
Classical and Quantum Gravity

PAPER

Cosmic acceleration from quantum Friedmann equations
To cite this article: Thibaut Demaerel et al 2020 Class. Quantum Grav. 37 085006

 

View the article online for updates and enhancements.

This content was downloaded from IP address 134.58.253.57 on 19/03/2020 at 14:40

https://doi.org/10.1088/1361-6382/ab738b
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuV8an9aDD_OjjnsDpld3c9fPCx6nZqJCyM5PxkSysox0n_mrjM-y_pv5opJofoMByqXSXu_aj0zkIrD7PDFxrlwS74cnorlH-JaqCQ-68N0ocfbmtLtM7DLbvlfpvXlxlMPQ56TysZFR55DbLMXHVqSZsTGyv0QM8-E8QsNryHvCzRx7o4rWWT6MtHt5kMWSrLpfld9tEVVFIsDHVvj4AniQ6H3mHHfwDr9pXY295j5kp-LJ8C&sig=Cg0ArKJSzEwMP-Zw7VmX&adurl=http://iopscience.org/books


1

Classical and Quantum Gravity

Cosmic acceleration from quantum 
Friedmann equations

Thibaut Demaerel1 , Christian Maes1  and Ward Struyve1,2,3

1  Instituut voor Theoretische Fysica, KU Leuven, Belgium
2  Centrum voor Logica en Analytische Wijsbegeerte, KU Leuven, Belgium

E-mail: ward.struyve@gmail.com

Received 18 September 2019, revised 30 January 2020
Accepted for publication 5 February 2020
Published 19 March 2020

Abstract
We consider a simplified model of quantum gravity using a mini-superspace 
description of an isotropic and homogeneous universe with dust. We derive 
the corresponding Friedmann equations  for the scale factor, which now 
contain a dependence on the wave function. We identify wave functions for 
which the quantum effects lead to a period of accelerated expansion that is in 
agreement with the apparent evolution of our universe, without introducing a 
cosmological constant.

Keywords: quantum gravity, cosmological constant, Wheeler–DeWitt equation

(Some figures may appear in colour only in the online journal)

1.  Introduction

The observed acceleration in the cosmic expansion provides one of the deepest puzzles of 
recent cosmology. While the so-called concordance ΛCDM model agrees to a good extent 
with the cosmic observations, the jury is still out on the meaning and origin of its acceleration-
inducing Λ-parameter [1–3]. The purpose of the present paper is to present a clear and explicit 
case where the quantum contribution to the Friedmann equations can account for the observed 
expansion of the universe after the decoupling era, possibly even better than the concordance 
model itself (if the latter would prove insufficient [4]).

Within the classical Friedmann–Lemaître–Robertson–Walker model of the universe the 
cosmological constant Λ has traditionally been thought to provide an effective way to account 
for cosmological data showing acceleration in the cosmic expansion. That model assumes a 
homogeneous and isotropic universe with metric

ds2 = dt2 − a(t)2 dΩ2
k� (1)
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with a the scale factor and dΩ2
k the spatial line element with spatial curvature k = 0,±1, 

for which the Einstein equation gives rise to the Friedmann equations. If matter is a perfect 
fluid with mass density ρ  and pressure p , then the scale factor enters the Hubble parameter 
H = ȧ/a to satisfy

H2 = 2κ2ρ− k
c2

a2R2 +
Λc2

3
� (2)

where κ2 = 4πG/3, G is Newton’s constant, and R refers to the size of the universe. The sec-
ond Friedmann equation is

ä
a
= −κ2

(
ρ+ 3

p
c2

)
+

Λ c2

3
.� (3)

The presence of Λ in the right-hand side thus indeed makes all the difference for cosmic 
acceleration, so it seems. There remain controversies on the exact nature or physical origin of 
that Λ. In particular, it is not settled whether the cosmological constant is strictly of quantum 
mechanical origin and/or whether it represents a systematic (dynamical) versus a fluctuation 
effect. One suggestion is that in a UV-complete theory it corresponds to the quantum vacuum 
energy. Another suggestion is to attribute Λ to the back-reaction of cosmic fluctuations onto 
the background evolution or even to a violation of the Copernican principle by assigning a 
special place for the earth in the universe [5, 6]. There have also been explorations to derive it 
as a quantum gravity effect [1, 7–9].

The contribution in the present paper is much more modest: it only concerns a change of 
physics at an effective, more macroscopic level, with quantum forces adding up to the energy-
stress tensor, while local properties of the cosmos are not to be altered. We assume e.g. that 
photons still move on null geodesics and redshift according to the laws of geometric optics 
in general relativity. More specifically, we discuss the modifications of the corresponding 
Friedmann equations (2) and (3) in the context of a mini-superspace description of quantum 
gravity following ideas of Squires [10] and of Pinto–Neto and Santini [11]. The set-up thus 
arises from applying the usual quantization techniques to a symmetry-reduced classical theory 
but, in contrast with [11] where stiff matter is considered, in the present paper matter is given 
by dust as described by Brown and Kuchař [12]. We believe that is more adequate to describe 
the universe shortly after recombination4. Similarly as in [11] we find that the evolution may 
display accelerated expansion, without any need for an explicit cosmological constant.

In the case of a dust universe, the pressure term in (3) is negligible, p /c2  =  0, and we 
think of a perfect classical fluid which has very small kinetic energy compared to its rest 
mass. In the next section, we present the quantum description of gravity coupled to dust in 
the case of mini-superspace. The wave equation has the simple form of the free Schrödinger 
equation with the matter field playing the role of a clock variable. The quantum Friedmann 
equations follow from that equation by identifying the rate of change of the scale factor with 
the flux in the corresponding continuity equation. We discuss the main constraints on the 
dynamics in section 3. The time-evolution of the scale factor is investigated in section 4 for 
describing a scenario with cosmic acceleration. We give examples of wave functions for which 
there is a period of accelerated expansion of the universe, without introducing a cosmological 
constant, yielding an excellent fit to the concordance model. We conclude in section 5.

4 To describe the radiation dominated era, there is the Schutz formalism for general perfect fluids as described in 
e.g. [13–16].

T Demaerel et alClass. Quantum Grav. 37 (2020) 085006



3

2.  Mini-superspace with dust

A possible quantum description of the coupling between gravity and matter proceeds via the 
Wheeler–DeWitt equation [17]. We make two simplifications. First of all, we limit ourselves 
to an analysis in mini-superspace by assuming homogeneity and isotropy where the wave 
function (of the universe) becomes a function of the scale factor and the matter field, that mat-
ter being a comoving dust (ideal pressure-less fluid). That modeling follows as a special case 
of the Brown–Kuchař description of dust [12, 18].

In the case of zero curvature k  =  0 and zero cosmological constant Λ = 0, the classical 
description of a homogeneous Brown–Kuchař dust is determined by the Lagrangian

L = V
[

1
2

Na3ρ

(
Ṫ2

N2 − 1
)
− 1

2Nκ2 aȧ2
]

,� (4)

where V  is the comoving volume, which must be such that the volume today Va3 exceeds 
the Hubble volume [18], the field T = T(t) (with dimensions of time) parametrizes the four-
velocity Uµ of the dust field as Uµ = ∂µT . N(t) is the lapse function, which remains an arbri-
trary function that we will set to 1 in the following. The other equations of motion then yield 
the equations (2) and (3), together with

d
dt

(
a3ρ

)
= 0,

(
dT
dt

)2

= 1.� (5)

So we get the classical dust equations together with a matter scalar T that can be treated a 
clock variable.

The canonical quantization of this theory is straightforward and is detailed in e.g. [18]. It 
leads to the Wheeler–DeWitt equation5

i� ∂T ψ(a, T) =
�2κ2

2Vc2

(
1√
a
∂a

)2

ψ(a, T)� (6)

where ψ represents the wave function of the universe in the reduced description. It is a function 
of the scale factor and the scalar T. A common way to extract predictions from this wave equa-
tion is to define the scale factor through an expectation value, i.e. 〈a(T)〉 =

∫
|ψ(a, T)|2

√
ada. 

However, we suggest to adopt a more fine-grained approach which consists in defining the 
evolution of a(t) and hence of the metric (1) through the streamlines of the continuity equa-
tion associated to (6). That is, we consider the conserved current

J = (Ja, JT) = (
κ2

Vc2

1√
a
∂aS|ψ|2,−

√
a|ψ|2)

in terms of the polar decomposition ψ = |ψ|eiS/� and we put

d
dt

(
a(t)
T(t)

)
=

1√
a |ψ|2

(
Ja

JT

)
� (7)

or, explicitly6,

5 There are operator ordering ambiguities in the canonical quantization procedure. Here, we adopt the ordering 
based on the Laplace–Beltrami operator corresponding to the DeWitt metric on mini-superspace [18, 19]. For a 
discussion of other operator orderings in the context of cosmological singularities, see [20].
6 Those equations follow the Bohmian approach to quantum dynamics [16]. Note that in (6) a and T enter as argu-
ments of the wave function, whereas in (8) they are functions. The meaning will always be clear from the context.
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da
dt

=
Ja√
a|ψ|2

≡ κ2

Vc2

1
a
∂aS,

dT
dt

≡ JT√
a|ψ|2

= −1.� (8)

The last equation implies that T  =  −t (up to a constant), like in the classical case7.

Introducing the constant m = Vc2

κ2  (with dimensions of mass × length2), we obtain the 
‘quantum Friedmann equations,’ 

(
ȧ
a

)2

=
1

m2

(∂aS)2

a4 =: 2κ2ρeff� (9)

ä
a
= − 1

2m2

(∂aS)2

a4 +
Fψ

a
= −κ2ρeff +

Fψ

a
� (10)

where

Fψ := a−1∂a

[
�2

2m2|ψ|

(
1√
a
∂a

)2

|ψ|

]
� (11)

may be called a quantum force. The equation (10) is obtained by taking the time-derivative 
of (9) and using the Wheeler–DeWitt equation (6). While classical dust always decelerates 
the expansion, ä = −κ2ρa < 0 in (3), that is not necessarily so in the quantum case where 
Fψ may be non-zero and we may have eras of accelerated expansion as we will discover in 
section 4.

The second equality in (9), i.e. the definition of an effective density ρeff , is inspired by 
(2). Note that for a classical dust universe, we have in addition to the equations (2) and (3) 
(with p = k = Λ = 0) that d(ρa3)/dt = 0, so that ρ = ρ0/a3 with ρ0 a constant. The quantum 
dynamics (8) reduces to the classical one iff (∂aS)2/a is constant along the trajectory. But 
typical solutions of (6)–(8) do not fulfill that condition.

We continue in the next section with a general discussion on further constraints before we 
analyze in section 4 the nature of the accelerated expansion that follows from using (6) in (8).

3.  Constraints: boundary conditions and scale

We first simplify the dynamics and express it in terms of dimensionless variables by intro-

ducing x := 2
3 a3/2 � 0 and the dimensionless time-variable τ := t/t0 with t0  =  13.4 Gyear, 

which is a common estimate of the age of our universe, and the dimensionless parameter 

M := Vc2

κ2t0� = m
t0�. The dynamics (6) and (8) then reduces to the simple form

i ∂τψ = − 1
2M

∂2
xψ� (12)

dx
dτ

=
1
M

∂xs, ψ = |ψ|eis� (13)

which are the familiar equations  for a non-relativistic free particle on the half-line with 
mass M.

7 It is possible to flip the sign of J (as was done e.g. in [20]), which yields the opposite velocities in (8). Yet the set 
of solutions is the same, because they are connected by the usual time-reversal operation ψ(a, T) → ψ∗(a,−T).

T Demaerel et alClass. Quantum Grav. 37 (2020) 085006
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In terms of these variables, the quantum Friedmann equation (10) reads

M
d2x
dτ 2 = F̃ψ , F̃ψ =

1
2M

∂x
∂2

x |ψ|
|ψ|

.� (14)

Classical evolution is obtained when F̃ψ is zero. This will be the case for plane wave solu-
tions to the Schrödinger equation (12). For a generic wave function, there will be a deviation 
from classicality and hence a potential effective cosmological constant. For square integrable 
wave functions (over x ∈ R, with (12) then viewed as the restriction to the positive half-line—
more on this in the next section), classicality will be obained for large x and t [21], due to the  
dispersive character of the free Schrödinger evolution. So in the case of these wave functions, 
the appearance of an effective cosmological constant can merely be a transient feature.

3.1.  Boundary conditions

As usual, the dynamics (12) may be taken as unitary on the Hilbert space L2(0,+∞) with 
flux-prohibiting boundary conditions: ψ|x=0 = � ∂xψ|x=0  with � ∈ R ∪ {∞}, see e.g. [18]. 
These boundary conditions imply that the density |ψ(x, t)|2  is preserved by the dynamics (13) 
and can be taken as a probability distribution. Moreover, since (|ψ|2∂xS)|x=0 = 0, trajectories 
never visit x  =  a  =  0 (after a finite cosmic proper time). In other words, there is never a big 
bang or big crunch. Trajectories can also not reach +∞ in finite time, which means that there 
is no big rip.

Despite appearances however, the dynamics (12) is not quite the usual Schrödinger equa-
tion; it remains a Wheeler–deWitt equation in which the variable τ  started out to represent 
the dust content. It is then less clear what is the Hilbert space or why the wave function would 
satisfy such a boundary condition as above. Rather we may consider and allow a flux through 
x  =  0 which leads to the possibility of a big bang or big crunch. For example, the Vilenkin-
type wave functions are of such a kind [22].

In the following section, we consider wave functions for which there is flux through x  =  0 
as well as a wave function for which there is no flux. The former will give big bang trajectories 
while the latter will give bouncing trajectories (where a minimal spatial volume is reached). 
In any case, we must remember that we merely consider a dust model of our universe, and 
near the big bang the trajectories should not be taken too seriously as that concerns a radiation 
dominated era.

3.2.  Scale

The parameter M in the equations (12) and (13) depends on V . To model our universe, the 
spatial volume should at least be our current Hubble volume, which is of the order (1010light-
year)3. Fixing the value of the scale factor a today to be one, we take V = (1010lightyear)3. As 
such, M is roughly of the order of 10120.

Because of our choice of coordinates x and τ , we will aim to fit the evolution of the uni-
verse roughly between (x, τ) equal to (0, 0) and (2/3, 1). Therefore the expansion rate must be 
of order one. Looking at (13), since the ‘mass’ M is exceedingly large we must have ∂xS large 
as well. That can be obtained in various ways but it does constrain the possible wave functions 
or initial conditions. As an example, consider a Gaussian wave function,

ψx̄,v,σ(x, τ) =
√

σ√
π(σ2 − iτ/M)

eiM(vx−v2τ/2)e−
(x−x̄−vτ)2

2(σ2+iτ/M)� (15)

T Demaerel et alClass. Quantum Grav. 37 (2020) 085006
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x(τ) = x̄ + vτ + [x(0)− x̄]

√
1 +

τ 2

σ4M2 .� (16)

To have the desired expansion rate, we take v of order 1 and σ such that σ2M � 1. Then, the 
wave packet has a high O(M) momentum. (Alternatively, we could take σ appropriately small, 
but then x(0) would have to be far away from the bulk of the packet).

A second problem related to the large value of M is numerical. To solve (12) and (13) 
with parameter M  =  10120 requires the time-steps to have a size of order 10−120. As shown 
in the appendix, that problem can be overcome by instead solving directly the limiting case 
M → ∞. By taking this limit a simplified integration method is available.

4.  Acceleration as a quantum effect

As is apparent from the second quantum Friedmann equation (10), it is the quantum force Fψ 
that enables acceleration of the expansion. Of course, not all (initial) wave functions ψ lead 
to universes compatible with cosmological observations. Here we investigate how easy it is 
to get full qualitative and even quantitative compatibility for some class of wave functions.

We first consider three different wave functions: two different superpositions of Gaussian 
wave packets for which the evolution of the scale factor is obtained numerically and one for 
an Airy wave where the solution is exact. For each case we aim to fit a ΛCDM universe with 
parameters H0  =  70 km/s/Mpc (the Hubble parameter today), ΩM = 1 − ΩΛ = 0.3 (the mat-
ter and dark energy density parameter): hereafter this model is referred to as the ‘standard Λ
CDM model’. More precisely, the present day scale factor and Hubble rate are fitted exactly, 
while the evolution of the modeled universe may deviate from the one corresponding to the 
ΛCDM universe near the big bang era (in particular the big bang might be replaced by a 
bounce), since the experimental data are less restrictive there. We end the section by a discus-
sion on the genericity of wave functions leading to the observed cosmic acceleration.

4.1.  Gaussian superposition with big bang trajectories

Using the notation (15), we consider first a superposition of two Gaussian wave functions,

ψ(x, τ) = α1 ψx̄1,v1,σ1(x, τ) + α2 ψx̄2,v2,σ2(x, τ)� (17)

with parameters

x̄1 = 0, x̄2 = −1, v1 = 0.3, v2 = 2, σ1 = 0.35, σ2 = 1, α2
1 = 1 − α2

2 = 0.59.� (18)

This wave function carries incoming flux at the origin x  =  0: all trajectories x(τ) move from 
the negative reals at early times to the positive reals later on. When passing through x  =  0 a 
big bang occurs whereby the universe is newly created. The two packets move at high but 
comparable momentum towards larger x with the second one overtaking the first one, at which 
moment the acceleration sets in. We refer to the appendix for the numerical recipe that pro-
duces the trajectories.

In all, we get a very good fit to our ΛCDM universe up to a redshift z = 1
a − 1 of about 4 

(corresponding to the time interval τ ∈ [0.2, 1]); see figure 1. This model predicts that, in the 
far future, the cosmic expansion will decelerate again and converge onto a trajectory of the form 
a(τ) ∼ (3(τ − τ0))

2/3, as exhibited in the lower part of figure 1. Moreover the acceleration 
remains relatively mild without excessive choices of the parameters (18) (the velocities and 
widths are of the same order in the two packets). Therefore, that those trajectories in bounded 

T Demaerel et alClass. Quantum Grav. 37 (2020) 085006
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time-intervals resemble ‘coincident’ ΛCDM models (i.e. those with ΩΛ

Ωdust
= ρΛ

ρdust
= O(1), [23]) 

seems to appear here ‘naturally’.

4.2.  Gaussian superposition with bouncing trajectories

In this section  we consider a unitary evolution for the following superposition of four 
Gaussians:

Figure 1.  The evolution of the scale factor a(τ) in the case of the Gaussian superposition 
(18). Upper plot: the current history of the standard ΛCDM model and a fitting trajectory 
(which agrees very well). We also compare with an Einstein-de Sitter universe, i.e. with 
a dust-dominated universe, a(τ) ∝ (τ − τB)

2/3 fitting the observed expansion H0 of 
today. Lower plot: a longer-time comparison of the evolution of the standard ΛCDM 
model with the same trajectory, showing a deviation in our future.

T Demaerel et alClass. Quantum Grav. 37 (2020) 085006
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ψ(x, τ) =
5√
74

[ψ0, v1, σ1(x, τ − τ0) + ψ0,−v1, σ1(x, τ − τ0)] +
7√
74

[ψ0, v2, σ2(x, τ − τ0) + ψ0,−v2, σ2(x, τ − τ0)]

� (19)
where v1 = 0.733, v2 = 0.975, σ1 = 5.64 × 10−6, σ2 = 0.705, τ0 = 3.84 × 10−2. This wave 
function satisfies the Neumann boundary condition towards x  =  0+  and hence its L2-norm is 
preserved on the half-line (0,+∞). As said before, that implies that trajectories never start 
with a big bang or end up in a big crunch. The value of σ1 is chosen such that there is a bounce 
with a minimal scale factor within 10−4 for the range of initial conditions we are interested 
in: in our universe that scale-factor lies beyond the surface of last-scattering and well in the 
radiation-dominated epoch.

To numerically calculate the trajectories, we again use the limit M → ∞ as explained in the 
appendix. In figure 2, we consider 5 different initial values x(0) ∈ I := [1.2 × 10−6, 4.4 × 10−6]. 
For each of those values, the scale factor a(t) decelerates (the abrupt change in speed stems 
from the fact that σ1 � 1) and then accelerates before finally (in our future) to decelerate 
again onto a classical a(τ) ∝ τ 2/3 trajectory. The first epochs are in qualitative agreement 
with the ΛCDM model. The |ψ|2-probability of the range I is about 15%, so that these initial 
conditions are not particularly special.

4.3.  Airy wave train

Finally, we consider the Airy packet solution, [24],

ψ(x, τ) = Ai
(

M2/3B
[
x − B3(τ − τ0)

2/4
])

exp

{
iM

B3(τ − τ0)[x − B3(τ − τ0)
2/6]

2

}
� (20)

parameterized by B and τ0. Here, [25],

x(τ) =
2
3

a
3
2 (τ) =

B3(τ − τ0)
2

4
+ x(τ0).� (21)

For late times, a(τ) ∼ τ 4/3, which is the classical motion corresponding to a perfect fluid 
with equation of state p = −ρ/2. That illustrates that quantum solutions may behave very dif-
ferently from the classical ones.

If B  >  0 and x(τ0) � 0 (which implies that x(0) > 0), then the trajectory corresponds to a 
bouncing universe. (So even though there is a non-zero flux through x  =  0, a particular trajec-
tory may never reach x  =  0). Moreover, such trajectories are always accelerating, very much 
unlike classical trajectories which are constantly decelerating. Unlike the examples in the 
preceding section, there is no classical evolution for large x and t, because the Airy wave train 
is a non-dispersive (and non-normalizable) packet when viewed over the whole line x ∈ R.

On the other hand, when B  >  0 and x(τ0) < 0 (for which x(0) = 0 is possible), there is 
a big bang with an initial period of deceleration. Fits of trajectories of the latter type to the 
standard ΛCDM model are displayed in figures 3 and 4. It is clear that x(τ0), τ0 and B can be 
tuned so that e.g. the present-day Hubble parameter H0 is fitted. All considered fits do just that. 
The remaining free parameter, τ0, equals  −0.35 for fit 1 and  −0.45 for fit 2.

4.4.  Genericity, decoherence and optics

One may wonder how generic and under what conditions a period of accelerated expansion 
arises. The evolution of the scale factor is determined by the initial wave function and ini-
tial value of the scale factor. We have seen that with a rather simple wave function (i.e. a 

T Demaerel et alClass. Quantum Grav. 37 (2020) 085006
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superposition of two Gaussians), we have the desired period of accelerated expansion. And 
for those wave functions, such a period is rather generic. Of course, there are also other wave 
functions, which do not give the desired behaviour. As already noted, the plane waves give 
classical motion. Other wave functions will give consecutive periods of acceleration (e.g. 
superpositions of a higher number of Gaussians). While it may be interesting to quantify that 

Figure 2.  The scale factor a(τ) for the Gaussian superposition (19). The bold blue 
curve corresponds to the standard ΛCDM model while the other curves are ordered 
top-down in the same order as in the legend. The best fit to the ΛCDM model is given 
by the trajectory with initial x(0) = 3.6 × 10−6. Other initial scales lead to trajectories 
with overall the same qualitative features. Note that the big bang that is implied by the 
ΛCDM model is replaced by a bounce (which despite appearances is smooth).

Figure 3.  The scale factor a(τ) fitting the standard ΛCDM model for the Airy wave 
train (20).

T Demaerel et alClass. Quantum Grav. 37 (2020) 085006
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in great detail, one should remember that as a matter of fact, we only need ‘one good wave 
function,’ in the same sense as we only have ‘one universe’.

A second point of discussion concerns the classical versus quantum nature of the descrip-
tion. Does quantum physics not only matter for early universe considerations? The majority 
position is probably ‘yes’. Our work does give quantum corrections to the motion of the scale 
factor in recent times, and that is clearly questionable. Therefore further work is required to 
show that the result still holds when we go beyond the mini-superspace approximation. It 
will then be relevant to consider possible decoherence effects that might arise from the cou-
pling between homogeneous and inhomogeneous degrees of freedom. This decoherence in the 
quantum evolution of the universe is not exactly a well-understood phenomenon. Estimates of 
decoherence times for the scale factor are difficult, also in the many other approaches to the 
dark energy problem. At least, in the present work, we see precisely that the very long-time 
solutions of our quantum Friedmann equations become indeed classical: the geometry of the 
late future Universe is described by a classical solution of Einstein’s equations.

Finally, we stress that our study did not concern local properties of the cosmos. We gave 
predictions for specific trajectories of the scale factor. That only gives a motivated correction 
to the evolution of the scale factor (i.e. a quantum modification in the FLWR-metric for a dust 
universe); the laws of free-fall motion in the resulting curved space are the same as always.

5.  Conclusion

By quantizing a symmetry-reduced classical theory with an effective description of a dust fluid 
in terms of a non-canonical scalar field, we have obtained the quantum analogue of a Friedmann–
Lemaître–Robertson–Walker universe with dust as matter. The quantum treatment of such a 
mini-superspace model readily allows for deviations compared to the classical motion. These 
deviations can be understood in terms of a ‘quantum force’ appearing in the second quantum 

Figure 4.  The luminosity distance dL(z) versus redshift z = 1
a − 1, fitting the standard 

ΛCDM model for the Airy wave train (20). The lower curve corresponds to an Einstein-
de Sitter universe, i.e. dust-dominated, a(t) ∝ t2/3, and fitting the expansion H0 of today.

T Demaerel et alClass. Quantum Grav. 37 (2020) 085006
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Friedmann equation. We have identified solutions for which there is a period of accelerated 
expansion which matches the classical evolution of the standard ΛCDM model very well for 
the period of the age of the universe. There are also differences. Namely, the effective cosmo-
logical constant is usually transient. Other solutions could also lead to, say, consecutive eras of 
accelerated expansion. This fact is interesting in the light of the recent puzzle concerning the 
discrepancy in the measured values of the Hubble rate, measured on the one hand by the Hubble 
Space Telescope and by the Planck satellite [4]. This discrepancy, which does not appear to be 
resulting from a systematic error, could for example be explained by the appearance of an effec-
tive cosmological constant at early times [26]. While this was modelled by a scalar field in [26], 
it could also appear naturally in our model without having to introduce a scalar field.

While our analysis by technical necessity has been limited to a simplified set-up, the imme-
diate success still suggests that the mechanisms discussed in the paper will also be at work in 
full quantum gravity. The simplicity by which we obtain dark energy could also be contrasted 
by the difficulties to get it from supersymmetry or string theory.
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Appendix. The M → ∞ limit

Because M is large, the numerical analysis of the evolution of the scale factor is problematic. 
We can overcome this problem by considering the limit M → ∞.

Before we consider this limit, note that for a solution {x(τ),ψ(x, τ)} to (12) and (13), we 
have that [27]:

x(τ) ≡ P−1
τ (P0(x(0)))� (A.1)

where Pτ (x) is the cumulative probability distribution

Pτ (x) :=
∫ ∞

x
|ψ(x′, τ)|2dx′.

That is, trajectories correspond to the contours of the cumulative distribution function.
Consider now a Gaussian superposition (normalized over the real line)

ψM(x, τ) =
N∑

j=1

αjψx̄j,vj,σj,M .� (A.2)

It can be shown that the corresponding trajectories xM(τ) of the rescaled scale factor converge 
uniformly to x∞(τ) under the limit M → ∞ (with xj, σj, vj constant), where x∞(τ) is the 
contour of the following cumulative probability distribution

Pτ ,∞(x) := lim
M→∞

∫ ∞

x
|ψM(x′, τ)|2dx′ =

N∑
j=1

|αj|2 lim
M→∞

∫ ∞

x
|ψx̄j,vj,σj,M(x

′, τ)|2dx′

=
N∑

j=1

|αj|2
∫ ∞

x

1
σj
√
π

e
−

(x′−x̄j−vjτ)2

σ2
j dx′,

� (A.3)
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i.e.

x∞(τ) = P−1
τ ,∞(P0,∞(x∞(0))).� (A.4)

Assuming for simplicity that all the velocities vj in (A.2) are different and letting Pτ ,M  
be the cumulative distribution function associated to the wave function (A.2), we have that 
Pτ ,M  converges to (A.3), in the sense that ‖Pτ ,M − Pτ ,∞‖∞ � C

M sup1�i<j�N
1

|vi−vj|  for some 
parameter-independent O(1) constant C. Finally, it can be shown that a converging PM gives 
rise to converging orbits xM as M ↑ ∞.

In conclusion, the error in numerically solving the trajectories made by replacing M  =  10120 
with M = ∞ is indeed negligible, and we can use the far simpler recipe provided by (A.4).
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