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Abstract

This paper presents a novel system-level model order reduction scheme for flexible

multibody simulation, namely the System Level Affine Projection (SLAP). Contrary

to existing system level model order reduction approaches for multibody systems

simulation, this methodology allows to obtain a constant reduced order basis which

can be obtained in a non-invasive fashion with respect to the original flexible mul-

tibody model. It is shown that this scheme enables an automatic joint constraint

elimination which can be obtained at low computational cost through exploitation

of the component level modes typically employed in flexible multibody simulation.

The equations of motion are derived such that the computational cost of the resulting

SLAP model is independent of the original model size. This approach results in a set

of ordinary differential equations with a constant mass matrix and nonlinear internal

forces. This structure makes the resulting model suitable for a range of estimation,

control, and design applications. The proposed approach is validated numerically on

a flexible four-bar mechanism and shows good accuracy for a very low order SLAP

model.
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1 INTRODUCTION

Over the past decades flexible multibody simulation has demonstrated itself as a powerful framework for the dynamic analysis

of mechanical systems consisting of multiple components. For many industrial applications, the small deformation assumption

in particular has led to the development of range of efficient descriptions like the floating-frame-of-reference component mode

synthesis (FFR-CMS)1,2 and generalized component mode synthesis approaches (GCMS)3,4, and more recently the flexible

natural coordinate formulation (FNCF)5. The possibility of these methods for effectively describing the system level dynamics

at a feasible computational cost, in contrast to more general nonlinear finite element approaches, has led to an increasing interest

in exploiting (flexible) multibody simulation paradigms in a range of novel frameworks like:

• Model based state-estimation6,7,8;

• Model based control and design9.

However, the broad application of these general frameworks for multibody system models faces two main difficulties:
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• Many of the exploited methodologies developed for estimation and control, assume an ordinary differential equation

(ODE) description for the underlying model.

• As many of these technologies are aimed toward fast/online or multi-query settings, model size and simulation cost is are

ever important issues.

Current flexible multibody approaches however, typically lead to differential algebraic equations (DAE) with tens to hund-

reds of degrees-of-freedom, even after component level model order reduction. This differential algebraic structure can be

resolved into a set of ordinary differential algebraic equations through a penalty formulation8, instead of a Lagrange multi-

plier formulation, but this is often a numerically poorly conditioned approach and has several issues when redundant rotational

parameterizations (like the ominous Euler parameters) are employed.

Model order reduction on a component level has been broadly investigated10,11 and is a standard in flexible multibody simula-

tion, e.g. through the modal neutral file interface with finite element software12. However, the number of degrees-of-freedom for

a full system model is typically still high due to the numerous components and the requirement to properly resolve the interface

conditions between the different components through dedicated interface modes.

In order to alleviate the issues above, this work proposes a system level reduced order flexible multibody formulation. This

method is denoted as System Level Affine Projection (SLAP) as it relies on an affine projection from the reduced order DOFs

to the system level global multibody coordinates. This approach allows to describe general fixed topology flexible multibody

problems with a range of desirable properties not encountered in current methods

• Ordinary differential equations (ODE) for describing the system dynamics;

• A reduced set of generalized coordinates and a reduced set of model equations for fast evaluation;

• A constant reduced order basis.

These benefits are not encountered in previous system level model order reduction schemes for flexible multibody simulation,

like the Global Modal Parameterization (GMP)13. The variable coordinate transformation encountered in GMP leads to complex

inertial forces14 and a relatively invasive model setup procedure. The proposed SLAP method, on the other hand, leads to a

constant mass matrix and can be defined from easy-to-obtain simulation and flexible multibody data. The SLAP approach allows

for the training-based reduction of arbitrary fixed topology flexible multibody models. A projection on the dominant system level

modes is performed, which enables an exact or approximate constraint elimination, and selection of the main dynamics. This

results in a small set of ODEs with a constant mass-matrix and nonlinear internal forces. The current approach is only intended

to address small deformation problems as the main aim is to obtain an easy-to-set-up reduced order model with a model structure

in a more favorable ODE form. In literature alternative methods have been presented which also account for large deformation

effects15,16,17,18 in flexible multibody simulation, and which are generally more intrusive with respect to the reference models.

The proposed method can be applied non-intrusively with respect to existing flexible multibody software. The method extracts

the simulated motion of the bodies for (a range of) reference simulation(s) in order to construct a reduced order basis (ROB), as

discussed in Sec. 2-3. Moreover, we discuss how this data-driven approach allows to construct a ROB which is consistent with the

joint constraints, without the necessity to explicitly have access to these constraint equations. The method also extracts body mass

and stiffness matrices from external finite-element software, as can be easily performed through the available interfaces in this

software. From these body level contributions, the reduced order equations of motion for the SLAP model can be constructed, as

discussed in Sec. 4. The result is a closed form reduced multibody description which can be exploited in a range of applications.

This flow of information is summarized in Fig. 1 . The proposed methodology is validated numerically in Sec. 6. This validation

demonstrates the fast convergence of the SLAP model for an increasing number of DOFs and also highlights the care which

must be taken to avoid the addition of spurious rigid body modes.

2 REFERENCE FLEXIBLE MULTIBODY MODEL AND TRAINING

In this work we consider flexible multibody models comprising only flexible bodies. In general, the differential algebraic

equations (DAEs) describing the continuous time behavior of these models can be written as19:

M(q)q̈ + fgyr(q, q̇) + fdamp(q, q̇) + f int(q) − C(q)T� = f ext , (1)

c(q) = 0. (2)
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FIGURE 1 Method overview

In this system of equations the inertial forces are generally a nonlinear function of the generalized multibody coordinates q and

their velocities q̇. Note that depending on the orginal multibody formulation the physical meaning of the generalized coordinates

q varies. These inertial forces therefore consist of acceleration dependent terms and gyroscopic forces fgyr . Similarly the damping

forces fdamp and internal elastic forces in the bodies f int are also in general nonlinear functions of the generalized DOFs. For

converting the model equations to an ODE form and from the point of view of model reduction, the nonlinear set of constraint

equations c(q) (with Jacobian C(q)) pose some specific difficulties. These constraints equations originate from two distinct

sources:

• joint conditions between different bodies cjoint ;

• constraint equations present for particular motion parameterizations employed cpar (e.g. quaternions for rotational

description).

The full constraint set can therefor be written as:

c =

[
cjoint

cpar

]
. (3)

The elimination of these constraint equations through a projection of the equations of motion onto a system level reduction basis

is discussed in Sec. 3.

The above equations cover a wide range of model descriptions, like the popular floating-frame-of-reference (FFR-CMS),

where q consists of translational DOFs, rotational parameters and flexible participation factors, and the more recently intro-

duced generalized component mode synthesis (GCMS) approach, where q consists of generalized participation factors. Small

deformation flexible multibody simulation (almost) always starts from one of these component level reduced descriptions.

It is important to highlight that most commercial and research software for flexible multibody simulation, uses external finite

element software or modules to set up a set of body reduced order bases Φ, typically based on Component Mode Synthesis12,

and to extract the underlying finite element mass MFE and stiffness KFE matrices for each body. This information is fed back to

the multibody code in order to set up the equations of motion for the multibody model. In the proposed framework we exploit

this external linking in order to also port this data to the model order reduction scheme.

A simulation of this original multibody model leads to the training response matrix Qtr:

Qtr =

⎡
⎢⎢⎣

q1(t1) … q1(tnt)

⋮ ⋱ ⋮

qb(t1) … qb(tnt)

⎤
⎥⎥⎦
, (4)

for b bodies and nt training timesteps, where the contribution from body i to a vector a is denoted as ai. Correspondingly the

response can also be described for the full set of nodal coordinates for the different bodies over time as:

Xtr =

⎡
⎢⎢⎣

x1(t1) … x1(tnt)

⋮ ⋱ ⋮

xb(t1) … xb(tnt)

⎤
⎥⎥⎦
, (5)

where xi are the nodal coordinates for the underlying FE mesh of body i. In most commercial and research flexible multibody

software it is possible to extract these vectors and matrices of nodal coordinates for e.g. post-processing purposes. These nodal

coordinates are used for the presented reduction framework, as this information is consistent over different original multibody
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formulations. However, it is important to highlight that for the proposed framework, it is irrelevant whether these training simu-

lations were performed using local or absolute coordinates, as long they can be post-processed into absolute nodal coordinates.

It is this externally available information which will be exploited to perform the model order reduction setup. Together with the

finite-element mass and stiffness matrices from the finite-element models of the bodies, this provides all the data required to set

up the proposed system-level reduced order model. The training set should be sufficiently rich to capture the full relevant motion

manifold. For specific problems, like chaotic systems, this could be difficult to achieve in practice and we consider a dedicated

analysis of the proposed method for the case of chaotic systems beyond the scope of this work.

3 REDUCED ORDER BASIS AND CONSTRAINT ELIMINATION

In this section we describe how the reduced order basis (ROB) selection for the system-level affine parameterization is performed.

Specific focus is drawn on how an adequately chosen coordinate transformation can be exploited to allow an affine reduced

description of the system level DOFs with (approximate) constraint elimination.

3.1 Affine reduced order basis projection

The model order reduction proposed in this work is based on a constant reduced order basis �sl which enables an affine approx-

imation of the motion, accurately captures the main motion modes and inherently incorporates (an approximation of) the joint

conditions in the multibody model. In this work we will develop an affine approximation which allows to describe the full nodal

coordinates x through a constant system level ROB �sl, irregardless of the multibody formulation employed for the training

model:

x ≈ � +�sl�, (6)

c(� +�sl�) ≈ 0, ∀ � ∈ ℝ
m, (7)

where � ∈ ℝ
n is a reference configuration which complies with the constraints, �sl ∈ ℝ

n×m is the (constant) system level

reduced order basis, and � ∈ ℝ
m are the reduced degrees-of-freedom. The approximate compliance with the constraints of the

proposed affine parameterization is an important condition for the proposed reduction scheme. The definition of this constant

ROB �sl is the subject of the remainder of this section.

First the reference configuration � is selected. In this work we select the initial configuration from the training matrix:

� = Xtr(t1), (8)

and in practice any configuration which complies with the constraint equations could be selected. It is moreover interesting to

highlight that this does not need to be an undeformed configuration. The particular choice of � is therefor not critical, even

though as a rule of thumb it might be more convenient to use an undeformed configuration.

In order to obtain the ROB �sl, Proper Orthogonal Decomposition (POD) is employed20. This POD basis is obtained through

a (thin) singular value decomposition on the training response data with the reference configuration eliminated �:

WΣVT = svd
(
Xtr,Δ

)
= svd

([
Xtr

(
t2
)
− �, … , Xtr

(
tn
)
− �

])
, (9)

and the system-level ROB �sl is obtained by only retaining the m most dominant modes in W:

�sl =
[
W,1,… ,W,m

]
, (10)

where the ith column of a matrix A is denoted by A,i. Section 3.3 describes how setting up the reduced order basis from the

nodal DOFs x instead of the generalized multibody DOFs q allows to (approximately) eliminate the constraint equations through

a constant ROB. Previous work on system-level model reduction for flexible multibody simulation through the Global Modal

Parameterization (GMP)13,14 required a configuration dependent reduced motion parameterization to eliminate the constraint

equations. This aspect greatly complicates the reduced model description and limits the general applicability of GMP, as these

parameterizations can be difficult to set up in practice.
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3.2 Training data compression

The above described direct reduction approach is generally applicable but will often pose practical issues due to the very large

data sets obtained from flexible multibody models. This is due to the (very) large number of DOFs typically present for each FE

body description (10k-100k nodes are common for most structural body FE models), multiplied by the number of bodies b for a

considerable number of timesteps nt. Directly performing the singular value decomposition is therefore often computationally

intractable. For example performing the singular value decomposition in Matlab for a relatively small model with two bodies,

each with 30000 DOFs for 1000 timesteps already requires over 30 gigabytes of RAM, which is at the limit for regular desktop

systems. In this work we therefore propose an intermediate data compression which preserves the singular values but drastically

lowers the number of DOFs on which the singular value decomposition is performed without any loss in accuracy for flexible

multibody models. Alternatively, several methods have been proposed in general data compression literature, like gappy POD21,

randomized singular value decomposition22, and hierarchical POD23, to deal with identifying a low rank approximation of large

datasets at a feasible computational load. However, these schemes do not explicitly exploit the underlying model structure and

we expect the scheme proposed hereafter to lead to even smaller computational loads due to the very small number of retained

coordinates.

This data compression is obtained from the observation that practical large scale small-deformation flexible multibody models

already employ component-level model order reduction. Over the years a wide range of approaches have been proposed to express

the body deformation in an approximate fashion, typically exploiting reduction approaches from linear structural dynamics11,24.

This in turn implies that the motion of the full multibody system is inherently constrained to a lower dimensional manifold than

the one for the full mesh. The proposed compression therefor starts from the local body-attached reduced order basis for body i

employed in the reference multibody model 	b
i
:

ui = u0
i
+	b

i
qi, (11)

where ui ∈ ℝ
3nn

i are the nodal coordinates for body i expressed in a local body-attached reference frame with undeformed

coordinates u0
i
∈ ℝ

3nn
i , reduced deformation modes 	b ∈ ℝ

3nn
i
×mb

i , and generalized body DOFs qi ∈ ℝ
mb
i . The absolute

coordinates expressed in the global reference frame for the nodes of a body i can then be generally obtained from:

xi = Ĩtx
t
i
+ R̄

(
u0
i
+	b

i
qi
)
, (12)

where in xt
i
∈ ℝ

3 denotes the body translation, Ĩt ∈ ℝ
3nn

i
×3 is a translational project matrix consisting of vertically concatenated

three-by-three unity matrices I:

Ĩ =

⎡
⎢⎢⎣

I3×3

⋮

I3×3

⎤
⎥⎥⎦
, (13)

and R̄ ∈ ℝ
3nn

i
×3nn

i is a body rotation consisting of a block diagonal stack of the three-by-three body rotation matrix R for all

nodes:

R̄ =

⎡⎢⎢⎣

R 0 0

0 ⋱ 0

0 0 R

⎤⎥⎥⎦
. (14)

In the most general case, and without exploiting any additional information from the multibody system, the following holds:

• the reference body translation resides on a three-dimensional linear manifold spanned by Ĩ.

• the rotation matrices R and R̄ normally resides on a nonlinear manifold, and this nonlinear manifold is a subspace of a

general nine-dimensional manifold as:

R =

⎡
⎢⎢⎣

r1 r4 r7

r2 r5 r8

r3 r6 r9

⎤
⎥⎥⎦
, (15)

=

9∑
k=1

Ikrk, (16)

with a selection matrices Ik ∈ ℝ
3×3:

I1 =

⎡⎢⎢⎣

1 0 0

0 0 0

0 0 0

⎤⎥⎥⎦
, I2 =

⎡⎢⎢⎣

0 0 0

1 0 0

0 0 0

⎤⎥⎥⎦
, I3 =

⎡⎢⎢⎣

0 0 0

0 0 0

1 0 0

⎤⎥⎥⎦
, I4 =

⎡⎢⎢⎣

0 1 0

0 0 0

0 0 0

⎤⎥⎥⎦
, I5 =

⎡⎢⎢⎣

0 0 0

0 1 0

0 0 0

⎤⎥⎥⎦
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I6 =

⎡⎢⎢⎣

0 0 0

0 0 0

0 1 0

⎤⎥⎥⎦
, I7 =

⎡⎢⎢⎣

0 0 1

0 0 0

0 0 0

⎤⎥⎥⎦
, I8 =

⎡⎢⎢⎣

0 0 0

0 0 1

0 0 0

⎤⎥⎥⎦
, I9 =

⎡⎢⎢⎣

0 0 0

0 0 0

0 0 1

⎤⎥⎥⎦
(17)

where rk can take any value in ℝ, and similarly:

R̄ =

9∑
k=1

Īkrk, (18)

where Īk is similarly defined to the block diagonal matrix R̄ from Eq. (14).

These conditions imply that the global nodal coordinates for body i need to reside on a linear global manifold spanned by:

xi ∈
[
Ĩt | Ī1u0i , … , Ī9u0

i
| Ī1	b

i
, … , Ī9	b

i

]
(19)

An orthonormal basis 	
g

i
in this span can be constructed from the different contributions in Eq. (19). At most this basis will

have a rank of 3 + 9 + 9mb
i
(≪ 3nn

i
) for body i and is known as the Generalized Component Mode Synthesis basis25,26.

If this basis 	
g

i
is computed for each body i in the multibody model, a system level basis 	̄g can be set up:

	̄g =

⎡⎢⎢⎣

	
g

1
0 0

0 ⋱ 0

0 0 	
g

b

⎤⎥⎥⎦
. (20)

As
(
	

g

i

)T
	

g

i
= I, with the above definition it also holds that:

(
	̄g

)T
	̄g = I. (21)

As each of the constituent matrices 	
g

i
span the full motion space for each body i, this basis 	̄g spans the full motion space of

the multibody model where each body can move independently. This basis 	̄g can now be used to project the full system nodal

responses onto a much smaller data set:

Q̂tr =
(
	̄g

)T
Xtr,Δ, (22)

=

⎡
⎢⎢⎢⎣

(
	

g

1

)T
X

tr,Δ

1

⋮(
	

g

b

)T
X

tr,Δ

b

⎤
⎥⎥⎥⎦
. (23)

It is important to highlight that this transformation to Q̂tr retains the singular values ofXtr, such that a meaningful order reduction

with respect to the actual system motion can be performed. See Appendix A for a proof of the singular value preservation. This

implies that any singular value based model order reduction strategy is equally valid on the intermediary reduced coordinates

Q̂tr as on the original nodal coordinates Xtr. Notice that clearly the same is not true when projecting onto FFR-CMS coordinates

as this involves a strongly nonlinear transformation. Moreover, this also implies that any conclusions on using the singular value

decomposition for constraint elimination in Sec. 3.3 are equally true for the intermediary projected coordinates Q̂tr as it is for

the full global nodal coordinates Xtr.

At this point a much smaller data set Q̂tr is available on which the singular value decomposition can be effectively performed

to extract the reduced order basis:

ŴΣV̂ = svd
(
Q̂tr

)
. (24)

When using this intermediate reduction, the reduced order basis is set up by truncating Ŵ to the first m components, where

m < n − nc . For most applications, a clear decay in the singular values will be observed for an increasing mode number. The

reduction basis for the GCMS coordinates projection is denoted as:

Ŵ∗ =
[
Ŵ,1, … , Ŵ,m

]
, (25)

and this basis can be transformed back to a reduced order basis for the full nodal coordinates:

�sl = 	̄gŴ∗, (26)

with �sl ∈ ℝ
n×m. As the proposed intermediate data compression exactly preserves the singular values of the original data, this

basis will be the same as the one from Eq. (10). This system level matrix can again be split up into contributions for the b bodies
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for processing of the model matrices, as discussed in the Sec. 4:

�sl =

⎡
⎢⎢⎣

�sl
1

⋮

�sl
b

⎤
⎥⎥⎦
. (27)

This reduced order basis �sl, together with the reference configuration �, will be exploited to set up the reduced equations of

motion in the following sections.

3.3 Constraint elimination through global system level reduced order basis

In this section we explain how an affine coordinate projection on the nodal coordinates x can be exploited to perform an (approx-

imate) constraint elimination, and why this is not generally possible when operating directly on the generalized multibody DOFs

q (as had been proposed in previous work13).

In this work, the considered systems have a fixed topology. For fixed topology the joints are constantly active between the same

nodal pairs during the course of the motion. This covers many common joints in mechanical systems like spherical, revolute

and universal joints, but excludes others like sliding joints between two flexible bodies or contacts.

As discussed before, two types of constraints are typically encountered in flexible multibody simulation: joint constraints

cjoint ∈ ℝ
nc and parameterization constraints cpar. The parameterization constraints cpar are inherently tied to the choice of gene-

ralized coordinates q, e.g. to the rotational parameterization. For the proposed reduction scheme these are inherently eliminated

as after the reference simulation, all evaluations occur on a global nodal coordinate level, and these constraint equations are

therefore omitted from the remainder of the discussion in this section.

The second type of constraints, due to the joints between different bodies, however poses some specific difficulties. In general

the joint constraint equations can be eliminated from the equations of motion, by restricting the motion of the system to the

kernel N of the Jacobian of the constraint equations C ∈ ℝ
(nc×n. For any given training set Xtr, this condition can be evaluated

for all constraint Jacobians evaluated for the training data Ctr ∈ ℝ
(nc ⋅nt)×n such that:

N = ker
(
Ctr

)
= ker

⎛⎜⎜⎝

⎡⎢⎢⎣

C(x(t1))

⋮

C(x(tnt))

⎤⎥⎥⎦

⎞⎟⎟⎠
such that CtrN = 0, (28)

with

C(x) =
)c(x)

)x
. (29)

This implies that �sl ∈ span(N), as in this case:

(
�sl

)T
C(x)T = 0, ∀ x ∈ Xtr, (30)

and the constraint equations can be (approximately) eliminated from the equations of motion. However, in this work, contrary

to previous works27,28, the null-space of the constraints is not explicitly computed to set up the reduced order model, but is

implicitly accounted for through the singular value decomposition on the training data. In the following paragraphs the cases of

linear and nonlinear joint constraint equations are discussed.

In this work we consider the case of linear joint constraint equations as a function of the nodal coordinates x. Linear joint

constraint equations are obtained for example for a nodal coordinate description in the case of spherical joints between node

pairs of the different bodies, which can be practically exploited to set up the models for a range of mechanisms28.

A set of linear constraint equations can be written as:

c(x) = c0 + Cx = 0, (31)

with the constraints c(x) ∈ ℝ
nc , a constant offset term c0 ∈ ℝ

nc and a constant matrix C ∈ ℝ
nc×n. As discussed in the previous

section, a reference configuration � is first selected which meets the joint constraint equations:

c0 + C� = 0. (32)
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From the definition of the remaining training data Xtr,Δ in Eq. (9), it is clear that this will lie in the constraint kernel as all

training data must comply with the constraints:

0 = c0 + CXtr
,i
= c0 + C ⋅

(
� + X

tr,Δ
,i

)

= c0 + C� + CX
tr,Δ
,i

= CX
tr,Δ
,i

= 0 ∀i = {1,… , nt}. (33)

Notice that the presence of � is essential as otherwise e.g. � = 0 would not comply with the constraints in Eq (32). The remaining

training data should therefore lie in the kernel of the constraint Jacobian. This can be written as:

Xtr,Δ = Nxce + CT 0, (34)

with xce ∈ ℝ
n−nc a set of minimal coordinates. The singular value decomposition for a generally random set of admissible

coordinates can then be written as:

svd(Xtr,Δ) =
[
orth(N) orth(CT )

] [ΣΣΣ 0

0 0

]
VT , (35)

where ΣΣΣ ∈ ℝ
(n−nc )×(n−nc ) is a diagonal matrix with non-zero singular values, and orth(A) denotes the orthonormalization of a

matrix A:

orth(A)T orth(A) = I where orth(A) ∈ span(A). (36)

Performing the truncation on this singular value decomposition, as discussed in Sec. 3.1, rejects any contributions in the span

of the constraint equations and therefor effectively enables an exact constraint elimination.

Clearly it is of large benefit if the model joint constraints are indeed linear from a model order reduction perspective, as these

joints can be exactly represented. However, as mentioned before, for generalized coordinates q in FMBS, the structure of the

constraint equations depends on the choice of coordinates. For example, linear constraint equations for spherical joints in nodal

coordinates are described by nonlinear equations in FFR-CMS coordinates, which highlights the necessity of converting back

to nodal coordinates to perform the model order reduction.

To apply the proposed reduction scheme, converting as many joint constraints to spherical joints has an significant advantage

for obtaining an accurate reduced order model, as these joints are described through linear equations in the global nodal coor-

dinates. However, in general also nonlinear joint constraints will be present in most models (e.g. revolute joints), which makes

an exact affine elimination, as discussed in the previous paragraph, infeasible. It is therefore important to highlight that the pro-

posed approach might be capable of approximately capturing these constraints, but this cannot be guaranteed. For applications

where these joints are present, a potential solution is therefore to replace them by a set of equivalent linear nodal constraints

in the reference model, e.g. two spherical joints on colinear nodes instead of a revolute joint. The treatment of more general

nonlinear joint constraint is a topic of future research and out of the scope of the current work.

4 REDUCED EQUATIONS OF MOTION

For the derivation of the equations of motion for the proposed reduced order model, the starting point is the Lagrangian of the

system expressed as a function of the system-level reduced DOFs �:

(�, t) = (�, �̇) − (�), (37)

wherein the kinetic energy  will lead to the generalized inertial forces, the internal energy  to the generalized internal

elastic forces. Note that there are no constraints present in the Lagrangian Eq. (37) as these are assumed approximately elimi-

nated through the system-level reduced coordinates. Hamilton’s principle is applied on this Lagrangian to obtain the reduced

generalized forces:

d

dt

(
)

)�̇

)
−

)

)�
= gnp, (38)

with the gnp representing the generalized non-potential forces like damping gdamp and external forces gext , to obtain the equations

of motion. This leads to the time-continuous ordinary differential equations (ODE) of motion due to the approximate elimination

of the constraints (as discussed in Sec. 3.3):

giner(�, �̈) + gdamp(�̇) + gint(�) = gext , (39)
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with giner and gint respectively the generalized inertial and internal elastic forces. This ODE structure is highly valuable in a range

of applications and is difficult to obtain reliably with a general FMBS description. The different generalized force contributions

in Eq. (39) are discussed in the following subsections.

4.1 Inertial forces

For evaluating the kinetic energy of a body, the velocities of all nodes are projected onto a body-attached frame, as this allows

to use the original FE lumped mass matrix. The velocity vij ∈ ℝ
3 of a node j in a body i projected onto a body-attached frame

can be written as:

vij = Ri�
sl
ij
�̇, (40)

where Ri ∈ ℝ
3×3 is a body-attached rotation matrix, and �sl

ij
∈ ℝ

3×m represents the reduced order basis for a node j on a body i.

For the inertial forces we assume a mass-matrix MFE with only displacement contributions for the finite element models for

all bodies (i.e. lumped mass matrices or solid finite elements)19. For a node j on body i, the contribution to the mass matrix can

be written as:

MFE
ij

= mijI
3×3, (41)

where the full mass matrix for body i is a block-diagonal matrix with the entries for the different nodes on its diagonal. By using

Eq. (40), the kinetic energy in the reduced coordinates can be written as:

 =
1

2

b∑
i=1

nn
i∑

j=1

(
Ri�

sl
ij
�̇
)T

MFE
ij
Ri�

sl
ij
�̇, (42)

=
1

2

b∑
i=1

nn
i∑

j=1

(
�sl

ij
�̇
)T

mijR
T
i
Ri�

sl
ij
�̇, (43)

=
1

2

b∑
i=1

nn
i∑

j=1

(
�sl

ij
�̇
)T

MFE
ij
�sl

ij
�̇, (44)

with nn
i

the number of nodes for body i. The system-level mass-matrix Msl for the system-level reduced model can then be

constructed as:

Msl =

b∑
i=1

(
�sl

i

)T
MFE

i
�sl

i
, (45)

and the generalized inertial forces giner can be evaluated as:

giner(�̈) = Msl�̈. (46)

This leads to a description with a constant (configuration independent) mass-matrix without the need to include gyroscopic

forces. Notice that it is not necessary to explicitly account for contributions from the body rotation in the kinetic energy and

inertial forces, as the SLAP scheme does not distinguish between translational and rotational motion as they are equally captured

in the system-level modes. As discussed in the introduction, the mass matrix MFE is obtained through the commonly available

interfaces with finite element software and does not require any interaction with the reference flexible multibody code.

4.2 Damping forces

In this work we consider only mass-proportional damping, other types of damping are not treated here for the sake of brevity.

For a damping factor � ≥ 0, the generalized damping forces gdamp can be straightforwardly obtained from Eq. (46):

gdamp = �Msl�̇. (47)

4.3 Internal elastic forces

In order to evaluate the internal elastic energy, the node deformation is required. The local nodal deformation dij ∈ ℝ
3 for node

j on body i expressed in a body-attached frame, described by a translation xt
i
∈ ℝ

3 and a rotation matrix Ri ∈ ℝ
3×3, is given by:

dij = Ri(�ij +�sl
ij
� − xt

i
) − u0

ij
, (48)
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with u0
ij
∈ ℝ

3 the local reference undeformed nodal coordinates of node j in the body attached frame of body i.

Different methods can be defined for determining the reference translation xt
i

and rotation Ri for a body i. Ideally these two

quantities are determined in a coupled fashion to minimize the internal energy. However, this leads to a relatively complex

problem to solve iteratively. In this work we therefore propose a more pragmatic approach where:

• The reference translation for a body xt
i

is determined as the average translation of all nn
i

nodes j of a body i:

xt
i
=

1

nn
i

nn
i∑

j=1

xij − x0
ij
, (49)

and using an initially centered mesh, this can be written as:

xt
i
=

1

nn
i

nn
i∑

j=1

xij = �t
i
+�

sl,t
i
�, (50)

where �t ∈ ℝ
(3b) is the reference translated position for the b bodies and �sl,t ∈ ℝ

(3b)×m is the average translational

component corresponding to the different motion modes. Taking these corrections into account Eq. (48) can be rewritten

as:

dij = Ri(�
c
ij
+�

sl,c
ij

�) − u0
ij
, (51)

• The rotation matrix Ri is defined to minimize the nodal displacements after correction for the reference translation xt
i
:

min
Ri∈ℝ

3×3

nn
i∑

j=1

‖Ri(�
c
ij
+�

sl,c
ij

�) − x0
ij
‖2 s.t. RT

i
Ri = I3×3. (52)

Using quaternions to describe the rotation, this optimisation problem can be converted to a simple four-by-four eigenvalue

problem as discussed in in Appendix B. Using the previously defined �sl,c to evaluate the nodal position, this problem

can moreover be written as a direct function of the reduced coordinates �, such that the computational load becomes

independent of the original model size.

The different nodal deformations for the bodies can be grouped in a deformation vector for body i as:

di =

⎡
⎢⎢⎣

di1
⋮

dinn
i

⎤
⎥⎥⎦
. (53)

The internal elastic energy starting from the finite-element stiffness matrix KFE
i

for body i can then be written as:

i =
1

2

b∑
i=1

(
di(�)

)T
KFE

i
di(�). (54)

A straightforward implementation would imply evaluating all nodal coordinates for each body, which would lead to large com-

putational loads. In order to circumvent this issue, we propose the use of a number of stiffness invariants. The definition of these

invariants is based on a decomposition of the rotation matrix into its nine elements, as presented in Eqs.(15)-(18). Using this

decomposition for the rotation matrix together with a block-diagonal matrix definition:

R̄i =

⎡⎢⎢⎣

Ri … 0

⋮ ⋱ ⋮

0 … Ri

⎤⎥⎥⎦
, (55)

the deformation for body i can be written as:

di = R̄i(�
c
i
+�

sl,c
i

�) − x0
i
=

9∑
k=1

Īk(�c
i
+�

sl,c
i

�)rk
i
− x0

i
. (56)
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Inserting this in Eq. (54) leads to the definition of the stiffness invariants for body i:

i =
1

2

(
9∑

k=1

Īk(�c
i
+�

sl,c
i

�)rk
i
− x0

i

)T

KFE

(
9∑

l=1

Īk(�c
i
+�

sl,c
i

�)rl
i
− x0

i

)
, (57)

=
1

2

(
K00

i
+ 2

9∑
k=1

(
�TK

�0

ik
+K

�c0

ik

)
rk
i
+

9∑
k,l=1

(
�TK

��

ikl
� + �TK

��

ikl

)
rk
i
rl
i

)
, (58)

with the stiffness invariants:

K00
i

=
(
x0
i

)T
KFE

i
x0
i
, K00

i
∈ ℝ

1×1, (59)

K
�0

ik
=

(
Īk�

sl,c
i

)T

KFE
i
x0
i
, K

�0

ik
∈ ℝ

m×1, (60)

K
�0

ik
=

(
Īk�c

i

)T
KFE

i
x0
i
, K

�0

ik
∈ ℝ

1×1, (61)

K
��

ikl
=

(
Īk�

sl,c
i

)T

KFE
i

(
Īl�

sl,c
i

)
, K

��

ikl
∈ ℝ

m×m, (62)

K
��

ikl
=

(
Īk�

sl,c
i

)T

KFE
i

(
Īl�c

i

)
, K

��

ikl
∈ ℝ

m×1. (63)

These stiffness invariants need to be evaluated during the reduced order model setup, and lead to an online computational load

independent of the original model size and only dependent on the reduced model size m.

The system-level internal elastic energy is then obtained through summation of the contributions of all b bodies:

 =

b∑
i=1

i. (64)

From this expression, the generalized internal forces expressed for the system level reduced coordinates can be evaluated as:

gint =
)

)�
, (65)

=

b∑
i=1

9∑
k=1

⎛
⎜⎜⎝
K

�0

ik
rk
i
+

(
)rk

i

)�

)T (
�TK

�0

ik
+K

�0

ik

)T ⎞⎟⎟⎠

+

b∑
i=1

9∑
k,l=1

(
K

��

ikl
� +

1

2
K

��

ikl

)
rk
i
rl
i

+

b∑
i=1

9∑
k,l=1

(
�TK

��

ikl
� + �TK

��

ikl

)()rk
i

)�
rl
i
+ rk

i

)rl
i

)�

)T

. (66)

The evaluation cost of these generalized internal forces depends only on the number of bodies and the reduced order size of the

system model.

When required for time-integration purposes (i.e. for implicit time integration), the generalized stiffness matrix for the SLAP

model can be derived by differentiating these internal forces Eq. (66) with respect to the generalized reduced DOFs �. As this

is a straightforward exercise given the above equations, it is omitted here for the sake of brevity.

4.4 External forces

The generalized global external forces gext are also obtained from performing a Galerkin projection on the reduced order basis:

gext =
(
�sl

)T
f ext . (67)

At this point we only consider global external forces. Future developments will focus on effective descriptions for other load

types like torques and loads acting between different bodies.
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4.5 Equations of motion overview

Using the above defined forces, the equations of motion can be summarized as a set of nonlinear ordinary differential equations:

Msl�̈ + �Msl�̇ + gint(�) =
(
�sl

)T
f ext . (68)

This description is similar to the one obtained for the GCMS model description proposed by Gerstmayr et al.3, in that a constant

mass-matrix is obtained in exchange for nonlinear internal forces. It is moreover interesting to notice that in contrast to the

GMP approach27 where a sampling needs to be performed for all force gradients, which is rather exhaustive and intrusive in

the multibody code, to evaluate the reduced model forces, here an analytic expression is obtained solely based on the reduced

model kinematics and original body FE matrices.

An additional hyper-reduction stage could be considered for reducing the evaluation cost in Eq. (66). Here a sparse sampling

and weighting method like the ECSW-approach29 could be employed to limit the number of contributing bodies to the internal

force. However this aspect is not investigated further in this work as for FMBS the number of bodies is expected to be limited

with respect to the number of reduced DOFs, such that this additional hyper-reduction is expected to only yield a limited

computational cost reduction. However, future research will focus on further hyper-reduction of these models.

5 PRACTICAL IMPLEMENTATION OF THE SLAP MODEL

In order to clarify the full workflow of setting up and running the SLAP model in a simulation, this section summarizes the

different steps required and relates back to the relevant equations from the previous sections.

5.1 SLAP model setup

The first stage in the SLAP setup process, is the definition of an adequate set of training simulations. Several key criteria should

be considered:

• The motion of the mechanism should span a sufficient portion of the undeformed motion space in order to assure an

accurate extraction of the rigid body modes. Notice that it is not necessary to have visited all possible configurations in

order to describe them effectively, as will be demonstrated in Sec. 6.3.

• Forces (preferably uncorrelated) should be applied to all locations on which external forces are exerted. The magnitude

of the applied forces should be similar to the expected magnitude of the loads during the SLAP simulation. Similarly, the

dynamic content should be similar.

The training data can be obtained from a single long-term simulation which combines all relevant excitation cases after which

Xtr is extracted, or can alternatively be obtained from parallel short-term simulations which each capture a portion of the relevant

excitation. In the latter case, Xtr is obtained by concatenating the results from the parallel simulations.

Next the kinematic relations for the SLAP model can be extracted. First of all a reference configuration � needs to be selected.

This can be any (preferably undeformed) configuration of the system. In practice this will often be the first assembled configu-

ration in the simulation. From this Xtr,Δ can be set up. Next the ROB �sl needs to be constructed, where two different schemes

can be pursued depending on the models size:

• For relatively small models (up to 1000 nodes in total), �sl can be directly extracted from a singular value decomposition

on Xtr,Δ, as described in Eqs. (9)-(10).

• For larger models, it will be advisable to first perform the training data compression as discussed in Sec. 3.2. This requires

the extraction of the initial body level modes	b
i

from the finite-element interface typically employed for flexible multibody

model initialization. This can for example be through the modal neutral file (mnf) standard interface12. The resulting

SLAP modes can then be obtained through the setup of 	̄g as defined in Eqs. (19)-(20), the evaluation of the compressed

data Q̂tr in Eq. (23), and the evaluation of the SVD and back-projection to �sl through Eqs. (24)-(26) .

An important parameter which needs to be selected is the number of retained system level modes m in the final ROB. As

a general rule of thumb the decay of the singular values can be considered to perform a first selection. However, as will be

demonstrated in the numerical validation in Sec. 6, due to the finite tolerance with which the joint constraints are met, the SVD
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will pick up spurious rigid body modes when m is choosen too high. In order to ensure that m is not chosen too high in order for

this two occur, two possibilities exist:

• Run a reconstructive simulation with the generated SLAP model to ensure no additional rigid body motion starts to occur.

• Evaluate the linearized eigenfrequencies of the SLAP model at the initial configuration in order to ensure that not too

many (close-to-)rigid body modes are present in the model.

Finally, the SLAP mass matrix and stiffness invariants need to be set up. From the computed system level modes �sl and

their respective split in the body contributions according to Eq. (27), this is achieved by evaluating Eq. (45) for the mass matrix,

and Eqs. (59)-(63) for the stiffness invariants. The body level finite-element mass and stiffness matrices can again be extracted

from common finite-element toolbox interfaces. Depending on the formulation employed to extract the body attached rotation

matrix, some rotation invariants need to be computed as well. For the approach presented in this work, and outlined in detail in

App. B, the rotation invariants as defined in Eq. (B21)-(B22) need to be set up as well.

5.2 Online SLAP evaluation

During the simulation of the SLAP model, the generated invariants can be exploited in order to ensure that no evaluations which

scale with the size of the original model are still required. An important benefit of the proposed SLAP scheme is the possibility

to use standard explicit integrators which are only suitable for ODE models. In general, any integrator will require for each

timestep:

• The evaluation of the inertial forces giner(�̈) is done through Eq. (46). As this is a simple matrix-vector multiplication of

the SLAP model size m, it has a complexity of (m2).

• In the case of mass-proportional damping, the inertial force vector giner(�̈) can be reused, such that the complexity is only

of (m).

• The internal elastic forces gint(�) for the SLAP model are obtained through Eq. (66). Different schemes can be employed

to evaluate the body attached rotation matrix element, and in this work we propose to evaluate these from the eigenvalue

problem of Eq. (B25) and Eq. (B17). The required derivatives of the rotation matrix elements with respect to the reduced

DOFs are obtained from Eq. (B26) and the corresponding derivatives in the quaternion based rotation matrix. For com-

putational complexity, it is interesting to note that the overall cost of these rotation matrix and derivative evaluations only

scale with (bm), as the problem to solve is always a four-dimensional eigenvalue problem. The largest cost will therefore

lie in evaluating the different matrix-vector products with the stiffness invariants, which will scale with (bm2). However,

as m should be sufficiently small, this computational load should also remain limited. However, the final evaluation cost

does remain dependent on the number of bodies, but their respective size is irrelevant.

In the case of an implicit simulation, the Jacobians for these forces also need to be evaluated. For the inertial and mass-

proportional damping terms these are readily available. For the internal elastic forces on the other hand these are more involved,

and for the sake of brevity we do not expand these terms here in detail. Finally, the obtained SLAP responses will need to be

transformed back to the full order model domain for further post-processing purposes. This implies the simple matrix-vector

product:

xSLAP = � +�sl�. (69)

From the above outlined procedure the SLAP simulation can be performed and the results can be post-processed.

6 VALIDATION

This section considers a numerical validation of the proposed reduction approach. The considered case is a flexible four bar

mechanism. First the case definition is described and next several aspects of the SLAP model are investigated. All validations

have been conducted in an in-house multibody research code implemented in Matlab30.
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gecx

fext

(a) Disassembled (b) Assembled

FIGURE 2 Flexible four-bar mechanism

6.1 Model description

For the validation of the proposed approach, a four bar mechanism is used as shown in Fig. 2 . The finite element models for the

three linear elastic flexible components are constructed with a tetrahedron mesh in Nastran12. The properties of each body are

shown in Tab. 1 . The mesh definition files in bdf -format are available together with a definition of the connectivity between

the bodies31.

TABLE 1 Component finite element model properties

# elements # DOFs E [N∕m2] � [∕] � [kg∕m3]

Left bar 874 936 210 ⋅ 109 0.288 7829

Top bar 1259 1296 210 ⋅ 109 0.288 7829

Right bar 874 936 210 ⋅ 109 0.288 7829

The reference multibody model is simulated using the flexible natural coordinates formulation (FNCF) which is equivalent

to the classical floating-frame of reference component mode synthesis approach in the response5. The connection between the

components is accounted for through eight spherical joints. These joints are positioned between colinear nodes of the bodies on

the four revolute axes. For this particular case, no rigid or flexible spiders are employed. For the flexible body description a mode

set consisting of fixed-fixed eigenmodes and constraint modes is employed. For each body four eigenmodes are used together

with 4 × 3 = 12 constraint modes. After removal of the six rigid body modes, this leads to a total of 10 flexible deformation

modes for each body. For the full mechanism this mounts up to a total of 18 rigid body DOFs and 30 flexible DOFs in the FFR-

CMS description. Due to the specific structure of the FNCF approach, it has a total of 336 DOFs. These DOFs result on the

one hand from the use of a full rotation matrix for the orientation parameterization, and on the other hand from the extension of

each flexible mode into nine equivalent modes to account for the rotation. For the application of the joint constraints 8 × 3 = 18

Lagrange multipliers are employed. As has been shown before, see Vermaut et al.5, this FNCF approach provides the same

result as a regular FFR approach.

The simulation starts from a static equilibrium configuration, such that the initial configuration can serve for �. To drive the

mechanism, an external force with a constant amplitude of 5N is applied at the top right connection point of the first bar. For
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FIGURE 3 Singular values for full and compressed multibody simulation response.

the time integration of the reference model, a variable timestep BDF integrator for index-3 differential-algebraic equations is

employed32.

The SLAP models are implemented in the same multibody toolbox but employ an explicit central difference time-integrator

with a constant time step ofΔt = 10−6s to demonstrate the exploitation of the ordinary differential structure of the SLAP models.

6.2 Reconstructive results

For the validation of the proposed approach, we first consider the singular value decomposition of the reference simulation.

Fig. 3 shows the singular values of the full system responseXtr,Δ as well as the compressed data set Q̂tr. This figure demonstrates

that, as expected, the singular values are indeed preserved under this compression operation. This compression obviously leads

to a considerable reduction in the computational load for the evaluation, more precisely 0.05seconds versus 0.01seconds for this

small scale example. These gains will further increase for more models with more bodies and more finely meshed components.

For this mechanism for which the rigid motion will be planar as a result of the applied constraints, two modes should be sufficient

to describe the main rigid portion of the motion. This is also visible in this singular value decomposition, where the first two

modes have a considerably larger contribution than the other modes.

Finally the accuracy and convergence characteristics of the proposed SLAP approach are considered. First we consider the

overall error on the SLAP response � as a function of the number of SLAP modes m in Fig. 4 . The error � is defined as the

summed squared difference between the full order FNCF motion and SLAP motion for all nodal DOFs:

� =

nt∑
j=1

n∑
i=1

(
xi(tj) − �i −�sl

i
q(tj)

)2
, (70)

with nt the number of extracted time steps from the simulation, which is sampled at Δt = 10−3s for all simulations. This figure

shows that initially a fast convergence is obtained after which the response deteriorates when the number of SLAP modes is

increased. As is discussed later, this increasing error is related to the inability of the the ROB to eliminate the constrained motions

from the model when the SLAP order gets too large. For the accurate, lower order SLAP simulations the detailed motion of

the force application point is shown in Fig. 5 . These figures show the that in all these cases, the overall motion of the FNCF

model is well approximated. However, the x-axis motion, which is purely caused due to flexible effects clearly requires a higher

number of modes for an accurate representation. It is visible that these flexible effects are more accurately approximated as the

number of modes increases. For reference, Fig. 6 also compares three full system configurations during the simulation for the

SLAP model with m = 6. This figure also demonstrates the good accuracy of the SLAP model as all the nodes are visually

coincident throughout the simulation.

It is interesting, contrary to common model order reduction schemes, to notice that the number of selected modes should

remain limited. This is to prevent the addition of rigid body modes which should be eliminated through the reduction process,
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FIGURE 4 SLAP model approximation error as a function of the selected number of SLAP modes.

(a) m = 2 (b) m = 3 (c) m = 6

FIGURE 5 Load application point response comparison for a rigid model, the reference FNCF model and the proposed SLAP

model for different orders.

as discussed in Sec. 3.3. This also explains why the error starts increasing again when the number of SLAP modes increases

beyond m = 7 in Fig. 4 . To demonstrate the appearance of undesired rigid body modes in this case, we show the obtained

system configurations for m = 10 SLAP modes in Fig. 7 . Here it is apparent that the joint constraints are no longer satisfied.

In order to analyse the root of this issue, and the counter-intuitive divergence for larger ROM sizes, we consider the constraint

violation of the different motion modes. As discussed in Sec. 3.3, the system level modes �sl should comply with the constraint

Jacobian C:

C�sl = 0. (71)

However, due to the finite tolerance with which the constraints are met in the training simulation (as highlighted in Sec. 5.1),

this equality will not hold in practice and will only be approximately true. In fig. 8 we show the joint constraint error �joint for

each computed mode �sl from the SVD, defined as:

�joint =
(
C�sl

)T (
C�sl

)
. (72)

This figure clearly shows that up to the sixth motion mode, the error on the constraint remains very small, but from the seventh

mode onwards a significant error for each mode is obtained. This would not necessarily be an issue if these would correspond

to (very) stiff motion modes. It is therefore interesting to also assess how the eigenfrequencies of the SLAP model evolve

for a varying reduced order model size m. The eigenfrequencies for the linearized SLAP model at the initial (undeformed)

configuration � are shown in Fig. 9 . This figure shows that initially (grey curves) only a single rigid (low frequency) mode is
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(a) t = 0.1s (b) t = 0.2s (c) t = 0.3s

FIGURE 6 FNCF and SLAP configurations for m = 6 in reconstructive simulation.

(a) t = 0.1s (b) t = 0.2s (c) t = 0.3s

FIGURE 7 FNCF and SLAP configurations for m = 10, showing an undesired rigid motion contribution in the SLAP model

in the reconstructive simulation.

FIGURE 8 Constraint violation for computed motion modes from singular value decomposition on training simulation.
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FIGURE 9 SLAP model eigenfrequencies for an increasing reduced order model size.

identified and the first eigenfrequencies converge up to m = 6. However, from the seventh mode onwards (green curves), the

SLAP model starts to converge to a second low frequency mode. And as shown in Fig. 8 , these modes also correspond to a

higher constraint violation, implying that these are spurious (close-to-)rigid body modes. However, due to their low dynamic

stiffness, these modes will have a relatively large contribution to the system response and will therefore lead to large model

errors. These observations indicate the importance of conducting a reconstructive simulation with the SLAP model during setup,

or an analysis of the eigenfreqencies, to ensure no spurious rigid body modes appear.

6.3 Predictive results

Finally we also consider the performance of the methodology for a predictive simulation. For the predictive case we consider the

load force for the training applied in the opposite direction. This will cause the mechanism to move in the opposite direction such

that overall (rigid) configurations are encountered which were not visited during the training simulation. For the SLAP model,

the model with m = 6, which provided the best accuracy before, is considered. For this reversed load, the configuration of the

mechanism at three time samples, is shown in Fig. 10 . This figure shows that the general motion of the system is accurately

(a) t = 0.1s (b) t = 0.2s (c) t = 0.3s

FIGURE 10 FNCF and SLAP configurations for m = 6 during a predictive simulation with a reversed load.

approximated with the previously defined reduced order model. For a better view of the approximation of the flexibility, we

consider again the motion of the load applicaton node in Fig. 11 . From this analysis is clear that the obtained SLAP model
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FIGURE 11 Predictive response of load application node with m = 6.

provides good predictive capabilities with respect to the overall motion of the system. This can be expected as for the particular

case of a single degree-of-freedom mechanism performing a planar motion, the full configuration space can be described from

two modes. However, the limited training set for this example does not allow to effectively describe different types of flexible

deformation, and only order of magnitude trends are captured for the predictive reduced order simulation. This is what can be

expected from a training based method, and demonstrates the importance of selecting an appropriate training data set which is

expected to cover the relevant motion space. The practical implications will however be strongly case dependent and are not

explored further in this work.

In the presented implementation, the SLAP model does not lead to lower simulation times than the reference models as the

smaller timestep required by the fixed timestep central difference integrator with respect to the reference variable-timestep BDF

integrator offsets potential speed gains from the new methodology. The aim is however to highlight that the SLAP formulation

practically allows to evaluate the flexible multibody model in an explicit time integrator without any modifications, such that

deployment in novel applications like state-estimation and optimal control becomes feasible through this new scheme.

7 CONCLUSION

A constant reduced order basis scheme is presented for the full-system reduction of flexible multibody models. The proposed

approach exploits the properties of the global nodal coordinates in order to automatically perform a data-driven constraint

elimination from (a set of) training simulation(s). Due to the affine dependence between the global nodal degrees-of-freedom

and the reduced order degrees-of-freedom, this approach is denoted the System Level Affine Projection (SLAP). The proposed,

singular value based, reduction schemes enables an automatic joint constraint elimination for the reduced order model. As the

reduction scheme is based on a singular value decomposition of the full nodal response of a flexible multibody simulation,

this can pose a computational bottleneck as a dense high dimensional dataset is often obtained. An intermediate response data

compression based on the component modes is proposed in order to mitigate this bottleneck, leading to low computational

loads for the reduced order basis setup. The equations of motion for these new system level reduced order degrees-of-freedom

are defined, and a set of ordinary differential equations with a constant, configuration independent, mass matrix and nonlinear

internal forces is obtained. The resulting equations of motion computational load is independent from the original flexible

multibody model size and can be obtained non-invasively with respect to the training flexible multibody software. The proposed

approach is numerically validated on a flexible four bar mechanism. The SLAP approach is shown to exhibit fast convergence,

also including the flexible deformation. Care must be taken however in increasing the number of reduced order DOFs, as spurious

rigid body modes, resulting from a finite joint constraint accuracy, can lead to erroneous results. Future research will focus on

the deployment of the SLAP approach for more generalized joint constraint conditions and more automated reduced order basis

selection metrics.
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APPENDIX

A SINGULAR VALUE PRESERVATION UNDER ORTHONORMAL TRANSFORMATION

In this appendix we show how an orthonormal transformation which spans the full data space preserves the singular values of

that data space. Consider the singular value decomposition of a matrix A ∈ ℝ
n×nt :

A = svd(A) = WΣVT , (A1)

with

• W ∈ ℝ
n×n and WTW = I;

• Σ ∈ ℝ
n×n a diagonal matrix with n singular values �i on its diagonal;

• V ∈ ℝ
nt×n with VTV = I,

where we assume nt ≥ n, but all derivations can be trivially repeated for nt ≤ n. We define an orthonormal matrix 	 ∈ ℝ
n×nm ,

for which Ai ∈ span (	) for all columns i of A and where nm ≤ nt. From this orthonormal matrix we also define the projected

matrix:

Â = 	TA, (A2)

with the associated SVD:

Â = svd(Â) = ŴΣ̂V̂T . (A3)

We will now show that:

�i = �̂i ∀i ≤ nm, (A4)

�i = 0 ∀i > nm, (A5)

and hence the singular value decomposition of the projected matrix can be used interchangeably to perform an approximate

order reduction.

From the definition of 	, it follows that:

A ∈ span (	) ⇔ A = 	Â. (A6)

By definition, this implies that the condition from Eq. (A5) is met as otherwise not all ofAwould be in the span of	. Equivalently

from Eqs. (A1), (A3) we can now transform the equality from Eq. (A6) to the respective SVDs:

WΣVT =
[
W1−nm W(nm+1)−n

] [Σ1−nm 0

0 0

] [
V1−nm V(nm+1)−n

]T
= 	ŴΣ̂V̂T , (A7)

where the contributions from the zero singular values can be omitted such that:

W1−n2Σ1−n2V
T

1−n2
= 	ŴΣ̂V̂T . (A8)

From the definition of the SVD of Â we know that Σ̂ is a diagonal matrix with the singular values �̂ on its diagonal and V̂T V̂ = I.

From the definition of 	, as being orthonormal, and Ŵ it also follows that:
(
	Ŵ

)T

	Ŵ = I. (A9)

hence we can substitute 	Ŵ = W1−nm such that, when omitting the zero contributions, a SVD of A is reconstructed from the

SVD of Â. Therefore it holds that the singular values Σ̂ = Σ1−nm , such that condition Eq. (A4) is also shown. The singular

value decomposition of a matrix A obtained from an orthonormal projection of that matrix on a basis 	 with the same span can

therefore be used interchangeably to determine the dominant contributions to that matrix A.

B OPTIMAL BODY ROTATION MATRIX

In this work we exploit a novel approach for expressing the body attached reference frame in an optimal averaged sense, in

contrast to previous work on absolute coordinate formulation where a rotation based on on three points was used3,4. This body-

averaged approach has the important benefit that it is a better approximation for the Buckens frame approach typically adopted
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in FFR-CMS than a three-point approach. Moreover, the approach outlined here allows to obtain the optimal averaged rotation

at a computational cost independent of the original model size. The proposed methodology practically serves as an alternative

to the SVD based approach for solving the Procrustes problem33 and it allows to readily obtain the rotation derivatives required

for evaluating the internal forces.

As discussed in Sec. 4.3 the reference body translation xt
i
∈ ℝ

3 for body i is obtained as the average displacement of the body

nodes:

xt
i
=

1

2

nn
i∑

j=1

xij − x0
ij
= �

sl,t
i
�, (B10)

for an initially centered mesh.

In order to determine the body i rotation matrix Ri ∈ ℝ
3×3 we aim to find the rotation which minimizes the body deformation

as defined in Eq. (51):

min
Ri∈ℝ

3×3

nn
i∑

j=1

|Ri(�
c
ij
+�

sl,c
ij

�) − x0
ij
|2 s.t. RT

i
Ri = I. (B11)

This goal function from Eq. (B11) can be expanded into:

nn
i∑

j=1

|Ri(�
c
ij
+�

sl,c
ij

�) − x0
ij
|2 =

nn
i∑

j=1

(
Ri(�

c
ij
+�

sl,c
ij

�) − x0
ij

)T (
Ri(�

c
ij
+�

sl,c
ij

�) − x0
ij

)
(B12)

=

nn
i∑

j=1

(�c
ij
+�

sl,c
ij

�)TRT
i
Ri(�

c
ij
+�

sl,c
ij

�)

−2
(
x0
ij

)T

Ri(�
c
ij
+�

sl,c
ij

�) +
(
x0
ij

)T

x0
ij

(B13)

=

nn
i∑

j=1

−2
(
x0
ij

)T

Ri(�
c
ij
+�

sl,c
ij

�)

+(�c
ij
+�

sl,c
ij

�)T (�c
ij
+�

sl,c
ij

�) +
(
x0
ij

)T

x0
ij
. (B14)

In order to obtain this expansion we exploited the fact that the rotation matrix R has to be orthonormal (which is explicitly

enforced through the constraint). From the perspective of finding the optimal rotation Ri , the terms independent of the rotation

matrix in this goal function can be omitted without influencing the minimizer. The optimization problem Eq. (B11) can therefore

be rewritten as:

min
Ri∈ℝ

3×3

nn
i∑

j=1

−2
(
x0
ij

)T

Ri(�
c
ij
+�

sl,c
ij

�) s.t. RTR = I. (B15)

However, the fact that this problem is linear in the rotation matrix and redundantly constrained makes it relatively challenging to

solve. However, in the following paragraph we show that this can be converted into a trivial problem by using Euler parameters

to describe the rotation, rather than optimizing the full rotation matrix.

The Euler parameters p ∈ ℝ
4 for body are a redundant rotational description with constraint pTp = 1. For convenience we

write:

p =

⎡⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎦
, (B16)

and the rotation matrix as a function of these Euler parameters is obtained as:

R(p) =

⎡
⎢⎢⎣

a2 + b2 − c2 − d2 2bc − 2ad 2bd + 2ac

2bc + 2ad a2 − b2 + c2 − d2 2cd − 2ab

2bd − 2ac 2cd + 2ab a2 − b2 − c2 + d2

⎤
⎥⎥⎦
, (B17)

which can also be written as:

R(p) =

4∑
k=1

4∑
l=1

)2R

)pk)pl
pkpl =

4∑
k=1

4∑
l=1

Sklpkpl, (B18)
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with Skl a set of sixteen constant three-by-three matrices. The optimization problem from Eq. (B15) can now be rewritten for

the Euler parameters p for body i:

min
p∈ℝ4

nn
i∑

j=1

−
(
x0
ij

)T

R(pi)(�
c
ij
+�

sl,c
ij

�) s.t. pTp = 1. (B19)

With the rotation matrix as defined in Eq. (B17) this becomes a quadratic minimization problem with a single constraint. Taking

this into account, the problem can again be rewritten as:

min
p∈ℝ4

− pT

(
Ai� +

m∑
r=1

Air�r

)
p s.t. pTp = 1., (B20)

with Ai� ∈ ℝ
4×4 and Air ∈ ℝ

4×4 defined as:

Ai�,kl =

nn
i∑

j=1

−2
(
x0
ij

)T

Skl�
c
ij

k, l = 1, 2, 3, 4, (B21)

Air,kl =

nn
i∑

j=1

−2
(
x0
ij

)T

Skl(�
sl,c
ij,r

) k, l = 1, 2, 3, 4 r = 1,… , m. (B22)

For the reduced reference configuration and m reduced degrees-of-freedom, these matrices can be set up during the pre-

processing such that the online evaluation of the rotation matrix becomes independent of the original model size.

Through the use of a Lagrange multiplier �, the constrained optimization problem from Eq. (B20) is cast into an unconstrained

minimization problem:

min
p∈ℝ4,�∈ℝ1

− pT

(
Ai� +

m∑
r=1

Air�r

)
p − (pTp − 1)�. (B23)

The stationary points (and hence minimizers) of this problem are found from the KKT conditions:(
Ai� +

m∑
r=1

Air�r

)
p + �p = 0 (B24)

pTp = 1. (B25)

It is now interesting to see that this is simply the definition of a four-by-four eigenvalue problem in p for an eigenvalue �. The

optimal Euler angles are hence obtained by solving this small eigenvalue problem and selecting the solution corresponding to

the largest positive eigenvalue. The corresponding rotation matrix for body i can then be obtained by evaluating Eq. (B17) for

this solution.

Moreover, as the eigenvalue problem is linearly dependent on the reduced degrees-of-freedom �, the derivatives of the solution

of this eigenvalue problem with respect to � are straightforward to evaluate from:

[(
Ai� +

∑m

r=1
Air�r

)
− I� −p

pT 0

][ )p

)�r
)�

)�r

]
=

[(
−Air + �I

)
p

0

]
, (B26)

which again only requires the solution of a small scale five-by-five linear system for each derivative with respect to a reduced

degree-of-freedom. These derivatives are required to evaluate the derivatives of the rotation matrices with respect to the reduced

degrees-of-freedom, as required for evaluation of the internal forces.
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