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Abstract: We develop a systematic ray-tracing method which can be used to ex-

plore a wide class of higher-dimensional multi-center black objects through the shape

of their shadows. As a proof of principle, we test our method by imaging black holes

and black rings in five dimensions. Two-dimensional slices of the three-dimensional

shadows of those five-dimensional black objects not only show new phenomena, such

as the first image of a toroidal horizon, but also offer a new viewpoint on black holes

and binary systems in four dimensions.
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1 Introduction

It is well known that the black hole uniqueness theorems in General Relativity (GR)

are specific to vacuum GR in four dimensions. In more than four dimensions or

when gravity is coupled to matter fields, a plethora of new black hole solutions

comes into play. In more than four spacetime dimensions, black objects exist with

distinct horizon topologies but with the same masses and spins [1]. Coupling GR
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to matter fields gives rise to black hole solutions with scalar, fermionic or vector

hair; configurations of matter fields outside the horizon1. In this context, one even

has compact objects without horizons from self-gravitating bosonic configurations

known as boson stars. Other extensions of GR, involving higher derivatives, quantum

effects, etc, similarly lead to modifications of the unique GR horizon. This richness

of compact objects in extensions of GR has spawned vast fields of study, ranging

from exploring the intrinsic theoretical properties of those solutions to fleshing out

all the many possibilities for testing GR with recent and future observations of black

holes in nature.

String theory combines all of the above richness. Its extra dimensions and the

many matter fields arising in compactifications mean that the wide variety of gravita-

tional black hole like solutions is already evident at the classical level. The low-energy

limit of string theory, supergravity, has a vast set of solutions that are absent in 3+1

vacuum GR. To leading order in the string length expansion, supergravity theories

are two-derivative Lagrangians with couplings to matter fields in up to eleven space-

time dimensions. The solution space contains the three types of solutions mentioned

above: non-spherical horizon topologies, hairy black holes, and horizonless solutions.

The causal structure and other spacetime properties of the vast number of solutions

has remained largely unexplored. The reason is simply the complexity of most of

those solutions. Even the earliest known black ring in pure GR in 4+1 dimensions

[4] has a non-integrable geodesic problem [5]. Many more of the solutions with and

without horizons have a high degree of asymmetry with at best one (timelike or null)

Killing vector, but in general no other isometries.

With this paper, we aim to start a systematic numeric exploration of the many

black hole like solutions descending from string theory, by investigating their null

geodesic structure and using this to image the compact objects. We develop and

present a backwards ray tracing code and a visualization scheme adapted to ax-

isymmetric but otherwise arbitrary asymptotically flat, supersymmetric solutions of

five-dimensional ungauged supergravity coupled to vector multiplets, described in

[6–9] and reviewed in [10].

We choose this class of five-dimensional supersymmetric solutions for two rea-

sons. First, five is the lowest number of dimensions allowing both new horizon

topologies and smooth horizonless solutions. Second, due to supersymmetry the so-

lution space is linear in the sense that one can add sources freely and thus identify

solutions with an arbitrary number of centers. Whereas specific solutions of pure GR

in higher dimensions need to be run case by case, our code enables the imaging of

many solutions in a fast manner: The restriction to axial symmetry, or more prop-

erly one timelike and two rotational Killing vectors in 5D, is enough to reduce the

numerical integration time to the order of hours on a normal laptop, for an image of

1See e.g. [2, 3] for recent reviews.
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1000× 1000 pixels.

To demonstrate our method, we produce ray-traced images of Breckenridge-

Meyers-Peet-Vafa (BMPV) black holes [11] and supersymetric black rings of Em-

paran, Elvang, Mateos and Reall [12]. To the best of our knowledge, these are the

first ray-traced images of higher-dimensional objects2 and the first images of black

rings altogether. As a verification of our method, we compare the numerically gen-

erated BMPV shadows with analytically computed shadows cast by BMPV black

holes and find perfect agreement. Two-dimensional slices of these ray-traced images

exhibit all known features of rotating black holes in four dimensions, including the

characteristic shape of near-extremal images due to frame dragging.

Our images of black rings reveal new features. Depending on which two-dimen-

sional slicing one considers, the images can serve different purposes. While the black

ring horizon has topology S1×S2, one possible 2D slicing has the topology of two dis-

connected two-spheres. Imaging this reveals the same key features known for binary

systems in four dimensions, such as disconnected shadows with characteristic ‘eye-

brows’ [14–21]. This opens up a new analytic avenue for exploring four-dimensional

black hole binaries. Other 2D slicings of black ring shadows show the first exam-

ples of shadows of toroidal horizons3, which can appear as concentric annuli in the

two-dimensional projection. We do not compare to analytic results for black rings

as those are only available for a restricted set of geodesics [23].

The rest of this paper is organized as follows. In section 2, we give the details

of our visualization scheme and integration method. In section 3, we discuss the

BMPV black hole metric, its ray-traced images and compare to analytic results. In

section 4 we discuss our images of supersymmetric black rings from different viewing

angles and explain the salient features. We end with a summary and outlook on

the many future imaging paths forward in section 5. The appendices contain the

following supplementary material: Appendix A has a technical review of the full

class of multi-center solutions to explain our conventions. We provide a derivation of

the geodesic equations for axisymmetric multi-center solutions in appendix B, and

we end with the calculation of the geodesic equations and the shadow contour for

BMPV black holes in appendix C.

2 Integration and Visualization Procedure

To create an image we use an extension of the setup discussed in [16, 24, 25]. Readers

who want to get to the physics can skip this section and just keep in mind that

following the procedure with no central object gives the reference image in figure 1.

The goal is to assign a color to each pixel on a 2D slice of the three-dimensional

screen constructed in the local sky of an asymptotic observer. We do this in three

2Analytic result on the black hole shadow exist for Myers-Perry black holes [13].
3A toroidal shadow of a horizon with spherical topology has been observed earlier, see [22].
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steps. First we associate a geodesic to each direction in the observer’s local sky

(section 2.1). Next we follow this geodesic numerically until it either escapes or falls

behind a horizon (section 2.2). And finally we associate a color to this geodesic

depending on where it ended up (section 2.3).

Figure 1. The view of an asymptotic observer if there is no central object present. This

view was generated by using the numerical algorithm on five-dimensional Minkowski space

as a consistency check. The location of the colors have been chosen to match the colors of

[24, 25].

2.1 The Local Sky

The first step is to associate a geodesic to each direction in the local sky of our

observer in four-dimensional space. To bring this into practice, we will relate a set of

local Cartesian coordinates for the asymptotic observer (x, y, z, w), to an appropriate

global Cartesian coordinate system (x1, x2, x3, x4), see figure 2. We then express the

asymptotic direction (a vector in the observer’s frame) to null geodesics in the global

spacetime coordinates.

The local set of Cartesian axes (x, y, z, w) has its origin at the position of the

observer. Without loss of generality, we can choose this to be

(x1, x2, x3, x4)observer = (d sin i, 0, d cos i, 0) , (2.1)

with the inclination i and the Cartesian distance d from the origin. A direction

in which the observer is looking is then represented by a unit vector in this local

Cartesian frame. Before we can continue we need to fix these local Cartesian axes

in some way. We can begin by putting the x axis in the radial direction towards the

origin of the spacetime. Due to our choice of position this lies in the (x1, x3) plane

of the global Cartesian coordinates. We can pick the z axis to be in the (x1, x3)
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Figure 2. Geometry of the two different Cartesian coordinate axes. The (x1, x2, x3, x4)

form a global Cartesian coordinate system and the (x, y, z, w) are a set of Cartesian axes

located at our distant observer.

plane perpendicular to the x axis, and we orient it such that it points in the positive

x3 direction. We take the y–axis and w–axis to be aligned with the −x2–axis and

−x4–axis respectively. This construction is illustrated in figure 2.

Next we represent a vector in this local frame in the spacetime coordinates. If

we start with a vector in the local frame with components (vx, vy, vz, vw) we can

calculate what its components are in the global Cartesian frame with some simple

geometry:

vx1 = −vx sin i− vz cos i

vx2 = −vy
vx3 = −vx cos i+ vz sin i

vx4 = −vw. (2.2)

At this point we have a map from a local vector to a null geodesic in the space-

time. To get a flat image we map a set of rectilinear coordinates (a, b, c) ∈ [0, 1]3 to

a local vector. To do this we use a Mercator like projection similar to the one used

in [16, 24, 25]:

vx = k0 (2.3)

vy = k0(2a− 1) tan
(αy

2

)
= k0v̄y (2.4)

vz = k0(2b− 1) tan
(αz

2

)
= k0v̄z (2.5)

vw = k0(2c− 1) tan
(αw

2

)
= k0v̄w, (2.6)
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the αy, αz and αw effectively represent different camera apertures and the k0 is a

normalization constant which we will use to fix the energy of the geodesic. We can

now form an image made up of discrete voxels by discretizing the three coordinates

(a, b, c). This is useful to get an idea of the shape of the shadow which a full 5D

observer would see. But this is not a very convenient way to study the lensing effects

since different areas will be hidden behind and inside each other. To study the lensing

effects it is better to take 2D slices of the full 3D (a, b, c) space and then discretize

this 2D subspace to get an image made out of pixels.

The multi-center solutions of our interest are naturally written in Gibbons-

Hawking coordinates (r, θ, φ, ψ). To apply the above steps, we bring the asymp-

totic form of the metric into standard Cartesian coordinates on flat space by the

coordinate redefinition:

x1 = 2
√
r cos

(
φ+

ψ

2

)
cos

(
θ

2

)
,

x2 = 2
√
r sin

(
φ+

ψ

2

)
cos

(
θ

2

)
,

x3 = 2
√
r cos

(
ψ

2

)
sin

(
θ

2

)
,

x4 = 2
√
r sin

(
ψ

2

)
sin

(
θ

2

)
. (2.7)

The coordinate distance and inclination are then:

robserver =
d2

4
, θobserver = −2i+ π. (2.8)

In appendix B we show how we to set up the initial value problem at fixed energy E

in Gibbons-Hawking coordinates. The result is that we solve the system of equations

given by (B.10) starting from the initial conditions (B.14).

2.2 Numerical Integration

We now have set up an initial value problem (IVP) for each triplet (a, b, c) in camera

space. To solve the IVP we use the following procedure:

1. We integrate the IVP by using for example the RKDP method as implemented

in the ODE45 function of the MATLAB ODE suite (in the future a more

specialized integrator can be used).

2. To handle coordinate singularities we use event location to stop the integration

when we get close and decrease the tolerance of the integrator. We estimate

when we have moved far enough away from the singularity and check if we have

indeed done so when we reach that point. If we have, we increase the tolerance

back to the original value and continue, otherwise we estimate again and keep

the tolerance.
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3. We end the integration when we reach one of two possible exit conditions. The

first is if the geodesic is back at the same radial coordinate at which it started,

this signifies that it has escaped to infinity. The second condition is if we are

within a chosen small Cartesian distance from a horizon, in this case we say

that the geodesic has fallen behind the horizon.

4. To estimate the integration error we calculate the RMS of ξ(τ)− 1 along each

geodesic (see appendix B). If this is larger than a predetermined tolerance we

reject this geodesic and restart the integration with more stringent tolerances.

Those four steps provide a map from the camera coordinates (a, b, c) to either the

horizon or to some position far away from the object.

2.3 Color Coding

As a third and final step, we associate the final position of each geodesic to a color.

All the geodesics which fell behind the horizon are marked black. The geodesics

which escaped from the central object are colored according to the given reference

image. In principle this image is three-dimensional. We will always restrict to a 2D

subspace first and apply the colour coding afterwards as follows. First we convert

the 4D final positions of the escaped geodesics to Cartesian coordinates. Next we

take the 3D subspace containing the radial direction from our observer and the two

directions corresponding to the chosen hypersurface. In this 3D subspace we can go

to standard spherical coordinates and map the polar angle to the vertical direction

of the image and the azimuthal direction to the horizontal direction of the image.

This gives us an RGB value for each escaped geodesic. Using this visualization an

observer would see figure 1 if there is no central object in the way.

3 Supersymmetric Black Holes

Perhaps the simplest non-trivial metric in the multi-center class we describe is the

Breckenridge-Myers-Peet-Vafa (BMPV) black hole [11]. It describes the 5D version

of the extremal Reissner-Nordstrom metric.

3.1 Metric

We work with the form of the metric adapted to the multi-center extension described

in appendix A:

ds2 = −Z−2/3(dt+ k)2 + Z−1/3ds24(R4), (3.1)

with the functions

Z = 1 +
Q

4r
, k =

J

8r
(dψ + (1 + cos θ)dφ) . (3.2)
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Four-dimensional flat space is written as a particular Gibbons-Hawking fibration

[26, 27] over R3 with radial coordinate r:

ds24(R4) = r(dψ + (1 + cos θ)dφ)2 + r−1
(
dr2 + r2(dθ2 + sin2 θdφ2)

)
. (3.3)

The relation to Cartesian coordinates x1, x2, x3, x4 is given by (2.7).

3.2 Physical Properties

The BMPV black hole has an electric charge Q and two angular momenta. We label

those as J12 and J34 in standard Euclidean coordinates x1, x2, x3, x4. Supersymmetry

imposes the extremality constraint on the mass and equality of the angular momenta:

M =
π

4G5

Q , J12 = J34 ≡
π

4G5

J , (3.4)

with G5 the 5D Newton constant. We will chose units such that π
4G5

= 1. The

fact that the solution has rotation might seem surprising from GR intuition, since in

3+1 dimensions, black holes can have only one independent rotation that is required

to vanish by invariance under supersymmetry. In 4+1 dimensions however, black

holes can have two independent rotations in two orthogonal planes; supersymmetry

requires only one combination of them to vanish.

The horizon has the topology of S3, a three-sphere, with horizon area AH =

4π
√
Q3 − J2. As for the Kerr metric, too large values of the angular momenta can

lead to pathologies. Positive horizon area requires J ≤ Q3/2. For larger angular mo-

menta, the solution becomes ‘over-spinning’ and has naked Closed Timelike Curves.

Those can be resolved invoking higher-dimensional effects [28–31]. We choose to

focus on imaging BMPV black holes with J ≤ Q3/2 only in this paper.

3.3 Images

For imaging purposes, we will always suppress one dimension by fixing one of the

four Cartesian spatial coordinates x1, x2, x3, x4 to zero. To clarify the basic physics

picture, we choose inclination angle i = 0 and suppress one direction. By symmetries

of the black hole metric, there are two interesting choices for the remaining 3 axes.

Either there is non-zero angular momentum in the horizontal plane containing line of

sight (“edge on”), or we see non-zero angular momentum in the plane perpendicular

to the line of sight (“face on”). We present the images for 3 different values of the

rotation parameter J/Q3/2 in figure 3.

The images of the shadow show very similar behaviour as known from the ro-

tating Kerr solution. Even though the horizon itself of the BMPV black hole is a

non-rotating null hypersurface [32], we do not see this effect in the shadow, since

it images the light ring rather than the event horizon. As the angular momentum

is increased, the shadow center shifts to the right, while the left side develops a

flat side—the characteristic D-shape image known for rotating Kerr. This is due to
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Figure 3. Images of BMPV black holes for x4 = 0. From left to right: J/Q3/2 = 0.5, 0.9, 1.

Top row: face-on, rotation perpendicular to line of sight. Middle row: edge-on, rotation

along line of sight. Bottom row: analytical shadow corresponding to second row.

the frame-dragging (on the left side of the image, rotation is oriented out of page).

The edge-on view, with rotation perpendicular to line of sight, only shows the frame

dragging in the image outside the round shadow.

We end this section with a comparison to analytic results. Since the geodesic

problem in the BMPV background is Liouville integrable [28], one can separate the

geodesic and wave equations [29, 33]. We can then can obtain the equation for the

edge of the black hole shadow following the same method as for the Kerr black hole.

In appendix C we perform those calculations for the three-charge generalization of

the BMPV black hole and discuss the equation for the shadow edge in terms of the

impact parameters and inclination angle.

We found agreement between numerical and analytic results for the shadow edge

up to numerical precision for our chosen resolution. For angular momentum close

to the extremal value 0.99 . J/Q3/2 < 1 the numerical integration near the shadow

edge is more error-prone due to the inner and outer horizon nearly coinciding. We

still find agreement within our image resolution. For reference, we plot the analytic
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shadow in the bottom row of figure 3.

4 Supersymmetric Black Rings

Our second example is the supersymmetric black ring [9, 12].

4.1 Metric

We write the metric again in the form

ds2 = −Z−2/3(dt+ k)2 + Z−1/3ds24(R4), (4.1)

with the coordinates (3.3). The black ring has two centers (two poles in harmonic

functions): one located at the origin of R3, the other we put at the positive z-axis

at a distance a. This is reflected in the form of Z and k:

Z = 1 +
Q− q2

4Σ
+
q2r

4Σ2
, (4.2)

k =

[(
q3r2

8Σ3
− 3qr (q2 −Q)

16Σ2

)
(1 + cos(θ)) +

3q (4r +R2)

8Σ
− 3q

2

]
dφ

+

[
q3r2

8Σ3
− 3qr (q2 −Q)

16Σ2
+

3q (4r +R2)

16Σ
− 3q

4

]
dψ, (4.3)

with Σ =
√
r2 − 2ar cos θ + a2 the coordinate distance of the ring location to the

origin.

4.2 Physical Properties

Again this solution has an electric charge Q, but unlike the black hole it has two

independent angular momenta. The origin of this freedom is the presence of a dipole

charge q, related to non-trivial magnetic fields:

M =
4G5

π
Q , J12 − J34 =

3π

G5

aq . (4.4)

Again we will put π
4G5

= 1. The black ring has non-spherical horizon topology:

the horizon has the topology of S1 × S2, a higher-dimensional torus with S2 cross-

section. The horizon area of the ring is the product of the S1 length, with radius

L =
√
3

2q

√
(Q− q2)2 − 16aq2, and the S2 area, which has radius q/2:

AH = 2π2q2L > 0 . (4.5)

As for the black hole, the requirement of positive horizon area puts a bound

on the angular momenta. However, this is an insufficient condition for physical

regularity. Absence of CTC’s requires also that 0 < q <
√
Q. In addition the ring

radius parameter a should be positive. We plot the region of allowed ring solutions
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in the (J12, J34) plane in figure 4. We choose to normalize the angular momenta by

an appropriate power of the charge Q. This is not a mere fixing of scale, but is a

judicious choice that makes use of the invariance of the spectrum of solutions of 5D

supergravity coupled to vector multiplets under the rescaling:

(Q, J12, J34)→ (λ2Q, λ3J12, λ
3J34) , λ > 0 , (4.6)

which map solutions to solutions. Hence the two-dimensional diagram truly repre-

sents all solutions in this three-parameter class of black rings.

Figure 4. The phase diagram of black holes and black rings in the (J12, J34)-plane. An-

gular momenta are normalized by Q3/2. Black holes correspond to the green diagonal line,

black rings lie under the curved red line and extend along the horizontal axis to unbounded

J12. The purple dots show particular solutions we image below.

Depending on the ratio of ring circumference by cross-sectional area, set by L/q,

we can distinguish two distinct types of black rings. When that ratio is close to

its minimal value L/q & 2, we have a ‘thick ring’, shaped like a higher-dimensional

donut with a relatively small hole in the middle. For L/q � 2 we have a ‘thin ring’.

One can check that thick rings have values of angular momenta that are nearly equal

(close to the black hole vlaues), while the thinnest rings have J12 � J34. We will see

below that indeed thin rings generate quite a different image than black holes.

As a final remark, we note that although classically the charges take on a contin-

uous range of values, charge quantization in string theory requires Q and q to take

on discrete values.

4.3 Images

Unlike for the black hole, different slicings are now giving physically distinct two-

dimensional images for a given viewing angle. Upon fixing one Cartesian direction,
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the two-dimensional projection of the S1×S2 horizon area will be either two discon-

nected S2’s, or a two-dimensional torus with S1 × S1 topology. For each projections

we show two different viewing angles that we dub “face-on” and “edge-on”, see table

1 for an overview. We will make most plots in the order of the table, see figure 5.

Unless stated otherwise, we take the camera at coordinate distance d = 5
√
Q, with

d defined as in (2.8).

Coord. Topology Inclination along LOS along screen

x2 = 0 2 S2’s i = 0 (Face on) / J34
x2 = 0 2 S2’s i = π

2
(Edge on) J34 /

x4 = 0 S1 × S1 i = 0 (Face on) / J12
x4 = 0 S1 × S1 i = π

2
(Edge on) J12 /

Table 1. The four main viewings we discuss in this paper, organized in two slices and two

inclinations. For each we give the fixed Cartesian coordinate defining a 3D hypersurface,

the topology of the two-dimensional slice of the horizon within this hypersurface, the

inclination and whether the remaining angular momentum in the 3D hypersurface is along

the line of sight (LOS) or the screen.

4.3.1 Disconnected Two-sphere Topology

First we fix x2 = 0 to obtain the 2D slicing of the horizon with disconnected two-

spheres (left 2 columns of figure 5). As one might expect, the images show a striking

resemblance to earlier visualizations of binary black holes [16] and we recover the

main features. When viewed face on (inclination i = 0), we clearly see the shape

of the two disconnected parts of the horizon. At the outer edges, we also recognize

the distinct ‘eyebrows’, the flattened image of one part of the horizon from lensing

around the other disconnected part [14, 15]. When imaging this slicing edge on

(inclination i = π/2), the S2’s and the camera align. The shadow of the farthest S2

appears as a ring around the central shadow of the closer object. Such an image is

similar to the visualization of an in-spiraling binary system shown in [16].

To investigate the appearance of chaotic effects due to lack of integrability, we

zoomed in on one of the images, see figure 6. Binary black hole shadows are known

to exhibit fractal structure [16, 18] and we confirm similar behaviour for black ring

images. The black ring shadow shows a repeated structure of multiple eyebrows or

concentric annuli, see figure 6. Although a more detailed study is outside the scope

of this work, we think it would be a worthwhile to investigate this further in terms

of distinct loci in spacetime and Lyapunov exponents according the lines of [34].

We leave a more detailed comparison to known examples of two-center black

holes to future work. For the supersymmetric rings we discuss in this paper, such

a comparison would be most natural with extremal charged four-dimensional solu-
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x4
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J34

O
x1

x2

x3

J12

O

x1

x2

x3

J12

O

Figure 5. Images of black rings with constant J12 = 49
32Q

3/2 organized as in table 1. Top

row: the position of the camera for the four main types of images we provide in this paper.

Middle row: ring 4 in phase diagram of figure 4, with J34 = 13
27Q

3/2. Bottom row: ring 5

with J34 = 107
432Q

3/2.

tions, such as the two-center Papapetrou-Majumdar solution discussed in [15]. The

extension to uncharged black rings would be interesting as well.

4.3.2 Toroidal Topology

Next we fix x4 = 0. The 2D slice of the black ring horizon has the topology of

S1× S1, a two-dimensional torus. This is the first example of an image of a toroidal

black shadow and its effects on the surrounding spacetime.

The two inclinations we choose show a number of new effects. When viewed

face on (third column of figure 5), one can clearly distinguish two concentric black

annuli: a central annulus with a black halo around it. Increasing precision reveals

again a fractal-like looking structure of ever thinner concentric annuli as one moves

away from the center of the image (figure 6). The innermost ring indicates geodesics

hitting the ring directly, the secondary ring those geodesics that have one turning
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Figure 6. High-resolution zoom picture of a portion of the shadow of black ring 4 viewed

as in figure 5. We clearly see the repetition of multiple annuli, eyebrows and structure

inside the holes.

point and so on. The thickness of the inner ring depends on the ring parameters: for

large values of L/q, the ring radius greatly exceeds the radius of the S2 cross-section

and we naturally observe thinner rings with thinner annuli as a consequence.

When viewed edge on (fourth column of 5), the image becomes most interesting.

The shadow has three main features: an elongated shape, two holes, and a clear

left-right asymmetry not of the D-shape kind known from earlier visualizations of

rotating black objects:

• The elongated shape reveals the shape of the ring. For larger values of L/q,

the ring becomes thinner and the image becomes more elongated.

• The holes in the image arise from geodesics shooting through the ring from

either above or below and escaping through infinity. By symmetry of the

problem, the holes are symmetrically placed with respect to the horizontal axis
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and the holes intersect the vertical axis, as geodesics going through the ring

and the origin of our coordinate system are always mapped to the vertical. We

clearly distinguish two large holes near the horizontal axis and long thin holes

near the shadow edge, with repeated shadow structure inside the holes (figure

6)4.

• Both the holes and the shape of the shadow have a left-right asymmetry.

For generic values of angular momenta, the shadow edges left and right are

smoothly curved, with a smaller radius of curvature on the left part of the

figure. The asymmetry itself is caused by the rotation along the ring plane

(J12, along line of sight). The left-hand side of the image shows a part of the

ring that is rotating towards the camera, which causes a contraction effect in

the lensing, while the opposite is true for the right-hand side. The same effect

happens for the holes. The angular momentum J34 is only indirectly visible in

the image: for fixed values of the J12, it influences the size of the ring and the

shape of the shadow.

All three qualitative features are related to the topology and affected by the ratio of

the two angular momenta as we discuss now.

4.3.3 Effects of Angular Momentum

We explore the phase space of allowed angular momenta for the black rings and

compare to black holes with the same value of one of the two angular momenta.

Recall that the J12 is along the ring horizon S1, while J34 is orthogonal. figure

5 shows two different solutions with constant J12, figure 7 shows three different

solutions with constant J34.

When J12 ≈ J34 (left column in figure 7), black ring parameters are close the

the black hole and unsurprisingly the image is almost indistinguishable from a black

hole’s. In general, however, images of black rings differ quite a lot from the black

hole image, and there is a lot of variation in size of the black ring compared to the

black hole.

Having either one angular momentum along the line of sight, gives the clearest

distinction of the black hole image, as it reveals either the disconnected or the elon-

gated shape of the shadow, see figure 7. The bottom row in that figure shows an

extremal spinning black ring, with maximal J12 for given J34. The effect of rotation

on the surrounding spacetime is visible in all images, but the effect on the shadow is

as announced only visible when the angular momentum along the line of sight, that

is, for the viewing angles of figure 7. The edge on view of the disconnected slicing

(bottom left) does not shows the typical D-like shape in the individual shadows of

4For completeness we note that in Fig 4a in [35] a shadow of a Manko-Novikov solution is

reported displaying two holes.

– 15 –



Figure 7. Images of black rings for constant J34 = 11
16Q

3/2 but varying J12. Rows represent

black ring solutions 1,2,3 (top to bottom) in the phase diagram of figure 4. The bottom

row is the extremal ring. Viewing angles and slicings correspond to left and rightmost

columns of figure 5.

the disconnected parts of the images, but we can see this effect still on the image

outside the shadow, which shows resemblance to the extremal black hole image of

figure 3. The edge-on view of the toroidal slice (bottom right) is interesting: the

shadow acquires the typical D-like shape and shift off-center towards the right, as

known for near-extremal Kerr. But still we see the holes characteristic to black ring

solutions.

Finally we want to point out that extremal rings with larger ratios of the angular

momenta resemble much less the black hole image, see figure 8. Such rings are very

thin and their shadows remain elongated; the flattening of the shadow is present only

at the very tip of the shadow.
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Figure 8. Images of the extremal thin black ring solution 6 in the phase diagram figure 4,

with J12/J34 = 3889/214 ≈ 18.17Q3/2 and J12 = 3889
864 Q

3/2, taken from coordinate distance

d = 10
√
Q.

5 Outlook

We have developed the numerical tools to explore multi-center black hole like solu-

tions of string theory with null geodesics. As an application, we discussed images

and shadows of supersymmetric black holes and black rings in five dimensions and

we also showed how they give insight in four-dimensional physics. In this respect it is

worth noting that the visualization of black rings in higher dimensions offers a novel

and complementary view on binary systems in four dimensions. This may prove

important since the imaging of binaries in 3 + 1 dimensions has some technical limi-

tations arising from the fact that one is mostly restricted to working with numerical

solutions [16] or solutions with conical singularities, such as the double Schwarzschild

solution and double-Kerr solutions [20, 21]. By contrast black rings are analytically

known and non-singular. In this context it would be very interesting to adapt the

quasi-static procedure of [21] and consider images of rotating black rings. We leave

this to future work.

There are two further directions in which our calculations should be extended.

First, with our ray-tracing and visualization technique in place, it can be immedi-

ately applied to more intricate black hole like solutions. We are currently working on

imaging solutions with more than two centers in the wide class of five-dimensional

multi-center solutions, such as multi-black holes, multi-rings, and horizon-less mi-

crostate geometries [36]. Ultimately, we deem it important to extend the method

developed here to more generic spacetimes not restricted by supersymmetry.

Second we want to emphasize that 2D images using backwards ray-tracing are

merely scratching the surface. There is a much broader set of analytic and nu-

merical tools at our disposal to explore and study the spacetime structure in the

neighbourhood of black objects. A very useful one, that can be obtained with sim-

ilar integration methods, is the geodesic deviation near compact objects. As was
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noted in [37, 38] geodesic probes can reach extremely high tidal forces long before

they reach the region where the geometry differs significantly from the correspond-

ing black hole. We aim to use our code to check this explicitly for five-dimensional

multi-center solutions. Other important extensions include using massive probes and

the study of the effect of an environment around compact objects.

More generally speaking, studies along these lines (see also e.g. [39]) work to-

wards bridging the gap between observations and string theory or quantum gravity.

Imaging the shadow of resolvable supermassive black holes using upcoming results

of the Event Horizon Telescope, but also the details of the ringdown encoded in

gravitational wave signals of compact binaries, are largely determined by the nature

of the light ring, the unstable photon orbit outside the black hole. Understanding

the geodesic structure near and inside the light ring of alternative compact objects is

thus key to flesh out any possible deviations from the GR paradigm; imaging objects

constitutes an important step in that direction.
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A Multi-center Solutions in 5D

In this section we give the larger class of metrics we study in one fixed notation, as

different conventions have been used throughout the literature. We mostly follow

[10].

We focus on supersymmetric, stationary, asymptotically flat solutions of 5D su-

pergravity couple to an arbitrary number of vector multiplets with a timelike Killing

vector. This class of solutions is written as a fibration of time over a four-dimensional

space space [6, 40, 41]

ds2 = −Z−2(dt+ k)2 + Zds24 . (A.1)

Supersymmetry requires the four-dimensional space to be hyperkähler. We restrict

to the large subset of metrics for which the four-dimensional base space is a Gibbons-

Hawking space. Those multi-center solutions were derived in five dimensions in [7–9]
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and reviewed in [10]. The generic solution after reduction over the Gibbons-Hawking

fibre originally given in [42, 43]. For concreteness, we present the code and the

solutions in the ‘STU model’ that arises in compactification of eleven-dimensional

M-theory on T6/Z2 × Z2(2 vector multiplets).

In section A.1 we only present the solution of the metric, not of the gauge fields

nor the scalar fields, as those are not needed for our purposes. In section A.2 we write

out the metric for an axisymmetric but otherwise arbitrary solution in the class. We

recall how the black hole and black ring metrics we use are recovered in section A.3.

A.1 Multi-center Solutions

The family of metrics of three–charge solutions with a Gibbons–Hawking base space

is determined by eight harmonic functions on flat R3, with N centers:

V = v0 +
N∑
i=1

vi
ri

KI = kI0 +
N∑
i=1

kIi
ri

(A.2)

LI = l0,I +
N∑
i=1

`I,i
ri

M = m0 +
N∑
i=1

mi

ri
, (A.3)

where ri = ||~r−~ri||, ~ri ∈ R3 are the locations of the centers which carry the harmonic

charges and I = 1, 2, 3 is an index that runs over the gauge fields (2 from the vector

multiplets, one from the graviphoton). Those harmonic functions enter the metric

(A.1) through intermediary functions ZI , µ and one-forms A, ω:

Z = (Z1Z2Z3)
1/3 , k = µ (dψ + A) + ω , ds24 = V −1 (dψ + A)2 + V ds23,

with the relations

ZI = LI +
1

2
|εIJK |

KJKK

V
, (A.4)

µ =
K1K2K3

V 2
+
KILI

2V
+M, (A.5)

?3 dA = dV, (A.6)

?3 dω = V dM −M dV +
1

2

(
KI dLI − LI dKI

)
. (A.7)

Note that we allow the four-dimensional Gibbons-Hawking metric to be ‘ambipolar’,

that is: it can flip signature from ++++ to −−−− between regions, by allowing ZV

to switch sign at the same location. The boundary region is known as an ‘evanescent

ergosurface’ [10, 44].

We get flat 5D asymptotics by setting v0 = kI0 = 0, `0,I =
∑N

i=1 vi = 1 and

m0 = −1
2

∑
I,i k

I
i . Then the ADM mass and electric charges are

M =
π

4G5

(Q1 +Q2 +Q3) , (A.8)

QI = 4
N∑
i=1

(
`I,i +

1

2
|εIJK |kJi kKi

)
. (A.9)
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The angular momenta can be obtained from a Komar integral, see for instance [1] for

the normalization we use. We only give the full expression angular momenta below

for axisymmetric solutions.

Generically these metrics will have CTC’s, a necessary requirement to avoid

these are the bubble equations:

m0vj +
∑
I

kIj
2

=
∑
i 6=j

vimj −mivj + 1
2

(
kIi `I,j − `I,ikIj

)
||~ri − ~rj||

, ∀j. (A.10)

The bubble equations impose N − 1 independent relations on the constants deter-

mining the solution

A.2 Axisymmetric Solutions

If we assume that all centers are on on a line along the z–axis of the 3D space we

can solve for the one-forms explicitly:

A ≡ Aφ dφ =

(
−1 +

∑
i

vigi

)
dφ (A.11)

ω ≡ ωφ dφ =

(
1

2

∑
i,j

ui,jfi,j −
∑
j

tjgj

)
dφ, (A.12)

with:

gi =
r cos θ − zi

ri
(A.13)

fi,j =



r2 − (zi + zj − ri + rj) r cos θ

(zi − zj)rirj
+
zizj + zirj − zjri − rirj

(zi − zj)rirj

when i < j

−fj,i when j < i

(A.14)

ui,j = vimj −mivj +
1

2

(
kIi `I,j − `I,ikIj

)
(A.15)

tj = cmvj +
∑
I

kIj
2
−
∑
i

ui,j
|zi − zj|

, (A.16)

where the zi are the locations of the centers along the z–axis. The functions gi in

ω lead to Dirac-Misner strings, to prevent CTC’s we need to impose the bubble

equations (A.10).

The angular momenta take the form

J12 =
2π

G5

[∑
i

mi +
1

2

∑
i,j

li,Ik
I
j +

∑
i,j,h

k1i k
2
jk

3
h +

1

2

∑
i,I

zi

(
kIi − vi

∑
j

kIj

)]

J34 = J12 −
2π

G5

[
1

2

∑
i,I

zi

(
kIi − vi

∑
j

kIj

)]
. (A.17)
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A.3 Supersymmetric Black Holes and Black Rings

The general supersymmetric black hole solution and black ring solutions in this

class are the three-charge generalizations [7, 45] of the BMPV black hole [11] and

supersymmetric black ring [12] we imaged in this paper. We recall how those fit into

the general class we give above.

A.3.1 Three-charge Black Holes

The three-charge black hole [45] has a single center located at the origin of R3 with

the Gibbons-Hawking charges:

v = 1 kI = 0, `I =
QI

4
m =

J

8
. (A.18)

This solution has three electric charges QI and angular momenta J12 = J34 = J .

The metric is determined by:

ZI = 1 +
QI

4r
, µ =

J

8r
, A = (1 + cos θ) dφ, ω = 0. (A.19)

The black hole metric can be brought into a more standard form upon performing

the coordinate transformation r = ρ2−Q
4
, θ̃ = 2θ − π, φ1 = π + φ− ψ, φ2 = 2ψ − 2π:

ds24 = −f 2(dt+ k)2 + f−1(dρ2 + ρ2(dθ̃2 + sin2 θdφ2
1 + cos2 θdφ2

2)) , (A.20)

with f ≡ Z−1 = 1− Q
ρ

.

In this paper, we take the three charges to be equal Q1 = Q2 = Q3 ≡ Q to

obtain the BMPV solution [11, 33].

A.3.2 Three Charge Black Rings

We write the black ring of [7] in our conventions. We take two centers located at

~r1 = ~0 and ~r2 = a~uz, with ~uz a unit vector along the z-axis in R3. The harmonic

functions are

V =
1

r
, KI =

qI

2Σ
, LI =

Q̄I

4Σ
, M =

1

4
(q1 + q2 + q3)

(
−1 +

a

Σ

)
, (A.21)

with

Σ ≡ ||~r2|| = Σ =
√
r2 + a2 − 2ra cos θ , Q̄I = QI −

1

2
CIJKq

JqK , (A.22)

The relation to the ring parameter R is a = R2/4. The functions appearing in the

metric (A.1) are

ZI = 1 +
Q̄I

4Σ
+

1

2

CIJKq
JqK

4Σ2
,

ω =
1

4
(q1 + q2 + q3)

(
1− a

Σ
− r

Σ

)
(cos θ − 1) dφ ,

µ = −1

4
(q1 + q2 + q3)

(
1− a

Σ
− r

Σ

)
+

r

16Σ2

(
qIQ̄I + 2q1q2q3

r

Σ

)
, (A.23)

A = (1 + cos θ)dφ . (A.24)
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The spacetime has ADM mass, electric charges and angular momenta:

M =
π

4G5

(Q1 +Q2 +Q3) (A.25)

QI = Q̄I +
1

2
|εIJK |qJqK (A.26)

J12 =
π

4G5

[
1

2

(
qIQ

I − q1q2q3
)

+ 4a (q1 + q2 + q3)

]
(A.27)

J34 =
π

4G5

[
1

2

(
qIQ

I − q1q2q3
)]
. (A.28)

This solution also has dipole charges equal to qI

2π
. The bubble equations are satisfied

with this choice of centers. Plugging this second configuration into the metric yields

the extremal three-charge black ring in a form similar to equation (2.6) in [46].

In this paper, we present the black ring with Q ≡ Q1 = Q2 = Q3 and q ≡ q1 =

q2 = q3.

B Geodesics

In this appendix we give the geodesic equations for the general axisymmetric multi-

center solutions and give the initial conditions for the setup described in 2.1. We

have three isometries in the spacetimes with all centers along the z axis, these lead

to the following constants of motion for geodesics:

E =
1

Z2

[
dt

dλ
+ (µAφ + ωφ)

dφ

dλ
+ µ

dψ

dλ

]
(B.1)

Lφ = −ωφE + AφLψ + ZV ρ2 sin2(θ)
dφ

dλ
(B.2)

Lψ = −µE +
AφZ

V

dφ

dλ
+
Z

V

dψ

dλ
. (B.3)

Those can be solved for the derivatives to get a set of first order equations:

dt

dλ
= Z2E − (µAφ + ωφ)

dφ

dλ
− µdψ

dλ
(B.4)

dφ

dλ
=
Lφ − AφLψ + Eωφ
V Zr2 sin2(θ)

(B.5)

dψ

dλ
=
V (Lψ + Eµ)

Z
− Aφ

dφ

dλ
. (B.6)

In general we cannot find first order equations for r and θ, we have to resort to the

second order geodesic equation so we need the Christoffel symbols:

Γrνσ =
2δrσδ

r
ν∂rV Z +

(
δrσδ

θ
ν + δθσδ

r
ν

)
∂θV Z − ∂rgνσ

2V Z
(B.7)

Γθνσ =
2δθσδ

θ
ν∂θr

2V Z +
(
δθσδ

r
ν + δrσδ

θ
ν

)
∂rr

2V Z − ∂θgνσ
2r2V Z

. (B.8)
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There is one more constant of motion:

δ = gµν
dxµ

dλ

dxν

dλ
(B.9)

In principle this could be used to reduce one of the second order equations to a first

order equation but since δ is quadratic in the derivatives this is not very practical.

Instead we will use it to keep track of integration errors similar to what was done in

[47]. We define a parameter:

ξ = Z3

[
dt

dλ
+ (µAφ + ωφ)

dφ

dλ
+ µ

dψ

dλ

]−2 [
V −1

(
Aφ

dφ

dλ
+

dψ

dλ

)2

+ V

((
dr

dλ

)2

+ r2
(

dθ

dλ

)2

+ r2 sin2(θ)

(
dφ

dλ

)2
)]

.

The null condition δ = 0 is then equivalent to ξ = 1.

We can simplify the geodesic equations by introducing a new parameter τ by

r2V Z dτ = dλ, we get:

dt

dτ
= r2V Z3E − (µAφ + ωφ)

dφ

dτ
− µdψ

dτ
,

d2r

dτ 2
=

1

V Z

[
2V Z

r

(
dr

dτ

)2

+
1

2
∂rgνσ

dxν

dτ

dxσ

dτ

]
,

d2θ

dτ 2
=

1

2r2V Z
∂θgνσ

dxν

dτ

dxσ

dτ
, (B.10)

dφ

dτ
=
Lφ − AφLψ + Eωφ

sin2 (θ)
,

dψ

dτ
= r2V 2 (Lψ + Eµ)− Aφ

dφ

dτ
,

and for the error parameter:

ξ =
(
r4 sin2 (θ)V Z3E2

)−1 [
sin2 (θ)

(
dr

dτ

)2

+ r2 sin2 (θ)

(
dθ

dτ

)2

(B.11)

+ r2 (Lφ − AφLψ + Eωφ)2 + r4 sin2 (θ)V 2 (Lψ + Eµ)2
]
.

With the setup for intial conditions described in 2.1 we want to directly calculate

the values of the constants of motion as functions of (a, b, c) and E. First we use the

null condition ξ = 1 to fix k0, this yields:

k0 = E

√
Z

V C
, (B.12)

where:

C =
d2

4

(
1 + v̄2z + (cos(i)v̄y − sin(i)v̄w)2

)
+

1

d2V 2

(
Aφ
sin i

v̄y −
Aφ − 2

cos i
v̄w

)2

. (B.13)
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Now we can just plug everything in and we have a full set of initial conditions and

constants of motion:

dr

dτ

∣∣∣∣
τ=0

= −E
(
d

2

)5
√
Z3V

C
, (B.14)

dθ

dτ

∣∣∣∣
τ=0

= v̄zE

(
d

2

)3
√
Z3V

C
,

Lφ = −ωE + ALψ

− E
d3

4

√
Z3V

C
sin (i) cos (i) (cos (i) v̄y − sin (i) v̄w) ,

Lψ = −µE

− E

d

√
Z3

V 3C

(
Aφ

sin (i)
v̄y −

Aφ − 2

cos (i)
v̄w

)
.

C Exact BMPV Shadow

We derive the first order geodesic equations for the 3-charge extension of the BMPV

black hole [45] using the Hamilton-Jacobi method and give the parameteric equation

for the black hole shadow in terms of impact parameters and inclination angle.

C.1 Geodesic Equations from Hamilton-Jacobi Method

The Hamilton-Jacobi equations for geodesics is:

− ∂S

∂λ
=

1

2
gµν

∂S

∂xµ
∂S

∂xν
. (C.1)

We use the ansatz:

S =
δ

2
λ− Et+ Lφφ+ Lψψ + Sr(r) + Sθ(θ). (C.2)

The constants in this equation are interpreted as length of the geodesic δ, energy E,

angular momenta Lψ and Lφ. Following the Hamilton-Jacobi procedure gives us the

following set of equations:

dt

dτ
= ErZ3 − LψJ

8r
− EJ2

64r2
, (C.3)(

dr

dτ

)2

= R, (C.4)(
dθ

dτ

)2

= Θ, (C.5)

dφ

dτ
=
Lφ − (1 + cos(θ))Lψ

sin2(θ)
, (C.6)

dψ

dτ
=

2Lψ − Lφ
1− cos(θ)

+
EJ

8r
, (C.7)
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with:

Θ = Kc −
(Lφ − (1 + cos(θ))Lψ)2

sin2(θ)
− L2

ψ , (C.8)

R = r3
(
E2Z3 − δZ

)
− r2Kc −

ELψJ

4
r − E2J2

64
, (C.9)

and where Kc is the equivalent of the ‘Carter constant’, an additional constant of

motion given by:

Kc =
(Lφ − (1 + cos(θ))Lψ)2

sin2(θ)
+ L2

ψ +

(
dθ

dτ

)2

. (C.10)

Note that τ is related to the affine parameter λ by dλ = rZ dτ .

C.2 Black Hole Shadow

Only geodesics with impact parameters such that (C.4) has a turning point escape to

infinity; the others fall into the black hole. Hence the edge of the shadow corresponds

to the family of null geodesics defined by dr/dτ = d2r/dτ 2 = 0, or equivalently

R(r∗) = R′(r∗) = 0. For null geodeiscs δ = 0 and we find that R is given by:

R

E2
= r3 +

(
Q1 +Q2 +Q3

4
− K̃c

)
r2 +

(Q1Q2Q3 − J2)

64

+

(
Q1Q2 +Q1Q3 +Q2Q3

16
− bψJ

4

)
r. (C.11)

We have introduced the impact parameters

bφ =
Lφ

E
, bφ =

Lφ

E
, K̃c =

Kc

E
, (C.12)

such that E drops out of the equations.

We want to rework the equations R(r∗) = R′(r∗) = 0 to obtain the parametric

dependence of the shadow edge on the impact parameters and the inclination angle

of the observer. Since for J = 0 the impact parameter bψ drops out of the equation,

we have to distinguish between zero and non-zero rotation.

C.2.1 Rotating Black Hole (J 6= 0)

Since R is a polynomial, the condition R(r∗) = R′(r∗) = 0 says that R has a double

root. The solution for the double root condition is given by:

K̃c (r∗) = 2r∗ +
Q1 +Q2 +Q3

4
− Q1Q2Q3 − J2

64r2∗
, (C.13)

bψ (r∗) = −32r3∗ − 2r∗ (Q1Q2 +Q1Q3 +Q2Q3)− (Q1Q2Q3 − J2)

8r∗J
.
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Note that the impact parameter bφ is not fixed by these equations. In fact it forms

the extra parameter such that the edge of the shadow is a 2D surface and the shadow

itself is a 3D volume as it should by in 5D.

To get the shadow’s edge as it appears for an observer we need to find what this

translates to in camera coordinates. To do this we first write down the equations

for the tangent vector components equations (obtained from (2.2) by coordinate

redefinition (2.7)):

vr =
∂r

∂xi
vxi = −d

2
vx,

vθ =
∂θ

∂xi
vxi =

2

d
vz,

vφ =
∂φ

∂xi
vxi = − vy

d sin i
+

vw
d cos i

,

vψ =
∂ψ

∂xi
vxi = −2

vw
d cos i

. (C.14)

We invert those equations to get the camera coordinate (a, b, c) in terms of the

tangent vector components (vr, vθ, vφ, vψ) at the observer:

a =
1

2

(
d2 sin i

2 tan
(
αa

2

) (vφ
vr

+
1

2

vψ
vr

)
+ 1

)
, (C.15)

b =
1

2

(
− d2

4 tan
(
αb

2

) vθ
vr

+ 1

)
, (C.16)

c =
1

2

(
d2 cos i

4 tan
(
αc

2

) vψ
vr

+ 1

)
. (C.17)

We can obtain the ratios of tangent vector components by using the first order

equations of motion in the limit of d→∞:

vθ
vr

=
dθ/ dτ

dr/ dτ

∣∣∣∣
d→∞

= ± 4

Ed3

√
4Kc −

L2
φ

sin2(i)
− (2Lψ − Lφ)2

cos2(i)
, (C.18)

vφ
vr

=
dφ/ dτ

dr/ dτ

∣∣∣∣
d→∞

=
2

Ed3 sin2(i) cos2(i)

(
Lφ − 2 sin2(i)Lψ

)
, (C.19)

vψ
vr

=
dψ/ dτ

dr/ dτ

∣∣∣∣
d→∞

=
4

Ed3 cos2(i)
(2Lψ − Lφ) . (C.20)
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This gives us the final result:

a(r∗, bφ) =
1

2

(
bφ

d tan
(
αa

2

)
sin(i)

+ 1

)
, (C.21)

b(r∗, bφ) =
1

2

 ±1

d tan
(
αb

2

)√4K̃c(r∗)−
b2φ

sin2(i)
− (2bψ(r∗)− bφ)2

cos2(i)
+ 1

 , (C.22)

c(r∗, bφ) =
1

2

(
2bψ(r∗)− bφ

d tan
(
αc

2

)
cos(i)

+ 1

)
. (C.23)

The edge of the shadow is then the 2D surface in (a, b, c) space that is parameterized

by bφ ∈ R, r∗ > 0 within the range 0 ≤ a, b, c ≤ 1.

C.2.2 Non-rotating Black Hole (J = 0)

We find a double root for R(r∗) = 0 when

K̃c,0 =
(4r∗ +Q1)(4r∗ +Q2)(4r∗ +Q3)

64r2∗
, (C.24)

where r∗ is the positive root of the polynomial:

32r3∗ − 2r∗ (Q1Q2 +Q1Q3 +Q2Q3)−Q1Q2Q3. (C.25)

Again translating this to camera coordinates yields:

a(bφ, bψ) =
1

2

(
bφ

d tan
(
αa

2

)
sin(i)

+ 1

)
, (C.26)

b(bφ, bψ) =
1

2

 ±1

d tan
(
αb

2

)√4K̃c,0 −
b2φ

sin2(i)
− (2bψ − bφ)2

cos2(i)
+ 1

 , (C.27)

c(bφ, bψ) =
1

2

(
2bψ − bφ

d tan
(
αc

2

)
cos(i)

+ 1

)
. (C.28)

Now K̃c is fixed at a certain value and the 2D shadow surface is instead parametrized

bφ, Lψ ∈ R within the range 0 ≤ a, b, c ≤ 1.
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[16] A. Bohn, W. Throwe, F. Hébert, K. Henriksson, D. Bunandar, M. A. Scheel et al.,

What does a binary black hole merger look like?, Class. Quant. Grav. 32 (2015)

065002 [1410.7775].

[17] M. Patil, P. Mishra and D. Narasimha, Curious case of gravitational lensing by

binary black holes: a tale of two photon spheres, new relativistic images and caustics,

Phys. Rev. D95 (2017) 024026 [1610.04863].

[18] J. Shipley and S. R. Dolan, Binary black hole shadows, chaotic scattering and the

Cantor set, Class. Quant. Grav. 33 (2016) 175001 [1603.04469].

[19] M. Wang, S. Chen and J. Jing, Shadows of Bonnor black dihole by chaotic lensing,

Phys. Rev. D97 (2018) 064029 [1710.07172].

[20] P. V. P. Cunha, C. A. R. Herdeiro and M. J. Rodriguez, Does the black hole shadow

probe the event horizon geometry?, Phys. Rev. D97 (2018) 084020 [1802.02675].

– 28 –

https://arxiv.org/abs/1601.08230
https://doi.org/10.1103/PhysRevLett.88.101101
https://arxiv.org/abs/hep-th/0110260
https://doi.org/10.1103/PhysRevD.86.104002
https://arxiv.org/abs/1208.2548
https://doi.org/10.1088/1126-6708/2004/04/048
https://doi.org/10.1088/1126-6708/2004/04/048
https://arxiv.org/abs/hep-th/0401129
https://doi.org/10.1103/PhysRevD.71.024033
https://arxiv.org/abs/hep-th/0408120
https://doi.org/10.1103/PhysRevD.71.045002
https://doi.org/10.1103/PhysRevD.71.045002
https://arxiv.org/abs/hep-th/0408122
https://doi.org/10.4310/ATMP.2005.v9.n5.a1
https://arxiv.org/abs/hep-th/0408106
https://doi.org/10.1007/978-3-540-79523-0_1
https://doi.org/10.1007/978-3-540-79523-0_1
https://arxiv.org/abs/hep-th/0701216
https://doi.org/10.1016/S0370-2693(96)01460-8
https://arxiv.org/abs/hep-th/9602065
https://doi.org/10.1103/PhysRevLett.93.211302
https://arxiv.org/abs/hep-th/0407065
https://doi.org/10.1103/PhysRevD.90.024073
https://arxiv.org/abs/1407.0834
https://doi.org/10.1103/PhysRevD.84.063008
https://doi.org/10.1103/PhysRevD.84.063008
https://arxiv.org/abs/1106.2425
https://doi.org/10.1103/PhysRevD.86.103001
https://arxiv.org/abs/1208.0635
https://doi.org/10.1088/0264-9381/32/6/065002
https://doi.org/10.1088/0264-9381/32/6/065002
https://arxiv.org/abs/1410.7775
https://doi.org/10.1103/PhysRevD.95.024026
https://arxiv.org/abs/1610.04863
https://doi.org/10.1088/0264-9381/33/17/175001
https://arxiv.org/abs/1603.04469
https://doi.org/10.1103/PhysRevD.97.064029
https://arxiv.org/abs/1710.07172
https://doi.org/10.1103/PhysRevD.97.084020
https://arxiv.org/abs/1802.02675


[21] P. V. P. Cunha, C. A. R. Herdeiro and M. J. Rodriguez, Shadows of Exact Binary

Black Holes, Phys. Rev. D98 (2018) 044053 [1805.03798].

[22] P. V. P. Cunha, J. Grover, C. Herdeiro, E. Radu, H. Runarsson and A. Wittig,

Chaotic lensing around boson stars and Kerr black holes with scalar hair, Phys. Rev.

D94 (2016) 104023 [1609.01340].

[23] S. Grunau, V. Kagramanova and J. Kunz, Geodesic Motion in the (Charged) Doubly

Spinning Black Ring Spacetime, Phys. Rev. D87 (2013) 044054 [1212.0416].

[24] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu and H. F. Runarsson, Shadows of Kerr

black holes with scalar hair, Phys. Rev. Lett. 115 (2015) 211102 [1509.00021].

[25] P. V. P. Cunha and C. A. R. Herdeiro, Shadows and strong gravitational lensing: a

brief review, Gen. Rel. Grav. 50 (2018) 42 [1801.00860].

[26] S. W. Hawking, Gravitational Instantons, Phys. Lett. A60 (1977) 81.

[27] G. W. Gibbons and S. W. Hawking, Gravitational Multi - Instantons, Phys. Lett.

78B (1978) 430.

[28] G. W. Gibbons and C. A. R. Herdeiro, Supersymmetric rotating black holes and

causality violation, Class. Quant. Grav. 16 (1999) 3619 [hep-th/9906098].

[29] C. A. R. Herdeiro, Special properties of five-dimensional BPS rotating black holes,

Nucl. Phys. B582 (2000) 363 [hep-th/0003063].

[30] C. A. R. Herdeiro, Spinning deformations of the D1 - D5 system and a geometric

resolution of closed timelike curves, Nucl. Phys. B665 (2003) 189 [hep-th/0212002].

[31] N. Drukker, Supertube domain walls and elimination of closed time-like curves in

string theory, Phys. Rev. D70 (2004) 084031 [hep-th/0404239].

[32] J. P. Gauntlett, R. C. Myers and P. K. Townsend, Black holes of D = 5 supergravity,

Class. Quant. Grav. 16 (1999) 1 [hep-th/9810204].

[33] V. Diemer and J. Kunz, Supersymmetric rotating black hole spacetime tested by

geodesics, Phys. Rev. D89 (2014) 084001 [1312.6540].

[34] J. Grover and A. Wittig, Black Hole Shadows and Invariant Phase Space Structures,

Phys. Rev. D96 (2017) 024045 [1705.07061].

[35] M. Wang, S. Chen and J. Jing, Chaotic shadow of a non-kerr rotating compact

object with quadrupole mass moment, 1801.02118.

[36] T. Hertog, T. Lemmens and B. Vercnocke, The Face of Fuzzballs, in preparation .

[37] A. Tyukov, R. Walker and N. P. Warner, Tidal Stresses and Energy Gaps in

Microstate Geometries, JHEP 02 (2018) 122 [1710.09006].

[38] I. Bena, E. J. Martinec, R. Walker and N. P. Warner, Early Scrambling and Capped

BTZ Geometries, 1812.05110.

[39] S. B. Giddings and D. Psaltis, Event Horizon Telescope Observations as Probes for

– 29 –

https://doi.org/10.1103/PhysRevD.98.044053
https://arxiv.org/abs/1805.03798
https://doi.org/10.1103/PhysRevD.94.104023
https://doi.org/10.1103/PhysRevD.94.104023
https://arxiv.org/abs/1609.01340
https://doi.org/10.1103/PhysRevD.87.044054
https://arxiv.org/abs/1212.0416
https://doi.org/10.1103/PhysRevLett.115.211102
https://arxiv.org/abs/1509.00021
https://doi.org/10.1007/s10714-018-2361-9
https://arxiv.org/abs/1801.00860
https://doi.org/10.1016/0375-9601(77)90386-3
https://doi.org/10.1016/0370-2693(78)90478-1
https://doi.org/10.1016/0370-2693(78)90478-1
https://doi.org/10.1088/0264-9381/16/11/311
https://arxiv.org/abs/hep-th/9906098
https://doi.org/10.1016/S0550-3213(00)00335-7
https://arxiv.org/abs/hep-th/0003063
https://doi.org/10.1016/S0550-3213(03)00484-X
https://arxiv.org/abs/hep-th/0212002
https://doi.org/10.1103/PhysRevD.70.084031
https://arxiv.org/abs/hep-th/0404239
https://doi.org/10.1088/0264-9381/16/1/001
https://arxiv.org/abs/hep-th/9810204
https://doi.org/10.1103/PhysRevD.89.084001
https://arxiv.org/abs/1312.6540
https://doi.org/10.1103/PhysRevD.96.024045
https://arxiv.org/abs/1705.07061
https://arxiv.org/abs/1801.02118
https://doi.org/10.1007/JHEP02(2018)122
https://arxiv.org/abs/1710.09006
https://arxiv.org/abs/1812.05110


Quantum Structure of Astrophysical Black Holes, Phys. Rev. D97 (2018) 084035

[1606.07814].

[40] J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis and H. S. Reall, All

supersymmetric solutions of minimal supergravity in five- dimensions, Class. Quant.

Grav. 20 (2003) 4587 [hep-th/0209114].

[41] J. P. Gauntlett and J. B. Gutowski, All supersymmetric solutions of minimal gauged

supergravity in five-dimensions, Phys. Rev. D68 (2003) 105009 [hep-th/0304064].

[42] F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050

[hep-th/0005049].

[43] B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole

composites, JHEP 11 (2011) 127 [hep-th/0304094].

[44] G. W. Gibbons and N. P. Warner, Global structure of five-dimensional fuzzballs,

Class. Quant. Grav. 31 (2014) 025016 [1305.0957].

[45] J. C. Breckenridge, D. A. Lowe, R. C. Myers, A. W. Peet, A. Strominger and

C. Vafa, Macroscopic and microscopic entropy of near extremal spinning black holes,

Phys. Lett. B381 (1996) 423 [hep-th/9603078].

[46] I. Bena, P. Kraus and N. P. Warner, Black rings in Taub-NUT, Phys. Rev. D72

(2005) 084019 [hep-th/0504142].

[47] D. Psaltis and T. Johannsen, A Ray-Tracing Algorithm for Spinning Compact Object

Spacetimes with Arbitrary Quadrupole Moments. I. Quasi-Kerr Black Holes,

Astrophys. J. 745 (2012) 1 [1011.4078].

– 30 –

https://doi.org/10.1103/PhysRevD.97.084035
https://arxiv.org/abs/1606.07814
https://doi.org/10.1088/0264-9381/20/21/005
https://doi.org/10.1088/0264-9381/20/21/005
https://arxiv.org/abs/hep-th/0209114
https://doi.org/10.1103/PhysRevD.70.089901, 10.1103/PhysRevD.68.105009
https://arxiv.org/abs/hep-th/0304064
https://doi.org/10.1088/1126-6708/2000/08/050
https://arxiv.org/abs/hep-th/0005049
https://doi.org/10.1007/JHEP11(2011)127
https://arxiv.org/abs/hep-th/0304094
https://doi.org/10.1088/0264-9381/31/2/025016
https://arxiv.org/abs/1305.0957
https://doi.org/10.1016/0370-2693(96)00553-9
https://arxiv.org/abs/hep-th/9603078
https://doi.org/10.1103/PhysRevD.72.084019
https://doi.org/10.1103/PhysRevD.72.084019
https://arxiv.org/abs/hep-th/0504142
https://doi.org/10.1088/0004-637X/745/1/1
https://arxiv.org/abs/1011.4078

	1 Introduction
	2 Integration and Visualization Procedure
	2.1 The Local Sky
	2.2 Numerical Integration
	2.3 Color Coding

	3 Supersymmetric Black Holes
	3.1 Metric
	3.2 Physical Properties
	3.3 Images

	4 Supersymmetric Black Rings
	4.1 Metric
	4.2 Physical Properties
	4.3 Images

	5 Outlook
	A Multi-center Solutions in 5D
	A.1 Multi-center Solutions
	A.2 Axisymmetric Solutions
	A.3 Supersymmetric Black Holes and Black Rings

	B Geodesics
	C Exact BMPV Shadow
	C.1 Geodesic Equations from Hamilton-Jacobi Method
	C.2 Black Hole Shadow


