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ABSTRACT
Image segmentation has become an important tool in orthopedic and biomechanical research. However, it greatly remains a
time-consuming and laborious task. In this manuscript, we propose a fully automatic model-based segmentation pipeline for the
full lower limb in computed tomography (CT) images. The method relies on prior shape model fitting, followed by a gradient-
defined free from deformation. The technique allows for the generation of anatomically corresponding surface meshes, which
can subsequently be applied in anatomical and mechanical simulation studies. Starting from an initial, small (n ≤ 10) sample of
manual segmentations, the model is continuously updated and refined with newly segmented training samples. Validation of the
segmentation pipeline was performed by comparing the automatic segmentations against corresponding manual segmentations.
Convergence of the segmentation pipeline was obtained in 250 cases and failed in three samples. The average distance error
ranged from 0.53 to 0.76 mm and maximal error ranged from 2.0 to 7.8 mm for the 7 different osteological structures that were
investigated. The accuracy of the shape model-based segmentation gradually increased as the number of training shapes in the
updated population also increased. When optimized with the free form deformation, however, average segmentation accuracy
rapidly plateaued from already as little as 20 training samples on. The maximum segmentation error plateaued from 100 training
samples on.
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1. Introduction
Statistical shape and intensity models (SSIM) have been established as a robust tool for the segmentation of medical
images and analysis of variation in anatomy (Cootes et al. 1994, 1995; Almeida et al. 2016). Due to their ability to
construct detailed personalized models from sparse data sets, they have the potential to efficiently generate patient-
specific models. This permits the generation of large, simulated populations for the use in injury biomechanics, mus‐
culoskeletal disease models or implant design optimization (Baldwin et al. 2010; Henak et al. 2013).
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While SSIM have become popular for the description of isolated anatomical structures, they have rarely been ap‐
plied in more complex integrated anatomies such as an entire limb or even the entire human skeleton. Training such
models would require a large number of samples to be available and be pre-processed (Henak et al. 2013). In order to
build a SSIM, the first step consists in segmenting the volumes of interest in a reasonably representative amount of
training data. Manually assisted segmentation of a full articulated limb, however, is a time consuming and arduous
task, which has been estimated to range over 100 man-hours per case (Henak et al. 2013). Data samples including
over 2000 slices (each consisting of 512*512 pixels) per subject are not uncommon and the massive size of this data
type involves an additional computational bottleneck for several (semi)-automatic segmentation routines.

In the present paper we present a generic, cascaded approach for bone segmentation, that can initialize from mini‐
mal training data. The method relies on articulated. multi-object, SSM based fitting, followed by single-object SSM
fitting and finally, gradient-defined free from deformation in combination with digital subtraction of gradient peaks of
pre-segmented neighboring structures to avoid overlap around joints. Segmentation accuracy evolution was evaluated
with increasing training samples being added to the SSM. Understanding the impact of a growing amount of SSM
training samples can guide future developers by assuring sufficient training samples for either segmentation purposes
either population wide applications of SSMs.

Related work

1.1. Articulated shape models
Describing population variance in terms of shape of isolated objects is a challenging job requiring substantial

training samples to achieve acceptable generalization properties of the models. While information on required num‐
ber of training samples for covering the variance of skeletal structures in a given population is scarce in the literature,
it has been documented in the area of face recognition, where studies have shown that in order to representatively
achieve a population covering study, at least 250 samples are required (Claes 2007). Taking in account that for mus‐
culoskeletal applications we need to describe the shape of connected structures presenting as well as their relative
positioning anatomical alignment (e.g. knee varus/valgus alignment), the dimension of our shape space is expected to
be even higher. Different poses among scanned patients at the time of the image acquisition need to be taken into
account which contributes to the complexity of an already challenging problem. Previous authors have attempted to
reduce the computational impact of alignment and positional variance for segmentation applications, either by defin‐
ing statistical transformation models to capture differences in pose (Boisvert et al. 2008) or by explicitly modeling
joint motion trough idealized joint models (e.g. spherical in case of the hip or hinged for the knee joint) (Kainmueller
et al. 2008, 2009).

1.2. Segmentation of bone and joints
The main challenge in joint segmentation lies in the close spatial relationship of the objects to be segmented, po‐

tentially causing penetration of surfaces and overlap. This is particularly challenging in osteoarthritic cases, where the
wearing down of cartilage causes bone-on-bone contact, that makes articulating bones almost impossible to distin‐
guish. In addition, osteoporotic bones translate as weak boundaries in CT-Scans which makes thresholding and edge-
based techniques fail at accurately segmenting the bone geometries (Bourgeat et al. 2007). Graph-based algorithms
have also been extensively explored for the purpose of bone segmentation, but the accuracy of these algorithms often
relies on seed points manually provided (Boykov and Funka-Lea 2006; Shim et al. 2009). Furthermore, the bones are
usually segmented individually instead of jointly, which can lead to sub-optimal segmentation results in terms of seg‐
mentation overlap in joint areas. To handle the bone overlap, Li et al. proposed a novel column graph-based algorithm
to solve coupled surface segmentation problems, which was later used for simultaneous bone and cartilage segmenta‐
tion in the knee (Li et al. 2006; Yin et al. 2010).

Atlas-based and statistical shape model based methods are an alternative approach commonly used to rely on prior
knowledge to guide and improve the segmentation (Chu et al. 2015). As segmentation of single anatomical structures
doesn’t consider the relationship with neighboring structures, Kainmueller et al. introduced coupled or articulated de‐
formable models for multiple-object segmentation, which do not completely prohibit but discourage the overlap
(Kainmueller et al. 2009; Bindernagel 2013). To further avoid such overlap Yokota et al. suggested a cascaded ap‐
proach by excluding edges of pre-segmented regions in the SSM based fitting procedure (Yokota et al. 2009, 2013).
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In recent years, significant developments have been made for image processing and analysis as a result of the re‐
vival of deep convolutional neural networks (CNNs), both in terms of accuracy and processing speeds once trained
(Gassman et al. 2008; Liu et al. 2018). To date and to the authors knowledge, the main issue is the data size of the
input layers and the availability of large sets of labeled training data. Several data augmentation techniques have been
described to partially deal with these issues and established pre-trained networks, such as the U-net, have been made
public (Ronneberger et al. 2015). CNNs are versatile in their application domain, going way beyond image segmenta‐
tion, as they can be trained for 2D to 3D registration purposes, disease recognition and quantification (Antony et al.
2016). While such techniques are currently still being explored and developed, approaches such as SSIM segmenta‐
tion techniques stand as valid alternatives as the computational cost for training is significantly lower and they are
able to provide the necessary amount of labeled training data for advanced neural network applications (Bhalodia
et al. 2018).

2. Methods
A statistical shape model-based approach that is initiated from a minimal sample of manual segmentations (n ≤ 10)

was implemented and the shape model was gradually updated and refined as more segmentations became available.
The following osteological structures were segmented: D12-L5 vertebrae, sacrum, pelvis, femur, patella, tibia, fibula,
talus, calcaneum, navicular, cuboid and cuneiform bones.

In Section 2.1.1, the surface registration procedure is described. It is used to define point correspondences as re‐
quired for the construction of the different statistical shape models (Section 2.1.2). The automatic segmentation pipe‐
line, fitting the previously built SSM to new image data, is described in Section 2.2. The validation procedure for the
complete segmentation pipeline is presented in Section 2.3.

2.1. Construction of the initial deformable SSM models
2.1.1. Dense landmarking of manual segmentations

An iterative closest point (ICP) based non-rigid registration algorithm was used to register template meshes of all
osteological segments, further referred to as source meshes, to a small set (n ≤ 10) of manually segmented cases,
further referred to as target meshes. The source mesh was created by isotropic remeshing a randomly selected man‐
ually segmented case. First, target and source meshes, respectively vit,  i ∊ 1, …, Nt  and vis,  i ∊ 1, …, Ns , are
aligned according to their principal axes of inertia (Esat and Bahai 2000). Then, the rigid alignment is optimized with
an adapted version of the rigid ICP algorithm, using bidirectional (target to source and back) vertex correspondences
and excluding distance-based outliers (Besl and McKay 1992).

The forward vertex correspondence vt i  is defined as the nearest neighbor (NN) of the source vertex vis on the
target surface:

vt i =   argminvlt vlt− vis    l ∊ 1, …, Nt (1)

The backward vertex correspondences vt i  are defined as the vertices vlt on the target surface for which vis is
their NN.

vt i =   vlt vis = argminvjs vjs− vlt   j ∊ 1, …, Ns, l ∊ 1, …, Nt (2)

For every source vertex vis, there is a set of displacements δ vis , one for the forward δ .  and one or more for
the backward δ .  correspondences:

δ vis = vt i − vis (3)

and
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δ vis = vlt− vis,  ∀ vlt ∊ vt i (4)

The additional backward displacements are introduced to warp the source surface into strong indentations of the
target surface.

Given these vector displacements, first, the optimal rotation (R , translation (t) and scaling (s  are calculated itera‐
tively as solutions to the following weighted least squares minimization problem:

T R, t, s =  argminR, t, s ∑i = 1Ns wi ∑ T vis − vis+ δ vis 2 (5)

with T v =  sRv + t the similarity transformation and wi a binary indicator variable coding for inliers (wi = 1)
and outliers (wi = 0). The inner summation is shorthand notation for summing over all elements of  δ vis . .For ev‐

ery iteration, a normalized histogram of δ vis , i = 1,…, Ns  is calculated, and vertices vis are considered as outli‐
ers if δ vis  is in the top-α percent range (typically set at 5%) and consequently discarded. At each iteration,R, t and s are calculated as solutions of a Singular Value Decomposition (SVD) (Arun et al. 1987) and new displace‐
ments δ vis  are determined. The algorithm converges if the root mean squared error between the previous and cur‐
rent source vertices drops below a predefined threshold value (< 10−5 mm).

After rigidly aligning the resulting vector displacements and mapping source vertices to the target mesh, non-rigid
registration of the source mesh onto the target mesh is applied. In a first step we approximate remaining vector dis‐
placements mapping source vertices to the target mesh using a non-rigid transformation, modelled as a sum of Nc
Gaussian Radial Basis Functions (G-RBF) with variable γ defining the width of the Gaussian function (Carr et al.
2001; Chui and Rangarajan 2003; de Boer et al. 2007; Kim et al. 2016):

d . = ∑k = 1
 Nc wk φ . − ck with φ = e− γ ∥ . ∥ 2 (6)

satisfying the following constraints:

δ vis = ∑k = 1
 Nc wk φ vis− ck ,  i = 1, …,Ns (7)

which is shorthand for satisfying the constraint for every element of the set  δ vis . The G-RBF centers ck are,
ideally, located at the source vertices vis . For computational efficiency, the number Nc of G-RBF centers was chosen
to be a much smaller subset of the source vertices. As a result, the deformation defined at the G-RBF centers is inter‐
polated at all other source vertices. This turns the set of 3M equations (M counting the sum of the cardinalities of δ vis .    equations in the Nc 3-D vector unknowns wk into an overdetermined problem, which was solved in a least
squares sense by minimizing:

∑iNs ∑ d vis − δ vis 2 + λ c 2 (8)

with an additional Tikhonov L2-regularization term λ c 2 added, preventing instability/ill-conditioning of the sys‐
tem with the internal summation summing over all elements of  δ vis .  (Tikhonov and Arsenin 1977).
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This ultimately results in the following set of (regularized) normal equations for the x-, y- and z-components of the
deformation coefficients w., given the displacements δ v. :
w. = ΦΤ Φ + λ I −1 ΦΤ  δ v. with ϕi, k =   φ vis− ck (9)

Note that, according to the definition of the displacements (Eqs. (3) and (4)), we have one or several equations per
source vertex. This framework for determining the vertex correspondences and the approximating G-RBF transfor‐
mation is solved iteratively using a deterministic annealing scheme. Decreasing deformation stiffness is hereby ob‐
tained by progressively increasing the number Nc of G-RBF centres while decreasing the G-RBF width defined by γ.

While this approach generates a smooth warp from source to target mesh, it remains constrained, in terms of num‐
ber of degrees of freedom, to the number of G-RBF centers defined and, as a result, can provide locally suboptimal
results. This could be resolved by increasing the number of G-RBF centres to the number of source vertices. Howev‐
er, the computational load for typical mesh sizes (see Table 1) is far too high, still. Instead, the previous warp was
refined by a local elastic deformation, defined as a weighted locally rigid transformation aligning source and target
mesh (Li et al. 2008). For each source vertex vis, a local neighbourhood i of vertices on the source mesh is defined,
based on spatial (Euclidean distance) and orientation (normal direction) similarity. The local rigid deformation (rota‐
tion matrix Ri and translation vector ti) mapping these source points to their nearest neighbours on the target mesh is
then solved in a least squares sense (similar to Eq. (5)) by SVD.

Table 1. Overview of the mesh properties of the different segments investigated: number of vertices, number of faces
and average length of the triangle edges.Table Layout
 Vertices Faces Edge length (mm)
Pelvis 103872 207736 1.57 ± 0.27
Femur 42194 84376 1.77 ± 0.31
Tibia and Fibula 78394 156772 1.24 ± 0.32
Patella 7650 15292 1.05 ± 0.21
Calcaneum and Talus 19644 39272 1.40 ± 0.27
Lumbar 5 12564 25128 1.55 ± 0.32
Sacrum 32610 65348 1.70 ± 0.50
Midfoot bones 20662 41276 1.38 ± 0.34
Lumbar Spine (D12-L5) 75384 150768 1.48 ± 0.48
Full lower limb 58113 116258 4.75 ± 2.92

Next, a weighted rigid transformation is applied to the whole mesh (Eqs. (10) and (11)).l vis = ∑j ε iwji Rj vis + tj vis (10)

with linear distance based weightswji = 1 − dji/dN − 1 ,     ∑jNwji = 1,  dji =   ∥ vjs− vis ∥ ,   d = ∑l ∊ i ∥ vls− vis ∥ /N   and N = # i . (11)

2.1.2. PCA of aligned corresponding shapes

The procedure of template/source to mesh registration, outlined in the previous section, generated sets of meshes
with homologous vertices based on the initial manual segmentations available.

Generalized Procrustes Alignment (GPA) was applied to align the homologous sets, removing similarity (rotation,
translation, scaling) transformations differences, prior to applying Principal Component Analysis (PCA) to determine
the (co-)variance of morphological differences within the data set.
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As a result, a statistical shape model (Cootes et al. 1995) was generated, described asS = S + Pb (12)

with S the shape vector represented as the ordered list of vertex coordinates (following GPA alignment). S defines
the corresponding average shape, P = p1, p2, …pt  the matrix of eigenvectors of the covariance matrixS − S T S − S , and b = b1, b2, …bt T a vector of weights. The eigenvectors are associated and ranked in decreas‐
ing order according to the t largest eigenvalues, each representing a mode of shape variation as observed over the
training data set. The number t of eigenvectors retained is determined such that the cumulative variance represented is
98% of the total variance observed. This shape model is further updated as new, verified segmentations (section 2.2)
become available.

Different segmental shape models were constructed, as well as an articulated full lower limb model of lower reso‐
lution (obtained by geometry preserving patch reduction). An overview of mesh properties of the different mean
shape models is provided in Table 1.

2.2. Segmentation pipeline
With the focus on fully automatic segmentation, our method follows a global-to-local approach divided into four

steps.

1. Initial fitting of the average shape of the full-lower limb model to the target mesh to estimate po‐
sition, orientation and scaling of the full lower limb. The target mesh is obtained as the triangula‐
tion of a thresholded isosurface and represents a crude initial segmentation. Subsequently the stat‐
istical low-resolution shape model is fitted to the triangulated target mesh.

2. Statistical (in-image) shape fitting of the low-resolution articulated lower limb model to the target
image.

3. Statistical (in-image) shape fitting of each single-object high-resolution SSMs to the target image.

4. Free-form (in-image) segmentation of each separate segment. This final step is required to reduce
the restrictive character of SSM and to extend the shape model to include verified morphology
not yet captured by the SSM.

The fully automatic 3D segmentation pipeline is summarized in Figure 1.
Figure 1. Overview of the segmentation pipeline: Initial positioning and fitting of the low-resolution shape model (blue) on the
isosurface reconstruction of the CT scan (red) (A), fitting of the full lower limb shape model to the image (B), followed by in-
image high resolution statistical shape fitting per segment (C) and free-form high-resolution registration in image per segment (D).
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2.2.1. Initialization

The first step starts with a fourfold down-sampling of the CT-volume in order to reduce the calculation time for
the initialization. The image is segmented using automatic Otsu-thresholding with two thresholds (Otsu 1979), rough‐
ly separating the volume of interest from the background, respectively bone and soft tissue. Secondly, the binary data‐
set corresponding to the cortical bone is corrected using a series of 3D binary morphological operations. The specific
order of these operations was: bridging unconnected pixels, closing open regions and subsequently filling of holes.
Unconnected parts smaller than a predefined 100 pixels and evaluated at a connectivity of 26 were than considered
noise and removed. Following, the outer perimeter pixels were calculated. The isosurface generated from this volume
data provides a first estimate of the geometry of the cortical surfaces in the target image (Figure 1A – red surface).

As a first estimate of shape and position of the lower limb bones, the average shape of the low-resolution shape
model of the lower limb is rigidly fitted onto the cortical isosurface using a iterative closest point (ICP) approach.
Similar to the registration process described in Section 2.1.1, the fitting procedure iteratively defines bidirectional
correspondences and excludes outlier candidate points, which typically occur at interruption sites of the meshes or are
due to local noise. Iterative solutions of the rotation, translation and scaling parameters are obtained by SVD. The
algorithm converges if the root mean squared error between the previous and current shape model vertices drops be‐
low a predefined threshold value (<10−5 mm) (Figure 1A – blue surface, fitted low-resolution lower-limb shape mod‐
el).
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Secondly, the lower limb statistical shape model, constructed in Section 2.1.2, is fitted with increasing degrees of
freedom (gradually increasing the modelling flexibility by increasing the number t of principal components retained
in Eq. (13)) onto the cortical isosurface by iteratively solving an overdetermined Ns ≫ t  set of linear regression
equations in a least squares sense, while adapting for pose (rotation, translation, scale) changes T .  using SVD.

τ + δ τ ≅lsq T S + ∑i = 1t pibi (13)

b = PΤ  T−1 τ + δ τ − S (14)

[Note: since the vectors pi are orthonormal, PΤP −1 = I and the equation b = PΤP −1PΤ δ v  can be simpli‐
fied.] with τ the current shape model vertex positions and δτ the current displacement vector to the targeted solution
(Eq. (14)). The goodness-of-fit criterion for convergence is defined by the sum of squared errors (<10−5).
2.2.2. In-image fitting of the low resolution articulated lower limb SSM

In the second step, the fitting result of the low-resolution lower limb SSM to the initial isosurface is further im‐
proved by fitting the articulated low-resolution SSM directly to the image data (in-image fitting, Figure 1B). Again,
an ICP fitting procedure is used, this time maximizing the total sum of target image gradients (taking gradient direc‐
tion versus surface normal into account) evaluated at the template mesh vertices, while the deformation is modelled
by the SSM (Eq. (13)). This articulated solution is finally refined by a free-form deformation with generic elasticity
constraints. Further details of this iterative shape fitting procedure are provided below.
2.2.3. High-resolution single-object SSM fitting

Since the low-resolution full limb model has a unique correspondence with the detailed, high-resolution, shape
models of individual segment anatomy can be selected and local optimization of the high-resolution shape model fit‐
ting can be performed sequentially, segment by segment. Inter-penetration of surfaces at the joint sites is avoided by
alternatingly masking out previously segmented neighboring segments. During fitting, the search domain is limited to
the region of interest (ROI) defined by the borders of the low-resolution model. A linear gradient profile is extracted
from the (vector) gradient image along each vertex normal direction. The point along this profile with the highest
scalar product (exceeding a threshold value to decrease the impact of local noise) between the image gradient and the
mesh normal is considered the optimal candidate point for the vertex displacement δ v . Similar to Section 2.2.1,
fitting of the SSM was again obtained by iteratively solving a set of linear regression equations mapping each model
mesh vertex to its corresponding candidate image point. For each consecutive step, the positions of the model vertices
obtained from the previous fitting iteration are used to define new linear profiles and new candidate corresponding
points (Figure 1(C)).
2.2.4. Free form deformation

During the final fitting step, the template mesh is aligned with the target image using a free-form deformation. The
deformation is defined elastically, with decreasing influence of the neighboring points (Figure 1D). Suggested dis‐
placements δ vi  for all template mesh points are smoothened using a local neighborhood weighing schedule:

d vi = ∑j ϵ iwji* 1K  ∑k ϵ jδ vk (15)

with linear distance-based weights wj defined as in Eq. (11) and K the number of points in each neighborhood. As
such, a smooth estimate for mesh deformation towards the target is produced. A detailed example of the in-image
segmentation process is provided in Figure 2.
Figure 2. Detail of the femur in-image segmentation process at high resolution (A to F) with inner and outer cortical shape (G) and
density (H) extraction.
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2.2.5. Supervised training

Each segmented case was verified by a clinical expert. Verified segmentations were then added to the existing
SSM and the model-based segmentation pipeline is progressively updated. Throughout this process, segmentation
was repeated with the updated pipeline for cases that previously did not fulfill quality requirements. Four iterations
with the updated SSM were finally required in total, to reach convergence in 99% of the segmentations.
2.2.6. Appearance and solids

Each bone was modelled with an outer layer, representing the periosteal surface of the bone, and an inner layer,
representing the endosteal surface. During shape model construction, the periosteal and endosteal surfaces were non-
rigidly registered one to the other to define dense correspondences between both layers. Image intensity at the middle
of corresponding outer-inner vertices was also extracted during segmentation. The correspondence between inner and
outer cortical mesh layer vertices further allows for immediate construction of tetrahedral elements (Figure 3).
Figure 3. Generated solid cortical, cartilage and marrow volumes based on the correspondence feature of the inner and outer corti‐
cal mesh layer. Mean proximal femur and +/-3 standard deviations of the first principal component describing size are presented
(left). Solid cartilage layers were added (right) by applying a distance offset along the surface normal of joint.

2.3. Validation
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Accuracy of the segmentation pipeline was established by comparing root mean squared error (RMSE) and maxi‐
mum error (ME) between the automatic segmentation and the manual segmentations. Manual segmentation was per‐
formed using Mimics segmentation software (Version 17.0, Materialise NV, Heverlee, Belgium). A total of ten cases
were manually segmented for this purpose. These test scans were not used to build up the shape model and unseen to
the algorithm. In more detail, as manual segmentation is often prone to user misinterpretations of the boundaries of
the region to be segmented, the control samples were segmented by three different individuals and the arithmetic
average of the different segmentations was used to validate the accuracy and robustness of the developed segmenta‐
tion pipeline.

The segmentation accuracy evolution of the SSM fitting to the in-image anatomy and the effect of the free-form
optimization were evaluated as newly segmented samples were added to the SSM. Segmentation accuracy evolution
was evaluated on the same 10 test cases mentioned above.

3. Results
A total of 250 CT scans were processed on a Dell Precision M6800 Laptop (Intel Core i7 -4910MQ, 16 GB RAM,

64 bit). Each scan data set consisted of an average of 1864 slices with a pixel size between 0.575 mm to 0.975 mm.
Every image domain included the full lower limb anatomy from rib 12 to toes. The imaging database was constructed
from living subjects receiving angio-CT scanning for vascular work-out between 2012 and 2016. CT data demon‐
strating metallic implants (e.g. hip and knee prosthesis) were excluded from the data base. The subjects were not ex‐
posed to additional radiation for the present study, which was approved by the local ethics committee under reference
B670201111480. The dataset consisted of 148 male and 102 female subjects with an average age of 67 (±9) and 71
(±11) years, respectively.

Automatic segmentation of a full data set required on average 2 hours per case. The segmented structures included
the 6 lower vertebrae, sacrum, pelvis, femur, patella, fibula, tibia, talus, calcaneum, navicular, cuboid and three cunei‐
form bones. A series of iterations with progressive updating of the SSM, following quality clearance by the clinical
supervisors, was performed. Finally, all scans were processed and acceptable convergence of the algorithm could be
obtained in 250 cases and failed in three. Specifically, fitting of the articulated SSM failed on three cases scanned
with their legs crossed.

The comparison of automatic with manual segmentations showed an RMSE ranging from 0.53 to 0.76 mm and a
ME ranging from 2.0 to 7.8 mm. The highest error values were found in the pelvic bones (Table 2).

Table 2. The left-hand side of the table shows the accuracy of the automatic segmentation compared with manual
segmentation for each segment for n = 10 cases. The right-hand side reports the inter-observer variability of the man‐
ual segmentation of the respective segments.Table Layout
  Automated Segmentation Manual Segmentation

Accuracy (n = 10) Inter-observer variability (n = 3)
Average Distance Error Maximal Distance Error Average Distance Error Maximal Distance Error

(mm) (mm) (mm) (mm)
Pelvis 0.75 ± 0.17 7.84 ± 2.26 0.41 ± 0.20 3.74 ± 2.68
Femur 0.65 ± 0.10 4.79 ± 2.39 0.41 ± 0.15 2.30 ± 0.98
Tibia 0.63 ± 0.11 4.07 ± 2.15 0.39 ± 0.19 1.88 ± 0.47
Patella 0.65 ± 0.15 2.02 ± 0.39 0.42 ± 0.11 1.96 ± 0.29
Fibula 0.76 ± 0.18 3.76 ± 1.17 0.61 ± 0.08 2.25 ± 0.71
Calcaneum 0.53 ± 0.16 2.90 ± 0.77 0.40 ± 0.12 1.67 ± 0.34
Talus 0.57 ± 0.12 2.97 ± 0.59 0.44 ± 0.08 2.21 ± 0.41

Figure 4 shows the average shape and color-coded intensity models of the low-resolution model of the full lower
limb. The first 6 and 13 principal components described 90% and 95% of the cumulative variance, respectively. The
first three modes of variation mainly described size and positional variation, such as crossing and bending of the legs

Computer Methods in Biomechanics and Biomedical Engineering,  0 (2017),   
10.1080/10255842.2019.1577828



during scanning, as show in Figure 5. The compactness of the model is illustrated by the curve of the cumulative
variance explained by the principal modes (Figure 6).
Figure 4. Average shape (left) and radiodensity (right) of the low-resolution full limb model. Radiodensity is described according
to the Hounsfield scale. (A). Detail of the average shape of the high-resolution segmental parts (B).

Figure 5. Representation of the first three principal modes of variation of the full limb model at the mean and at plus/minus 3
standard deviations from the mean.
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Figure 6. Cumulative explained variance as a function of retained principal components following principal component analysis
(PCA) to describe the articulated lower limb shape model. (X-axis: number of principal components, Y-axis: cumulative explained
variance).

With increasing number of training samples added to the articulated and single object SSMs, the accuracy of the
SSM-based segmentation gradually improved. This effect was noticeable beyond 200 samples indicating the SSM did
yet fully covered the population and was still improving in its generalization properties. The SSMs were implemented
to describe 98% of population variance. The free-form deformation was designed to handle the remaining 2% as well
as to be able to describe new anatomies to update the SSMs with. Accuracy of the free-form deformation following
the SSM-based segmentation steeply inclined with minimal training samples and plateaued already from 20 training
samples on in terms of RMSE, however still gradually improved until 100 training samples in terms of maximum
error (Figure 7).
Figure 7. Segmentation accuracy evolution of the SSM-based segmentation (solid curve) and free form deformation (dotted curve)
for different levels of prior knowledge expressed as amounts of training data in the SSM. Horizontal axis: nr of training samples,
Vertical axis: averaged rmse (A) and maximum error (B).
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4. Discussion
Segmentation of CT and magnetic resonance scan data has currently become the accepted standard for the devel‐

opment of subject-specific models. However, the segmentation process is typically manual or semi-manual and time-
consuming. For instance, extracting the articular surfaces of a knee joint was reported to take approximately two days
of work and full lower limb models have even been reported to require over 3 weeks of work (Boykov and Funka-
Lea 2006; Henak et al. 2013).

Because of the time-consuming nature of manual segmentation, several authors have described automatic techni‐
ques as an alternative. Among these techniques, model-based approaches to segmentation are arguably the most ro‐
bust methods when image data is noisy or includes artefacts (Heimann and Meinzer 2009). However, model-based
segmentation requires a large number of segmented samples since segmentation accuracy has been shown to be di‐
rectly related to the number of segmented samples available in the training data of the SSM (Yokota et al. 2009;
Chung et al. 2011; Cheng et al. 2013). Hence, methods that are able to process large data sets with only a limited
amount of supervision, such as the proposed segmentation pipeline, are of growing interest.

An important step in the construction of corresponding meshes for use in SSM models is to define appropriate
techniques for non-rigid surface registration. In this respect, numerous techniques have been proposed in the litera‐
ture, all with their respective advantages and disadvantages. We have chosen to initialize the non-rigid registration
process with RBF interpolation and refine with elastic deformation. RBF-based point matching and, by extension,
thin plate splines, have been shown to provide robust and computationally efficient non-rigid deformation solutions
by several authors (Carr et al. 2001; Chui and Rangarajan 2003; de Boer et al. 2007; Kim et al. 2016). Nevertheless,
the speed of calculation comes at the cost of a reduced number of degrees of deformation freedom. For that purpose,
elastic techniques have been suggested that provide solutions that do not rely on expensive interpolation (Li et al.
2008). These techniques, however, require good initial alignment and close correspondence already. Therefore, com‐
bining both techniques seemed like a logical choice to take advantage of the best of both worlds. This work indeed
demonstrated that this approach leads to robust, accurate and efficient segmentation of complex anatomical structures
in large data sets, such as the full lower limb in CT. The source code for rigid and non-rigid registration has been
made publicly available in the MATLAB File exchange repository (Audenaert 2013).

When compared with other methods for segmentation of bony anatomy, the proposed method performed equally
well or better for the different skeletal segments (see Table 3). More specifically, it outperformed the segmentation
results in the pelvis, where the maximal distance error was approximately 50% lower than previous studies (Lameck‐
er et al. 2004; Seim et al. 2008). Femoral segmentation results reported by Almeida et al.(Almeida et al. 2016) match‐
ed well with our results. They applied a model-based segmentation technique and reached a 98% convergence rate
along with a an average error of 1 mm. Wu et al. (2014) also adopted a model-based framework and included a
graph-cut technique to remove overlap. The application of Wu’s segmentation method on tibia, fibula and patella also
corresponded very well with our results. There were no studies in the current literature on automatic segmentation of
talus or calcaneum.

Table 3. Comparison of the current segmentation results with previously published studies. There were no automatic
segmentation studies of the calcaneum and talus.Table Layout
 Subjects Segmentation method Average distance error

(mm)
Maximal Distance error

(mm)
Pelvis    
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 Subjects Segmentation method Average distance error
(mm)

Maximal Distance error
(mm)

Proposed method 10 SSM based 0.75 ± 0.17 7.84 ± 2.26
Seim et al. (2008) 50 SSM based 0.7 ± 0.3 16.5 ± 5
Lamecker et al. (2004) 23 SSM based 1.6 ± 0.2 14.6 ± 3.8
Kainmueller et al. (2009) 50 SSM based 0.5 ± 0.2 N/A
Chu et al. (2015) 30 Atlas and SSM based 0.4 ± 0.07 N/A
Yokota et al. (2013) 100 SSM based 1.06 N/A
Femur    
Proposed method 10 aSSM based 0.65 ± 0.10 4.79 ± 2.39
Almeida et al. (2016) 148 SSM based 1.014 ± 0.474 4.336 ± 0.861
Krcah et al. (2011) 197 Graph cut N/A 12.5
Younes et al. (2014) 20 SSM based 1.48 ± 0.28 10.53 ± 3.19
Wu et al. (2014) 248 SSM based and Graph cut 0.82 ± 3.33 N/A
Zhou et al. 70 Adaptive tresholding 0.41 ± 0.13 N/A
Chu et al. 60 Atlas and SSM based 0.36 ± 0.12 N/A
Kim et al. 8 Adaptive tresholding 0.36 ± 0.07 N/A
Yokota et al. (2013) 200 SSM based 0.98 N/A
Cheng et al. (2013) 110 Edge-based 0.65 N/A
Tibia    
Proposed method 10 SSM based 0.63 ± 0.11 7.84 ± 2.26
Wu et al. (2014) 248 SSM based and Graph cut 0.69 ± 1.25 N/A
Fibula    
Proposed method 10 SSM based 0.76 ± 0.18 7.84 ± 2.26
Wu et al. (2014) 248 SSM based and Graph cut 0.96 ± 4.29 N/A
Patella    
Proposed method 10 SSM based 0.65 ± 0.15 7.84 ± 2.26
Wu et al. (2014) 248 SSM based and Graph cut 0.68 ± 2.06 N/A

We could not further validate segmentation accuracy as by comparison with reported results from the literature due
to the lack of availability of the imaging and segmented data used in these studies. Further, in these studies, there are
large differences in CT acquisition parameters, slice thickness and voxel size which might influence the segmentation
results. Further, even the gold standard of manual segmentations comes with its own limitations. Manual segmenta‐
tion is also prone to errors as not only observer variability may induce misinterpretations in pixel labeling but also
evaluated manual segmentation when compared with optical scanning of the bone of interest have shown average
deviations of 0.55 mm. (Rathnayaka et al. 2011; Van den Broeck et al. 2014)

A second important limitation relates to the lack of real clinical scenarios such as low-resolution scans or patho‐
logical deformed joints not specifically included for evaluation. What concerns the clinical challenge of diseased
joints we can add, however, that the average age of our population is close to geriatric and therefore a number of
samples presented with challenging degenerative joint narrowing and structural deviations.

5. Conclusion
The current manuscript presents a technique that can be generically applied to any bony structure, and that can be

initiated from a small sample of segmented bones. As such it fulfills the requirements of a segmentation pipeline that
can deploy the necessary training samples for use in population wide anatomical and mechanical studies as well as
for more advanced applications such as training of neural networks.
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A successful bone segmentation in the majority of structures was demonstrated. The accuracy of segmentation was
within the range of 0.53–0.75 mm which in line with results previously presented in the literature.
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