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Abstract. Parity games are infinite two-player games played on node-
weighted directed graphs. Formal verification problems such as verify-
ing and synthesizing automata, bounded model checking of LTL, CTL*,
propositional µ-calculus, . . . reduce to problems over parity games. The
core problem of parity game solving is deciding the winner of some (or
all) nodes in a parity game. In this paper, we improve several parity game
solvers by using a justification graph. Experimental evaluation shows our
algorithms improve upon the state-of-the-art.

1 Introduction

Parity games are infinite two player games played on node-weighted directed
graphs without leaves. Priorities, the weights of the nodes, are integers in an
interval [1, d] with d a parameter of the parity game. All nodes belong to one
player, either Even or Odd. The players play by moving one token from node
to node following the edges of the graph. The owner of the node on which the
token lands, plays next. The winner of this infinite path, a play, is Even if the
maximal priority that occurs infinitely often is even, otherwise Odd wins. A
parity game solver determines for each node the winner and a winning strategy.
Many problems over boolean equation systems [5, 13], µ-calculus [10, 20], nested
fixpoints [11] and temporal logics such as LTL, CTL and CTL* [10] reduce to
parity games.

The algorithm with the best known time complexity [4, 7] is quasi-polynomial
in the number of weights. However, in practice, it is outperformed by several
exponential algorithms, most notably: fixpoint induction [3], Zielonka’s algo-
rithm [21], multiple variants of strategy-improvement [16], priority promotion [1,
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2] and tangle learning [18]. Currently, Zielonka’s algorithm and priority pro-
motion are considered the two fastest algorithms though there is experimental
evidence that tangle learning is faster on large random graphs [18].

Our contribution is to extend these algorithms with a justification graph data
structure. For fixpoint induction this allows us to efficiently reconstruct winning
strategies; more importantly, it enables optimizations in the computation of a
solution. Furthermore, we applied these optimisations for Zielonka’s algorithm,
and tangle learning. As our experiments show, adding justifications to these
algorithms improve their performance. Overall, tangle learning extended with
justifications performs best over the whole of our benchmark set.

In Section 2, the preliminaries, we formally define the parity game prob-
lem, introduce the µ-formula [20] that determines the winners of a parity game
and a parity game solving fixpoint algorithm by Bruse et al. [3]. In Section 3,
we introduce justifications, integrate them in the fixpoint algorithm and argue
correctness is preserved. In Section 4 this technique is applied to Zielonka’s algo-
rithm and tangle learning. Next, in Section 5, we evaluate our three justification
based implementations. We round up in Section 6.

2 Preliminaries

2.1 Parity games

A parity game is a two player game with players 0 (Even) and 1 (Odd). We
use α to denote a player with α ∈ {0, 1} and use ᾱ to denote the opponent of
player α. Formally, a parity game is a tuple PG = (V,E, V0, V1, P r) consisting
of a finite game graph (V,E) with outgoing edges for every node, a partition
{V0, V1} of nodes V and a priority function Pr : V → P , with P an interval of
integer priorities {1 . . . d}. In nodes of V0, player Even plays, and in those of V1,
it is player Odd. Without loss of generality we assume d is even.

Given a set of nodes S, a player α, a priority i and a relation ∼ in the set
{=, 6=,≤,≥, <,>,≡2, 6≡2}: S|α denotes the set S ∩ Vα and S∼i denotes the set
of nodes {v ∈ S|Pr(v) ∼ i}. E.g., V <i is {v ∈ V |Pr(v) < i} and V ≡20 is the set
of nodes with a priority which is equivalent – modulo 2 – with priority 0, i.e.,
the nodes with an even priority.

A play is an infinite sequence of nodes 〈v0v1 . . . vn . . . 〉 where ∀i ∈ N : vi ∈
V ∧ (vi, vi+1) ∈ E. We use π to denote a play. Since every node has outgo-
ing edges, there exist plays in every node. The winner of a play is the player
with the parity of the highest priority that occurs infinitely often: Winner(π) =
limi→+∞max {Pr(vj)|j ≥ i} mod 2.

A strategy for α is a partial function σα : Vα → V for which for every x in the
domain of σα: (x, σα(x)) ∈ E. A play π is consistent with σα if vn+1 = σα(vn)
for every vn in the domain of σα. A strategy σα is winning in v if α is the winner
of every play in v consistent with σα. A node v is won by α if there exists a
strategy σα that is winning in v. The set of nodes won by α is denoted as Wα.

Strategies, as defined here, are positional: they do not depend on the history
of the play. Furthermore, both players α have at least one strategy σα that is



winning for every node in Wα. Such strategies are winning. Most algorithms in
this paper compute winning strategies.

2.2 Nested fixpoint iteration for parity games

A basic algorithm for computing the winning positions of a parity game uses
a nested fixpoint computation. For a given set T , an operator Φ : 2T → 2T

that is monotone with respect to ⊆ has a least and a greatest fixpoint, de-
noted µS.Φ(S) resp. νS.Φ(S). The least fixpoint is the limit of the ascending
sequence ∅, Φ(∅), Φ2(∅), . . . , while the greatest fixpoint is the limit of the de-

scending sequence T, Φ(T ), Φ2(T ), . . . For a given operator Φ :
(
2T

)2 → 2T that
is monotone in both arguments, it is not difficult to show that the functions
Ψµ : S2 7→ µS1.Φ(S2, S1) and Ψν : S2 7→ νS1.Ψ(S2, S1) are monotone functions.
Hence, their least and greatest fixpoints are well-defined and can be computed
in the standard way, leading to a nested fixpoint computation.

Let Φ be d-ary operator of 2T that is monotone in all its arguments. Then
νSd.µSd−1. . . . νS2.µS1.Φ(Sd, . . . , S1) is a unique and well-defined set that can
be computed by a nested least and greatest fixpoint computation. This algorithm
was originally used by Emerson and Lei [6] for evaluating µ-calculus formulae in
transition systems. For a finite set T , Φ is evaluated |T |d times by the algorithm
in the worst case. An improved algorithm by Long et al. [15] reduced the number
of evaluations to |T |dd/2e.

Solving a parity game amounts to computing the positions won by Even and
Odd and a winning strategy for both. Walukiewicz [20] characterized the winning
positions of Even with a fixpoint calculation νSd.µSd−1. . . . µS1.Φ(Sd, . . . , S1)
with

Φ(Sd, . . . , S1) = {v ∈ V0|∃w : (v, w) ∈ E ∧ w ∈ Si with i = Pr(w)}∪
{v ∈ V1|∀w : (v, w) ∈ E ⇒ w ∈ Si with i = Pr(w)}

Since the inner operator Φ is monotone in all of its arguments Sd, . . . , S1,
the corresponding fixpoint computation has a unique and well-defined outcome
which is also computed by Algorithm 1. Note that Si is initialized with respec-
tively V for even i (a greatest fixpoint), and ∅ for odd i (a least fixpoint).

Bruse et al. [3] observe that it suffices to store elements of priority i in Si;
indeed computing Φ only checks if w ∈ Si for i = Pr(w), hence: Φ(Sd, . . . , S1) =
Φ(S=d

d , . . . , S=1
1 ). Omitting the irrelevant elements, all Si can be combined in a

single set S = ∪iS=i
i ; finally, the operation Φ(Sd, . . . , S1) is to be replaced by:

φ(S) = {v ∈ V0|∃w : (v, w) ∈ E ∧ w ∈ S}∪
{v ∈ V1|∀w : (v, w) ∈ E ⇒ w ∈ S}

A second optimization, developed by Long et al. [15], partially eliminates
re-initializations. Instead of resetting all nodes of lower priority than i to their
initial state (S<iR ← V <i ∩ V ≡20), only nodes with a priority of opposite parity
are reset (Algorithm 2, Lines 9 to 12): If i is even then the nodes with even



input: A parity game
output: Sd: nodes won by Even

1 Func basic((V,E, V0, V1, P r)):
2 for i ∈ {1 . . . d} do
3 if i is even then Si←V ;
4 else Si←∅;
5 do
6 Sφ ← Φ(Sd, . . . , S2, S1)
7 i ← 1
8 while Si = Sφ ∧ i ≤ d do
9 i←i+ 1

10 if i ≤ d then
11 Si←Sφ
12 for j ∈ {i− 1 . . . 1} do
13 if j is even then Sj←V ;
14 else Sj←∅;
15 until i = d+ 1;
16 return Sd
Algorithm 1: A basic fixpoint iter-
ation algorithm

input: A parity game
output: S: the nodes won by Even

1 Func time((V,E, V0, V1, P r)):
2 S ← {v ∈ V |Pr(v) is even}
3 while S 6= φ(S) do
4 S←next(S)
5 return S

6 Func next(S):
7 Sφ←φ(S)
8 i←min {Pr(v)|v ∈ S 4 Sφ}
9 if i is even then

10 SR←S \ V ≡21

11 else
12 SR←S ∪ V ≡20

13 return S>i ∪ S=i
φ ∪ S<iR

Algorithm 2: The time- and
memory-efficient algorithm of Bruse
et al. [3]. 4 is the symmetric set dif-
ference.

priority are kept and nodes with an odd priority are removed; analogously, if i
is odd, odd nodes are kept and nodes with an even priority are added.

The first optimization reduces the memory use by a factor d, the second
is, according to Seidl [17], sufficient to reduce the time complexity to O(|E| ·
ndd/2e) with n = |V |/d+1. These two optimizations result in Algorithm 2 which
calculates the nodes won by Even as S.

The following example shows a simulation of Algorithm 2 for the small parity
game in Figure 1.

v9 v7 v4

v6 v1 v3

Fig. 1: A small parity game. The
priority of node vi is i. Even
plays in diamond nodes and
Odd in the square node v6.

Example 1. Initially, the nodes won by Even
are estimated as S = {v6, v4}. In the first
iteration is Sφ = {v3, v7} and S 4 Sφ =
{v3, v4, v6, v7}. Node v3 is the only node of
priority i = 3. Even wins v3 by playing to v4

and S is updated to {v6, v4, v3}. Five itera-
tions later is S, the current estimate for Even,
equal to {v7, v6, v4, v3, v1}. In the next itera-
tion is Sφ = {v7, v4, v3, v1}: node v6 is won
by Odd by playing to v9. The reset operation
removes nodes v3 and v1 (and adds v4). The
set S is now {v7, v4}. In the final iterations, Even wins v1 by playing to v7, and
wins v3 by playing to v4. Now, the estimate is S = {v7, v4, v3, v1}; as this is a
fixpoint, this is the set of nodes won by Even.



It would be useful if we could construct a winning strategy from the previous
calculation. However, this is tricky. E.g., in the final steps we derived that Even
wins v1 using its move to v7, suggesting that in node v1 Even should play to v7.
This is wrong: Even must play to v3 to win.

Bruse et al. [3] then extended Algorithm 2 to compute winning strategies
(with domain Wα|α). The algorithm works by recording for every iteration, for
every player, for every node of that player that is supposed to be won by that
player in that iteration, a winning move for that node. After the run, for each
player one global winning strategy, called the eventually-positional winning strat-
egy, is extracted from this data structure. A disadvantage of this method is that
its memory use is proportional to the running time. This leads to exponential
memory consumption in terms of the parity games’ size.

3 Speeding up fixpoint iteration with justifications

The first contribution of this paper is to propose an algorithm that maintains
an improved datastructure called a justification graph, to store a single (partial)
winning strategy during execution. Justification graphs as we use it here, were
first introduced in Hou et al. [11] in the context of a semantic study of nested
least and greatest fixpoint definitions.

Below, we view the set S in Algorithm 2 as the current estimate of the nodes
won by Even, and V \ S as the nodes won by Odd. If v ∈ S, we say that v is
won by Even according to S (or Even is the winner of v according to S), and if
v 6∈ S, we say that v is won by Odd according to S.

Definition 1 (Justification). A pair (S, J) is a justification if S is a set of
nodes, an estimation of nodes won by Even, and J is a sub-graph of the game
graph (V,E), an extended candidate winning strategy, satisfying two constraints:

i) Each node v won according to S by its owner (i.e., v ∈ S|0 ∪ (V \ S)|1) has
either no outgoing edges or one outgoing edge.

ii) Each node v won according to S by the opponent of its owner (i.e., v ∈
S|1 ∪ (V \ S)|0) has either no outgoing edges or all outgoing edges of that
node.

If in J , the node v has outgoing edges, we call v justified in J , otherwise we call
v unjustified in J . We denote the set of nodes that are unjustified in J as U(J).
A justification is complete if every node is justified.

Definition 2 (Winning justification). A justification (S, J) is winning if all
connected nodes are won by the same player according to S and if every infinite
path in J starting in a node v is a play won by the winner of v according to S.

Note that paths in winning justifications are fragments of winning strategies
(for Even when it is a path of nodes in S and for Odd when it is a path of nodes
outside S).



input: A parity game
G = (V,E, V0, V1, P r)

output: S: nodes won by Even,
J : a justification

1 Func compute J(G):
2 S←{v ∈ V |Pr(v) is even}
3 J ← ∅
4 while U(J) 6= ∅ do
5 (S, J)←next(S, J)
6 return S, J

7 Func strategyα(S,U):
8 J←∅
9 for v ∈ U do

10 if v ∈ Vα then
11 Wv←{w|(v, w) ∈ E ∧ w ∈ S}
12 else
13 Wv←{w|(v, w) ∈ E ∧ w 6∈ S}
14 if Wv 6= ∅ then
15 w←choose(Wv)
16 J←J ∪ {(v, w)}
17 else
18 J←J ∪ {(v, w′)|(v, w′) ∈ E}
19 return J

1 Func next(S, J):
2 i←min {Pr(v)|v ∈ U(J)}
3 U←U(J)=i

4 Upd←(φ(S)4 S) ∩ U
5 if Upd 6= ∅ then
6 R←Reaches(J, Upd)
7 if i is even then
8 SR←(S \R≡21) ∩ V <i
9 else

10 SR←(S ∪R≡20) ∩ V <i
11 Jt←J \ (R× V )
12 J ′←Jt ∪ strategy0(S,Upd)

13 S′←S>i ∪ (S 4 Upd) ∪ SR
14 else
15 J ′←J ∪ strategy0(S,U)
16 S′←S
17 return (S′, J ′)
Algorithm 3: compute J determines
winning strategies for both players

Lemma 1. Let (S, J) be a complete and winning justification, σ0 = {v 7→ w :
(v, w) ∈ J, v ∈ S|0} and σ1 = {v 7→ w : (v, w) ∈ J, v ∈ (V \ S)|1}. Then every
play starting in a node v ∈ S and consistent with σ0 is an infinite path in J and
every play starting in a node v 6∈ S and consistent with σ1 is an infinite path in
J . Furthermore, S equals W0, the set of nodes won by Even, and V \ S equals
W1, the set of nodes won by Odd and, σ0 and σ1 are global winning strategies
for respectively Even and Odd.

Proof. Let v0 be won by α according to S and let π = v0v1v2 . . . be an arbi-
trary play in v0 consistent with σα. Since (S, J) is a complete justification, v0

is justified in J . Let v0v1v2 . . . vi be an initial segment of π that is a path in J .
All connected nodes in J share the same winner according to S, hence, also vi
is won by α according to S. Since (S, J) is complete, if vi ∈ Vα, vi has one child
in J , namely σα(vi). Since π is consistent with σα, this node is vi+1. If on the
other hand vi ∈ Vᾱ, then J contains all outgoing edges from vi in E, including
vi+1. Either way, v1 . . . vi+1 is a path in J . Using induction on i, we conclude
that the entire play π is an infinite path in J . Since (S, J) is winning, π is won
by α. It follows that σα is a winning strategy for α in v0. Hence, the elements of
S belong to W0 and those of V \ S to W1. We obtain S =W0 and V \ S =W1.

We now present an improved algorithm that makes use of justifications: Al-
gorithm 3 extends Algorithm 2 with management of such justification graph J .
It uses the auxiliaries U(J), the set of unjustified nodes of J , and Reaches(J,X),



the set of nodes that have a path in J to an element of X. It also uses the auxil-
iary procedure strategyα(S,X) which chooses justifications for nodes v ∈ X ⊆ U
1. The parameter α of the procedure is the player that wins the set S; here this is
always Even (Lines 12 and 15 of next); in some later algorithms, it can be Odd.
For the player that owns an unjustified node v ∈ X, σα selects a winning move
if one exists (Line 11/13 with Lines 15, 16 of strategyα); otherwise, it selects all
moves for v in E (Line 18).

Initially, J contains no edges. Subsequent calls to next are made until all
nodes are justified. At each iteration, the lowest priority i with non-empty set
U of unjustified nodes is determined by Line 2. The subset Upd of nodes with a
revised winner is determined ((φ(S)4 S) ∩ U). If Upd is not empty, the set R
of nodes with a path to Upd is computed (Line 6). Such paths represent partial
plays to leafs won according to S, but these paths are outdated now. Therefore,
the winners of these nodes are reset to their initial values (Lines 7-10) and their
justifications are removed (Line 11). It will be proven that nodes in R belong to
V <i and that all nodes in R are won by α = i mod 2 according to S. Thus, all
nodes of R belong to S if i is even and to V \S if i is odd. Nodes in R need to be
reset to their initial winner: if i is even, it suffices to remove the nodes of R of odd
priority (R≡21) from S; if i is odd, it suffices to add nodes of R of even priority
(R≡20) to S. The set SR is computed as the result of this update to S<i. After
resetting the nodes in R, new justifications for the nodes in Upd are computed
in Line 12. Finally, the updated set of nodes won by Even, S′, is computed by
applying the update Upd and by using the reset-update SR (Line 13).

The other case, when Upd is empty, is simpler: no nodes at level i are revised,
S is unchanged and J is extended with justifications for all nodes in U (Line 15).

When the algorithm is finished, the nodes in S are won by Even, non-elements
of S are won by Odd and J is a complete justification. For both players, the
strategy for a node is given by the unique edge in the justification of that node.

v9 v7 v4

v6 v1 v3

Fig. 2: The justification of Ex-
ample 2 after 6 iterations .

Example 2. We apply Algorithm 3 on the par-
ity game of Figure 1. The first iteration se-
lects a justification for node v1: v1 is won
by Odd by playing to v3. The justification
J is then {(v1, v3)}. The algorithm then fol-
lows Example 1. By choosing2 node v7 as
winning move for v6, the algorithm reaches
an equivalent state after six iterations: S is
{v7, v6, v4, v3, v1} and the solid edges in Fig-
ure 2 express the current justification graph.

The next iteration shows the crucial difference between the previous and
the new algorithms. Node v6 is the unjustified node with the lowest priority;
it is won by Odd by playing to v9. The previous algorithm resets nodes v1

1 To make strategyα deterministic, choose can return, e.g., the smallest element.
2 Choosing v9 as winning move for v6 never resets node v6, avoiding the difficulties of

Example 1.



and v3. However, since nodes v1 and v3 do not depend on v6 they are not re-
set in Algorithm 3. The new justification consists of S = {v7, v4, v3, v1} and
J = {(v1, v3), (v3, v4), (v4, v1), (v7, v4), (v6, v9)}. The final iteration adds, for
node v9, the following justification to J : (v9, v9). The fixpoint has been reached
and the final justifaction graph can be projected to a winning strategy. Note
that, according to J , in node v1 Even must play to v3.

3.1 Correctness

The goal of the algorithm is to find a complete winning justification. We prove
the loop invariant that (S, J) is a wining justification at the end of every iteration
and that J grows monotonically to a complete justification w.r.t a finite order.
To bring this about we prove invariance for three additional properties: the
justification (S, J) in Algorithm 3 is coherent, dominating and default.

Definition 3 (Coherent). A justification (S, J) is coherent if two connected
nodes in J are won by the same player: ∀(v, w) ∈ J : v ∈ S ⇔ w ∈ S.

Definition 4 (Default). The default winner of a node is Even if its priority
is even and Odd if its priority is odd. A justification (S, J) is default if every
unjustified node is won by the default winner of that node according to S : ∀v ∈
U(J) : v ∈ S ⇔ Pr(v) ≡2 0.

Definition 5 (Dominating). A sub-graph J of a parity game is dominating if
every leaf of J (every v ∈ U(J)) has a priority strictly larger than the priority
of nodes on paths to that leaf. Formally: ∀w ∈ U(J),∀v ∈ Reaches(J, {w}) :
Pr(v) < Pr(w).

Adding a justification for an unjustified node v can introduce a cycle. If so,
dominance of J ensures that the priority of v is the highest priority in the cycle
and hence this priority determines the winner of this cycle. Moreover, if (S, J)
is default, then the winner of that new cycle is the winner according to S.

The following invariant of Algorithm 3 proves correctness:

Invariant 1 The pair (S, J) for each iteration of the while-loop is a coherent,
dominating, default and winning justification.

In the proof, we use the notation J(v) = {w | (v, w) ∈ J}, and likewise
E(v) = {w | (v, w) ∈ E}. Recall that (S, J) is a justification iff for every node
v ∈ V , J(v) = ∅ or v’s owner wins in v according to S and J(v) is a singleton
subset of E(v) or v’s owner looses in v according to S and J(v) = E(v).

Proof. We prove this invariant by induction.
The initial pair (S, J) = ({v ∈ V | Pr(v) is even }, ∅) is, by construction, a

winning, coherent, dominating and default justification.
We prove in the induction step that if the justification (S, J) is winning,

coherent, dominating and default then so is (S′, J ′) = next(S, J):



Justification: This invariant is at risk at a node v when a justification is
set to v, or when v is added or removed from S since this modifies the as-
signed winner of v. For unjustified nodes v in U(J)=i, the calls to strategy0 in
Lines 12 and 15 create a correct justification for v for its winner according to
φ(S). As for updates of S, this occurs for nodes v in Upd and in the reset nodes
in R. For v ∈ Upd, the call to strategy0 creates a correct justification for v while
for reset nodes v ∈ R, the justification of v is removed in Line 11 which also
preserves the invariant. As such (S′, J ′) is a justification.

Coherent: It is easy to check that the edges returned by strategy0 are coher-
ent with φ(S). Thus the edges added to J will be coherent since S′∩U is exactly
φ(S) ∩ U . We still need to prove that edges (v, w) in J preserved in J ′ remain
coherent. This follows from the fact if the edge (v, w) is preserved in J , then also
the winners of v and w according to S must be preserved. Indeed, whenever v
or w is assigned a different winner, v ends up in R and its edge to w is removed.

Default: Initially, all nodes are unjustified and won, according to S, by their
default winner. When the winner of an unjustified node changes according to S,
then the node becomes justified. When a node becomes unjustified, the winner
is reset to the default winner.

Dominating: If Upd is non-empty, then first for nodes v in Reaches(J, Upd),
the justification is removed and each becomes an unreachable leaf of J ′ (edges
from and to v are removed). This preserves the invariant. Then for every node v
in Upd, justifying edges (v, w) are created where w is won by the opposite player
according to S. Since (S, J) is coherent and default, all reachable unjustified
nodes from w are won by the opposite player, hence have a priority different
than i and hence, strictly larger than i ( i is the least priority with unjustified
nodes). Thus, the newly reachable unjustified nodes from v, and from nodes
that can reach v (which by dominance of J have priority < i), have priority
> i. Hence, dominance is preserved. If Upd is empty, all nodes v with priority
i are assigned a justification, and all newly reachable unjustified nodes from v
and from nodes that could reach v have strictly higher priority than i. Again,
dominance is preserved.

Winning: The first condition, all connected nodes have the same winner
according to S′, follows from coherence. The second condition remains to be
proven: Let π be an infinite path of J ′ consisting of nodes won by α according
to S′. It must be proven that α is the winner of π.

Assume π has an index j such that the tail 〈vj , vj+1, . . . 〉 is a path in J . Since
(S, J) is a winning justification, α is the winner of the tail, and hence of π itself.

Assume π does not have a tail preserved from J . Then π passes infinitely
often over new edges (v, w) ∈ J ′ \J , where v ∈ U(J) and v has priority i. In the
play π there exist two types of nodes: nodes unjustified in J , of priority i, and
nodes justified in J . The justified nodes have a path in J along π to the next
unjustified node which has priority i. Since J is dominating, it follows that these
justified nodes have a priority less than i. So the highest priority of the play that
occurs infinitely often is i and π is won by player i mod 2. From the proof of
dominating, it follows that truly new infinite paths are only possible when Upd



is empty. Since Upd is empty, player i mod 2 is, according to S′, the winner of
all nodes on π. Thus player α wins the play π. Therefore, (S′, J ′) is a winning
justification.

To ensure termination, we define the size of a justification and argue that
the size decreases in every cycle until the justification is complete.

Definition 6 (Justification size). The size of a justification, denoted size(J),
is a d-tuple (ad, ad−1, . . . , a1) where each ai counts the number of unjustified
nodes of priority i. Justification sizes are ordered lexicographically:
(ad, ad−1, . . . , a1) < (bd, bd−1, . . . , b1) iff ∃i : ai < bi ∧ ∀j > i : aj = bj.

Theorem 1 (Total correctness). Algorithm 3 terminates with a complete
winning justification (S, J).

Proof. If Upd is empty, the algorithm strictly reduces the number of unjustified
nodes of priority i to zero. Otherwise, if Upd is not empty, the algorithm strictly
reduces the number of unjustified nodes at priority i (and may increase the
number of unjustified nodes at strictly lower levels). Either way, the size of J
strictly decreases at each iteration. Hence, the algorithm terminates.

Furthermore, the algorithm terminates when no unjustified nodes exist. At
this point, (S, J) is complete.

No improvements in time complexity are expected:

Theorem 2 (Time complexity). Algorithm has time complexity O
(
|E| · ndd/2e

)
with n = |V |/d+ 1.

Proof omitted

4 Integrating justifications in other algorithms

Currently, three algorithms are considered as state-of-the-art: Zielonka’s algo-
rithm [21], priority promotion [1, 2] and tangle learning [19]. While studying
related work the applicability of justifications to these algorithms was noticed:
while all algorithms calculate a winning strategy, only region recovery, a pri-
ority promotion variant, and tangle learning use this strategy to improve the
algorithm. In this section we sketch how to extend Zielonka’s algorithm and
tangle learning with justifications. While justifications do not improve the time
complexity, one can expect a performance improvement. This is confirmed by
the experimental evaluation. In the future work section we argue that applying
justifications to priority promotion is an improvement of the region recovery
variant.



Zielonka’s algorithm Zielonka’s algorithm determines the winners by recur-
sively decomposing a game G in a smaller sub-game G′ and first solving the
sub-game. Once the winners of G′ are determined, it returns to the nodes not in
G′ and, if needed, another sub-game is created and solved.

The algorithm is based on the notion of the attracted node set of a set S,
denoted Attrα(S). Informally, this is the set of all nodes from which α can force a
play to S. Formally, this set can be computed using a least fixpoint computation:

Attrα(V, S) = µA.S ∪{v ∈ Vα|∃w : (v, w) ∈ E ∧ w ∈ A}
∪ {v ∈ Vᾱ|∀w : (v, w) ∈ E ⇒ w ∈ A}

In addition, Zielonka’s algorithm computes a corresponding α-strategy σAttr :
A|α \S → A for all attracted nodes which shows how any play starting in a node
v ∈ A eventually ends in S.

For correctness, Zielonka’s algorithm depends on two properties of Attrα: (i)
if all nodes of S can be won by α then all attracted nodes are won by α and (ii)
if all nodes in S have priority p ≡2 α and all attracted nodes have a lower (or
equal) priority then all moves from S to Attrα(S) are won by α.

For a game G and a set of nodes A we define G \A as the removal of A from
all parts of G: the nodes, and edges, owners, and priorities.

In the original algorithm, Algorithm 4, empty games are immediately solved.
For non-empty games, the maximal priority p is calculated. Then the algorithm
calculates the set A together with a strategy σA for all nodes attracted to the
heads, i.e., nodes with the maximal priority, V =p. A play π starting in a head
and consistent with σA has two options: either π stays in A and forms an infinite
play with highest priority p, won by α, or π escapes to an unattracted node in
V \A. To finally determine the winner the sub-game G \A is recursively solved
to determine W ′0 and W ′1 (Line 7). If all nodes in this sub-game are also won by
α, then, in this case, all nodes of this game are won by α. All that remains is
finding a strategy for the heads since the moves for these nodes are explicitly not
included in σA (Line 10). In the other case, some nodes are won by the opponent:
heads may be attracted or forced to W ′ᾱ and consequently attract more nodes
of A (Line 14). These nodes are attracted to a set B and removed to create a
second sub-game G \ B. The solution of this sub-game together with nodes B
won by ᾱ and the corresponding strategy σB form the final solution of G.

v4v1 v2

Fig. 3: A small parity game. Nodes vi have priority i. Even plays in v4. Odd
plays in v1 and v2.



One weakness of the algorithm is that it resets all attracted nodes if a single
node is attracted to the opponent. For sufficient complex game this results in an
increased number of solved sub-games:

Example 3. We simulate Algorithm 4 for the parity game in Figure 3. Initially
we solve the game with all three nodes. v4 does not attract. This node is removed
and the sub-game with nodes v1, v2 is solved. v2 does not attract v1; it is removed
to solve the sub-game with one node, v1. v1 is the last node, the empty sub-game
is solved trivially.

For the sub-game with only v1, no nodes are won by Wᾱ, v1 is won by Odd
by playing to itself. For the sub-game with v1 and v2, v1 is won by Wᾱ, v1 does
not attract v2 thus the sub-game with only v2 is solved. The steps of solving this
game are skipped, v2 is won by Even. For the sub-game with v1 and v2, v1 is won
by Odd, v2 is won by Even. In the sub-game of v1, v2 and v4, Wᾱ contains v1.
v2 and v4 are not attracted to v1 thus the sub-game with v2 and v4 is solved. v4

does not attract v2, the sub-game with only v2 is solved again. For the sub-game
with v2 and v4, v4 wins by playing to itself, v2 is won by Even with either move.
The game is solved: v1 is won by Odd, v2 and v4 are won by Even.

This example shows that the sub-game with only v2 is solved multiple times
with the same results. Moreover, there was no reason to solve the sub-game with
v1 and v2. Using justifications, we can do better by further partitioning A \ B
with the help of σA: the nodes that depended on nodes in B and safe nodes.
Only the former nodes need to be recalculated in the new sub-game.

Algorithm 5 integrates a justification graph. The essential difference between
the two algorithms is Line 19. To make this line useful the algorithm needs to
be reformulated. First, the strategy variables σ0, σ1 are extended and merged
into a single justification graph J which allows to easily calculate reachability.
Second, the recursive tail-call in Algorithm 4 at Line 15 is transformed into a
loop which is interrupted when W ′ᾱ = ∅. The iterative representation allows for
a stateful algorithm to recover and modify previously calculated information.

After applying these two changes, the difference between the original algo-
rithm and the justification variant is a single line: if R is overestimated as W 6=pα
on Line 19 the behaviour of the algorithm reverts to the original Zielonka al-
gorithm. In the justification variant of the algorithm the algorithm must, after
attracting for the opponent (Line 18), create a new sub-game. It first calculates
the set of nodes R that depended on nodes that changed winner (Line 19). Sub-
sequently Line 20 fixes the justification J : it removes the justifications for all
nodes in R and adds the justifications for nodes attracted for ᾱ. Then it removes
these nodes from the set Wα, as the properties of Attr have been lost for nodes
in R, while adding the attracted nodes to Wᾱ. Now the loop is ready to restart
with first attracting reset nodes that have a different way of playing to Wα and
then solving the sub-game of nodes that are still not attracted.

As for correctness, similarly to Algorithm 3, the pair (S, J) with S = W0 ∪
(V ≡20 \W1) remains a coherent, dominating, default and winning justification
while the size of the justification increases every iteration of the while-loop at
Line 8. We omit further details.



input: A parity game
G = (V,E, V0, V1, P r)

output: W0,W1: winning nodes,
σ0, σ1: strategies

1 Func zielonka(G):
2 if V = ∅ then
3 return (∅, ∅, ∅, ∅)
4 p←max {Pr(v)|v ∈ V }
5 α←p mod 2
6 A, σA←Attrα(V <p, V =p)
7 W0,W1, σ0, σ1←zielonka(G \A)
8 if Wᾱ = ∅ then
9 Wα←Wα ∪A

10 σF←strategyα(Wα, V
=p ∩ V |α)

11 σα←σα ∪ σA ∪ σF
12 return W0,W1, σ0, σ1

13 else
14 B, σB←Attrᾱ(V,Wᾱ)
15 W ′0,W

′
1, σ
′
0, σ
′
1←zielonka(G\B)

16 W ′ᾱ←W ′ᾱ ∪B
17 σ′ᾱ←σ′ᾱ ∪ σB
18 return W ′0,W

′
1, σ
′
0, σ
′
1

Algorithm 4: Zielonka’s algorithm

input: A parity game
G = (V,E, V0, V1, P r)

output: W0,W1: winning nodes,
J : justification

1 Func zielonka j(G):
2 if V = ∅ then
3 return (∅, ∅, ∅)
4 p←max {Pr(v)|v ∈ V }
5 α←p mod 2
6 Wα←V =p,Wᾱ←∅
7 R←V <p, J←∅
8 while true do
9 A, JA←Attrα(R,Wα)

10 Wα←Wα ∪A
11 G′←(G \Wα) \Wᾱ

12 W ′0,W
′
1, JZ←zielonka j(G′)

13 (W0,W1)←(W0 ∪W ′0,W1 ∪W ′1)
14 J←J ∪ JZ ∪ JA
15 if W ′ᾱ = ∅ then
16 JF←strategyα(Wα,Wα ∩ V =p)
17 return (W0,W1, J ∪ JF )

18 B, JB←Attrᾱ(V,Wᾱ)
19 R←Reaches(J,B)
20 J←(J \ (R× V )) ∪ JB
21 Wα←Wα \R,Wᾱ←Wᾱ ∪B
Algorithm 5: Zielonka’s algorithm
with justifications

Tangle learning Tangle learning [18, 19] is a recent state-of-the-art algorithm
based on deriving and attracting tangles. Tangles are sub-games won by a single
player α with a strongly connected strategy:

Definition 7 (Tangles). An α-tangle is a set of nodes τ ⊂ V for which there
exists a tangle-strategy σ : τ |α → τ such that the graph (τ, Eτ ) with Eτ =
E ∩ (σ ∪ (τ |ᾱ × τ)) has at least one edge, is strongly connected, and all cycles
within (τ, Eτ ) are won by α.

A play starting in a node of an α-tangle can either stay within the tangle or
ᾱ can escape to a node in Ext(τ) = {w|(v, w) ∈ E, v ∈ τ |ᾱ, w 6∈ τ}. Thus if all
escapes are won by α then all nodes in the α-tangle are won by α.

Integrating the tangles involves an extension to the attraction function used
by Zielonka’s algorithm. Recall that nodes are attracted for a player α if that
player can force a play to a given set, rules (i) and (ii). For tangle learning the
property is extended to either playing to the given set or α wins the infinite play.
This property is satisfied for α-tangles: all nodes of an α-tangle are attracted if
all escapes of the tangle are attracted, rule (iii).

Formally, given the set of tangles T (with the α-tangles of T denoted as T |α),
the set of nodes V , the set of edges E, the subset of nodes attracted to S is:



TAttrα(T, V,E, S) = µA. S
∪ {v ∈ Vα|∃w : (v, w) ∈ E ∧ w ∈ A} (i)
∪ {v ∈ Vᾱ|∀w : (v, w) ∈ E ⇒ w ∈ A} (ii)
∪ {v ∈ t ∩ V |t ∈ T |α ∧ (Ext(t) ∩ V ) 6= ∅ ∧ (Ext(t) ∩ V ) ⊆ A} (iii)

The second part of the algorithm consists of learning tangles. They are found
after attracting: Assume A, σA = TAttrα(T, V, S). If a node v ∈ Sα can play
within A or if a node v ∈ Sᾱ must play within A then the possibility of a cycle
exists. Furthermore, if all nodes in S have the same priority p ≡2 α and all
attracted nodes A have a lower priority then all cycles are won by α. The tangle
learning algorithm will only attract nodes and tangles of a lower priority by
invariant. Thus every non-trivial cycle will be an α-tangle. The problem then
consists of determining the non-trivial strongly connected components in (A,EA)
with EA = E ∩ (σA ∪ (Aᾱ ×A)).

Tangle learning consists of first finding tangles and then, to progress, attract-
ing them. If a tangle is used a second time, some work is saved. The more complex
the tangle, the more work is saved. First a tangle learning algorithm without
justifications is shown, then a new variant with justifications is discussed.

The original tangle learning algorithm (Algorithm 6). First, we explain some
key variables: (i) tangles found so far: T , (ii) new tangles to be used in the next
iteration, Y , and (iii) the region mappings: L. The solution of the parity game
is accumulated in the output variables W0,W1, σ0, σ1.

The region mapping, L : V → P , is a function that determines the priority
to which every node is currently attracted. The notation (L \ A) ∪ (A 7→ p) is
used to map the value of the nodes in the set A with p. For a region mapping
L : V → P , a relation in the set {=, 6=, <,>,≡2, 6≡2} and a priority p ∈ P the
notation L−1

∼p denotes {v ∈ V |L(v) ∼ p}.
The core loop of the algorithm runs from Lines 6 to 21: until all nodes have

a region, the algorithm selects the highest priority among the nodes without
a region, extends the set of nodes with this priority with all nodes attracted
to them and computes all tangles in this set. The final winner can be assigned
to such a tangle in case it has no externals (the for-loop at line 15) and the
involved nodes will be removed from the game before the next iteration starts;
other tangles are added to the set Y and all involved nodes are assigned region p.
When all nodes have been assigned a region, at least one tangle has been found.
The new tangles in Y are then “promoted” to the set T and the algorithm starts
a new iteration with resetting L.

Similar to Attr, TAttr records how nodes are attracted as a strategy σA or
as part of a justification JA. The strategy for attracted nodes is unchanged while
the strategy for attracted nodes of a tangle is determined by σt.

Given the strategy σA, the procedure extract tangles returns the set of all
promotable tangles within A. It obtains them by calculating all strongly con-
nected components with, e.g., Tarjan’s strongly connected component algorithm.



input: A parity game
G = (V,E, V0, V1, P r)

output: W0,W1: winning nodes,
σ0, σ1: strategies

1 Func tangle learning(G):
2 T←∅
3 W0←∅,W1←∅, σ0←∅, σ1←∅
4 while V 6= ∅ do
5 L←(V 7→ ∅), Y←∅
6 while L−1

=∅ 6= ∅ do
7 V ′←V ∩ L−1

=∅
8 E′←E ∩ (V ′ × V ′)
9 p←max {Pr(v)|v ∈ V ′}

10 α←p mod 2
11 A, σA←TAttrα(T, V ′, E′, V ′=p)
12 L←L ∪ (A 7→ p)
13 New←extract tangles(A, σA)
14 Dom←{t ∈ New|ET (t) = ∅}
15 for (t, σt) ∈ Dom do
16 D,σ←TAttrα(T, V, t)
17 Wα←Wα ∪D
18 σα←σα ∪ σ
19 L←L \D
20 V←V \D
21 Y←Y ∪ (New \Dom)

22 T←T ∪ Y
23 return W0,W1, σ0, σ1

Algorithm 6: Tangle learning

input: A parity game
G = (V,E, V0, V1, P r)

output: W0,W1: winning nodes,
J : justification

1 Func tl just(G):
2 L←(V 7→∅), T←∅
3 W0←∅,W1←∅, J←∅
4 while V 6= ∅ do
5 Y←∅
6 while impr(V, T, L) 6= ∅ do
7 V ′←V ∩ L−1

≤p
8 E′←E ∩ (V ′ × V ′)
9 p←max(impr(V, T, L))

10 α←p mod 2

11 H←L−1
=p ∪ (L−1

=∅ ∩ V
=p)

12 A, JA←TAttrα(T, V ′, E′, H)

13 R←Reaches(J,A ∩ L−1
<p,6≡2p

)

14 J←(J \ ((R ∪A)× V )) ∪ JA
15 L←(L \R) ∪ (R 7→ ∅)
16 L←(L \A) ∪ (A 7→ p)
17 New←extract tangles(A, JA)
18 Dom←{t ∈ New|ET (t) = ∅}
19 for (t, σt) ∈ Dom do
20 D, JD←TAttrα(T, V, t)
21 Wα←Wα ∪D
22 Jα←Jα ∪ JD
23 L←L \D,V←V \D
24 Y←Y ∪ (New \Dom)

25 T←T ∪ Y
26 return W0,W1, J
Algorithm 7: Tangle learning im-
proved with justifications

A tangle is promotable if the regions of all its externals are larger than the pri-
ority of the tangle. Unpromotable tangles are not returned by extract tangles.

Like Zielonka’s algorithm, tangle learning removes all information depending
on faulty assumptions; indeed, it empties the region information L (Line 5). By
adding justifications, we can do better.

Tangle learning with justifications (Algorithm 7). Like the previous algorithms,
the changes are centred around the reset-phase. This variant makes full use of
the region information L. This information is never fully reset; instead, impr
determines outdated information and the justification J is used to selectively
withdraw invalid information.

The function impr determines for which nodes and tangles the region L can
be improved. If no such nodes exist, either the algorithm is finished or some



tangles must have been found which are not yet available for attraction; the
inner while loop is exited, the new tangles are added to T and their region
is reset to ∅ (Line 25). Otherwise we are interested in the nodes and tangles
available for improvement that have the maximal priority p.

Line 9 identifies the maximal priority for which improvements are possible,
Line 11 determines which nodes can be improved and Line 12 determines the
attracting nodes. After resetting the nodes that become invalid (Lines 13 to 15),
the improved region is assigned for all attracted nodes (Line 16). At this point,
the set of nodes with region p is the same as in the non-justification algorithm
(given the same set of tangles T ). However, this does not guarantee that the set
of extracted tangles will be the equal as it is possible that the chosen strategy
σA and justification J differ.

As for correctness, similarly to Algorithm 3, the pair (S, J) with S = W0 ∪
L≡20 ∪ (V ≡20 \L≡21 \W1) remains a coherent, dominating, default and winning
justification while the size of the justification increases every iteration of the
while-loop at Line 8. We omit further details.

Overall, the algorithm improves two facets of the attraction: first, unchanged
regions are skipped and secondly even when extending the region, nodes already
belonging to the region are not re-attracted.

5 Experimental results

In the literature, we selected three parity game solving projects:

– PGSolver [8, 9] (github.com/tcsprojects/pgsolver) is a collection of tools
for solving parity games written in OCaml. We refer to its algorithms with
pgsolver-*.

– Oink [18, 19] (github.com/trolando/oink) is a recent parity game solver
suite written in C++. We refer to its algorithms with oink-*.

– pbespgsolver (www.mcrl2.org) is part of the mCRL2 toolset [5], centred
around formal verification of automata. We refer to its algorithms with
pbes-*.

Each project implements several algorithms, among them are fixpoint itera-
tion (referred as *-fp, Zielonka’s algorithm (referred as *-zlk), priority promo-
tion (referred as *-pp) and tangle learning (referred as *-tl). For example, with
oink-tl we refer to the tangle learning algorithm in the Oink solver. In total, 13
algorithms are benchmarked, 8 from the above three solvers and 5 algorithms we
implemented. One of them, oink-zlk-just, is a modification of the implemen-
tation of Zielonka’s algorithm in Oink. The fixpoint iteration algorithm is only
implemented in PGSolver which, as Table 1 shows, has the worst performance
of all three solvers. So it looks as a bad idea to modify that implementation.
Therefore, we implemented our own version of the fixpoint algorithm (prty-fp)
and an extension with justifications (prty-fp-just). As for priority promotion
and tangle learning, we did not have the time to extend both with justifications.
We selected the best performing one, tangle learning. However, extending the

github.com/tcsprojects/pgsolver
github.com/trolando/oink
www.mcrl2.org


Configuration Both benchmarks (1297 instances)
6GB <1s <10s <100s par2 (s)

prty-tl-just 976 1215 1289 4912
prty-tl 959 1207 1288 5729
oink-tl 947 1209 1277 7193
oink-zlk-just 947 1206 1260 10464
oink-pp 952 1188 1245 13295
oink-zlk 932 1186 1239 14471
pbes-pp 919 1141 1205 21406
pbes-zlk 860 1072 1140 34437
prty-fp-just 863 1094 1134 34866
pgsolver-pp 698 1034 1138 36453
pgsolver-zlk 625 910 1035 56824
prty-fp 590 780 845 92529
pgsolver-fp 532 743 807 100616

Table 1: Number of solved instances in less than 1, 10, and 100 seconds and par2
score (lower is better), sorted by the par2 score

Oink implementation was too involved: tangle learning is significantly more com-
plex than Zielonka’s algorithm. We started from scratch, implementing a baseline
prty-tl and an extension with justifications (prty-tl-just). All prty-* solvers
are implemented in Rust and are available at bitbucket.org/krr/prty.

In literature, we found information on two benchmarks. The parity game
benchmark [14] and one with large random graphs used for benchmarking tangle
learning [18]. These benchmarks3 have been executed for the selected algorithms
with a time-limit of 100 seconds and a memory limit of 6 GB on a PC with an
Intel ‘i7-4770’ CPU. A summary of the results for these benchmarks is reported
in Table 1: the number of games solved within 1 second, 10 seconds, and within
the time-limit. The par2 score is also reported, it is the sum of the run-times
of all solved games and a penalty of twice the time-limit (200 seconds) for each
unsolved game.

This benchmark ranks the base algorithms as follows: tangle learning per-
forms best, priority promotion performs better than Zielonka’s algorithm and
fixpoint iteration is the worst algorithm. The frameworks can also be ranked by
comparing different implementations of the same algorithm: Oink performs best,
then pbespgsolver second-best and PGSolver ranks last. More interesting is the
effect of adding justifications to various algorithms. The table shows that each
justification variant performs better than the corresponding base algorithm.

The fixpoint algorithm prty-fp-just outperforms prty-fp with 289 addi-
tional solved instances. As it ranks below the best algorithms, we do not analyse
it in more detail but focus on the other two implementations with justifications.

3 The benchmarks can be reproduced in the VMCAI 2020 virtual ma-
chine (https://doi.org/10.5281/zenodo.3533104) with the artifact at
https://doi.org/10.5281/zenodo.3510292.

bitbucket.org/krr/prty
https://doi.org/10.5281/zenodo.3533104
https://doi.org/10.5281/zenodo.3510292


Fig. 4: Cactusplot showing runtime of the slowest 100 parity games for the top
six algorithms

Figure 4 is a cactusplot of the 100 most time consuming instances; it zooms
in on the top six algorithms. The figure shows that adding justifications re-
sults in a clear performance inprovement for Zielonka’s algorithm (oink-zlk vs
oink-zlk-just) and tangle learning (prty-tl vs prty-tl-just). Both the ta-
ble and the figure show that our baseline tangle learning algorithm, prty-tl,
performs better than oink-tl. Further analysis learned us that the cause is
a solvable memory inefficiency in Oink. To measure the effect more in detail
we considered the 1277 instance solved by both versions: oink-tl needs 2626
seconds to solve them while our baseline, prty-tl, only needs 2541 seconds.

Figure 5 zooms in on the differences in run-time for all instances solved by
both versions of an algorithm. Below the black line are instances for which the
justification version is faster; above the line those for which the justification ver-
sion is slower. Figure 5a compares oink-zlk with oink-zlk-just. While there
are examples with a large speed-up, there are also examples with a significant
slowdown. We assume that most of the variability is caused by the explicit rep-
resentation of the justification graph that uses hashing for direct access to the
inverse of the justification function. Indeed, performance analysis showed that a
major chunk of time is spent maintaining this data structure. Overall, there are
more examples with a significant speed-up than with a significant slowdown and
the overall time for solving the 1233 common examples is reduced from 2629 s to
2293 s. Considering that oink-zlk-just solves 21 extra instances, we conclude
that adding justifications improves Zielonka’s algorithm.

As the explicit justification graph used in Zielonka’s algorithm caused a lot
of variability in the run-time of individual instances, we opted for an implicit
representation of the justification graph in tangle learning; it derives the jus-
tification graph from the existing information about nodes. Figure 5b, which
compares prty-tl with prty-tl-just, indeed shows much less variability and
we see, for instances requiring more than 10 s, a modest but almost consistent



(a) Comparison for Zielonka’s al-
gorithm

(b) Comparison for tangle learning

Fig. 5: Comparisons of run times

improvement. The overall time to solve the 1277 instances is reduced from 2541 s
to 2159 s which is a 15% improvement.

The figure also shows a few examples with a significant speed-up while none
with a significant slowdown. It turns out all these instances are so called Jur-
dzinski games [12]. A detailed profiling learned us that up to 80% of the time is
spent on attracting nodes and that justifications reduce the number of attracted
and reset nodes in Jurdzinski games with several orders of magnitude. Table 2
shows details about the Jurdzinski game instances as well as some other hard
instances. It also includes the 500 by 500 Jurdzinski game, the most difficult Ju-
rdzinski game in the data set, which is not part of Figure 5b as it requires more
than 100 s to solve. In this game, the number of attracted nodes is reduced from
126M to 501k nodes and the run-time from 190 seconds to less than 8 seconds.
The other instances in Table 2 are representative for the instances in the top
right of Figure 5b. Justifications reduce the number of attracted nodes by only
a fraction of the total. Still, there are a small improvements in run-time. We
conclude that justifications are a significant improvement for tangle learning.

Conclusion. Our experiments demonstrate that adding a justification graph to
a parity game solver algorithm is beneficial to the performance. Also, we have
shown that prty-tl-just, a tangle learning solver with justifications, is improv-
ing upon the state of the art.

6 Conclusion

In this paper we explored the use of justification graphs in parity game solvers.
We started with the nested fixpoint induction algorithm for parity games [3].
Besides storing the winning strategy of a node, the justification can also be used



instance runtime (s) # attracted nodes
prty-tl -just prty-tl -just

jurdzinskigame(500,50) 2.8 0.7 663k 51k
jurdzinskigame(500,100) 7.2 1.3 2.6M 101k
jurdzinskigame(100,500) 9.4 1.9 13M 101k
jurdzinskigame(500,200) 28.6 2.0 10M 201k
jurdzinskigame(200,500) 30.2 3.3 25M 201k
jurdzinskigame(500,500) (190) 7.7 63M 502k
ABP Onebit (3,1,1,weak-bisim) 70.6 66.7 177M 40M
rn-1000000-1000000-1-2-4 75.8 58.4 163M 157M
rn-1000000-1000000-1-2-9 79.0 62.6 168M 164M
SWP(4,3,infinitely often rw) 79.1 78.9 104M 27M
rn-700000-700000-1-2-5 94.6 81.9 217M 235M
rn-700000-700000-1-2-4 99.4 81.4 224M 220M

Table 2: The reduction of runtime is coupled to a reduction in number of at-
tracted nodes

to save work. Indeed, upon each update of winning nodes, the basic algorithm
resets all lower priority nodes to the static overestimation of their winner. The
justification allows one to dynamically select the nodes for which the current
winner is invalidated and only resets those nodes to the default assumption of
their winner. Experimental evaluation showed that this results in a substantial
speed-up of the algorithm.

Encouraged by these results we also explored the use of justifications in
other algorithms. Our analysis learned us that also Zielonka’s algorithm [21],
priority promotion [1, 2] and tangle learning [18] can potentially benefit from
justifications as it allows one to reset fewer nodes to their default settings at the
beginning of a new iteration. So far we could only implement two of these three
algorithms, namely Zielonka’s algorithm and tangle learning. Our evaluation
meets our expectations, for both algorithms we obtained a good performance
improvement for the whole of our benchmarkset. Moreover, our best algorithm
improves upon the state of the art.

Future work. For Zielonka’s algorithm, we expect that replacing the explicit
justification graph with an implicit one will improve the performance and will
result in a more consistent speed-up over all instances of the benchmark.

We predict that adding justifications to priority promotion speed up the
algorithm. Moreover, the region-recovery variant of priority promotion shows
parallels to justification-based resetting: it uses the witness strategy to safeguard
regions (a set of nodes) if none of the nodes depend on a reset region. This is,
however, coarser than justifications: if a single nodes depends on a reset region
then all nodes in that region are reset which cascades for all dependent regions.
We predict that games improved by region recovery are also improved when
using a justifications-based algorithm.



There is a need to develop a benchmark set with harder instances: The best
algorithm solves 1289 out of 1297 instances and solves all instances in 400 sec-
onds with 15 GB of memory. Furthermore, only 82 instances need more than
10 seconds to solve.

Finally, one can imagine that justifications are excellent for incremental par-
ity game solving. When a small part of a parity game is revised, justifications
allows one to identify the affected part of the solution, to reset the nodes in that
part to the default winners and to start the search for a solution form there. So
far we are not aware of applications that could use such an incremental parity
game solver.

References

[1] Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. “Improving
Priority Promotion for Parity Games”. In: Hardware and Software: Ver-
ification and Testing - 12th International Haifa Verification Conference,
HVC 2016, Haifa, Israel, November 14-17, 2016, Proceedings. Ed. by Rod-
erick Bloem and Eli Arbel. Vol. 10028. Lecture Notes in Computer Science.
2016, pp. 117–133. isbn: 978-3-319-49051-9.

[2] Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. “Solving
Parity Games via Priority Promotion”. In: Computer Aided Verification
- 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part II. Ed. by Swarat Chaudhuri and Azadeh
Farzan. Vol. 9780. Lecture Notes in Computer Science. Springer, 2016,
pp. 270–290. isbn: 978-3-319-41539-0.

[3] Florian Bruse, Michael Falk, and Martin Lange. “The Fixpoint-Iteration
Algorithm for Parity Games”. In: Proceedings Fifth International Sym-
posium on Games, Automata, Logics and Formal Verification, GandALF
2014, Verona, Italy, September 10-12, 2014. Ed. by Adriano Peron and
Carla Piazza. Vol. 161. EPTCS. 2014, pp. 116–130.

[4] Cristian S. Calude et al. “Deciding parity games in quasipolynomial time”.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017.
Ed. by Hamed Hatami, Pierre McKenzie, and Valerie King. ACM, 2017,
pp. 252–263. isbn: 978-1-4503-4528-6.

[5] Sjoerd Cranen et al. “An Overview of the mCRL2 Toolset and Its Recent
Advances”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Nir Piterman and Scott A. Smolka. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 199–213. isbn: 978-3-642-36742-7.

[6] E. Allen Emerson and Chin-Laung Lei. “Efficient Model Checking in Frag-
ments of the Propositional Mu-Calculus (Extended Abstract)”. In: Pro-
ceedings of the Symposium on Logic in Computer Science (LICS ’86),
Cambridge, Massachusetts, USA, June 16-18, 1986. IEEE Computer So-
ciety, 1986, pp. 267–278. isbn: 0-8186-0720-3.



[7] John Fearnley et al. “An ordered approach to solving parity games in quasi
polynomial time and quasi linear space”. In: Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software,
Santa Barbara, CA, USA, July 10-14, 2017. Ed. by Hakan Erdogmus and
Klaus Havelund. ACM, 2017, pp. 112–121. isbn: 978-1-4503-5077-8.

[8] Oliver Friedmann and Martin Lange. “Solving Parity Games in Practice”.
In: Automated Technology for Verification and Analysis, 7th International
Symposium, ATVA 2009, Macao, China, October 14-16, 2009. Proceedings.
Ed. by Zhiming Liu and Anders P. Ravn. Vol. 5799. Lecture Notes in
Computer Science. Springer, 2009, pp. 182–196. isbn: 978-3-642-04760-2.

[9] Oliver Friedmann and Martin Lange. “The PGSolver collection of parity
game solvers”. In: University of Munich (2009).
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