1
n−3 , the variance of the

Fisher-z transformation (Hurtado Rúa et al., 2015). Similar to the approach of
Hurtado Rúa et al. (2015), we assigned IG(0.1,0.1) prior for variance parameters
and a truncated normal distribution prior for z(ρ). We refer this prior as the
Fisher-z prior.
Barnard et al. (2000) proposed the separation strategy whereby the q×q correla-
tion matrix R has a joint uniform distribution on [-1,1]q. However, the effective
algorithm to draw R uniformly is computationally demanding for q ≥ 3 due to
the positive definite constraint. We used here the approach of Tokuda et al.
(2011), which is based on the results shown by Joe (2006). He proved that a
q-dimensional positive definite correlation matrix R = (ρij)i,j=1,...,q can be writ-
ten in terms of the correlations ρi,i+1 and the partial correlations ρij;i+1,...,j−1 for
(j − 1) ≥ 2. These parameters can take independently values in the [−1, 1].
Therefore, he concluded that one can generate a random positive definite cor-
relation matrix by choosing independent distributions F ij, 1 ≤ j ≤ q for these
parameters (correlations and partial correlations). An appropriate choice for F ij

leads to a joint density for ρij:1≤i<j≤q that is proportional to det(R)η−1, where
η > 0. When η = 1, Lewandowski et al. (2009) proved that the marginal distri-
bution of each correlation is a symmetric translated Beta(q/2,q/2)-distribution
on the interval [-1,1]. Consequently, the marginal distribution of each correlation
becomes more concentrated around zero as q increases in order to satisfy the
positive definite constraint. Note also that Joe proved that his algorithm is able
to sample from a joint uniform distribution on [-1,1]q. Tokuda et al. (2011)
visualized the implied distribution of D and they observed that for this prior the
correlations are a priori independent of the standard deviations. There are several
options for the prior distribution on the diagonal elements of D (O’Malley and
Zaslavsky, 2008). Here, we assigned Gelman’s folded half-t (Gelman et al., 2008)
priors for elements of D. In our simulations we considered q = 1, 2, 3, then in
each case we sampled (each) partial correlation from a translated Beta(q/2, q/2)
on [-1,1]. We refer to this prior as the Partial prior.

A joint prior for error variance and random effects variance-covariance
matrix

Often, priors for error variance and variance-covariance matrix of the random
effect are independently modelled. However, it has been shown by Demirhan
and Kalaylioglu (2015) and by Kalaylioglu and Demirhan (2017) that a joint
prior for these variance terms is more appropriate. Hence, we compare the per-
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formance of the conditional and marginal version of the criteria when variance
terms are given a joint prior. Kalaylioglu and Demirhan (2017) utilized Cholesky
decomposition to separate the random effects variance-covariance D = LLT ,
where L is a q × q lower-triangular matrix. Further, the authors vectorized the
diagonal and non-zero off-diagonal matrix L and the resulting column vectors
are denoted by L1 and L2, respectively. Additionally, they considered a joint
prior distribution for (LT1 , LT2 , σ2

ε , σ
2
b )T ) if the response variable is continuous

and (LT1 , LT2 , σ2
b )T ) for a dichotomous /polychotomous response. Furthermore,

a multivariate distribution prior was assigned to the vector of log-transformed er-
ror variances, log-transformed L1 and untransformed L2. For theoretical details
of this approach, the reader should consult Demirhan and Kalaylioglu (2015);
Kalaylioglu and Demirhan (2017). To ensure positive-definite of D, priors on
L1 need to be positive while L2 is left unconstrained. The authors’ multivariate
priors on D and σ2

ε are as follows:(
log(L1), L2, log(σ2

ε ) ∼ F (δ, v, λ, ξ)
)T
,

and represent the generalized multivariate log gamma (G-MVLG) (Demirhan and
Hamurkaroglu, 2011). We refer to this prior as the G-MVLG prior.

4.6 Simulation study

We carried out simulation studies anchored on two longitudinal data sets. Two
simulation studies were considered. In the first study, the guiding data set is based
on the well-known balanced dental growth study of Potthoff & Roy (Potthoff and
Roy, 1964). Measurements were taken on the jaw bi-annually from children be-
tween 8 and 14 years of age. The second study is based on the Jimma Infant
Survival study, which was designed to evaluate the risk factors affecting infant
survival in the Jimma town located in Ethiopia (Lesaffre et al., 1999). This data
set is unbalanced due to missing responses, babies that dropped out of the study
or died during the study.
In these simulation studies, we used two selection strategies based on (1) mini-
mum value and (2) absolute difference. For the minimum value strategy, we se-
lected the model having the lowest selection criterion. For the absolute difference
strategy, the simplest model was selected when the absolute difference between
these models is less than five. This has been suggested in the literature for AIC
and BIC, but also for DIC (Lesaffre and Lawson, 2012). We used the same thresh-
old for WAIC and PSBF, however, our previous work (Ariyo et al., 2019b) did
not show justification for absolute difference outside DIC. Therefore, we report

63



for WAIC and PSBF only the results using minimum value. For both simulation
substudies, convergence was evaluated using the Brooks-Gelman-Rubin (BGR)
statistic (Brooks and Gelman, 1998; Gelman et al., 1992). All model parameters
in the simulation study were estimated based on three chains of 15,000 iterations
after discarding the first 7,000 iterations as burn-in. The thinning factor was set
at 10. When BGR was larger than 1.1, further sampling was performed until
BGR < 1.1. The JAGS code used in this study is provided in the Supporting
Materials. Further details on the simulation settings are given below.
The aims of the simulation studies are ultimately to provide practical guidelines.
More specifically, we are interested in:

• The impact of the particular choice of the vague prior on the conditional
and marginal version of the selection criteria. This is the main aim of this
paper;

• Which of the criteria to choose in practice, taking also into account that
DIC has some undesirable properties, such as non-invariance to parameter
transformations and that sometimes pDIC < 0 so that we cannot use DIC
in that case;

• The difference in performance of the conditional and marginal version of
the criteria. Previously, it has been shown that model selection should be
done on the marginal criteria, but it is not immediately clear whether the
priors affect the two versions of the criteria equally;

• If the conditional criteria are to be used, whether certain vague priors can
still induce good performance of the conditional criteria;

• The impact of the sample size on the above conclusions.

4.6.1 The balanced case: the Potthoff and Roy data set

In the Potthoff & Roy study, changes in pituitary-pterygomaxillary distances
during growth of a child were examined at years 8, 10, 12 and 14 on 11 girls and
16 boys who underwent orthodontic treatment. The following LMM was fitted
to the data as a function of age and sex (0= girls, 1=boys):

Yij = β0 + β1sexi + β2ageij + b0i + εij, (i = 1, . . . , 27; j = 1, . . . , 4), (4.8)

where Yij is the distance (mm) measure of the ith child at time j, b0i is a random
intercept with b0i ∼ N(0, σ2

b ) and εij ∼ N(0, σ2
ε ). The following restricted
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maximum likelihood estimates: β̂0 = 24.97, β̂1 = 1.48, β̂2 = −2.32, σ̂2
b = 2.05

and σ̂2
ε = 3.27 were obtained and used as true parameters in the simulation

study. We then considered two scenarios.

• Scenario I: We assumed that the random effects structure is known and
considered models that differ in the fixed effects part. Besides the true
data-generating model (4.8), we considered an overspecified model, which
includes an interaction term age*sex and an underspecified model, which
omits sex from the model.

• Scenario II: We assumed that the fixed structure is known and considered
models that differ in the random effects. The overspecified model includes
an additional random slope whereas the underspecified alternative ignores
the random intercept in the data.

Data generation and prior specifications
Twenty simulation settings were considered for each of the four different sample

sizes n = (5, 10, 25, 100) and five signal-to-noise ratios (1
4 ,

1
2 ,1,2 and 4 times

the residual variance). Each time 500 data sets were generated from model
(4.8). For each of the simulation settings, the regression coefficients were given
a vague normal prior. Namely, βj ∼ N(0, 106) (j = 0, 1, 2). Further, seven prior
distributions for variance terms were assigned. Each time, three models (correct,
over-and-under specified models) were fitted to evaluate the performance of both
the marginal and conditional versions of the Bayesian model selection. We have
taken the following vague priors for σb:

1. 1
σ2
b
∼ Gamma(a, a), (a = 0.001 and a = 0.1);

2. log(σ2
b ) ∼ Uniform(a, b), (a, b) = (−10, 10);

3. 1
σ2
b
∼ Pareto(a, b), (a, b) = (1, 0.001);

4. σb ∼ Uniform(a, b), (a, b) = (0, 100);

5. σb ∼ half-t(0, s, 1), s = (1, 0.75).

The motivation of the choices of a, b and s is given in Section 4.5.1
We focused on the independent prior distributions in which the variance terms
of the random intercept and measurement errors are modelled independently to
evaluate the performance of both versions of the criteria. As these priors are
commonly used in the literature. The impact of joint prior will be examined in
the subsequent section.
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Simulation results
Table 4.1 shows the percentage of correct selection for different sample sizes
under Scenario I . The results show that the impact of the vague priors on the
marginal criteria is minimal, but their impact on the conditional criteria is con-
siderable. This conclusion holds irrespective of the sample size. However, the
performance for the conditional criteria improves with increasing sample size.
In addition, among the three conditional criteria, DIC is best for higher sample
sizes (25 and 100), competing even with the marginal criteria for sample size
100. This in an inconsistent manner. For smaller sample sizes, the half-t prior
performed best for the marginal version of all criteria. However, it is not clear
which prior outperforms across the different settings and sample sizes. In Table
4.2 the percentages of correct selection for different sample sizes under Scenario
II are shown. We observed that a uniform prior for log(variance) performs well
for both versions of DIC and PSBF, but the conditional WAIC performs poorly.
The poor performance of the conditional WAIC is also seen with the other priors.
Again, regardless of the scenario, the marginal criteria outperform the conditional
criteria. Their performance increases with sample size while the conditional cri-
teria often select over-specified models (not shown here). However, there is no
clear winner among the marginal criteria in this scenario.

4.6.2 The unbalanced case: the Jimma Infant Growth study

The second dataset is obtained from an Ethiopian study designed to evaluate
risk factors affecting infant survival (Lesaffre et al., 1999). The growth charac-
teristics of the babies were examined approximately every 60 days, but there were
occasional deviations from the planned visits. For the purpose of this analysis,
we have taken weight as response with covariates age and sex (0=girls, 1=boys)
of the child, and age of the mother at delivery (agem). The details of the origi-
nal analysis can be found in Lesaffre et al. (1999, 2000) where a sample of 495
children was selected to fit the model. This subset will also be the basis for this
simulation study. As suggested, Lesaffre et al. (2000) the time variable age was
transformed into newageij = √ageij − (ageij + 1)− 0.02× ageij in model to fit
a LMM to the weight profiles. We select our model generating data to be

Yij = β1 + β2sexi + β3newageij + β4agemi + b0i + b1i × newageij + εij, (4.9)
assuming (b0i, b1i) ∼ N2(0,D) and εij ∼ N(0, σ2

ε ). The following parameter
values were obtained by analysis Jimma data: β̂1 = 2.8581, β̂2 = 0.1518, β̂3 =

0.8865, σ̂ε = 0.3465 and D =
(

0.6813 −0.0414
−0.0414 0.0450

)
where these parameters
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are used as population parameters for the simulated data set. 500 data sets were
generated from model (4.9) with the covariate sex was generated from a Bernoulli
distribution with probability of success equal to 0.51, which is the proportion of
boys in the data set. The age of the mother was generated from a normal
distribution agemi ∼ N(24.49, 6.29) and we have taken 0, 60, 120, . . . , 360 days
as the moments of measurements. The alternative models considered for each
scenario are described below.

• Scenario I: We assumed that the random effects structure is known and
considered the following models that differ in the fixed part parameters,
namely

– Model (4.9) and including an additional interaction (newage × sex)
(overspecified),

– Model (4.9) but ignoring the sex covariate (underspecified).

• Scenario II: We assumed that the covariates in the fixed part are known
and considered the following models that differ in the random effects struc-
ture, i.e.

– Model (4.9) and including an additional random slope for newage2

(overspecified),

– Model (4.9) but ignoring the random slope for newage (underspeci-
fied).

Data generation and prior specifications
With the above specifications for generating data, we considered twenty-four
(24) simulation settings for five sample sizes. These settings correspond to
twelve different prior choices for the covariance matrix for the two scenarios
described above. For each of the settings and sample sizes, we generated 500
datasets from model (4.9). Model (4.9) is then fit using each of the following
prior specifications:

• Prior (1): Six specifications of the IW conditional conjugate prior de-
scribed in Section 4.5.2 of the form IW (df,V) using df = q, q + 1, q + 2,
and V = cIq for c ∈ {0.001, 1}, where Iq denotes q × q identity matrix.
This is a relatively commonly used informative IW (Schnell et al., 2016)

• Prior (2): Five separation strategies (Section 4.5.2) for covariance matrix
D.
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• Prior (3): (G-MVLG) For joint variance prior (log(L1), L2, log(σ2
ε )) ∼

GMVLG(0.7, 1.42, λ, ξ) with λ = (0.3, 0.3, 0.3, 0.4)T and ξ = (0.25, 0.35, 0.25, 0.1)T .
This is a non-informative prior and the hyper-parameter values were se-
lected to impose uncertainty on the variance parameters (Kalaylioglu and
Demirhan, 2017).

Simulation results
Table 4.3 shows the performance of different specifications of the IW prior to
Jimma Infant Survival dataset. Regardless the scenario and sample size, the per-
formance of the conditional and marginal criteria varies with changing df and
V. We observed that both criteria perform better with a larger value of c = 1
regardless of the value of df. The IW prior df=q and c = 1 performed relatively
better in both scenarios.
The performance of the IW prior deteriorates with increasing dimension of the
random effects covariance matrix, see also Quintero and Lesaffre (2017). Ad-
ditionally, to choose an appropriate scale matrix and degrees of freedom is not
straightforward, since inconsistent performance is seen. Other disadvantages of
the IW prior distribution have been discussed and alternatives proposed (Wei and
Higgins, 2013; Barnard et al., 2000; Schuurman et al., 2016; Daniels and Pourah-
madi, 2002; Pourahmadi, 1999; Lu and Ades, 2009). Therefore, we considered
the effect of some separation priors for the conditional and marginal versions of
PSBF, DIC and WAIC.
Table 4.4 shows the performance of both versions of selection criteria using a
commonly used IW prior compared with the separation priors and a joint prior for
different sample sizes. Since the Cholesky and spherical decomposition performed
similarly, the results of the spherical decomposition are omitted here. For both
scenarios, and especially for small sample sizes, the joint prior and separation
priors outperformed the classical IW prior. In addition, for both versions of the
criteria the impact of the sample size is less pronounced with a joint prior and the
separation priors than for the IW prior. This result agrees with the conclusion
in Alvarez et al. (2014), i.e. that the classical IW prior is less effective when
compared with a separation prior.
Further, in Scenario I, the approach based on the Fisher-z transformation per-
formed best for both the conditional and marginal versions of the criteria. For
scenario II, there is no significant difference between the HIW prior based on
the approach proposed by Huang et al. (2013) and G-MVLG prior. For both
scenarios, the G-MVLG prior and separation priors gave better performance for
the conditional criteria when compared with IW prior. Additionally, the impact
of sample sizes is less in both G-MVLG and separation prior compared with IW
prior.
While there is no best vague prior in both scenarios, we conclude that if the con-
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ditional version of the criteria is to be used, then the G-MVLG prior, hierarchical
or separation priors are to be used. In fact, the use of IW prior to conditional
criteria is strongly discouraged especially for smaller sample sizes. But, again
the marginal version of the criteria outperformed the conditional criteria in all
scenarios and sample sizes.
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Table 4.1: Potthoff & Roy dataset (Scenario I): Sensitivity of the performance
of the conditional and the marginal selection criteria to choose the correct LMM
by varying the prior distribution on variance terms for different sample sizes

Sample sizes
Prior criteria 5 10 25 100

cDIC 26.8 27.2 64.0 79.4
cPSBF 35.0 38.8 39.2 50.6

1
σ2
b
∼ Gamma(0.0001, 0.0001) cWAIC 21.4 24.8 62.6 72.4

mDIC 55.2 60.8 77.4 83.2
mPSBF 41.4 53.6 75.4 84.2
mWAIC 46.8 59.4 75.2 83.2
cDIC 55.4 56.2 64.6 79.8
cPSBF 55.0 44.8 43.2 43.0

1
σ2
b
∼ Gamma(0.1, 0.1) cWAIC 53.8 55.6 56.8 65.4

mDIC 56.0 63.6 78.0 83.2
mPSBF 44.0 56.2 76.6 84.0
mWAIC 46.8 61.2 75.6 83.2
cDIC 25.0 27.4 67.2 70.0
cPSBF 36.6 38.4 45.8 46.8
cWAIC 33.2 38.4 62.0 68.8

log(σ2
b ) ∼ Uniform(−10, 10) mDIC 58.8 61.6 78.0 82.8

mPSBF 40.0 54.6 76.4 83.8
mWAIC 48.8 57.6 75.8 82.6
cDIC 46.2 53.0 68.0 78.8
cPSBF 43.8 45.0 46.8 48.0
cWAIC 53.4 48.0 66.6 70.2

log(σ2
b ) ∼ Uniform(0.001, 100) mDIC 57.8 60.8 77.8 83.6

mPSBF 40.0 58.0 75.6 84.6
mWAIC 49.0 58.2 75.6 83.8
cDIC 32.8 52.4 69.2 78.8
cPSBF 33.4 44.4 43.6 42.4
cWAIC 42.2 50.0 64.4 73.4

1
σ2
b
∼ Pareto(1, 0.0001) mDIC 51.2 54.0 75.6 83.0

mPSBF 40.8 51.2 76.0 83.0
mWAIC 46.4 51.4 74.0 82.6
cDIC 31.6 46.6 69.4 79.4
cPSBF 43.0 42.6 43.4 42.8
cWAIC 41.4 45.6 61.6 71.8

σb ∼ Uniform(0, 100) mDIC 55.0 56.4 77.6 83.2
mPSBF 28.2 53.8 76.8 84.8
mWAIC 33.8 55.6 75.8 83.8

σb ∼ t(0, 0.75, 1) cDIC 41.2 63.0 64.0 71.0
cPSBF 31.8 43.7 52.0 64.8
cWAIC 40.0 67.4 69.0 70.2
mDIC 68.5 76.8 79.6 84.2
mPSBF 61.4 74.8 75.2 80.6
mWAIC 66.2 74.0 76.2 81.0
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Table 4.2: Potthoff & Roy dataset (Scenario II): Sensitivity of prior distribution
on variance terms on selecting the correct model (%) for different sample sizes
and criteria DIC,PSBF,WAIC evaluated on conditional and marginal version of
LMM

Sample sizes
Prior criteria 5 10 25 100
1
σ2
b
∼ Gamma(0.0001, 0.0001) cDIC 27.8 42.6 50.8 44.2

cPSBF 32.8 39.2 46.8 57.8
cWAIC 22.6 37.6 46.6 43.0
mDIC 41.0 54.0 82.4 82.6
mPSBF 37.2 51.2 80.2 80.2
mWAIC 42.6 57.4 76.8 81.2

1
σ2
b
∼ Gamma(0.1, 0.1) cDIC 54.6 50.6 52.2 49.2

cPSBF 54.2 59.4 56.6 51.2
cWAIC 46.4 40.0 46.0 28.4
mDIC 52.0 72.8 81.4 84.6
mPSBF 64.6 79.0 80.8 84.4
mWAIC 59.8 76.6 77.8 82.6

log(σ2
b ) ∼ Uniform(−10, 10) cDIC 53.2 55.2 46.6 41.0

cPSBF 45.4 46.4 44.6 46.2
cWAIC 48.8 45.0 51.4 48.8
mDIC 40.8 66.6 82.4 82.8
mPSBF 51.0 63.4 80.2 81.6
mWAIC 52.6 68.0 79.0 80.6

log(σ2
b ) ∼ Uniform(0.001, 100) cDIC 67.0 77.2 83.8 97.4

cPSBF 66.8 80.6 77.0 94.4
cWAIC 54.8 53.6 39.8 37.4
mDIC 65.6 89.0 100.0 100.0
mPSBF 75.0 92.6 100.0 100.0
mWAIC 67.4 90.8 100.0 100.0

1
σ2
b
∼ Pareto(1, 0.0001) cDIC 59.2 68.2 56.8 40.6

cPSBF 61.4 66.4 52.6 47.0
cWAIC 53.4 41.6 29.0 19.0
mDIC 45.0 76.6 86.0 85.8
mPSBF 40.0 87.4 86.0 85.2
mWAIC 48.8 84.4 84.4 83.8

σb ∼ Uniform(0, 100) cDIC 61.4 62.2 53.8 42.2
cPSBF 59.2 53.0 46.8 44.0
cWAIC 51.4 42.0 36.6 35.0
mDIC 48.8 76.4 84.8 85.6
mPSBF 61.0 82.4 85.2 84.0
mWAIC 50.4 80.4 81.6 83.4

σb ∼ t(0, 0.75, 1) cDIC 40.2 56.0 55.8 61.4
cPSBF 41.2 43.7 47.4 50.0
cWAIC 41.2 43.8 57.4 60.4
mDIC 71.2 85.8 87.4 92.6
mPSBF 70.6 84.4 86.4 86.9
mWAIC 70.4 81.4 86.2 91.8
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Table 4.4: Jimma Infant survival dataset: Sensitivity of the performance of the con-
ditional and marginal selection criteria to choose the correct LMM by using separation
priors, a joint prior with an IW prior for different sample sizes.

Scenario I II
Prior 10 25 50 100 200 10 25 50 100 200
IW cDIC 31 44 48 66 63 44 52 58 53 55

cPSBF 36 40 46 68 69 42 39 37 42 46
cWAIC 35 42 41 65 69 42 53 58 51 53

mDIC 52 52 66 72 75 54 63 67 70 72
mPSBF 52 50 67 72 75 54 54 68 73 73
mWAIC 53 54 66 73 75 56 62 67 71 72

Chol cDIC 60 61 61 56 52 70 72 79 78 78
cPSBF 55 58 59 61 59 69 67 67 70 70
cWAIC 59 61 60 52 50 66 68 72 76 78

mDIC 89 89 88 92 96 100 100 100 100 100
mPSBF 70 71 76 84 87 98 100 100 100 100
mWAIC 79 79 80 83 87 98 100 100 100 100

HIW cDIC 60 62 63 64 67 82 84 81 88 88
cPSBF 60 60 66 66 67 72 76 71 78 77
cWAIC 61 62 62 63 66 82 83 82 85 88

mDIC 76 80 82 82 100 98 100 100 100 100
mPSBF 74 81 85 84 100 96 100 100 100 100
mWAIC 75 81 85 86 100 99 100 100 100 100

Partial cDIC 66 61 64 62 61 54 72 62 68 66
cPSBF 59 61 62 61 64 59 66 63 60 60
cWAIC 64 64 64 66 67 51 69 63 67 69

mDIC 76 84 82 86 84 73 84 86 87 80
mPSBF 75 85 83 86 85 71 80 84 87 81
mWAIC 83 83 79 86 85 69 80 85 86 80

Fisher-z cDIC 74 75 80 79 82 71 69 71 80 87
cPSBF 70 70 73 77 83 61 70 74 77 80
cWAIC 67 70 74 76 78 67 66 68 77 83

mDIC 74 79 83 100 100 70 82 98 100 100
mPSBF 66 71 79 100 100 73 84 94 100 100
mWAIC 75 74 81 100 100 67 80 96 100 100

G-MVLG cDIC 62 69 64 66 67 71 86 79 89 89
cPSBF 64 65 62 67 68 70 79 73 86 97
cWAIC 61 68 63 68 67 69 85 69 86 87

mDIC 69 73 80 88 100 100 100 100 100 100
mPSBF 70 70 81 89 99 100 100 99 100 100
mWAIC 71 72 83 89 100 99 100 100 100 100

4.7 Analysis of the longitudinal evolution of Nige-
rian chickens

We analysed of the Nigerian indigenous chicken (NIC) data set and evaluated the
sensitivity of separation priors and classical IW prior on the covariance matrix.
These data concern the longitudinal evolution of body weight (BW) of chickens
of different breeds raised in a university experimental farm. Four hundred and
sixteen chickens were measured every week (age) from hatching up to twenty
weeks to evaluate the growth of two progenies (breeds) of chicken. A first
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analysis can be found in Ariyo et al. (2019b). We refer to Adeleke et al. (2011)
for the rationale for the study and the experimental design. Figure 4.1a shows
the evaluation of weight of the chicken and the average profile over time. The
deviations between the observed chickens’ body weight and the mean structure
are presented in Figure 1b. It will be assumed that

Yij = β0 + β1breedi + β2ageij + b0i + b2iageij + εij, (4.10)

where Yij is the chicken body weight (kg); breedi is the breed indicator (1=pure
breed, 2=cross breed), ageij represents the age (standardised). We limit the
chicken’s age to 13 weeks since a considerable amount of chicken died after this
age.
We fitted the following alternative models:

• Model 1: Linear model in fixed effects and linear in random effects

• Model 2: Quadratic model in fixed effects and linear in random effects

• Model 3: Linear model in fixed effects and quadratic in random effects

• Model 4: Quadratic in fixed effects and quadratic in random effects

• Model 5 : Cubic in fixed effects and cubic in random effects.

The classical IW prior together with two separation (Fisher-z and Chol) priors
and a Hierarchical prior (HIW ) discussed in Section 4.5.2 were used for the co-
variance matrix.
Table 4.5 shows that there is some discrepancy in both the marginal and condi-
tional criteria using different priors. The conditional DIC and WAIC select Model
2 using the IW prior. Contrary, the conditional PSBF as well as the marginal ver-
sion of the criteria selection Model 3. This shows inconsistency in model selection
among the conditional criteria when IW prior is used. However, both the models
selected by these criteria seem to be incorrect as the average growth curve of the
chicken seems quadratic and the individual growth curves differ from the average
curve in a quadratic manner (see Figure 4.1). In contrast, all the separation pri-
ors as well as joint prior support Model 4 (i.e the presence of quadratic terms in
both fixed and random effects) which appears to be the appropriate model here
based on Figure 4.1. This confirmed the results of the simulation that separation
priors are more efficient than the IW prior.
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Figure 4.1: Nigerian indigenous chicken data set: (a) individual and average pro-
files of 10 randomly selected chickens’ body weight obtained by locally weighted
regression using ggplot2: (b) the deviation of the 10 randomly selected chickens’
body weight from the mean structure.
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Table 4.5: Nigeria indigenous chicken data set: Sensitivity of the performance of
the conditional and marginal selection criteria using separation priors and joint
prior with an IW prior.

Criteria IW HIW Fisher-z Chol G-MVLG
Model 1 cDIC -15129.8 -14791.2 -15191.6 -15189.5 -14901.8

cWAIC -15497.7 -15334.3 -15478.1 -15470.4 -15014.2
clpml -13938.7 -12995.1 -14058.4 -14073.7 -14913.1

mDIC -13648.5 -12768.9 -13695.0 -12376.1 -13012.0
mWAIC -13639.5 -12759.1 -13685.7 -12358.9 -13085.8
mlpml -13609.6 -12727.2 -13653.9 -12333.5 -13043.4

Model 2 cDIC -16726.7 -16855.0 -16755.0 -16755.0 -16045.7
cWAIC -17110.1 -17089.3 -17049.3 -17049.3 -16042.3
clpml -15401.3 -15576.0 -15516.0 -15516.0 -16519.1

mDIC -15093.9 -15131.8 -15121.8 -15121.8 -15501.8
mWAIC -15079.7 -15117.1 -15107.1 -15107.1 -15410.9
mlpml -15036.7 -15090.6 -15060.6 -15060.6 -15462.2

Model 3 cDIC -16095.7 -19095.7 -18709.6 -18702.6 -18612.3
cWAIC -16776.4 -19776.4 -19485.6 -19482.6 -19810.8
clpml -17114.1 -17914.1 -16117.7 -16111.7 -16132.0

mDIC -16509.1 -16579.1 -15365.3 -15365.3 -15369.0
mWAIC -16505.7 -16565.7 -15351.6 -15351.6 -15350.9
mlplm -16504.3 -16524.3 -15310.2 -15310.2 -15320.7

Model 4 cDIC -16186.8 -19476.8 -18796.3 -19492.1 -20047.4
cWAIC -16851.8 -20034.2 -19533.5 -20026.3 -20126.8
clplm -16777.5 -17609.5 -16193.5 -17593.9 -17784.0

mDIC -16104.2 -16788.4 -16632.9 -16878.2 -16897.4
mWAIC -16314.9 -16770.5 -16618.3 -16663.6 -16709.3
mlpml -16466.7 -16719.0 -16572.4 -16601.3 -16700.4

Model 5 cDIC -16176.8 -16676.8 -16476.8 -16476.8 -16421.0
cWAIC -16034.2 -17434.2 -17034.2 -17034.2 -17114.6
clppd -16609.5 -17609.5 -17609.5 -17609.5 -17709.1

mDIC -16108.4 -16208.4 -16498.4 -16738.4 -16715.0
mWAIC -16400.5 -16200.5 -16470.5 -16620.5 -16631.3
mlpml -16509.0 -16309.0 -16469.0 -16710.0 -16731.876



4.8 Conclusion

We have performed simulation studies to determine if the choice of the vague
prior for the variance or covariance matrix of the random effects in a longitudinal
study is of great importance in model selection. In addition, we assessed whether
different vague prior distributions have a different effect on the conditional and
marginal version of DIC, PSBF and WAIC. We made use of vague priors that
were proposed in the literature. While the considered scenarios are still somewhat
limited in scope, the performance of the criteria in our simulation study allows
already for some clear conclusions.
The results can be broadly summarized as follows for the variance of the random
intercept. The choice of the vague prior impacted both versions of the criteria but
the impact is much less for the marginal version than for the conditional version
of the criteria. In addition, the conditional criteria performed in an inconsistent
manner often selecting over-specified models while the marginal version of the
criteria showed much less dependence to the choice of parameter values of the
prior and often selected the correct model. For longitudinal mixed models that
involve two or more random effects, the joint prior, the hierarchical prior and the
separation priors all outperformed the classical IW prior. These priors are also the
choice when the conditional version of the criteria are to be taken. We noted,
to our surprise, that cWAIC was significantly poorer in some cases than the two
other criteria.
Finally, we believe that a sensitivity analysis is necessary when using prior distri-
butions that are intended to be vague for the level 2 variance parameters. This
is especially important for small sample sizes. For models with more than one
random effect, the joint prior, the hierarchical prior and separation priors are to
be chosen for both the conditional and marginal versions of the criteria. For
large sample sizes, the classical IW prior can still be used for model selection for
computational convenience. Finally, the marginal version of the criteria outper-
formed the conditional version of the criteria, as was earlier recommended in the
literature, (see Chan and Grant, 2016a; Li et al., 2016; Quintero and Lesaffre,
2018; Merkle et al., 2018; Millar, 2018; Ariyo et al., 2019b). We have added
evidence to this recommendation in the context of longitudinal mixed models,
which constitutes an important class of models in biomedical research.
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longitudinal count data

This chapter has been submitted as:
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Abstract

We have compared three popular Bayesian model selection criteria for generalised
linear mixed-effects models (GLMMs) for longitudinal count data. Two versions
of these criteria can be used: (1) the conditional version, computed given the
random effects and (2) the marginal version, based on the likelihood averaged
over the random effects. Despite the theoretical evidence that the marginal cri-
teria are more appropriate, applied statisticians most often use the conditional
criteria due to their availability in most software but also because the marginal
criteria are not available in closed form. We have written an R function that
computes the marginal model selection criteria for GLMMs, especially for longi-
tudinal Poisson models and their extensions, based on samples from the posterior
distribution. We illustrate via a simulation study that the marginal criteria are
to be preferred. Our procedure involves extra sampling on top of Markov chain
Monte Carlo sampling. Therefore, we examined the amount of additional sam-
pling needed to obtain a stable estimate of the marginal criteria. Finally, we
illustrate the advantages of the marginal criteria on a public data set of patients
who have epilepsy.

5.1 Introduction

In a longitudinal study, subjects are monitored over time. Such a study type
allows to discover baseline or time-varying characteristics that have an impact on
the outcome of interest. Generalised linear mixed models (GLMMs) are one of
the most popular tools to analyse various types of outcomes (continuous, binary,
counts) measured repeatedly over time. The GLMM (McCullagh, 1989) is a
generalisation of the linear mixed model including both fixed and random effects
with a response having a distribution in the exponential family. In the frequentist
approach, the model parameters are estimated by integrating out the random
effects from the likelihood. Most often, this is done under the assumption of
Gaussian random effects. The integral is then evaluated using non-adaptive or
adaptive Gaussian quadrature methods. In contrast, in the Bayesian approach,
the random effects are most often estimated together with the fixed effects.
This implies that Bayesian computations are based on the conditional likelihood,
which is the likelihood of the data given the random effects.
To find an appropriate GLMM for a (longitudinal) data set, one makes use in the
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frequentist approach of the likelihood ratio test for nested models or information
criteria, such as AIC and BIC, for non-nested models. In the Bayesian approach,
the same model selection criteria are used for both nested and non-nested mod-
els. One of such criteria to select between two models is Bayes’ factor (Kass
and Raftery, 1995), defined as the ratio of the marginal likelihoods (marginalised
over the prior of the model parameters) of the two competing models. While
the Bayes’ factor is an elegant Bayesian tool, there are serious issues with its
computation in practice. Namely, it turns out that computing the Bayes’ factor
proved to be at least as difficult as computing the posterior distribution, cannot
be computed with improper priors and is quite sensitive to the choice of the
prior distribution. To overcome this problem, the pseudo-Bayes factor (PSBF)
(Gelfand and Dey, 1994) has been suggested. To compute the PSBF one up-
dates an (improper) prior to a proper posterior and calculates the Bayes’ factor
using the generated posterior as prior.
The most popular Bayesian model selection criterion is the Deviance Information
Criteria (DIC) (Spiegelhalter et al., 2002). The DIC aims to estimate the predic-
tive ability of the fitted model to future samples from the same population, and
like AIC and BIC, it represents a trade-off between the model fit and model com-
plexity. However, the theoretical basis of DIC is not clear, and several objections
and alternatives have been formulated by the discussants of Spiegelhalter et al.
(2002), see also Celeux et al. (2006) and Spiegelhalter et al. (2014). Recently,
Watanabe’s Widely Applicable Information Criterion (WAIC) (Watanabe, 2013)
has been proposed. WAIC has been singled out as a worthy successor of DIC
(Spiegelhalter et al., 2014). We consider PSBF, DIC and WAIC in this paper
since there is little agreement in the statistical literature on the choice of these
criteria for model selection.
Model selection criteria may be based on the conditional likelihood (given the
random effects) resulting in conditional criteria or on the marginal likelihood
(integrating out the random effects) resulting in the marginal criteria. The con-
ditional criteria measure the predictiveness of the model for the subjects included
in the current study, whereas the marginal criteria measure the predictiveness of
the model for all subjects from the same population in a future study. Vaida
and Blanchard (2005) pointed out that the choice of the criteria should be mo-
tivated by the research question. This implies that most often the marginal
criteria should be used in practice, definitely for longitudinal studies. However,
irrespective of that research question, the conditional criteria are most often used
in practice because of convenience and their easy availability in most software.
This usage has been questioned for (extended) LMMs (Ariyo et al., 2019b,a)
as well as for GLMMs (Millar, 2009; Christensen, 2017; Quintero and Lesaffre,
2018; Merkle et al., 2018). Ariyo et al. (2019b) and Ariyo et al. (2019a) explored
the performance of the marginal model selection criteria for the LMM and con-
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cluded their superior performance over the corresponding conditional criteria. An
R program has been written that computes the marginal and conditional versions
of PSBF, DIC and WAIC for any LMM based on MCMC output from a fitted
model. However, for a GLMM, there is no closed-form for the likelihood. Hence,
there is the need for an approach to computing the marginal model selection
criteria for non-closed-form likelihoods such as for GLMMs.
Numerical methods have been developed that compute the marginal criteria for
non-closed form likelihoods. For example, Chan and Grant (2016b) proposed
fast algorithms for computing the marginal DIC (mDIC) for a variety of high
dimensional latent variable models and show that mDIC has much smaller nu-
merical standard errors compared to the DIC based on the conditional likelihood
(cDIC). Likewise, Chan and Grant (2016a) proposed importance-sampling algo-
rithms for computing mDIC under a variety of stochastic volatility models. In the
INLA package, developed by Rue et al. (2009) for latent Gaussian models, the
marginal posterior is computed by integrated nested Laplace approximations. In
that case, mDIC is derived directly from these approximate marginal likelihoods.
Up to now, all these methods make use of a Gaussian assumption for the random
effects. In this paper, we consider a general method for computing the marginal
criteria in a random-effects model for count data. The computational procedure
is based on the replication sampling approach in combination with importance
sampling. The strategy (for GLMM) is similar to that of Quintero and Lesaffre
(2018) who generalised the methodology of Chan and Grant (2016a).
This paper aims to show the superiority of the marginal criteria for Poisson mixed-
effects models, which are a special case of a GLMM. Especially in some practical
settings such as (i) when there is overdispersion in the counts and/or too many
zeros and (ii) when the number of repeated measurements is relatively small to
the number of independent variables. Overdispersion has been shown to produce
problematic results (see for example Chen and Wehrly, 2016; van Smeden et al.,
2016, 2019) and to affect the performance of the selection criteria (Fitzmau-
rice, 1997; Howe et al., 2019). We have written an easy-to-use R function that
computes the marginal selection criteria for GLMMs via sampling techniques to
promote their usage among practitioners. Finally, we illustrate these procedures
in simulation studies motivated by a well-known data set of patients suffering
from epilepsy.
The structure of the paper is as follows. Section 5.2 presents the general GLMM
and introduces the Poisson mixed-effects model. In Section 5.3, we discuss the
conditional and marginal selection criteria in generality. Section 5.4 presents and
evaluates the sampling methods for the computation of marginal criteria of a
GLMM. In Section 5.5, we discuss extensions of the Poisson mixed-effects model
that deal with overdispersion in the repeated counts. In Section 5.6, our approach
is illustrated in the well-known longitudinal epilepsy data set. Different simula-
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tion settings and scenarios are presented in Section 5.7. In the same section,
we compare the performance of the conditional and marginal model selection
criteria and evaluate the performance of the sampling techniques in computing
the marginal criteria. The article concludes with a general discussion in Section
5.8.

5.2 Generalised linear models with cluster-specific
effects

5.2.1 The generalised linear model

A random variable Y follows a distribution in the exponential family if its density
is of the form

f(y) ≡ f(y |λ, φ) = exp
{
φ−1[yλ− ζ(λ)] + c(y, φ)

}
,

where λ and φ are termed "natural (canonical) parameter" and "dispersion pa-
rameter", respectively for unknown functions ζ(·) and c(·, ·). It is is well-known
that

E(Y ) = µ = ζ
′(λ), (5.1)

and
V ar(Y ) = σ2 = φζ

′′(λ). (5.2)
This implies that the mean and variance are related through σ2 = φζ ′′[ζ ′−1(µ)] =

φν(µ), with variance function ν(·) describing the mean-variance relationship.
Suppose that for the ith subject (i = 1, . . . , n) a covariate vector xi is available
and that given xi, the response Yi of that subject has the above exponential
distribution with mean µi and that η(µi) = xTi β. Then the above defines a
generalised linear model for the response, denoted as GLM.
For some GLMs such as the binomial, Poisson and exponential distributions the
mean and variance parameters are forced to depend on a single parameter. How-
ever, in some applications, this assumption may be overly restrictive. A number
of extensions to the Poisson model have been proposed by Hinde and Demétrio
(1998); Breslow (1984); Lawless (1987) and Molenberghs and Verbeke (2005)
that accommodate overdispersion, i.e. when the variance of the counts (much)
exceeds their mean. Note that one way to deal with overdispersion is to allocate
an overdispersion parameter φ 6= 1 so that (5.2) produces V ar(Y ) = φν(µ).
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This leads to a quasi-likelihood approach, see Molenberghs et al. (2007). Here
we consider parametric generalisations of the Poisson model.

5.2.2 The generalised linear mixed model

The generalised linear mixed model extends the GLM by adding random effects,
and thereby becomes a tool to analyse non-Gaussian repeated measurements,
see e.g. Verbeke and Molenberghs (2000). Let Yij be the jth outcome (j =
1, . . . ,mi) measured on the ith subject (i = 1, . . . , n), then a GLMM for Yij is
defined as a GLM conditional on random effects.
More specifically, we assume that, in analogy with Section 5.2.1, conditionally
upon a q−dimensional random-effect bi ∼ Nq(0,D), where Nq(·) is a q-variate
variate normal distribution with mean vector 0T = (0, . . . , 0), of dimension q×1,
and D is a q × q positive-definite covariance matrix. The outcomes Yij are
distributed independently with densities of the form

fi(yij |bi,β, φ) = exp
{
φ−1[yijλij − ζ(λij)] + c(yij, φ)

}
,

with
η[ζ ′(λij)] = η(µij) = η[E(yij |bi,λ)] = xTij β + zTij bi,

where xij and zij are p−dimensional and q−dimensional vectors of known covari-
ates, respectively. Further, β is a p−dimensional vector of unknown fixed effects
parameters, φ is a dispersion parameter and η(·) is a known link function. The
distribution for the random effects f(bi |D) is most often specified as Nq(0,D).

In this paper we aim to illustrate the performance of the Bayesian model
selection criteria on longitudinal count data. As a start, usually the Poisson
distribution is taken for counts. With repeated measures, the Poisson mixed-
effects model (PMM) in the context of a longitudinal study becomes

Yij ∼ Poi(λij |bi), (i = 1, . . . , n; j = 1, . . . ,mi)
log (λij) = xTij β + zTij bi,

bi ∼ Nq(0,D).

In Section 5.5, we will describe some extensions of this model to deal with
overdispersion.
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5.3 Bayesian model selection criteria

In this paper, we aim to illustrate the performance of the marginal and conditional
versions of DIC, WAIC and PSBF on a Poisson mixed effects model and its
extensions described in Section 5.5. The conditional version of these selection
criteria is based on the conditional likelihood incorporating the random effects,
i.e. they are based on the conditional likelihood p(y |Θ,b) ≡ L(Θ,b |y) =∏
i L(Θ,bi |yi), with y = {y1, . . . ,yn} the total set of responses, Θ the model

parameters (fixed effects β and the variance parameters of the random effects,
i.e. the elements of D) and b = {b1, . . . ,bn} the total set of random effects.
In contrast, the marginal criteria are based on the marginal likelihood, which is
simply the conditional likelihood integrated over the distribution of the random
effects, i.e. the marginal likelihood is given by

L(Θ |y) =
n∏
i=1

L(Θ |yi) =
n∏
i=1

∫
L(Θ,bi |yi) p(bi |Θ) dbi.

Most often, integration over the distribution of the random effects requires nu-
merical procedures, such as (non)-adaptive Gaussian quadrature methods. For
the sake of completeness, we will now briefly describe the general definition
of the three considered model selection criteria, and apply their definitions to
GLMMs. Below ψ represents {Θ,b} for the conditional version of the model
selection criteria, while it represents Θ for the marginal version of the selection
criteria. Let also D(ψ) represent the deviance of the model evaluated in ψ, i.e.
D(ψ) = −2 log p(y |ψ) + 2 log f(y), with f(y) represents the likelihood of a
saturated model. The latter term is omitted in calculations and also here.
The deviance information criterion is then defined as DIC = D(ψ)+2pDIC , where
D(ψ) is the deviance (often) evaluated at the posterior mean. pDIC is called ef-
fective number of parameters of the model and is a contrast of the posterior mean
of the deviance D(ψ) with D(ψ) and is equal to pDIC = D(ψ) −D(ψ). Both
DIC and pDIC can be approximated from an MCMC run with a converged chain
ψ1, . . . , ψK . Namely, D(ψ) ≈ 1

K

∑K
k=1D(ψk) and D(ψ) ≈ D( 1

K

∑K
k=1 ψ

k). In
practice, one chooses the model with the smallest DIC value. As with AIC/BIC a
difference of 5 to 10 of DIC values is needed to make a justified choice between
models, but now DIC and pDIC are also subject to sampling variability compli-
cating the model choice obviously.
The conditional version of DIC (cDIC) is obtained by plugging the conditional
deviance into the expression of DIC, and by taking the posterior mean of (Θ,b).
The associated effective degrees of freedom is denoted then as pcDIC . The
marginal version of DIC (mDIC) is obtained by plugging in the marginal deviance
into the expression of DIC together with the posterior mean of Θ (which is the
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same as for the conditional likelihood). We denote the effective degrees of free-
dom now as pmDIC . Note that the marginal deviance is the posterior mean of the
log of the conditional likelihoods averaged over the distribution of the random
effects, i.e.

EΘ | y

[
− 2 log p (yi |Θ)

]
=

n∑
i=1

EΘ |y

[
− 2 log Ebi |Θ

[
p(yi |Θ,bi)

]]
.

While DIC is still the most popular model selection criterion, it has been crit-
icised that it lacks a good theoretical motivation, but it also suffers from some
practical problems. For instance, DIC is not invariant to non-linear transforma-
tions of the parameters in Θ and pDIC can become negative in which case DIC
cannot be used. The latter happens especially with the conditional DIC (Spiegel-
halter et al., 2014). For further details and illustrations of such problems, one
can look in Lesaffre and Lawson (2012).
To accommodate certain problems with DIC, Watanabe (2010) has suggested
the Widely Applicable Information Criterion abbreviated as WAIC. Indeed, the
advantage of WAIC over DIC is that it is invariant to non-linear transformations
of the parameters and the associated degrees of freedom cannot be negative.
WAIC is an approximation to minus twice the expected log pointwise predictive
density (elppd) for new data ỹij. Hence, the elppd is given as

elppd = −2
n∑
i=1

Eỹi log
[
EΘ,b |yp (ỹi |Θ)

]
. (5.3)

When the responses yij are independent given the random effects (e.g. when
there is no serial correlation), then the above expression can be written as:

elppd = −2
n∑
i=1

mi∑
j=1

Eỹij
log

[
EΘ,b |yp (ỹij |Θ,bi)

]
. (5.4)

From expressions (5.3) and (5.4) one can see that the logarithm of the
pointwise (posterior) predictive density for a future response ỹi, i.e. lppd =
EΘ,b |yp (ỹi |Θ,bi), is averaged over the distribution of new responses. Based on
a converged chain

{
Θ1, . . . ,ΘK ,b1

1, . . . ,bK1 , . . . ,b1
n, . . . ,bKn

}
the conditional

WAIC can be computed as

cWAIC = −2
n∑
i=1

log
[

1
K

K∑
k=1

p(yi |Θk,bki )
]

+ 2pcWAIC, (5.5)

with pcWAIC = 2
(∑n

i=1 log
[ 1
K

∑K
k=1 p(yi |Θk,bki )

]
− 1
K

∑K
k=1 log p(yi |Θk,bki )

)
.

The WAIC of the marginal model, i.e. the marginal WAIC, is then computed
by
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mWAIC = −2
n∑
i=1

log
[

1
K

K∑
k=1

p(yi |Θk)
]

+ 2pmWAIC, (5.6)

with pmWAIC = 2
(∑n

i=1 log
[ 1
K

∑K
k=1 p(yi |Θk)

]
− 1
K

∑K
k=1 log p(yi |Θk)

)
. The

Bayes factor is equal to the ratio of the marginal likelihood of two competing
models. The pseudo-Bayes factor is a version of the Bayes factor. Since the Bayes
factor is based on the prior distribution of the model parameters, its computation
becomes complicated with a vague prior for the parameters. Several “solutions”
were proposed to solve this problem and many boil down to applying the vague
prior to a part of the data, and then use the resulting posterior as a prior for the
calculation of the Bayes factor on the remaining data. The pseudo-Bayes factor
deviates from this principle a bit by also involving cross-validation. Suppose we
have two models M1 and M2 with model parameters ψ1 and ψ2, respectively
and data {y1, . . . ,yn}. The Bayes factor is based on the marginal likelihood,
in the sense that the likelihood is marginalised over the prior uncertainty of the
model parameters. Namely, this marginal likelihood is given for model M and
parameters ψ (leaving out the model subscript) by:

p(y |M) =
∫ n∏

i=1
p(yi |ψ,M) p(ψ) dψ. (5.7)

However, (5.7) is not analytically available in general. Therefore, Geisser and
Eddy (1979) suggested replacing (5.7) by the pseudo marginal likelihood (PML)

p̂(y |M) =
n∏
i=1

p(yi |y−i,M), (5.8)

where p(yi |y−i,M) is called the ith conditional predictive ordinate (CPOi) and
is the predictive density calculated at the observed yi given y−i, which is the
set of all data except the ith observation. The pseudo-Bayes factor is then
obtained by taking the ratio p̂(y |M1)/p̂(y |M2) to evaluate the preference of
modelM1 over modelM2. Low values of this ratio reflect preference of model
M2 based on the current data. The conditional pseudo-Bayes factor (cPSBF)
(given random effects) and the marginal pseudo-Bayes factor (mPSBF) (averaged
over random effects) are based on (5.8) with the conditional and the marginal
likelihood plugged-in, respectively. In practice, one often evaluates the logarithm
of expression (5.8), leading to the log pseudo marginal likelihood for modelM`

equal to LPML` = ∑n
i=1 log(CPOi,`) where

CPOi,` ≈
[

1
K

K∑
k=1

1
p(yi | Θk

` , M`)

]−1

,

where Θk
` represents the model parameters for modelM`.
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5.4 Sampling methods for computing the marginal
model selection criteria

The expression of the model selection criteria reveals that expected values over
the distribution of the random effects need to be taken. In the simpler case
of a linear mixed model, the computations are easy since the marginal LMM
can be determined analytically, but this is not the case for a GLMM. For this
reason, we explored the use of sampling methods to compute the model se-
lection criteria for a GLMM. Here we combined the replication method, which
is sampling from the prior of the random effects, with importance sampling to
compute the marginal criteria. The former replaces the integral in p(yi |Θ) =∫
p(yi |Θ,bi) p(bi |Θ) dbi = Ebi |Θ[p(yi |Θ,bi)] by sampling from the prior

distribution of bi. Importance sampling is a variance reduction technique. In
this paper, we compute the marginal version of DIC, WAIC and PSBF based on
these sampling techniques. An R function has been written and is available in
the supporting materials of the paper.

5.4.1 The replication method

The joint posterior p(Θ,b |y) can be approximated by making use of a MCMC
sample (Θk, b̃k), (k = 1, . . . , K). Since p(yi |Θ) =

∫
p(yi |Θ,bi) p(bi |Θ) dbi =

Ebi |Θ[p(yi |Θ,bi)], the marginal criteria such as mDIC can be based on indepen-
dent replicates b̃i

k,l
, (l = 1, . . . , L) from p(bi |Θk) at each iteration k. To com-

pute the plug-in deviance, we take replicates b̃mi from p(bi |Θ) (m = 1, . . . ,M)
in order to approximate∑n

i=1 log[p(yi |Θ)] = ∑n
i=1 log Ebi |Θ[p(yi |Θ,bi)]. Thus,

the components necessary to compute the marginal criterion mDIC are

D(Θ) ≈ −2
n∑
i=1

(
1
K

K∑
k=1

log
[

1
L

L∑
l=1

p(yi |Θk, b̃k,li )
])

,

D(Θ) ≈ −2
n∑
i=1

log
[

1
M

M∑
m=1

p(yi |Θ, b̃mi )
]
.

(5.9)

The variability of (5.9) due to the replication method depends on several factors
which include: (i) the number of observations in the sample, (ii) the variance of
the latent variables induced by p(b |Θ), and (iii) the posterior variance of the
parameters. In Quintero and Lesaffre (2018), an expression of the variance of
mDIC is given. For a small value of Var(mDIC), the proposed estimator (5.9)

87



provides a good approximation to mDIC. However, as pointed out in Quintero
and Lesaffre (2018), this variance can be high for large sized clusters and when
there are many clusters, which corresponds here to subjects with many repeated
observations per subject or many subjects, respectively. In the same spirit, the
components necessary to compute marginal criterion mWAIC are

mlppd = 1
K

n∑
i=1

K∑
k=1

log

 1
L

L∑
l=1

p
(
yi |Θk, b̃k,l

),
pmWAIC = 2

n∑
i=1

 log

 1
M

M∑
m=1

p
(
yi |Θm, b̃m

)− 1
K

K∑
k=1

 1
L

L∑
l=1

log p
(
yi |Θk, b̃k,l

)
,

(5.10)

where mlppd is the log pointwise predictive density for the marginal model and
pmWAIC is the corresponding effective number of parameters to adjust for over-
fitting. The mPSBF consists of comparing the (marginal) log-pseudo likelihood
(mLPML) for modelsM1 andM2, whereby mLPML is equal to∑n

i=1 log(mCPOi,`)
for model M` where

mCPOi,` ≈

 1
K

K∑
k=1

1
1
L

∑L
l=1 p

(
yi |Θk, b̃k,l,M`

)
−1

. (5.11)

The replication method can be based on simple random sampling, but there is
gain using instead importance sampling, see e.g. Tran et al. (2016) and Tokdar
and Kass (2010) for an overview of the advantages of importance sampling over
simple random sampling.

5.4.2 Adequacy of the number of replications

From expressions (5.9), (5.10) and (5.11), it is clear that the number of subjects
n in the data set impacts the variability of the estimators. A larger sample
size leads to greater variability of D(Θ), D(Θ), lppd, pWAIC and LPML since
these estimators are the sums of the log-likelihoods pertaining to the observation
units. In order to approximate well the true marginal model selection criteria, it
is important to select L and M appropriately (not too small nor too high).
For DIC, Quintero and Lesaffre (2018) suggested to take L = 2M/

√
KEff ,

where
KEff = K/(1 + 2∑t=1 ρt) and ρt = Corr(∑i log p̂(yi |Θk),∑i log p̂(yi |Θk +
t)).
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Among others, these authors suggested to determine L and M such that the
standard error for mDIC is smaller 0.5, such that the variability (measured by
95% CI) of mDIC can be expected to be smaller than 1.
Here we checked the adequacy of the choice of L and M for these selection

criteria in a numerical exercise, see below. From this exercise we tentatively
conclude that when L and M are appropriate for DIC, they are likely to be
appropriate for WAIC and LPML.
To illustrate the required number of replications, we performed a small simulation
exercise. This is part of the simulation exercise described in more detail in
Section 5.7.2. To this end, we have taken a Poisson mixed model. Namely,
let Yij be a count for the ith subject (i = 1, . . . , n = 300) at the jth time
point (j = 1, . . . , 5) and b0i the ith random intercept with b0i ∼ N(0, σ2

b0).
We allowed for time independent covariates for the ith subject: age at baseline
(agei), baseline count (basei), treatment (treati), interaction baseline count and
treatment (basetreati) and the obvious time dependent covariate time (timeij).
That is, we assumed

Yij ∼ Poisson(λij | b0i), (5.12)

where

λij = β1+β2trti+β3 log(basei)+β4visitij+β5 log(agei)+β6trti×log(basei)+b0i.

The estimates of the model parameters are given in Section 6.5. It is suggested
by Mason et al. (2012) to monitor the stability of the components of (5.9), (5.10)
and (5.11) when increasing the number of replications. Figure 5.1 displays the
marginal criteria components for the above Poisson model for increasing number
of replicationsM . From this figure we can see that mDIC and mWAIC, and their
components stabilise for M = 8000. Recall, that for mDIC we have also another
basis to decide about its desired value, namely that the standard error of the
estimated mDIC should be smaller than 0.5. This is achieved for M = 8000 as
then the standard error is 0.2. For mWAIC and mLMPL we judged the adequacy
of M purely graphically. Note that for mLMPL stability is already achieved with
M around 7000.
Further, we evaluated the dependence of the required M on the number of
subjects and the number of observations/subject. For this we have considered
data sets with 10, 50 and 200 subjects combined with 4, 6 and 10 observations
per subject. Each data set was generated according to the above Poisson mixed
effects model. From basic principles, Quintero and Lesaffre (2018) concluded
that the required M likely increases with increasing number of subjects and/or
observations/subject. Note that, as before, L = 2M/

√
KEff . In Table 5.1,

we show the model selection criteria when varying M from 5000 to 10 000. In
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contrast to the above conclusion, the suspected dependence does not show.

1130
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5000 6000 7000 8000 9000 10000

 (a) Number of replications (M)

mDIC Devk Devp

0
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1200
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 (b) Number of replications (M)

mWAIC pWAIC lppd

-2038.5
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-2037.5

-2037.0
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 (c) Number of replications (M)

mLPML

Figure 5.1: Poisson model (5.12): Dependence of marginal model selection
criteria on the number of replications M for: (a) mDIC, Devk=D(Θ) and
Devp=D(Θ̄) as given in (5.9); (b) mWAIC, pmWAIC and mlppd as given in
(5.10): (c) mLMPL as given in (5.11)
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5.4.3 Importance sampling

Importance sampling consists of replacing an original integral over a distribution
by sampling another easier-to sample distribution, called the proposal density, and
then replace the integral by sampling. Given that p(yi |Θ) =

∫
gi(bi) dbi with

gi(bi) = p(yi |Θ,bi) p(bi |Θ) is replaced by p(yi |Θ) =
∫

[gi(bi)/qi(bi)] qi(bi)dbi,
with qi(b) an appropriate proposal density. Then p(yi |Θ,bi) p(bi |Θ) is pro-
portional to p(bi |yi,Θ), the mean and the variance of gi(bi) can be estimated
from an additional MCMC run fixing the parameters to Θ = Θ.
We used this approach to evaluate p(yi |Θ) for each observation unit compo-
nents needed for the marginal criteria.

As pointed out by Quintero and Lesaffre (2018), this posterior distribution is
approximately normal for large sized observation units under regularity conditions,
so it is adequate to select a normal density for qi(bi) with the above mean
and variance. This approach is based on the independent Metropolis-Hastings
algorithm with proposal density qi(bi). For small sized observation units, the
function gi(bi) resembles the latent prior density, so it is appropriate to select
qi(bi) = p(bi |Θ) (Quintero and Lesaffre, 2018). Then, after sampling b̃mi
from qi(b) for m = 1, . . . ,M , different components for the marginal criteria are
computed based on the plug-in deviance given by

p̂(yi |Θ) = 1/M
M∑
m=1

[p(yi |Θ, b̃mi )p(b̃mi |Θ)/qi(b̃mi )],

and the mean deviance where Θm is substituted with deviance for each iteration.
Hence, the mean deviance is given by

p̂(yi |Θm) = 1/M
M∑
m=1

[
1/L

L∑
l=1

[p(yi |Θm, b̃m,li )p(b̃m,li |Θm)/qi(b̃m,li )]
]
.

Thus, to compute the marginal criteria components we use importance sampling
based on MCMC for large-sized observation units, but for small-sized observation
units, independent sampling method can be used. This strategy for importance
sampling simplifies and generalises the replication method in Chan and Grant
(2016a).
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5.5 Extensions of the Poisson-mixed model

We will illustrate below the performance of the marginal and conditional model
selection criteria on selecting the appropriate fixed effects. However, with count
data there is always the possibility of overdispersion and occasionally of under-
dispersion. Overdispersion occurs when the data display more variability than is
predicted by the assumed model. For counts, we usually start with a Poisson
model that assumes that the mean and variance of the counts are equal. When
the variance is larger (smaller) than the mean, we speak of overdispersion (under-
dispersion) compared to the Poisson model. Most often counts encountered in
medical data do not satisfy the Poisson assumption. As such, ignoring over/un-
derdispersion may influence the model estimates and therefore the (statistical)
conclusions. Indeed, it is well-known that when overdispersion in the data is ig-
nored, many of the regressors will show to be wrongly ‘significant’. On the other
hand, Fitzmaurice (1997) evaluated the performance of the classical frequentist
model selection criteria AIC and BIC, but also of his proposed modified likelihood
ratio statistics. The author observed that the considered selection criteria often
prefer overdispersion models even when there is no overdispersion in the data
set. Obviously, this can lead to a wrong interpretation of the model parameters.
We refer to Lambert (1992) for more background on the issues of overdispersion
and its impact on the conclusions of a statistical analysis.
Therefore, we wished to evaluate the performance of the above three model

selection criteria when overdispersion is present or absent in the data set. We
ignore here the case of underdispersion, since this occurs less frequently in prac-
tice. But in order to detect such deviation from the Poisson model, we need
to have statistical models for repeated count data that allow for overdispersion.
Without clustering, some models have been suggested to model overdispersion.
A popular choice is the negative binomial distribution, which arises as a continu-
ous mixture of Poisson distributions with means that have a gamma distribution.
If overdispersion is due to an excess of zeros, one could model the data with
a zero-inflated Poisson distribution or a zero-inflated negative binomial distri-
bution, both are mixtures of the basic (Poisson/negative binomial) distribution
with a degenerate distribution at zero. Also for longitudinal count data, models
have been suggested that deal with overdispersion, see e.g. Booth et al. (2003);
Aregay et al. (2013, 2015); Molenberghs et al. (2007). Here, we focus on the ex-
tensions suggested by Molenberghs et al. (2007, 2010), which we briefly describe
below.
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5.5.1 The Poisson-type models for count data with overdis-
persion

A natural extension of the random effects Poisson model is to make use of the
generalisations suggested for a Poisson model. That is, to allow for overdisper-
sion by assuming a Poisson-gamma model or a zero-inflated Poisson/negative
binomial model given the random effects. The first proposal was suggested in
Molenberghs et al. (2007, 2010). More specifically, these authors suggest

Yij|bi ∼ Poi(λij |bi), (i = 1, . . . , n; j = 1, . . . ,mi)
λij = θij exp

(
xTij β + zTij bi

)
,

bi ∼ N(0,D),
E(θi) = E[(θi1, . . . , θimi)T ],

V ar(θi) = Σi,

(5.13)

whereby θij measures the overdispersion in the outcome for the ith subject at
the jth occasion. When θij has a Gamma(α1, α2) distribution, we call it a
Poisson-gamma mixed effects model (PGMM). Alternatively, one could assume
that the θij has a lognormal distribution. In that case we speak of a Poisson-
lognormal mixed effects model (PLMM). Molenberghs et al. (2007) provide the
expressions for the mean vector, the variance-covariance matrix and the joint
marginal probability. Here we focus on the PGMM model.

5.5.2 Zero-inflated GLMM

In the same spirit one could suggest a zero-inflated Poisson mixed-effects model
(ZIPMM) or a zero-inflated negative binomial mixed-effects model (ZINBM).
That is, given the random effects one could assume a zero-inflated Poisson/neg-
ative binomial. More specifically, the ZIPMM model for Yij is given by:

Yij|bi ∼ ZIP (p0,ij, λij |bi), (i = 1, . . . , n; j = 1, . . . ,mi)
with

Yij|bi ∼

0, with probability p0,ij

Poi(λij), with probability (1− p0,ij),

(5.14)

where λij = exp(xTij β+ zTij bi). A ZIPMM will reflect the data accurately when
overdispersion is caused by an excess of zeros (Adrion and Mansmann, 2012).
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The use of the ZIPMM is necessary when the nature of the source of zeros is not
certain. Conversely, if overdispersion is attributed to factors beyond the inflation
of zeros, a ZINBM is more appropriate (Yau et al., 2003). It is important to note
that the rate of zero-inflation and the nature of the source of zeros may change
over time, but such considerations will be ignored here.

5.5.3 Sampling methods for extended GLMM

With an extra random effect θij in the model, the question is how to apply
the sampling techniques. One approach is to apply the sampling techniques of
Section 5.4 on both the θij’s and bi’s jointly. Alternatively one could integrate
first θij’s from the likelihood, and then apply the sampling techniques on bi.
Given bi, the Poisson-gamma distribution averaged over θij yields a conditional
(on bi) negative binomial distribution. In Molenberghs et al. (2007) it is shown
that

Yij | bi ∼ NB(α1, γij),
with γij = 1/(1 + λijα2), where α1 and α2 are the parameters of the gamma
distribution and λij = exp(xTij β + zTij bi). Using this marginalised model (over
θij’s) allows to use the above considered sampling techniques to compute the
marginal model selection criteria.

5.6 Application section: Analysis of the epilepsy
data set

We consider the analysis of data obtained from 89 epileptic patients that were
randomised to a novel anti-epileptic drug (AED) in combination with one or two
other AEDs (44 patients) or to placebo (45 patients) (Faught et al., 1996). A 12
weeks baseline period served as a stabilisation period. They were then measured
weekly for 16 weeks, after which they were entered into a long-term open exten-
sion study. Some patients were lost to follow up after 27 weeks. The primary
variable (an outcome of interest) is the number of times a patient experienced
seizure during the last week. Booth et al. (2003) used this data set as an il-
lustrating example when modelling longitudinal counts data with overdispersion.
Others have also used this data set to illustrate their proposed statistical models,
see e.g. Aregay et al. (2013); Rakhmawati et al. (2016); Faught et al. (1996);
Molenberghs et al. (2007). Figure 5.2 shows the individual curves for both the
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treatment groups and this figure reveals substantial variability in counts between
subjects. The graph also reveals the presence of extreme values. The presence
of overdispersion in counts is seen in Table 5.2 where the sample mean and vari-
ance of the counts at each week for the treatment and placebo groups are shown.
Overdispersion is also seen in Figure 5.3 where the means and variances at each
week are shown for each of the treatment groups.
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Figure 5.2: Epilepsy data: Individual profiles for both treatment groups. Left
panel: AED, Right panel: placebo.

Breslow and Clayton (1993) analysed the epilepsy data by considering the
following covariates: logarithm of baseline seizure (base) count, treatment (trt),
logarithm of age, visit, and the treatment by log(base) interaction. We fitted
the model

Yij| b0i ∼ Poisson(λij | b0i),
ηij = log(λij) = β1 + β2trti + β3 log(basei) + β4visitij + β5 log(agei)

+ β6trti × log(basei) + b0i,

(5.15)
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Figure 5.3: Epilepsy data: Evolution over time of mean count (left panel) and
variance of counts (right panel) for both treatment groups (AED: solid line,
placebo: dashed line).

with b0i ∼ N(0, σ2
b0). We fitted the Poisson mixed effects model and extensions

discussed in Section 5.5 to the data using rjags. Here, 60,000 iterations were
sampled after discarding the initial 20,000 iterations as a burn-in. The thinning
factor was set as 10. For all models considered, convergence was assessed using
trace plots and the Brooks, Gelman and Rubin’s (BGR) diagnostic (Gelman et al.,
1992). The following vague priors were chosen, for the fixed-effect parameters:
βk ∼ N(0, 102) (k = 0, . . . , 6). For models with a random intercept and slope,
we considered a separation prior for their covariance matrix i.e we have taken
a half standard-Cauchy prior (Gelman, 2006) for the standard deviation of the
random effects and Unif(−1, 1) for the correlation parameter. For the overdisper-
sion parameter, we assumed θij ∼ Gamma(α, 1/α) (i = 1, . . . , n; j = 1, . . . ,mi)
where α ∼ Unif(0, 100). Finally, the zero-inflated probability is assigned p0,ij ∼
Beta(0.5, 0.5) (i = 1, . . . , n; j = 1, . . . ,mi).
The results in Table 5.3 show that all marginal criteria prefer the zero-inflated
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Table 5.2: Epilepsy study: Sample mean (sample variance) at selected time-
points for each of the two treatment groups.

Week Mean (variance)
Placebo Treatment

2 4.35 (58.00) 4.09 (45.24)
4 3.95 (34.53) 3.72 (46.24)
8 3.78 (30.22) 2.55 (17.43)
10 2.44 (8.30) 4.63 (109.37)
12 3.90 (97.84) 2.95 (27.49)
14 2.55 (11.64) 3.71 (43.31)
16 1.90 (6.55) 2.39 (22.63)
18 3.00 (56.33) 0.18 (0.16)
20 2.50 (4.50) 1.13 (2.41)
27 - 2.33 (16.33)

PGMM (ZIPGMM), which is in agreement with what was obtained by Warton
(2005). For the conditional criteria the best two models (PGMM and ZIPGMM)
are the same as for the marginal criteria, but they rank models PMM and ZIPMM
in the opposite way compared to the marginal criteria. So, it seems that there
is not much difference between the solution offered by the conditional and the
marginal criteria in this case. The simulations in next section check whether this
is a general finding.

Table 5.3: Epilepsy study: The value of both versions of the Bayesian selection
criteria for each of the considered models for the epilepsy data sets.

Criteria PMM PGMM ZIPMM ZIPGMM
cDIC 6045.68 4840.36 5331.78 4764.96
cWAIC 5966.37 4291.05 5215.23 4264.97
cLPML -2132.48 -2607.61 -2145.52 -2983.19
mDIC 6203.09 6047.12 6383.50 6013.77
mWAIC 6213.70 6025.52 6472.96 6006.03
mLPML -3016.79 -3049.28 -3085.34 -3087.93
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5.7 Simulation Studies

Three simulation studies illustrate the performance of the conditional and marginal
selection criteria in identifying the true data-generating model. These simulations
are based on the Poisson model (5.15) discussed above under varying conditions
and settings. The simulation studies mimic the data set described in Section 5.6.
Using the R procedure glmer procedure, we obtained the maximum likelihood
estimates : β̂1 = −3.96715, β̂2 = −2.12053, β̂3 = 0.94952, β̂4 = −0.05872,
β̂5 = 0.89705, β̂6 = 0.56223, and σ̂2

b0 = 2.36045. Unless specified, these values
will be used as true parameters in the simulation studies described below. For
the purpose of these simulations studies, we varied the number of subjects as
well as number of observations per subject. Two scenarios were considered: (1)
Random-effects: we assumed that the random effects structure is known but that
the considered models differ from the true model in the fixed effects part; (2)
Fixed-effects: we assumed that the fixed effects part is known but the random
effects part is unknown.
We have taken the same settings, i.e. distribution of the random effects and the
priors of the model parameters as in the previous section. For each of the two
scenarios, both the conditional and marginal version all three model selection
criteria were computed and recorded. Each time the model with the smallest
selection criterion was selected. The simulation studies aim to confirm the supe-
riority of the marginal criteria over conditional criteria for repeated count data
as shown for linear mixed effects models (Ariyo et al., 2019b,a). Here, we also
check the performance of these criteria when overdispersion is of concern. More
specifically, we are interested in exploring the performance of the conditional and
marginal versions of the three model selection criteria:

• to select the correct data-generating model when: (i) the random effects
structure is known and correctly specified, but the fixed effects part is
unknown, (ii) the fixed effects structure is known and correctly specified,
but the random effects structure is unknown;

• in the absence and presence of overdispersion;

• when the number of covariates is more than the number of subjects.

In addition, we aim to:

• evaluate the performance of the two sampling methods: replication method
& importance sampling in calculating the marginal criteria;
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• measure the impact of the number of subjects and the number of obser-
vations per subject on the performance of the conditional and marginal
criteria and the two sampling methods.

5.7.1 Simulation study 1

Here, we generated 300 data sets using the settings described in Section 5.7. We
illustrate the performances of both versions of DIC, PSBF and WAIC by fitting
three alternative models: (i) the true model (M1) give by equation (5.15), (ii)
an under-specified model (M0) and (iii) over-specified model (M2). For the
random-effect scenario, M0 is given by (5.15) without trti × log(basei) inter-
actions and M2 is given by (5.15) with additional covariate trti × log(agei).
Likewise, for fixed-effect scenario, M0 is given by (5.15) without the random
intercept whileM2 is given by (5.15) with the random intercept and slope. For
these two scenarios,M1 is the true model.
Here, we illustrate the performance of the conditional and the marginal selection
criteria in identifying the true model. Additionally, the effects of the number of
subjects in the data were also evaluated in this simulation under these two sce-
narios. The number of observations per subject may influence the performance of
replications method considered. Hence, we evaluate the performance of Bayesian
model selection criteria for a moderately large number of subjects N = 50 and
a varying number of observations per subject.
Table 5.4 presents the number of times the conditional and marginal criteria

select the data-generating model for different number of observation per subject
when N = 50. As seen in the table, the number of cluster sizes significantly
influences the performance of both criteria, however, the marginal criteria often
select modelM1 while the conditional criteria select the wrong model, especially
with random effects scenario. Conversely, for fixed effects scenario, the impact of
the number of observations per subject on the performance of the marginal cri-
teria is inconspicuous. Overall, the marginal criteria outperform the conditional
criteria. We also evaluate the performance of the Bayesian selection criteria
under the scenarios discussed above with the assumption that the overdispersion
in the data set is ignored. Here, we introduced an extra parameter θij to simulate
data with overdispersion. For the extra parameter, θij ∼ Gamma(α, 1/α) was
assumed. High, moderate and low overdispersion level was induced by setting α
to be 0.25; 1; 5 respectively. We evaluate the model selection procedures when
overdispersion is ignored in the data set. Here we used three wrong models:
(ignoring overdispersion), models A, B and C which are the same withM0,M1
andM2 described above. Where model B is the closest to the data-generating
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Table 5.4: Simulation 1: The number of times the selection criteria selects the
data-generating model when varying the number of observations per subject for
n = 50.

Number of observations/subject
2 4 8

Scenario Criteria M0 M1 M2 M0 M1 M2 M0 M1 M2
Fixed-Effects cDIC 43 204 53 45 210 45 54 209 37

cWAIC 41 203 56 78 168 54 81 170 49
cLPML 50 202 48 57 204 39 39 217 44
mDIC 49 248 3 42 253 5 39 252 9
mWAIC 52 243 5 47 240 3 40 259 1
mLPML 53 240 7 46 248 6 39 259 2

Random Effects
cDIC 41 52 207 38 47 215 27 49 224
cWAIC 40 54 206 38 16 146 1 12 187
cLPML 21 66 215 21 27 252 21 31 248
mDIC 45 198 51 32 210 58 25 215 60
mWAIC 46 196 58 34 208 53 26 217 57
mLPML 45 198 57 37 211 52 36 214 50

model without overdispersion, the number of times each model gave the least
value for model selection criteria is presented in Table 5.5.
As expected, both criteria performed poorly when overdispersion was ignored.

As the overdispersion increases in the data set, the conditional criteria select the
model with extra fixed and random effects parameters while the marginal criteria
select the model without extra parameter (model B), the closest model to the
data-generating model that ignores overdispersion. These results are similar to
the conclusion in Fitzmaurice (1997) that when overdispersion is ignored, model
selection tends to select a model with too many parameters and can thus lead
to the over the interpretation of the parameters. In the Bayesian context, Millar
(2009) advocated the use of the marginalized version of DIC and Bayes’ factors
as the use of the conditional DIC was misleading in the hierarchical modelling
for overdispersed count data.
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Table 5.5: Simulation 1: The number of times three model specifications have
the least value when overdispersion in the data set is ignored. For Low (L),
Medium (M) and High (H) overdispersion.

L M H
Scenario Criteria A B C A B C A B C
Fixed-Effects cDIC 33 82 185 31 72 197 29 70 205

cWAIC 37 83 180 38 70 192 31 69 200
cLPML 36 83 181 41 69 190 32 67 201
mDIC 46 229 25 79 190 31 89 186 25
mWAIC 49 221 30 73 199 28 87 180 33
mLPML 40 230 30 77 192 31 84 183 33

Random Effects
cDIC 111 37 152 70 25 195 55 35 210
cWAIC 109 39 152 67 37 196 67 35 198
cLPML 114 46 140 58 42 200 67 36 197
mDIC 54 167 79 91 141 68 114 133 53
mWAIC 90 149 61 97 142 61 103 136 61
mLPML 41 137 122 73 137 90 110 130 60

5.7.2 Simulation study 2

From each of the PMM, PGMM and ZIPMM described above, we generate 300
data sets. Data were simulated based on equation (5.15) together with parame-
ter estimates and the extra parameters for PGMM are based on yij ∼ Poi(λijθij),
with yij and λij as defined above and θij ∼ Gamma(α, 1/α), where α takes the
values 0.25, 1, and 5. To ensure balanced data sets, we simulated datasets with
an equal number of observations per subject. Using an appropriate number of
replications as discussed in Section 5.4.2, we compute both the marginal and
conditional criteria for all the three models via a self-written R code.
Different data settings were considered where data are generated from a partic-
ular model (true fit) and the model is evaluated with other alternative models.
For instance, we generated data from the PMM (true fit) and considered PGMM,
and ZIPMM as alternative models. Likewise, we generate data from the PGMM
(true fit) and estimated with PMM and ZIPMM as alternative models and so
on. The number of times when selection criteria have a lower value for an al-
ternative model as against the true model were recorded and the percentage of
misselection was calculated.
Figure 5.4 shows the histograms of the differences in selection criteria between
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the true model (PMM) and the alternative model (PGMM). The figure shows
that the conditional criteria have a wider range of values as compared with the
marginal criteria. Additionally, the marginal criteria have lower values for the
PGMM model than the data-generating Poisson model in only about 2% of the
times. This reflects the small penalty for the inclusion of an extra parameter
in the PGMM model. Conversely, the fit of PGMM to PMM data has smaller
values of the conditional criteria in 34.2%, 28.0% and 26.6% times respectively.
This reflects the tendency of the conditional criteria to select a model with an
extra parameter.
Similarly, Figure 5.5 shows that the conditional criteria prefer the ZIPMM

model (model with extra parameter) often as against the Poisson data-generating
model. In fact, the percentages of times the wrong model was selected increase
from 34.2% to 52.0% for cDIC. Notwithstanding the narrow differences as shown
in Figure 5.5. The marginal criteria, on the other hand, show superior perfor-
mance, preferring the ZIPMM model to the data-generating Poisson model less
often.
When the PMM and ZIPMM models are fitted to the PGMM data, the re-
sults give much larger values for the marginal criteria, that the marginal criteria
perform better by preferring data-generating PGMM data to their conditional
counterparts (see Figures 5.4 and 5.5). These results show the superior perfor-
mance of marginal criteria in identifying the true data-generating model in count
data sets. This is similar to the results earlier obtained for LMM (Ariyo et al.,
2019b,a), and for GLMM (Millar, 2009; Quintero and Lesaffre, 2018).

5.7.3 Simulation study 3

Here, we evaluated the performance of the two sampling techniques: replication
and importance sampling. Following the simulation study described in Section
5.7.1, we generated 300 data sets from Equation (5.15) under different number of
subjects and observations/subject. The performance (in %) of the marginal cri-
teria for both sampling methods in selecting the correct data-generating model is
recorded in Table 5.6. The advantage of importance sampling is shown when the
number of subjects and/or observations/subject is large as the replication method
becomes impracticable for a large number of subjects and/or observations/sub-
ject due to convergence problems. This is reflected because the variance due to
replication is larger than 0.5. This affirms the results in Quintero and Lesaffre
(2018).
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Table 5.6: Simulation 3: The performance (in % ) of the marginal criteria in
selecting the data-generating model (M1) when varying the number of subjects
and the number of observations/subject using two sampling methods: the repli-
cation method (Rep) and importance sampling (IS).

5 10 30 60
Criteria # of subjects Rep IS Rep IS Rep IS Rep IS
mDIC 50 78.0 76.7 78.7 79.0 36.7 76.7 28.3 76.0

100 80.7 82.0 80.0 80.0 31.7 78.7 24.7 74.7
200 49.0 49.0 47.7 47.0 20.3 20.3 - 24.7
500 14.3 45.0 1.0 45.3 - 45.7 - 46.3

mWAIC 50 77.7 77.7 78.0 80.7 35.3 75.3 26.7 71.0
100 81.3 81.7 81.7 80.3 31.0 78.3 24.0 71.3
200 50.7 50.3 46.3 48.3 19.7 20.7 - 29.7
500 14.7 44.7 2.7 46.7 - 45.3 - 50.3

mLMPL 50 77.3 77.0 79.0 81.7 34.0 77.0 21.3 75.0
100 80.0 81.7 82.3 79.0 36.3 78.7 20.7 70.7
200 42.7 51.3 47.0 48.7 19.0 23.7 - 23.7
500 15.0 45.7 2.3 46.3 - 45.0 - 42.3

5.7.4 Simulation study 4

When only a few events happen (say when dealing with a rare disease) parameter
estimates may be biased or unreliable (Chen and Wehrly, 2016). We evaluated
the impact of the setting where the number of parameters p is larger than the
number of subjectsN on the performance of the marginal and conditional criteria.
To this end, we generated 300 data sets from the Poisson model (5.15) with
three additional covariates: log(age2

i ), trti × log(agei), trti × log(age2
i ). We

evaluated the performance when (1) N ∼= p and (2) N < p. Table 5.7 shows
that few numbers of subjects affects the performance of both versions of the
criteria but with less impact on the marginal criteria. And again, the marginal
criteria outperformed the conditional criteria in this setting.
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Figure 5.4: Simulation 2: Bayesian selection criteria (top: conditional, bottom:
marginal) under the PGMM (fitted model) minus the selection criteria under the
true model from 300 simulated PMM data sets
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Figure 5.5: Simulation 2: Bayesian selection criteria (top: conditional, bottom:
marginal) under the ZIPMM (fitted model) minus the selection criteria under the
true model from 300 simulated PMM data sets
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Figure 5.6: Simulation 2: Bayesian selection criteria (top: conditional, bottom:
marginal) under the Poisson model minus the selection criteria under the true
model from 300 simulated PGMM data sets
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5.8 Conclusion

The study evaluates the performance of the marginal criteria in GLMM, especially
with over-dispersed count data. Contrary to LMM, the closed-form likelihood of
the GLMM is not available. Hence, there is a need for sampling techniques to
compute the marginal criteria for non-closed form likelihoods. We set up simu-
lation studies that compare the performance of two versions of the criteria for
GLMM with longitudinal count data. We explored the ability of the criteria to
select the true data-generating model in different scenarios and settings. One
of such settings corresponds to the practical situation when the number of pa-
rameters is larger than the subjects. The results affirmed the superiority of the
marginal criteria over its conditional counterparts.
This study also evaluates the advantages of the two sampling techniques used
to compute the marginal criteria in GLMMs. The results show that importance
sampling is advantageous for computing marginal criteria for a large number of
subjects, number of observations/subject or both while the replication method
is recommended for a smaller number of subjects (less than 200) and/or number
of observations/subject (less than 10) for low computational burden.
Since the reliability of the replication methods is based on the number of repli-
cations needed to achieve convergence, we recommend a sensitivity analysis to
obtain the best value of replications needed to ensure the trade-off between com-
putational time and the deviance accuracy. To promote the usage of the marginal
criteria in this context, we designed an R function that computes the marginal
criteria using the replication method and importance sampling.
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Chapter 6
Bayesian model selection for
multilevel mediation models

This chapter has been submitted as:
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Abstract

Mediation analysis is a method often used for exploring the complex relationship
between two variables through a third mediating variable. Several studies have
focused on various multilevel-mediation (MLM) model designs and as such there
is a need to select the most appropriate model for the specific research question.
This paper aims to illustrate the performance of the deviance information crite-
rion, the pseudo-Bayes factor, and the widely applicable information criterion in
multilevel mediation models. Our focus will be on the comparison between the
conditional criteria (given random effects) versus the marginal criteria (averaged
over random effects) in selecting an appropriate data-generating model. Most
of the previous works on the multilevel mediation models rely on the default
software based on a lack of awareness of the differences between the marginal
and conditional criteria. We demonstrate the superiority of the marginal version
of the selection criteria over their conditional counterparts in the mediated lon-
gitudinal settings through an extensive simulation study and application to data
from the LASA (Longitudinal Aging Study of the Amsterdam) study. In addition,
we show that our self-written R function performs well for multilevel mediation
models.

6.1 Introduction

Mediation analysis enables researchers to investigate the complex relationship
between two variables through a third "mediating" variable. This indirect path-
way through a mediating variable (or mediator) helps to explain how exposure
affects an outcome (MacKinnon, 2008). The concept of mediation being used
in the estimation of single-level mediation for independent subjects from random
sampling (Hayes, 2017; MacKinnon, 2008) and multilevel mediation (McNeish,
2017; Zigler and Ye, 2019) has broad applications in both biomedical and social
science research.
Multilevel data is usually encountered in medicine where patients are nested
within hospitals, or repeated measurements are nested within patient. However,
this type of multilevel data violates the assumption of independence necessary
for traditional regression methods (Zigler and Ye, 2019). Hence, several au-
thors have examined the use of mediation in multilevel data using multilevel
modelling (MLM)(Krull and MacKinnon, 1999; Bauer et al., 2006; MacKinnon,
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2008; Preacher et al., 2010; Rusá et al., 2018) and the multilevel structural
equation model (MSEM) (Preacher et al., 2010; Lee, 2007; Yanuar et al., 2013;
McNeish, 2017; Zigler and Ye, 2019).
Krull and MacKinnon (2001) established the terminology for a multilevel medi-
ation design. They suggested the Predictor-Mediator-Outcome format, wherein
a number indicates the level/amount of data where each variable is located. For
example, a 1-1-1 means all three variables are measured at level-1. That is, level
1 represents the lowest measurement level, e.g., repeated measurements within
a person, and that level 2 represents the cluster level, e.g., the subjects. In a
longitudinal study this means that all variables are time-dependent. Other de-
signs include the 2-1-1 design where the predictor is at level 2, and the outcome
and mediator have been measured as level 1. This is for instance true in an RCT
(randomized controlled trial) with more than one follow-up measurement. The
intervention variable is not time-independent, i.e. measured at level 2. Figure
6.1 displays a 1-1-1 design for an MLM where the associations between the vari-
ables are split into between-cluster and within-cluster effects. For further details
regarding this terminology, see Krull and MacKinnon (2001).
Several MLMs have been proposed in the literature; therefore evaluating the most
appropriate model that fits the data best would be a useful exercise. However,
in most mediation analyses, MLM models are typically evaluated with respect to
bias, coverage probability, and power (Gao and Albert, 2018; Blood and Cheng,
2011; Wang et al., 2019; Zigler and Ye, 2019). Few authors make use of model
selection criteria using a frequentist (Wu et al., 2018) or the Bayesian (Rusá
et al., 2018) approach. Rusá et al. (2018) used the Widely-Applicable Informa-
tion criteria (WAIC) to compare their flexible, moderated mediation model with
competing models. However, the authors did not consider the marginal version
of the WAIC. Here, we compare the performance of the conditional and marginal
Bayesian model selection criteria to select the most appropriate MLM model for
the data at hand.
The model selection criteria can be based on the conditional likelihood (given
the random effects) resulting in conditional criteria, or it can be based on the
marginal likelihood (integrating out the random effects), resulting in the marginal
criteria. These marginal criteria measure the predictiveness of the model for all
subjects from the same population in a future study while the conditional cri-
teria measure the predictiveness of the model for the subjects included in the
current study. In this paper, we will compare the performance of conditional and
marginal versions of three popular Bayesian model selection criteria: the deviance
information criteria (DIC), the Pseudo-Bayes factor (PSBF), and WAIC. While
the DIC is popular in practice because it can be easily obtained with the use of
traditionally popular Bayesian software packages (especially the BUGS software),
PSBF and WAIC are becoming more popular albeit they are still unavailable in
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most classical Bayesian packages, except for WAIC which is provided by Stan
(Carpenter et al., 2017).
The conditional versions of the three model selection criteria discussed above
are the most popular and easiest to compute from the generated Markov Chain
Monte Carlo (MCMC) samples. Consequently, the marginal versions of the selec-
tion criteria are never reported. However, it has been demonstrated theoretically
and via simulation studies, that the use of conditional criteria often selects the
wrong data-generating model (see, e.g. Chan and Grant, 2016a; Merkle et al.,
2018; Ariyo et al., 2019b,a).
In practice, especially in medical and social science research, the researchers often
rely on the default software, presumably because of a lack of awareness of the
differences between the marginal and conditional criteria. In fact, in the analysis
of mediation models, we are not aware of any previous work that distinguishes
between the marginal and conditional criteria in the context of a multilevel medi-
ation model. Hence, this paper illustrates the superiority of the marginal version
of the selection criteria over their conditional counterparts in mediated longitudi-
nal settings. As such, we have aimed to conduct simulation studies to illustrate
the performance of the conditional and marginal criteria in selecting the true
data-generating models under different scenarios: (i) when the mediation paths
are allowed to vary randomly across clusters (see, e.g. Raudenbush and Bryk,
2002; Zigler and Ye, 2019), (ii) when the mediation paths are fixed across clus-
ters (see e.g. McNeish, 2017), (iii) when the mediation path is zero, with "no
mediation effects" (see, e.g. Zigler and Ye, 2019) and (iv) when the distributions
of the mediation paths are misspecified.
The outline of the paper is as follows. In Section 6.2, we introduce the LASA
data set. The basic concepts of mediation, moderation, and the combination
thereof are summarised in Section 6.3. We briefly discuss the model selection
criteria in Section 6.4. Different simulation settings and scenarios are presented
in Section 6.5, while we illustrate the comparison between the conditional and
marginal criteria on LASA data in Section 6.6. Finally, concluding remarks are
given in Section 6.7.

6.2 The Longitudinal Aging Study Amsterdam
(LASA)

LASA is a prospective cohort study intended to determine the predictors and con-
sequences of ageing, more specifically of physical, cognitive, emotional, and social
functioning in older adults (aged 55 to 85) in the Netherlands. The participants
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were sampled from the registries of urban as well as rural municipalities in differ-
ent parts of the country. The baseline measurement took place in 1992/1993 and
follow-up measurements have been conducted since then about every three years.
The data collection consists of the main interview, a self-reported questionnaire,
and a medical interview. The example in this paper was originally analyzed and
published by Robitaile et al. (2013), who examined processing speed (M) as
a mediator between age (X) and cognitive abilities (Y). Processing speed was
based on a coding task adapted from the Alphabet Coding Task-15, Reasoning
was based on the adapted version of the Raven Colored Progressive Matrices
test, and the cognitive ability was based on the 15 Word Test. The cognition has
been based on three different measures: 1) immediate recall, 2) delayed recall,
and 3) reasoning as the outcome variable. More information can be found in
Robitaile et al. (2013).
Each model was based on data from the first five waves of the LASA study.
Respondents were excluded from the analyses if they had a score of 23 or lower
on the Mini-Mental State Examination during any of the five waves (n = 798),
or if they had missing education information (n = 3). The analytical cohort
consisted of 2,306 respondents in the first wave, of which 1,883 also participated
in the second wave (81.7%), with a further 1,562 in the third wave (83.0%),
1,300 in the fourth wave (83.2%), and 1,021 in the fifth wave (78.5%). Detailed
information on the LASA can be found in Hoogendijk et al. (2016); Huisman
et al. (2011); Robitaile et al. (2013).
Robitaile et al. (2013) applied a lower level mediation 1-1-1 model since all
variables M, X, and Y were measured at level-1. Here, we aim to illustrate the
performance of the conditional and marginal criteria in the context of a multilevel
mediation model using a 1-1-1 MLM model.

6.3 Multilevel mediation model (MLM)

Before discussing the 1-1-1 multilevel mediation model in detail, we explain the
basic framework of a multilevel mediation model. When an outcome Y and a
predictor X are mediated by a mediatorM, it means thatM is correlated with X
and explains the effect of X on Y.With a continuous outcome Y and a mediator
M, a single-level mediation equation is given as

M = β1 + αX + eM

Y = β2 + βM + τ
′
X + eY ,

(6.1)
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where β1, β2 denote intercept for mediator and outcome, respectively and eM , eY
denote error terms in the equations. The direct effect of X on Y is denoted as
τ

′ and the indirect effect of X on Y through the mediator M is expressed as the
product of α and β i.e αβ. Given that all variables are measured at level 1, the
estimate of model parameters is straightforward using standard OLS-regression or
maximum likelihood methods (Song, 2018; Preacher and Selig, 2012). However,
the direct application of such techniques to multilevel data (such as mediation
data) thereby ignoring the nested structure of the data will statistically bias
(see also Raudenbush and Bryk, 2002; Tom et al., 2012) the estimates and the
conclusions of the analysis. Hence, we consider a set of standard MLM equations
predicting Y from X including a random effects structure (random intercept and
slope(s)). Following the notation in Yuan and MacKinnon (2009), one can write
a two-level lower mediation model (as given in Figure 6.1) with level 1 equations
as:

Mij = β1j + αjXij + eMij

Yij = β2j + βjMij + τ
′

jXij + eYij ,
(6.2)

and level 2 is given as

β1j = β3 + u1j

aj = α + u2j

β2j = β4 + u3j

βj = β + u4j

τ
′

j = τ
′ + u5j,

where eMij
and eYij are level 1 error terms for M and Y respectively; the param-

eters β1j and β2j are random intercepts, and αj, βj and τ ′
j are random slopes.

The parameters β2 and β3 are population (or average) effects. For multilevel
modelling, the first-level residuals eMij

and eYij are assumed to be independent
and follow normal distribution, that is eMij

∼ N(0, σ2
eMij

) and eYij ∼ N(0, σ2
eYij

)
and the second-level residuals uj = (u1j, u2j, u3j, u4j, u5j)T follow a multivariate
normal distribution uj ∼ N(0,D) where D is 5× 5 covariance matrix.
In multilevel mediation, the average indirect effects in the population are often of
primary interest. Yuan and MacKinnon (2009) gave the average indirect effects
(applies to models with only random slopes) formula to be

ab = E(αjβj) = αβ + σαjβj , (6.3)

where σαjβj denotes the covariance between αj and βj.
MacKinnon (2008) and Kenny et al. (2003) also showed that the total effect in
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a fully random, lower mediated multilevel model is

c = τ
′ + αβ + σαjβj (6.4)

and the relative average indirect effect can be expressed as

ab/c =
αβ + σαjβj

τ ′ + αβ + σαjβj
. (6.5)

Equation (6.5) is often referred to as the proportion mediated in the mediation
analysis literature (Ditlevsen et al., 2005; Ananth, 2019). This statistic has some
important disadvantages. For example, the proportion mediated effect cannot be
used when the mediation model is inconsistent (i.e., the direct and indirect effect
have a different sign), which is actually the case in the LASA data example (see
Robitaile et al., 2013). In these situations, the proportion mediated can exceed
1 and can be below 0 and the interpretation may become meaningless (as the
limits of a proportion are 0 and 1).
In practice, the heterogeneity in the causal effects across level 2 units may be
of scientific interest. For example, in Section 6.6, we analyse the LASA dataset
to investigate whether the processing speed mediates between age and cognitive
abilities in older adults. The importance of random effects in the lower level
mediation (1-1-1 model in particular) was pointed out first in Kenny et al. (2003).
For model represented in Equation (6.2) to be estimable and ensure that the
mediational effects are unbiased, some assumptions are required as given below:

1. The predictors Xij must be uncorrelated with the random intercepts and
slopes and with β2j, βj, τ

′
j and eYij .

2. The residuals eMj
and eYij are normally distributed with mean zero and

uncorrelated with each other.

3. The level 1 residuals are uncorrelated with the random effects i.e eMj
is

uncorrelated with β1j, aj, β2j, βj and τ
′
j .

It is important to note that some of these assumptions may not hold in practice.
In this paper, we considered the performance of the conditional and marginal
selection criteria when these assumptions are violated.

6.4 Bayesian model selection

We considered three different Bayesian model selection criteria for evaluating
a multilevel mediation model: PSBF, DIC and WAIC. We further distinguished
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Mediator:
Processing

Speed

Age Cognitive
Ability

αj βj

τ
′
j

Figure 6.1: LASA data example: Diagram for a two-level mediation model in
which the effect of Age on Cognitive Ability is partially mediated by Processing
Speed: Age affect Processing Speed (path αj), Processing Speed affect Cognitive
Ability (path βj), and Age affect Cognitive Ability (path τ ′

j)

between the marginal and conditional version of these criteria. For MLM, let
Θ represent all the model parameters, the distinction is that the marginal MLM
includes the fixed effects (i.e the intercept for mediator and outcome, when as-
sume fixed) and the parameters making up the covariance matrix of the random
effects. Conversely, the conditional MLM includes the random effects (i.e the
direct and indirect pathway of the model) in the Θ.
Further, we denote the collected (longitudinal) mediated outcomes by y and
the obtained covariate values by the matrix X moderated by M. The posterior
distribution is p(θ | y,X,M) = p(y | Θ,X)p(Θ)/p(y | X,M). When the
closed-form of this posterior distribution does not exit then it is appropriate to
use MCMC methods. Namely, K (dependent) values Θ1, . . . ,ΘK are sampled
from the posterior distribution. The true posterior summary measures can then
be approximated by their sampled versions.
Recently, some authors have compared the performance of these criteria in dif-
ferent application studies (see e.g Dey et al., 2019; Millar, 2018). However, there
is still no consensus about the best criterion for model selection in a Bayesian
context. For the distinction between the performance of the marginal against the
conditional criteria, other authors have shown that marginal criteria outperform
the conditional criteria in most settings for LMMs with some extensions (Ariyo
et al., 2019a,b) and GLMMs (Quintero and Lesaffre, 2018; Millar, 2018; Ariyo
et al., 2020). This is also true for an item response model (Li et al., 2016; Mil-
lar, 2018; Merkle et al., 2018). However, to our knowledge, the superiority of
the marginal criteria over the conditional criteria has not been demonstrated in
the mediation analysis literature. For reasons of completeness, we will (briefly)
discuss the three Bayesian model selection criteria in the subsequent sections.
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6.4.1 The pseudo Bayes factor

Model comparison using Bayes’ factors requires the computation of the marginal
likelihood of two competing models. Given a model M and model parameters
θM, we assume that the data y1, . . . , yn are conditionally independent. The
marginal likelihood is given by:

p(y|M) =
∫
θM

n∏
i=1

p(yi|θM,M)p(θM)dθM. (6.6)

However, equation (6.6) is not analytically available in general. Therefore, Geisser
and Eddy (1979) suggested replacing (6.6) by the pseudo marginal likelihood

p̂(y|M) =
n∏
i=1

p(yi|y−i,M), (6.7)

where ∏n
i=1 p(yi|y−i,M) is the ith conditional predictive ordinate (CPOi) and

the predictive density calculated at the observed yi given y−i, which is the set
of all data except the ith observation. The pseudo-Bayes factor is then obtained
by taking the ratio p̂(y |M1)/p̂(y |M2) to evaluate the preference of model
M1 over model M2. Low value of this ratio reflect preference of model M2
based on the current data. In practice, one often evaluates the logarithm of
expression (6.7), leading to the log pseudo marginal likelihood for model Mr

equal to LPMLr = ∑n
i=1 log(CPOi,r) where

CPOr,` ≈
[

1
K

K∑
k=1

1
p(yi | θkr ,Mr)

]−1

and θkr represents the model parameters for modelMr.

6.4.2 The deviance information criterion

Deviance is defined asD(Θ) = −2 log p(y|θ). The deviance informative criterion
(DIC) is then defined as DIC = −2 log p(y|θ̄) + 2pDIC , where pDIC corresponds
to the effective number of parameters, given by

pDIC = −2 Eθ|y[log p(y|θ)] + 2 log[p(y|θ̄)]. (6.8)

Two versions of pDIC are generally used (Gelman et al., 2014; Spiegelhalter
et al., 2014): (i) pDIC in (6.8) which is considered to be numerically stable, and
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(ii) pDIC2 = 2 V arθ|y[(y|θ̄)] which has the advantage of being always positive
(Gelman et al., 2014). Consequently, Celeux et al. (2006) suggested several
forms for the DIC that can be used for different hierarchical models and Ariyo
et al. (2019b) have compared the performance of the marginal and conditional
versions of these DIC versions and have shown that there are inconsistencies in
the performance of the conditional versions of different forms of DIC whereas
the marginal versions perform similarly. Despite its popularity and availability in
Bayesian software, DIC has been criticised, see Spiegelhalter et al. (2014) for
details. For instance, DIC is not invariant to non-linear transformations of θ and
negative value for pDIC can occur in some cases.

6.4.3 Watanabe-Akaike information criterion

The Watanabe-Akaike information criterion (WAIC) is a Bayesian version of the
AIC (Watanabe, 2010) and a worthy successor of DIC (Spiegelhalter et al., 2014)
as it uses the posterior predictive distribution of the data to estimate the out-of-
sample predictive accuracy of the model. The WAIC is then defined as

WAIC = −2 ̂lppd + 2pWAIC ,

where pWAIC corresponds to an estimate of the effective number of parameters
given by

pWAIC = 2
n∑
i=1

[
log

(
1
K

K∑
k=1

p(yi|θk)
)
− 1
K

K∑
k=1

log p(yi|θk)
]
.

and ̂lppd which can be estimated using an MCMC sample from the posterior
distribution as

̂lppd =
n∑
i=1

log
[

1
K

K∑
k=1

p(yi|θk)
]
.

Similar to DIC, a model with smaller WAIC is preferred. One advantage of WAIC
is its invariability to the scale of the model parameters, which implies that WAIC
does not change when θ is replaced by ψ = h(θ), where h a strictly monotone
function. For all the three model selection criteria, the model with the smallest
value is preferred.
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6.5 Simulation studies

We performed simulation studies in order to illustrate the performance of the
conditional and marginal criteria in multilevel mediation models (MLMs). We
opted to use 1-1-1 mediation models with random slopes for our simulation stud-
ies because this kind of model has been a model of interest in the fundamental
work behind multilevel mediation (see Preacher et al., 2011) and has been com-
monly used in empirical studies (McNeish, 2017). Notwithstanding its simplicity,
a 1-1-1 design allows for the modelling of both the between and within compo-
nents of the indirect effects and pathways (Zhang et al., 2009). Additionally, we
were motivated by previous investigations using LASA data (see Robitaile et al.,
2013).
Our aim is to study the performance of the conditional and marginal versions of
DIC, WAIC and PSBF in MLMs. We further evaluated the impact of cluster sizes
and the impact of different number of observations/subject points. Furthermore,
we provided an R function to compute the marginal criteria for MLMs using the
MCMC output from any Bayesian package. Additionally, this function computes
the conditional criteria and is available as supporting material for the paper

6.5.1 Simulation study 1

We first conducted a simple simulation study based on the example in Kenny et al.
(2003) and subsequently used in Bauer et al. (2006). Based on the example in
Kenny et al. (2003), we generated 500 datasets based on model (6.2) with the
following parameters: the random intercept for the mediator β2j had a mean 0
and variance of 0.6, i.e β2j ∼ N(0, 0.6), the random intercept for the response
β1j ∼ N(0, 0.4). These two random intercept β1j, β2j were normally distributed.
The level 1 variance of response (σ2

eY ) and the mediator (σ2
eM) were set to 0.45

and 0.65 respectively, the αj and βj paths were normally distributed with a mean
of 0.6 and a variance of 0.16, while τ ′

j ∼ N(0.2, 0.4). The covariance between αj
and βj was 0.113 i.e σαjβj = 0.113, yielding a correlation of 0.706. We assume
that neither αj and βj was correlated with τ ′

j . We further simulated a predictor
Xij from Xij = X̄i + eXij , where X̄i ∼ N(0, 1) and eXij ∼ N(0, 1).
In addition to Equation (6.2) as the true model, we fitted two alternative models:
(i) Equation (6.2) without mediation effects Yij = β2j+τ

′
jXij+eYij , (ii) Equation

(6.2) without direct effect component (i.e τ ′
j = 0), to evaluate the ability of the

conditional and marginal criteria to select the data-generating model. We further
varied the number of clusters under study from 10 to 100 (10, 25, 50,100), as
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this number of clusters is similar to those previously used in the literature (Bauer
et al., 2006; McNeish, 2017). We also set the number of observations per level
2 units to mj = 4, 8, 16, and, 36, which is consistent with those used by Krull
and MacKinnon (2001) and Bauer et al. (2006). All models in this simulation
study were estimated based on three chains of 10,000 iterations (discarding the
first 5,000) and with a thinning equal to 10. The convergence of the MCMC
samples was assessed using the Brooks-Gelman-Rubin (BGR) diagnostic, and in
cases where the BGR was larger than 1.1, a new MCMC sample was selected
with 10,000 extra iterations until convergence was obtained.
Table 6.1 displays the performance of the conditional and marginal criteria for
a 1-1-1 multilevel model in identifying the correct model when the mediation
pathway was allowed to vary in a normal, random fashion across clusters. As
expected, the performance of both versions of the criteria get better as sample
sizes increase. However, this increase is less obvious when the sample size is
higher than 25. Similarly, as the number of observations increases from 8 to 32,
the performance of both versions of the criteria are less obvious. An increase
in observation units of more than 8 has a minimal impact on the performance
of both versions of the criteria. As such, these results are in agreement with
the results previously described in the literature. For instance, McNeish (2017)
concluded that, if the right precautions have been taken, only few clusters and
observations are needed to provide reliable results.
Additionally, McNeish and Stapleton (2016) suggested that 20 clusters with five
or more observations per cluster might be sufficient if the model is estimated
with restrictive maximum likelihood. Overall, the marginal criteria outperformed
the conditional ones, which is in line with other results previously obtained in
the literature (see Ariyo et al., 2019b,a; Chan and Grant, 2016a; Quintero and
Lesaffre, 2018; Merkle et al., 2018).

6.5.2 Simulation study 2

We evaluated the performance of the conditional and marginal criteria when the
distribution of the mediation paths was misspecified. As such, we generated 500
data sets based on Equation (6.2) with the modification that the distributions of
the random slopes αj and βj are generated from χ2(3) distribution, which has
skewness 1.63 and kurtosis 4, which closely resembles the skew-normal distribu-
tion (see e.g Wang et al., 2004). In addition to the data-generating model, we
fit two alternative models: A model with mediation paths that are (i) assumed
normal and (ii) assumed skew-normal.
The percentage of the times that each criterion selected a data generating model
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is displayed in Table 6.2. The results demonstrate that when the mediation paths
are assumed to be skewed, the performance of both criteria is better than if nor-
mality is assumed for the mediation pathways. These results show that the
assumption that the sampling distribution of the average mediation paths (es-
pecially the indirect effects) follows a normal distribution might be unrealistic.
This is why several authors warn researchers against making these assumptions
for hypothesis testing (Song, 2018; MacKinnon et al., 2004; Hayes and Scharkow,
2013; Preacher and Selig, 2012) and recommend approaches that relax the nor-
mality assumption, such as using bootstrap confidence interval (Efron and Tib-
shirani, 1994; MacKinnon et al., 2004, 2007) and Monte Carlo (MC) simulations
(Preacher and Selig, 2012) among others. Regardless of the assumptions for the
mediation pathways, the marginal criteria display superior performance compared
to the conditional criteria.

6.5.3 Simulation study 3

In the 1-1-1 model, the mediation paths can be estimated as fixed effects. How-
ever, when the paths are not allowed to randomly vary across clusters, a large
number of clusters may lead to convergence problems while also diminishing the
quality of the estimates (McNeish, 2017). Here, we have illustrated the perfor-
mance of the conditional and marginal DIC, WAIC and PSBF when the mediation
pathways are not allowed to be random. Furthermore, we evaluated this condi-
tion under a variety of clusters and a different number of observations per level
2 units, as described in Section 6.5.1. As such, we generated 500 datasets based
on Equation (6.1) with the following value for each parameters: (i) indirect effect
component α = β = 0.40, and (ii) direct effect component τ ′ = 0.40. Addition-
ally, β1 = 0.45 and β2 = 0.45.
We fitted three alternative models: (i) Model (6.1) (ii) Model (6.1) without me-
diation effect (i.e β = 0), (iii) Model (6.1) without direct effect component (i.e.,
τ

′ = 0). The performance of the marginal and conditional criteria in identifying
the correct data-generating model when the distribution of the mediation paths
have been fixed has been presented in Table 6.3. The results show that regard-
less of the sample sizes, there is no difference between the performance of the
conditional and marginal criteria.
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6.6 Analysis of LASA data

Here, we illustrate the performance of the conditional and marginal criteria using
the LASA data described in Section 6.2. We fitted three different models: (i)
Model "A" based on equation (6.2), (ii) Model "B" based on Equation (6.9),
(iii) Model "C" based on Equation (6.10) and (iv) Model "D" based on Equation
(6.2) without mediation effects.

Mij = β1j + αjXij + eMij

Yij = β2j + βjMij + eYij .
(6.9)

Mij = β1j + αjXij + eMij

Yij = β2j + βjMij + τ
′

jXij + eYij ,
(6.10)

where
(
aj
bj

)
∼ (0,D) and D is a 2× 2 covariance matrix.

For each of the models, we calculate the level-specific indirect effects (Equation(6.3))
and the level-specific total effects (Equation (6.4)).
The priors used has been described in Section 6.5.1. We used 10,000 iterations,
which after discarding the first 5,000 as burn-in and thinning was set to 10.
The convergence of the MCMC samples was assessed using the BGR criteria. In
addition to the estimates of model parameters, we compute the conditional and
marginal criteria for each model. The results are displayed in Table 6.4.
It can be observed that the conditional criteria support Model "C" and "D".
These models assume that the level two parameters β1j and β2j are fixed. This
seems to be an incorrect model since the 1-1-1 model assumed these parameters
to be random across subjects. In contrast, the marginal criteria favor model "A".
This appears therefore to be the most appropriate 1-1-1 mediation model. This
underscores the superior performance of the marginal criteria in selecting of the
most appropriate model.
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Table 6.1: The percentage of times the conditional and marginal criteria se-
lect the true model when mediation path are random vary across clusters under
different sample sizes and number of observation per units.

Sample size
No of observation/units Criteria 10 25 50 100 200

4 cDIC 65.4 71.4 77.2 77.8 78.2
cWAIC 62.0 68.6 73.4 74.6 75.6
cPSBF 62.0 67.6 73.6 73.4 78.2
mDIC 71.4 79.8 84.4 86.0 89.2
mWAIC 72.2 80.2 84.8 85.8 88.6
mPSBF 71.6 80.4 82.6 82.8 89.0

8 cDIC 69.4 76.8 78.2 78.2 79.8
cWAIC 67.6 77.4 79.6 80.0 83.6
cPSBF 67.4 77.6 78.8 80.2 82.6
mDIC 79.4 80.4 84.4 86.2 88.0
mWAIC 73.6 84.8 86.8 86.4 89.2
mPSBF 73.8 88.6 88.8 89.0 89.8

16 cDIC 76.0 79.4 80.0 80.2 81.4
cWAIC 75.6 78.2 80.2 80.0 81.4
cPSBF 73.6 74.8 79.2 80.0 80.8
mDIC 86.6 89.4 89.8 89.8 89.8
mWAIC 89.6 89.8 89.6 90.0 90.6
mPSBF 86.0 89.8 89.8 90.2 90.8

32 cDIC 76.2 78.8 80.4 82.4 84.2
cWAIC 74.8 78.6 81.2 84.0 84.6
cPSBF 73.0 78.0 80.6 83.6 84.8
mDIC 86.2 89.0 90.0 90.8 93.0
mWAIC 87.8 89.2 90.2 93.8 93.4
mPSBF 85.8 89.0 90.0 94.2 95.0
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Table 6.2: The percentage of times the conditional and marginal criteria select
true model when mediation are not normally distributed across clusters under
different sample sizes

Path distribution Sample 10 25 50 100 200
Criteria

Skew-normal cDIC 69.4 76.8 78.2 78.2 79.8
cWAIC 67.6 77.4 79.6 80.0 83.6
cPSBF 67.4 77.6 78.8 80.2 82.6
mDIC 79.4 80.4 84.4 86.2 88.0
mWAIC 73.6 84.8 86.8 86.4 89.2
mPSBF 73.8 88.6 88.8 89.0 89.8

Normal cDIC 45.4 54.4 67.2 72.8 78.2
cWAIC 42.0 55.6 73.4 72.6 75.6
cPSBF 42.0 57.6 63.6 70.4 78.2
mDIC 51.4 68.8 76.4 81.0 87.2
mWAIC 52.2 76.2 73.8 83.8 85.6
mPSBF 51.6 78.0 70.6 82.8 88.0

Table 6.3: The percentage of time selection criteria select true model when the
mediation pathways are fixed.

Sample size
Criteria 10 25 50 100 200
cDIC 86.3 93.6 98.6 99.2 100.0
cWAIC 83.0 94.4 98.6 99.0 100.0
cPSBF 83.6 94.0 98.6 99.6 100.0
mDIC 86.3 93.6 98.6 99.2 100.0
mWAIC 83.0 94.4 98.6 99.0 100.0
mPSBF 83.6 94.0 98.6 99.6 100.0
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6.7 Conclusion

We compared three Bayesian selection criteria in the context of multilevel medi-
ation models. Our focus was on illustrating the performance of the conditional
and marginal criteria in selecting the true, data-generating model under different
distributional assumptions for mediation pathways. The results of the simulation
studies demonstrated the superior performance of the marginal criteria when the
mediation pathways are assumed to be random. The conditional criteria often
select over-specified mediation pathways, while the marginal criteria select the
correct model often. Conversely, when the mediation pathways are assumed to
be fixed for the 1-1-1 mediation model, the performance of the marginal and
conditional criteria is essentially the same. Both the conditional and marginal
criteria prefer (often) the correct model when the mediation pathways are fixed.
However, the motivation for assuming fixed or random pathways should be based
on the research question. The result from the analysis of the LASA dataset also
confirmed the results obtained in the simulation studies as the results of the
marginal criteria were consistent with the summary statistics.
These results confirm the results of Ariyo et al. (2019b,a) for LMMs, Chan

and Grant (2016a) for volatility models, Millar (2018); Li et al. (2016) for item
response models, Merkle et al. (2018) for latent variable model and Quintero
and Lesaffre (2018); Ariyo et al. (2020) for GLMM. To encourage the applied
researchers to use the marginal criteria, we provide an R function that com-
putes not only the marginal criteria but also the conditional criteria with minimal
computational effort. The function is available at https://ibiostat.be/online-
resources/bayesian.
The choice of a 1-1-1 multilevel mediation model with three variables was moti-
vated by its popularity in the literature and motivated by the LASA dataset. We
believe that the results are valid for other multilevel mediation models as well.
When more variables are involved in mediation analysis, the clusters’ effects are
likely to impact the performance of model selection criteria. Hence, further stud-
ies could derive the likelihood for more complex mediation models to evaluate
the performance of Bayesian model selection in more complex settings.
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Chapter 7
General Discussion

7.1 General Discussion and Future Research

In this thesis, we compared the performance of the conditional and marginal
versions of DIC, WAIC, and PSBF when it comes to identifying the accurate
data-generating models. We have demonstrated the superiority of the marginal
criteria over their conditional counterparts in a variety of settings and scenarios.
As such, we conclude here with a summary of the main research contributions
of the previous chapters, the limitations of our research, and the possibilities for
future studies.

7.2 General Discussion

We have shown the advantages of using the marginal criteria for the most es-
sential LMM. In Chapter 3, we compared the performance of the conditional
and marginal versions of DIC, WAIC, and PSBF in LMM with the extension to
skew-normal and skew-t distributions for either (or both) random effects and
measurement error. The simulation studies were explored via three scenarios.
Scenario 1: Assume that the random effects structure is correct and considered
the models that differ in their fixed part. In Scenario 2, assume that the fixed
structure is correct and consider a model that changes in the random effects
structure. For Scenario 3, assume that the true fixed and random effects are to
be selected jointly. Further in Scenario 3, the following were assumed: (i) differ-
ent scales for the covariates, (ii) distributional assumptions not satisfied by either
(or both) random-effects and measurement error, (iii) the nature of measurement



error (homoscedastic or heteroscedastic), and (iv) the incorrect random effects
structure.
Furthermore, we examined two selection strategies: minimum value and absolute
difference strategies. Additionally, we evaluated the model selection performance
for alternative versions of DIC and WAIC. We further examined the performance
of the marginal criteria with two longitudinal clinical data sets (Potthoff & Roy
growth data and Jimma infant growth study), while also illustrating the use of
these methods on non-clinical data. The results show the superior performance
of the marginal criteria over the conditional criteria in all scenarios and settings.
Despite the superiority of the marginal criteria, a large number of applied statisti-
cians have continually neglected to utilise them. Therefore, we were prompted to
write an R function that makes the marginal selection criteria easier to compute.
Building upon the previous results, in Chapter 4, we examined the effect of vague
priors on the Bayesian model selection criteria. In this chapter, we showed that
vague priors influence the performance of both versions of the criteria, but only
have a minimal impact on the marginal version. We also showed that the condi-
tional criteria performed inconsistently and often selected over-specified models.
In contrast, the marginal versions were less sensitive to the choice of priors and
most often prefer the correct data-generating model. For the prior of the covari-
ance matrix of the random effects, we evaluated the conjugate Inverse-Wishart
prior, the hierarchical version of this prior, the joint prior and some selected sep-
aration priors. We showed that the joint prior, the hierarchical prior and the
separation priors outperform the conjugate Inverse-Wishart for the longitudinal
mixed model involving two or more random effects. As such, we recommend
these priors when the use of the conditional version is essential.
In Chapter 5, we extended the settings those as mentioned above into a GLMM
where the likelihood is not analytically available. We employed two sampling
methods (replication method and importance sampling) to compute the marginal
criteria for the GLMM. For the method of replication, we expressed the marginal
likelihood component as an expectation of the conditional distribution. Replica-
tion method enables the marginalisation of the likelihood by generating replicate
samples from the density of the latent variables, which ought to be integrated
out to estimate such expectation. We addressed the major setback of this ap-
proach in this chapter using the importance sampling proposed in Quintero and
Lesaffre (2018) to reduce the computational complexity for large-sample situ-
ations. These approaches can be easily implemented from the MCMC output
of any Bayesian package. The results affirmed the superior performance of the
marginal criteria in this context again, and additionally, we also provided an R
function to makes this computation attractive.
Finally, in Chapter 6, we explored the selection criteria in the context of mul-
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tilevel mediation models. We illustrated the performance of the conditional and
marginal criteria in selecting real data-generating models under different distri-
bution assumptions and for mediation pathways. Motivated by its popularity
and the LASA dataset, we explored 1-1-1 multilevel mediation models. However,
we believe that our conclusion is valid for other types of multilevel mediation
models. Using the LASA dataset, we investigated the relationship between age,
processing speed, and cognitive functioning. Furthermore, we also evaluated the
performance of different approaches to the estimation of mediational effects us-
ing Bayesian model selection tools. The results affirmed the superiority of the
marginal criteria over the conditional criteria.
The simulation studies in this thesis were motivated by four sets of longi-

tudinal medical data and one set of longitudinal non-medical data. We imple-
mented all of the procedures in JAGS running interactively with R using the rjags
package. The relevant codes can be found online at https://ibiostat.be/online-
resources/bayesian and in the appendix of this thesis.

7.3 Limitations and Future Research

Although the simulation studies, we considered provided an excellent overview
of the performance of the conditional and marginal criteria, nevertheless there
is room for improvement. As such, we present below different possibilities that
could be regarded as future research for each of the topics that we considered in
this thesis.
In evaluating the performance of the conditional and marginal criteria in Chapter
3, we used an LMM with some extensions. From the results for the simulation
studies and the application data, we can discern that our conclusion is valid for
longitudinal data with missing values in the response and or covariate; however,
the main assumption here is that the missing data mechanism is ignorable. Al-
though this assumption may be valid for numerous applications, it is not possible
to empirically evaluate the tenability of the assumption. The performance of
both versions of the criteria can be assessed by regressing the missing data indi-
cator on the random coefficients of the longitudinal model.
Also, extensions of our R function to joint modelling of the longitudinal mea-

surements and survival processes in the shared parameter framework where a
set of random-effects is assumed to induce their interdependence (or non-normal
random effects) would be a useful exercise. Further studies may be carried out
in evaluating the performance of both versions of the criteria using the multiple
linear mixed-effects models with autoregressive (AR) random errors within the
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subjects. This can be further extended to other covariate structures for within-
subjects random error.
In Chapter 4, we focused on the effects of vague priors on the variance of the

random effects, as the choice of the prior for the residual variances is considerably
less important than the prior for the variances of latent variables (Polson et al.,
2012). For the intercept and regression parameters, evaluating the impact of the
alternative priors such as the t-distribution, which has been proposed as a prior
for logistic models by Gelman et al. (2008), and as an error distribution (e.g.,
robust growth curve models; Zhang et al., 2013) could be a useful exercise to
check the superiority of the marginal criteria over the conditional counterparts.
The idea of using the joint prior of Chapter 4.5.2 can be extended to a wider
class of random effects. A further approach to the choice of the prior distribution
is to use priors with uniform shrinkage (Spiegelhalter, 2001; Daniels and Kass,
1999; Natarajan and Kass, 2000).
As for the model selection when the likelihood is not analytically available, as

discussed in Chapter 5, a further study wherein the marginal and conditional
versions of DIC, WAIC and PSBF are based on the subject-level joint likelihood
is recommended. This joint likelihood does not appear to have an immediate
interpretation via leave-one-out-cross-validation because the data has been mod-
elled jointly within an unknown parameter. Further study in this area would be
very useful.
Finally, in Chapter 6, we illustrated the superiority of the marginal criteria in

the context of a 1-1-1 multilevel mediation model with three variables. The
results can be further extended to other multilevel mediation models. Further
studies utilizing numerous additional variables might illustrate that the effects of
the cluster are likely to affect the performance of the Bayesian model selection
criteria. Additionally, the impact of several simultaneous mediation models in
the performance of the Bayesian model selection criteria would be most useful.
Further studies could derive the likelihood for more complex mediation models
to evaluate the performance of the selection criteria in this context.
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Appendix A
R functions

S.1 JAGS code

Here is the JAGS file for the illustating example.

model
{
#f o r random e f f e c t s mean and v a r i a n c e
z e r o [ 1 ] <− 0
ze r o [ 2 ] <− 0
#L i k e l i h o o d
f o r ( k i n 1 :K) {
mu[ k ] <− beta [1 ]+ beta [ 2 ] ∗ breed [ k]+
beta [ 3 ] ∗age [ k]+b [ i d [ k ] , 1 ]+ b [ i d [ k ] , 2 ] ∗age [ k ]
bw [ k ] ~ dnorm ( mu[ k ] , tau_e )

}
#Random e f f e c t s f o r each s u b j e c t
f o r ( j i n 1 : n ) {
b [ j , 1 : 2 ] ~ dmnorm( zero , tau_b )
}
# P r i o r s :
#P r i o r on r e g r e s s i o n e f f e c t s

f o r ( p i n 1 : 3 ) {
beta [ p ] ~dnorm ( 0 , 1 . 0 E−06)
}

#P r i o r on r e s i d u a l p r e c i s i o n
s igma_e<−pow( va r_e , 0 . 5 )
va r_e<−pow( tau_e ,−1)
tau_e~dgamma ( 0 . 0 0 1 , 0 . 0 0 1 )
# P r i o r on random e f f e c t p r e c i s i o n
s igma_b0 ~ d u n i f (0 , 100)
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s igma_b1 ~ d u n i f (0 , 100)
rho ~ d u n i f (−1 , 1)
s igma_b [ 1 , 1 ] <− pow( sigma_b0 , 2)
s igma_b [ 2 , 2 ] <− pow( sigma_b1 , 2)
s igma_b [ 1 , 2 ] <− rho ∗ s igma_b0 ∗ s igma_b1
sigma_b [ 2 , 1 ] <− s igma_b [ 1 , 2 ]
tau_b [ 1 : 2 , 1 : 2 ] <− i n v e r s e ( s igma_b )
}

S.2 Illustrating Example

This function computes the marginal selection criteria (mDIC,mWAIC and mPSBF)
and thier corresponding conditional counterparts.

We show simple example to illustrate how this function works.
##I n s t a l l a p p r o p r i a t e l i b r a r i e s##############
l i b r a r y ( "mvtnorm" )
l i b r a r y ( " r j a g s " )
l i b r a r y ( r e a d x l )
l i b r a r y ( " x l s x " )
wd <− getwd ( )

##C a l l f u n c t i o n tha t c a l c u l a t e s the c r i t e r i a
s ou r c e ( "LMM_b a y e s s e l e c t .R" )

##########Read data from e x c e l o r any o th e r s o u r c e s
c h i c k d a t a <− r ead_e x c e l ( " ch i c kda t a1 . x l s " )
head ( c h i c k d a t a )
age<−( c h i c k d a t a $ age )
bw<−( c h i c k d a t a $bw) /1000

f i l e . show ( "JAGS_Model_LMM1. t x t " )

#########Data a n a l y s i s u s i n g JAGS############
# Any model can be a n a l y s e from JAGS or o th e r s o f t w a r e

j d a t a <− l i s t (bw=bw , age=age ,
b reed=c ( c h i c k d a t a $ breed ) ,
i d=c ( c h i c k d a t a $ i d ) ,
K=l e n g t h (bw) ,
n=max( c h i c k d a t a $ i d ) )

j a g s . i n i t s <− f u n c t i o n ( ) { l i s t ( beta=rnorm (3) ,
tau_e=r c h i s q (1 ,10 ) ,
s igma_b0=r u n i f ( 1 , 0 . 5 , 1 ) ,
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s igma_b1=r u n i f ( 1 , 0 . 5 , 1 ) ,
rho=r u n i f ( 1 , 0 , 1 ) ) }

r e s u l t s <− j a g s . model ( f i l e ="JAGS_Model_LMM1. t x t " ,
data=jda ta ,
i n i t s=j a g s . i n i t s ,
n . c h a i n s = 3)

#JAGS_Model_LMM1. t x t : can be changed depend ing on model we p l an
to f i t

update ( r e s u l t s , n . i t e r =10000 ,n . burn =5000 ,n . t h i n =10)
r e s u l t s _s<− coda . samples ( r e s u l t s ,

c ( " beta " , " s igma_b" ,
" s igma_e " , " va r_e " , "mu" ) ,

n . i t e r =10000 , t h i n =10)

# Use MCMC output f o r the f u n c t i o n to work
### Compute c r i t e r i a ######
RA <−LMM_B a y e s s e l e c t ( r e s u l t s _s , r e s p=bw ,

c l u s t=c h i c k d a t a $ id ,
X=cb ind (1 , c h i c k d a t a $ breed , age ) ,
Z=cb ind (1 , age ) , b e t a s=c ( " beta [ 1 ] " ,
" beta [ 2 ] " , " beta [ 3 ] " ) ,
va r_y=" va r_e " , varZ=" sigma_b" )

# Show c r i t e r i a ###############
RA

S.3 R function for LMMs

LMM_B a y e s s e l e c t <− f u n c t i o n (mc_sam , resp , c l u s t , X , Z , betas ,
va r_y , varZ )

{
r e s p <− as . mat r i x ( r e s p )
nobs <− nrow ( r e s p ) ∗ nco l ( r e s p )
Z <− as . mat r i x (Z)
i f ( nrow (Z)==1)

Z <− as . mat r i x ( r ep (1 , nobs∗ nco l ( r e s p ) ) )

names_mcmc <− dimnames (mc_sam [ [ 1 ] ] ) [ [ 2 ] ]
i f ( l e n g t h ( be t a s ) >1)
{

sam_beta <− as . mat r i x (mc_sam [ , b e t a s ] )
} e l s e {

sam_beta <− as . mat r i x (mc_sam [ , g rep ( betas , names_mcmc) ] )
}

sam_mean <− sam_beta ∗ t (X)
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i f ( n co l ( r e s p ) >1)
c l u s t <− r ep ( 1 : nrow ( r e s p ) , n co l ( r e s p ) )

param_in1 <− names_mcmc [ names_mcmc∗ i n ∗ va r_y ]
i f ( l e n g t h ( param_in1 )==0)

p r i n t ( pa s t e ( " P l e a s e save i n MCMC a l s o " , va r_y ) )

sam_va ry <− as . mat r i x (mc_sam [ , va r_y ] )

sam_meanb <− as . mat r i x (mc_sam [ , g rep ( "mu" , names_mcmc) ] )
param_in2 <− grep ( varZ , names_mcmc)
i f ( l e n g t h ( param_in2 )==0)

p r i n t ( pa s t e ( " P l e a s e save i n MCMC a l s o " , varZ ) )

i f ( n co l (Z) >1)
{

sam_va r z <− as . mat r i x (mc_sam [ , g rep ( pa s t e0 ( varZ , " \\ [ " ) , names_
mcmc) ] )

} e l s e {
sam_va r z <− as . mat r i x (mc_sam [ , varZ ] )

}
nK <− nrow ( sam_beta ) #F i n a l l e n g t h o f MCMC with a l l c h a i n s

c l u s t l <− s p l i t ( seq ( nobs ) , c l u s t ) #c l u s t e r ID l i s t

n c l u s <− l e n g t h ( c l u s t l
####i n t i t i a l i z e v e c t o r s#######
#####Dev iance ove r p o s t e r i o r means#########

sam_va r z_p <− colMeans ( sam_va r z )
sam_va ry_p <− mean( sam_va ry )

l ogp_y i<− r ep (0 ,nK)
l ogp_y i b<− r ep (0 ,nK)
l o o p i <− f u n c t i o n ( i , sam_mean , sam_meanb , nK , c l u s t l , Z , re sp , sam_

va r z_p , sam_va ry_p , sam_varz , sam_va ry )
{ #Loop f o r o b s e r v a t i o n s

mu_y i <− mat r i x ( sam_mean [ , u n l i s t ( c l u s t l [ i ] ) ] , nrow=nK)
mub_y i<−mat r i x ( sam_meanb [ , u n l i s t ( c l u s t l [ i ] ) ] , nrow=nK)
Z_ i <− mat r i x (Z [ u n l i s t ( c l u s t l [ i ] ) , ] , n c o l=nco l (Z) )
r e s p_ i <− r e s p [ u n l i s t ( c l u s t l [ i ] ) ]
i ndav <− which ( ! i s . na ( r e s p_ i ) )

###f o r p o s t e r i o r means#######
mu_y i_p <− colMeans ( sam_mean ) [ u n l i s t ( c l u s t l [ i ] ) ]
mu_y i_pb<− colMeans ( sam_meanb ) [ u n l i s t ( c l u s t l [ i ] ) ]

marvar_p <− Z_ i ∗mat r i x ( sam_va r z_p , n co l=nco l (Z) ) ∗ t (Z_ i ) +
d i ag ( sam_va ry_p , nrow (Z_ i ) )

l ogL_pm <− dmvnorm( r e s p_ i [ i ndav ] , mu_y i_p [ i ndav ] , s igma=as .
mat r i x ( marvar_p [ indav , i ndav ] ) , l o g=TRUE)
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l ogL_pmb <− dmvnorm( r e s p_ i [ i ndav ] , mu_y i_pb [ i ndav ] , s igma=as
. mat r i x ( d i ag ( sam_va ry_p , nrow (Z_ i ) ) [ indav , i ndav ] ) , l o g=
TRUE)

## Log l i k e l i h o o d#####
l i k e<−f u n c t i o n ( k , Z_i , sam_varz , Z , sam_vary , r e s p_i ,mu_y i , mub_y i ,

i ndav ) { #Loop f o r MCMC i t e r a t i o n s
marvar <− Z_ i ∗ mat r i x ( sam_va r z [ k , ] , n c o l=nco l (Z) ) ∗ t (Z_ i ) +

d i ag ( sam_va ry [ k ] , nrow (Z_ i ) )
p_y i <−dmvnorm( r e s p_ i [ i ndav ] , mu_y i [ k , i ndav ] , s igma=as .

mat r i x ( marvar [ indav , i ndav ] ) )
p_y i b<−dmvnorm( r e s p_ i [ i ndav ] , mub_y i [ k , i ndav ] , s igma=as .

mat r i x ( d i ag ( sam_va ry [ k ] , nrow (Z_ i ) ) [ indav , i ndav ] ) )
c ( p_y i , p_y ib , l o g ( p_y i ) , l o g ( p_y i b ) ,1 /p_y i , 1 /p_y i b )

}

r e s u l t <− s a p p l y ( c ( seq (1 ,nK , 1 ) ) , l i k e , Z_ i=Z_i , sam_va r z=sam_
varz , Z=Z , sam_va ry=sam_vary , r e s p_ i=r e s p_i ,mu_y i=mu_y i , mub_
y i=mub_y i , i ndav=indav )

l ogp_y i <− app l y ( cb ind ( l ogp_y i ,−2∗ r e s u l t [ 3 , ] ) , 1 , sum , na . rm =
TRUE)

logp_y i b <− app l y ( cb ind ( l ogp_y ib ,−2∗ r e s u l t [ 4 , ] ) , 1 , sum , na . rm
= TRUE)

r e su l tmean <− app l y ( r e s u l t , 1 , mean ) # v e c t o r w i th means o f c (
p_y i , p_y ib , l o g ( p_y i ) , l o g ( p_y i b ) , 1/p_y i , 1/p_y i b )

r e s u l t v a r <− app l y ( r e s u l t , 1 , va r )# v e c t o r w i th v a r i a n c e s o f c
( p_y i , p_y ib , l o g ( p_y i ) , l o g ( p_y i b ) , 1/p_y i , 1/p_y i b )

logCPOi <− l o g (1 / r e su l tmean [ 5 ] )
logCPObi <− l o g (1 / r e su l tmean [ 6 ] )
logLm <− r e su l tmean [ 3 ]
logLmb <− r e su l tmean [ 4 ]
l o g_mLm <− l o g ( r e su l tmean [ 1 ] )
l o g_mLmb <− l o g ( r e su l tmean [ 2 ] )
va rp_y i <− r e s u l t v a r [ 3 ] #v a r i a n c e l o g p_y i
va rp_y i b <− r e s u l t v a r [ 4 ] #v a r i a n c e l o g p_y i b
c ( logLm , logLmb , l o g_mLm, l o g_mLmb, logL_pm, logL_pmb , varp_y i ,

va rp_y ib , logCPOi , logCPObi , l ogp_y i , l ogp_y i b )
}

r e s l o o p i <− s a p p l y ( c ( seq (1 , nc lu s , 1 ) ) , l o o p i , sam_mean=sam_mean ,
sam_meanb=sam_meanb , nK=nK , c l u s t l=c l u s t l , Z=Z , r e s p=resp , sam_
va r z_p=sam_va r z_p , sam_va ry_p=sam_va ry_p , sam_va r z=sam_varz ,
sam_va ry=sam_va ry )

sumres <− app l y ( r e s l o o p i , 1 , sum) # v e c t o r w i th means o f c ( logLm
, logLmb , l o g_mLm, l o g_mLmb, logL_pm, logL_pmb , varp_y i , va rp_y ib ,
logCPOi , logCPObi , l ogp_y i , l ogp_y i b ) where l ogp_y i and l op_
y i b a r e v e c t o r s o f 1 X n i t e r a t i o n s i z e , i . e , p r o b a b i l i t i e s
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f o r each sample o f \ t h e t a .

mid <− ( l e n g t h ( sumres )−10)/2
DICm1 <− Devm + pDm #S p i e g e l h a l t e r
pDmb <− Devmb − Dev_pmb
DICmb1 <− Devmb + pDmb
WAICm <− Dev_pmW+2∗pDW
WAICmb <− Dev_pmWb+2∗pDWb

PSBF=sumres [ 1 0 ] #sum logCPObi
#c o n d i t i o n a l
lppdb <− −2∗ sumres [ 1 0 ]
cp lppd <− lppdb−Dev_pmWb
c lppd <− l ppdb+cp lppd

r e t u r n ( l i s t (mDIC1=DICm1 , mWAIC=WAICm, mPSBFn=−oPSBF , cDIC1=
DICmb1 , cWAIC=WAICmb, cPSBFn=−PSBF , mplppd= mplppd/ 2) )

}

S.4 Likelihood for Skew-normal function

marvar_p <− Z_ i ∗ ( mat r i x ( sam_va r z_p , n co l=nco l (Z) ) ) ∗ t (Z_ i ) +
d i ag ( sam_va ry_p , nrow (Z_ i ) )

l ogL_pmb <− dmvnorm( r e s p_ i [ i ndav ] , mu_y i_pb [ i ndav ] , s igma=
as . mat r i x ( d i ag ( sam_va ry_p , nrow (Z_ i ) ) [ indav , i ndav ] ) ,
l o g=TRUE)

i f ( n co l (Z)==1){
Lam_ i<−1/ (1 /sam_va r z_p+t (Z_ i ) ∗ d i ag ( sam_va ry_p , nrow (Z_ i ) )

∗Z_ i )
} e l s e {Lam_ i<− i n v ( i n v ( as . mat r i x ( sam_va r z_p , n co l=nco l (Z)

) )+t (Z_ i ) ∗ as . mat r i x ( d i ag ( sam_va ry_p , nrow (Z_ i ) ) ) ∗Z_ i ) }

mu_1 i<−Lam_ i ∗ t (Z_ i ) ∗ i n v ( d i ag ( sam_va ry_p , nrow (Z_ i ) ) )
A<−t ( as . mat r i x ( r ep ( sam_d e l t a e_p , nrow (Z_ i ) ) , nrow=1) ) ∗ i n v (

sqrtm ( as . mat r i x ( d i ag ( sam_va ry_p , nrow (Z_ i ) ) ) ) )
B<− r ep (0 , nrow (Z_ i ) )
mu_2 i<− r b i n d (A,B)

C<− t ( as . mat r i x ( r ep ( sam_d e l t a e_p , nrow (Z_ i ) ) , nrow=1) ) ∗ as .
mat r i x ( d i ag ( sam_va ry_p , nrow (Z_ i ) ) ) ∗Z_ i

i f ( n co l (Z)==1){
D<−t ( mat r i x ( r ep ( sam_d e l t a b_p , n co l=nco l (Z) ) , nrow=1) ) /sam_

va r z_p ^0.5
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} e l s e { D<−t ( mat r i x ( r ep ( sam_d e l t a b_p , n co l=nco l (Z) ) , nrow
=1) ) ∗ i n v ( sqrtm ( mat r i x ( sam_va r z_p , n co l=nco l (Z) ) ) ) }

LAM_ i<−r b i n d (C ,D)
upper <− as . numer ic ( (mu_2 i−LAM_ i ∗ mu_1 i ) ∗ ( r e s p_ i [ i ndav ]−mu

_y i_p [ i ndav ] ) )
s igma<−d i ag (2 ) ∗+LAM_ i ∗ Lam_ i ∗ t (LAM_ i )

cum<−pmvnorm( l owe r=rep (− I n f , l e n g t h ( upper ) ) , upper=upper ,
mean=rep (0 , l e n g t h ( upper ) ) , s igma=sigma )

logL_pm <− −0.5∗ ( dmvnorm( r e s p_ i [ i ndav ] , mu_y i_p [ i ndav ] ,
s igma=as . mat r i x ( marvar_p [ indav , i ndav ] ) , l o g=TRUE) )+ sum(
l o g (cum) )
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