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Abstract— Over the years, medical image tracking has gained 

considerable attention from both medical and research 

communities due to its widespread utility in a multitude of 

clinical applications, from functional assessment during diagnosis 

and therapy planning to structure tracking or image fusion 

during image-guided interventions. Despite the ever-increasing 

number of image tracking methods available, most still consist of 

independent implementations with specific target applications, 

lacking the versatility to deal with distinct end-goals without the 

need for methodological tailoring and/or exhaustive tuning of 

numerous parameters. With this in mind, we have developed the 

Medical Image Tracking Toolbox (MITT) - a software package 

designed to ease customization of image tracking solutions in the 

medical field. While its workflow principles make it suitable to 

work with 2D or 3D image sequences, its modules offer versatility 

to set up computationally efficient tracking solutions, even for 

users with limited programming skills. MITT is implemented in 

both C/C++ and MATLAB, including several variants of an 

object-based image tracking algorithm and allowing to track 

multiple types of objects (i.e. contours, multi-contours, surfaces 

and multi-surfaces) with several customization features. In this 

work, the toolbox is presented, its features discussed, and 

illustrative examples of its usage in the cardiology field provided, 

demonstrating its versatility, simplicity and time efficiency. 
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I. INTRODUCTION 

EDICAL imaging is nowadays firmly established within 

the medical community, being vastly used during 

routine clinical practice to help diagnose and treat a multitude 

of diseases. Alongside, medical image processing has gained 

considerable attention from industrial and research 

communities, with the development of an ever-increasing 

number of automated solutions [1-9]. Since the beginning, the 

majority of clinical imaging applications, and hence also 

software, focused on the anatomical evaluation of the 

subject/patient through static image acquisitions (or dynamic 

ones but considering one time point only), aiming at assessing 

the morphology (e.g., shape, structure, size, location, etc.) of 

the internal body [9]. Nonetheless, over the years, medical and 

research communities started directing their efforts towards 

analyzing dynamic/functional aspects of our body (e.g., 

cardiac motion and deformation, blood flow, brain activity, 

respiratory movements, among others), given its incremental 

value for diagnosis and treatment [10-12]. While the former 

relies on processing techniques such as image segmentation, 

shape analysis, image classification or image enhancement [1, 

2, 7-9], the latter is usually based upon techniques like image 

registration and tracking [3-5]. 

In broad terms, whereas image registration focuses on 

finding the relationship between two or more images, image 

tracking aims at following the motion of specific patterns 

along an image sequence. Although registration can be used to 

perform tracking (through the quantification of the relative 

motion between pairs of images), its generic principle allows 

its application in many other fields (extensive reviews on the 

subject can be found in Markelj, et al. [3], Sotiras, et al. [4]). 

With respect to image-based tracking, potential clinical 

applications include functional assessment during diagnosis 

(e.g., motion/deformation assessment of cardiac structures [10, 

11, 13, 14], quantification of tendon displacement [15, 16], 

among many others) and therapy planning (e.g., dynamic 

assessment of heart valves prior to percutaneous interventions 

[17-19]), structure tracking during image-based surgeries, 

interventions and radiotherapy (e.g., chamber/valve tracking 

during cardiac interventions [20, 21], tumor-tracking during 

radiotherapy or biopsy interventions [22-24], instrument 

tracking during surgeries [25, 26], among others [3, 27]) and 

tracking-based multimodality image fusion [28-30], being also 

used as a tool to potentiate other image-based assessments 

(e.g., motion correction for free-breathing imaging [31]). 
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Overall, while image tracking techniques have a 

tremendous applicability, most existing solutions consist of 

independent implementations with very specific target 

applications. Taking the cardiology field as an example [17, 

32-38], image tracking solutions are typically aimed at a 

certain modality or sequence (e.g., ultrasound, computed 

tomography, cine or tagged magnetic resonance sequences) 

with a particular image dimensionality (bi- or tridimensional 

sequences) and to assess a single chamber (left or right 

ventricle or atrium, the myocardium or a cardiac valve), thus 

lacking the versatility to deal with distinct end-goals without 

the need for methodological tailoring and/or exhaustive tuning 

of numerous and complex parameters. 

A notable exception is the elastix toolbox, which provides a 

vast set of algorithmic options for image registration in a fairly 

easy and customizable manner [39]. Nonetheless, aiming at 

tracking applications, its translation into the clinical 

environment can still be challenging, with limitations 

including its computational burden (due to the principles 

behind image registration), the need for high-level 

programming skills to extract meaningful information from 

full sequences (as it is built upon the principle of aligning a 

pair of images only) and the need to customize a wide range of 

parameters when tuning for a specific tracking goal (given its 

extremely generic applicability). 

In light of this, we developed the Medical Image Tracking 

Toolbox (MITT) – a novel toolbox designed with the ultimate 

goal of providing in a single software package the tools 

required to easily tailor an image tracking solution for a 

particular medical application. While its workflow principles 

make it suitable to deal with full 2D or 3D image sequences, 

its underlying modules and algorithms, together with a 

command-line interface, permit an easy customization of 

computationally efficient tracking solutions, even for users 

with limited programming skills. 

This paper is structured as follows. In Section II, the overall 

structure of MITT is described, key features are presented, and 

an overview of the underlying tracking module and its key 

components is given. Section III presents several application 

scenarios, demonstrating the versatility and computational 

efficiency of MITT for each, as well as providing evidence of 

its clinical relevance. Section IV discusses MITT’s current 

implementation and compares it with other toolboxes. The 

main conclusions are given in Section V. 

II. MEDICAL IMAGE TRACKING TOOLBOX 

A. Toolbox characteristics 

The MITT is structured according to the scheme of Fig. 1. 

Currently, its implementation includes an object-based image 

tracking module based on the previously described anatomical 

affine optical flow (AAOF) algorithm [40], including 2D+t 

and 3D+t implementations of both global and localized 

versions of AAOF, and permitting the tracking of multiple 

types of objects (i.e. contours, multi-contours, surfaces and 

multi-surfaces) with several customization features. The 

software package can then be complemented with post-

processing and visualization add-ons/plugins for a specific 

clinical application, currently including a cardiology-oriented 

module (focused on strain analysis and motion assessment). 

MITT is currently implemented in two programming 

languages, C/C++ and MATLAB (Mathworks, USA). The 

former is built upon widely used open source libraries, namely 

OpenCV (opencv.org), the Insight Toolkit (ITK; itk.org) and 

the Visualization Toolkit (VTK; vtk.org) [41], existing both 

CPU- and GPU-based implementations. While MATLAB is 

inherently a scripting language, the C/C++ version has a 

command-line interface, enabling easy processing of data sets 

by users with limited programming skills, independently of the 

version used. With advanced users in mind, a MATLAB-to-

C++ interface is also available to combine the computational 

efficiency of C/C++ with the advantages of MATLAB for 

code prototyping. The MITT executables can be accessed 

online1 (a demo version is available in supplementary data). 

B. Toolbox workflow overview 

MITT is a modular toolbox that comprises three modules 

(Fig. 1): the input handling; the image tracking algorithms and 

associated components; and the output handling, in which the 

tracked object is saved into the disk or used in add-ons/plugins 

(created with a specific purpose in mind). 

With respect to the input, the software accepts images in the 

MetaImage file format, with the user having to indicate the 

input images’ file names. To facilitate, the image sequence can 

be stored as independent files in an ordered fashion (indicated 

in the file name with a wildcard character) or as a single file 

with a higher-dimensional data (e.g., a volume for a 2D image 

sequence). The former is appropriate for 3D+t applications, 

while the latter can be useful for 2D+t ones (namely 

ultrasound acquisitions in which the sequence is usually 

extracted in a single file). Optionally, the user may also supply 

a mask image (same format and entering the file names), 

indicating the regions of interest (i.e. any point outside the 

mask will be ignored when processing). If the same mask is to 

be applied to all frames, the user can indicate a single 

image/volume and the software will replicate as needed. These 

inputs will form the data object within MITT. 

Besides providing the images, the user can configure the 

tracking algorithm and its components through a parameter 

text file (an example is provided in supplementary material 1). 

These settings allow to select the suitable configuration for a 

particular application, thus controlling the algorithm’s pipeline 

and optionally setting any additional parameter. 

Taking into account the tracking module, the last required 

input is the object to be tracked, which must be provided as a 

structured grid in the VTK file format. This format supports 

1D, 2D and 3D structured grids, thus being able to represent 

any object of interest (i.e. contours, multi-contours, surfaces or 

multi-surfaces; Section II-D4). Any grid point will consist of 

x-y-z values in world coordinates (example files are provided 

in supplementary data), even for objects in a 2D image (i.e. all 

z values must be equal to 0). Note that the object is not 
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necessarily defined at the first frame of the sequence, being 

the user able to indicate which frame (𝑓) it represents. 

Based on the user inputs, the associated tracker is then 

defined and initialized (Section II-D), and the object tracked 

from the initial frame to all others according to a user-defined 

propagation scheme (option set in the parameter file; see 

Section II-C). After each propagation step, the tracked object 

at the new frame is saved to the disk in the same VTK file 

format. At the end, there will be one file per input frame. 

Besides outputting the tracked object, these results can be 

used in add-ons/plugins to extract relevant clinical information 

or to be visualized. Currently, two MATLAB add-ons have 

been implemented: a cardiology-oriented module for strain 

analysis and a set of visualization routines (supporting both 

2D and 3D images, and any type of object). 

In the following sub-sections, more information is given 

about each component of MITT, describing their overall 

features and associated options. Finally, an example of usage 

for the C/C++ version is given in the Appendix A, with 

several example cases (used in Section III) being additionally 

provided in supplementary data. 

C. Tracking propagation scheme 

Since the reference frame in which to start the tracking can 

be set to an arbitrary frame within the input sequence, there 

are a few alternatives on how to apply the frame-to-frame 

propagation to the entire sequence. In this regard, the 

following propagation schemes are currently supported by 

MITT: (1) bidirectional propagation - i.e. from the reference 

frame to the last frame and from the reference frame to the 

first frame, without assuming a complete cycle (Fig. 2A); (2) 

unidirectional propagation - i.e. always forward and, if 

needed, assumes cyclic propagation (Fig. 2B); (3) 50/50 

bidirectional propagation - i.e. it propagates half of the frames 

forward, and half backward, assuming cyclic propagation if 

needed, minimizing the number of propagation steps and thus 

reducing error accumulation (Fig. 2C).  

D. Tracking module – Anatomical affine optical flow (AAOF) 

1) Algorithm overview 

The AAOF is an object-based image tracking algorithm, 

whose key principle is to estimate an object’s motion between 

adjacent frames using optical flow (OF) [40]. While traditional 

OF strategies compute the motion across a predefined regular 

region using the brightness constancy assumption, the AAOF 

algorithm uses the a priori knowledge about the object of 

interest (mandatorily known) to anatomically constrain the 

motion estimation step to the region of interest (ROI) around 

the tracked object (i.e., defining a window function wrt. the 

object). Besides reducing the method’s computational burden, 

the constrained estimation preserves the constant motion 

assumption over the defined ROI by avoiding the influence of 

surrounding structures. The motion estimated at the 

anatomical ROI is then integrated into an affine motion model 

(or a reduced version of it, Section II-D2), using either global 

or localized principles (Section II-D3). To be able to capture 

large displacements, the algorithm also includes an iterative 

displacement refinement scheme. The idea is to progressively 

accumulate the estimated displacement fields over a fixed 

number of iterations, warping the target image after each 

iteration and thus iteratively reducing the amount of motion 

left to be estimated. After a fixed number of iterations, the 

 
Fig. 1 – Schematic workflow of MITT. For a given input image sequence (2D or 3D) and according to a set of options defined through a parameter text file, 

an object of interest is propagated using the anatomical affine optical flow (AAOF) algorithm. Such object-based tracking module includes distinct AAOF 
variants, permitting the tracking of multiple type of objects (contours [C], multi-contours [MC], surfaces [S] and multi-surfaces [MS], with several boundary 

conditions available) using either global or localized principles (or a combination of them). After each propagation step, an object regularization step is 

optionally applied, and the process repeated between adjacent frames according to a user-defined propagation scheme. In the end, the tracked object is saved 

to the disk and/or used in add-ons/plugins to extract meaningful clinical information. 



estimated motion is used to propagate the object to the 

subsequent frame and the whole process is repeated following 

the defined propagation scheme (Section II-C). 

Besides choosing the adequate motion model and tracking 

type (Sections II-D2 and II-D3, respectively), a few other 

parameters must be carefully set according to the application’s 

object and imaging modality to achieve an accurate tracking, 

namely the size of the window function used in the anatomical 

ROI, the number of iterations of the refinement scheme and 

the standard deviation of the Gaussian derivative kernel used 

to compute the optical flow’s image spatial gradients. Indeed, 

the window size controls the amount of object’s neighborhood 

used to estimate the motion. If set too large, the motion of 

surrounding structures may influence the estimated motion, 

while a too small window might not be sufficient to capture 

enough information to accurately estimate the underlying 

motion. In its turn, the number of iterations must be set based 

on the expected amount of motion for the object under study, 

being also dependent on the defined window size. Finally, the 

Gaussian kernels’ width must be set according to the signal-to-

noise ratio of the image, being large enough to reduce the 

method’s sensitivity to noise but sufficiently small to retain 

enough information within the defined ROI. Note that all these 

parameters also influence the method’s computational burden. 

Moreover, all can be defined through the parameter text file 

(see example in supplementary material 1, available in the 

supplementary files/multimedia tab). 

2) Motion model 

The motion model sets the degrees of freedom for the 

object’s motion between subsequent frames. Generally, an 

affine transformation model is used, allowing to describe the 

motion within the anatomical ROI as a combination of four 

components: translation, rotation, scaling and shearing. 

However, for a given application, it might be interesting to re-

parameterize the affine transformation to only include a subset 

of its components [42] – this is known as model reduction. 

Besides the affine model (default option), three reduced 

motion models are currently supported by MITT: rigid (i.e., 

translation plus rotation only); similarity (i.e., rigid plus 

isotropic scaling); and anisotropic similarity (i.e., rigid plus 

non-isotropic scaling).  

3) Tracking type 

Originally, AAOF relied on a global motion model [43, 44]. 

In this version, the goal was to integrate the motion estimated 

within the entire anatomical ROI into a single affine 

transformation, which would describe the propagation of the 

entire object to the adjacent frame. 

More recently, a localized version of this algorithm was 

proposed [40], in which a local affine motion model is 

independently estimated for each object’s point via a weighted 

anatomical ROI. In other words, the motion is estimated per 

point using its anatomically constrained neighborhood. Such 

anatomical weighting is made possible by describing the 

object based on its anatomical topology (i.e., mapping it in a 

regular mesh, namely by assuming a polar, spherical, prolate 

or cylindrical topology, among others). For example, a contour 

in a 2D image can be described using a polar topology, while a 

sphere in 3D can be represented with a spherical topology. 

Note that, if required, other representations (not based on the 

anatomy) can be used to describe the object or points of 

interest, as long as it is given as a regular mesh to enable a 

localized weighting/smoothing. Equally important is the 

setting of the desired support for the localized estimation. In 

this regard, the user can control the size of the anatomically-

constrained neighborhood used for each point through the 

definition of a Gaussian-based weight, ultimately controlling 

the smoothness of the estimated motion – it can be defined 

from a single point estimate (highly irregular and noisy 

tracking) to a global support estimate (as in the global 

counterpart, with less degrees of freedom to capture local 

motion/deformation). Note however that, in opposition to 

other methods that regularize a motion field estimated a priori 

[45-47], the AAOF algorithm embeds such anatomical 

information directly into the OF estimation (through the direct 

computation of a local motion model per point). The localized 

support parameter is thus paramount in achieving an accurate 

and robust tracking. The reader is kindly referred to Queirós, 

et al. [40] for further details regarding this parameter and its 

influence on the tracking result. 

MITT supports both global and localized versions of 

AAOF. Within the localized one, the user can set the localized 

support independently for each dimension of the object’s 

anatomical mesh. This parameter sets the Gaussian kernel’s 

radius used (sigma equal to a third of the radius and size equal 

to 2×radius+1) and is given as a percentage of the object’s 

grid size (number of points) along the corresponding 

dimension. To further increase the toolbox’s flexibility, a 

combined version is also available (named Global+Local). In 

this version, the algorithm applies a global estimate and 

proceeds with a localized refinement (using the global affine 

transformation as the starting point for the second stage). This 

option makes it possible to track an object even if its 

movement combines both global motion (such as a large 

translation and/or rotation due to surrounding structures) and 

local deformation (i.e. within the object itself). When this 

option is used, all abovementioned parameters (number of 

iterations, window size, etc.) can be independently set for both 

global and localized stages.  

4) Mesh topology/dimensionality 

According to the dimensionality/topology of the mesh 

chosen to represent the object to be tracked and the image 

dimensionality, MITT defines four types of objects: (1) 

contours, used to represent objects with a single parametric 

coordinate (i.e., objects entered as a 1D structured grid; Fig. 

 
Fig. 2 – MITT supports three propagation schemes: (A) bidirectional; (B) 

unidirectional; (C) 50/50 bidirectional. 



3A, B and E); (2) multi-contours, used to represent a set of 

related contours in a dual parametric coordinate system (i.e. 

objects entered as a 2D structured grid) and whose anatomical 

weighting is jointly applied across both dimensions (Fig. 3C 

and D); (3) surfaces, representing objects in a three-

dimensional space but described using a topology with two 

coordinates only (i.e., objects entered as a 2D structured grid; 

Fig. 3F); (4) multi-surfaces, representing a set of surfaces 

related with each other (i.e. objects entered as a 3D structured 

grid) and whose motion should be jointly estimated (Fig. 3G). 

Although multi-contours and surfaces have the same mesh 

dimensionality, they are here described separately given their 

distinct geometric meaning. Note that both contours and multi-

contours may be used in 2D or 3D applications, while surfaces 

and multi-surfaces are intended for 3D applications only and 

enable a three-dimensional assessment of the object despite its 

description on a lower-dimensional space (e.g., assuming 

closed poles in a spherical topology). 

5) Anatomical boundary mapping 

As mentioned above, in the localized AAOF, each object 

point is tracked by integrating the estimated motion within an 

anatomically-constrained neighborhood. Since a weighted 

integration is applied across the anatomical mesh during OF 

computation, it is crucial to deal with the mesh’s boundaries. 

Indeed, besides setting the object’s mesh dimensionality, one 

must also define appropriate boundary conditions to match the 

anatomical topology used to represent the object of interest. In 

this sense, MITT supports multiple options within its 

anatomical boundary mapper, allowing the user to quickly 

adapt the tracker to the needs of its application. Currently 

supported boundary conditions include constant boundaries 

(Fig. 4B), mirror boundaries (Fig. 4C), anti-mirror boundaries 

(Fig. 4D), periodic boundaries (Fig. 4E) and spherical 

boundaries (i.e., 180º-shifted mirrored boundaries; Fig. 4E). 

While the first three are commonly used in open objects (such 

as open contours, or across the second dimension of multi-

contours, etc.), the fourth is applicable for closed objects 

(either closed contours or across the circumferential direction 

of a surface described with a spherical or cylindrical topology; 

see Fig. 3B and F, respectively). In its turn, the fifth is very 

useful for a spherical topology (i.e., for an anatomical 

weighting during motion estimation while assuming a closed 

sphere-like object; see Fig. 3F-G). Note that the user can 

choose the boundary per mesh dimension and per side (i.e., 

two distinct boundary conditions per mesh dimension, unless 

periodic is assumed). In Section III, we demonstrate possible 

application scenarios for each one of the aforementioned type 

of objects (with distinct mesh topologies), exemplifying the 

setting of these boundary conditions for each. 

E. Object regularization 

In some applications, one might want to make sure the 

object keeps a specific structure throughout the propagation 

(e.g., ventricle with a closed apex in a 3D space, with a row of 

grid points representing the same Cartesian position, i.e. the 

apex; a sphere-like 3D left atrial shape, which is closed in both 

ends; or a blind-ended left atrial appendage shape). These 

regularizations are presently supported by MITT (i.e., single 

or double closed surface-like object) and are applied, if 

needed, after each propagation step. 

III. EXPERIMENTS AND RESULTS 

In this section, several application scenarios for MITT are 

described, aiming to exemplify its suitability for quick 

customization of object-based tracking solutions. Examples 

are taken from cardiac imaging, although it is not restricted to 

this application only. To illustrate its versatility, the image 

data targeted multiple cardiac structures imaged with two of 

the most clinically used modalities for motion assessment 

(ultrasound and magnetic resonance imaging, MRI), and 

considering the software applicability for both healthy subjects 

and diseased patients (Section III-A). Given the computational 

attractiveness of the underlying algorithm, the computational 

burden for each application was also studied (Section III-B). 

All MITT commands, parameter files and data used in the 

following experiments are available as supplementary data 

(except 3D image data, shared upon request), together with a 

demo version of MITT executables for Microsoft Windows 

(R) (x64) operating system [48].2 

A. Application scenarios 

The application scenarios, henceforth named demos, 

include the tracking of: (1) the left atrium (LA) endocardium 

 
2https://data.mendeley.com/datasets/9y35mnt56v/1 

 
Fig. 3 – Four type of objects are currently defined by MITT according to 

the dimensionality/topology of the tracked object: contours (A, B and E); 
multi-contours (C and D); surfaces (F); and multi-surfaces (G). All types 

can be further customized based on the used boundary conditions (e.g., to 

represent open or closed contours as in (A) and (B), respectively). 

 
Fig. 4 – (A) An object described with a 2D mesh topology (delimited by 
the white dashed line) was colored based on a monotonically increasing 

value (representing an intermediate quantity computed in the optical flow 

algorithm). For this given object, and to correctly embed its topology, 
MITT supports the use of constant boundaries (B), mirror boundaries (C), 

anti-mirror boundaries (D), periodic boundaries (E; at the left and right 

sides) or spherical boundaries (E; at the top and bottom sides). 

https://data.mendeley.com/datasets/9y35mnt56v/1


                                                                                                    

of a healthy subject and a patient with amyloidosis, imaged 

using 2D cine-MRI in a 4-chamber (4CH) view; (2) the right 

ventricle (RV) endocardium of a patient with hypertrophic 

cardiomyopathy (HCM), imaged using 2D cine-MRI in a 

short-axis (SAx) view; (3) the left ventricle (LV) myocardium 

of a patient with suspected chronic myocardial ischemic heart 

disease, imaged using 2D tagged-MRI in a SAx view; (4) the 

LV myocardium of a healthy subject and a patient with HCM, 

imaged using 2D cine-MRI in a 4CH view; (5) the LV 

myocardium of a patient with myocardial infarction (MI), 

imaged using 2D transthoracic echocardiography (TTE) in a 

4CH view; (6) the mitral valve (MV) annulus of a patient with 

a functionally normal MV, imaged using 3D transesophageal 

echocardiography (TEE); (7) the aortic valve (AV) wall of a 

patient with severe aortic stenosis, imaged using 3D-TEE; and 

(8) and (9) the LV endocardial and myocardial walls, 

respectively, of a patient with MI, imaged using 3D-TTE. 

Importantly, all these anatomical structures are definable 

through the type of objects available in MITT, namely 

contours to represent both LA and RV endocardium in 2D and 

the MV annulus in 3D, multi-contours for LV myocardium in 

2D images, surfaces for AV and LV endocardium walls, and 

multi-surfaces for the myocardial wall. For each one of these 

demos, adequate settings were then chosen to execute MITT 

(from tracking type and motion model to boundary conditions 

and object regularization), as summarized in Table I. 

Fig. 5 illustrates the tracking results (at distinct time points 

across an image sequence) for all 2D demos. The 

automatically extracted strain curves for each case (global, 

circumferential, longitudinal and/or radial [10]) are also 

depicted to demonstrate their potential clinical use. Note, e.g., 

the lower absolute peak strain values obtained for the diseased 

patient compared to the healthy subject in demos 1 (Fig. 5B 

vs. A; right panel) and 4 (Fig.5F vs. E; right panel). Movies of 

all demos are available as supplementary material (Movie 1 to 

9), available in the supplementary files/multimedia tab.  

B. Computational time 

Besides versatility, MITT intends to simultaneously offer 

computational efficiency for tracking solutions. In this regard, 

the computational time required to execute the aforementioned 

demos (including input/output operations) was registered for 

all MITT versions (CPU- and GPU-based implementations in 

C/C++, and MATLAB), using code running on an Intel® 

Core™ i7 CPU at 2.8 GHz, with 16 GB of RAM, a NVIDIA 

Quadro® K2100M, and a Microsoft Windows® 8.1 operating 

system. For the sake of representativeness, the code was 

executed 5 times for each demo and version. Table II presents 

the computational performance both in terms of average 

computational time (and standard deviation) and number of 

frames processed per second (fps). Note that, due to the 

computational burden of a multi-surface tracking, this option 

is currently not available in the MATLAB version and thus no 

result is provided in demo 9 for this version.  

IV. DISCUSSION 

In recent years, there has been a growing body of evidence 
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demonstrating the substantial information provided by image 

tracking applications for patients’ diagnosis and treatment [5, 

10, 11, 20]. For this reason, we have developed and presented 

MITT - a software package designed for easy customization of 

tracking solutions in the medical field. Indeed, as described in 

Section II and demonstrated by the experiments in Section III, 

MITT offers the following key features: (1) versatility: the 

currently embedded object-based tracking algorithm permits 

the adaptation towards multiple applications (Table I); (2) 

simplicity: MITT is designed to simplify the customization 

 
Fig. 5 – Tracking results for the 2D demos, with associated strain curves. (A) and (B) Demo 1 (healthy subject and patient with 
amyloidosis, respectively); (C) Demo 2 (patient with hypertrophic cardiomyopathy, HCM); (D) Demo 3 (patient with suspected myocardial 

ischemia); (E) and (F) Demo 4 (healthy subject and patient with HCM, respectively); (G) Demo 5 (patient with myocardial infarction). 

 



and setting of the underlying algorithms towards a given end-

goal, even for users with limited programming skills (see 

Appendix and supplementary data); (3) speed: the C/C++ 

version permits the development of computationally efficient 

solutions (Table II); (4) modularity and transparency: the 

toolbox components were designed to be modular, enabling 

the comparison of distinct settings for each component, while 

being transparent with respect to its internal processes to 

simplify customization and reduce mistakes; and (5) multi-

language implementation: MITT is currently implemented in 

two programming languages, allowing to take advantage of 

the computational efficiency of C/C++ for end-user 

applications (namely the GPU version), but also for easy and 

quick code prototyping through its MATLAB implementation 

(with the possibility of creating additional add-ons/plugins). 

With regard to the AAOF implementation and with respect 

to previous works [40, 43], MITT also offers numerous novel 

features, including: (1) the option to describe structures using 

multi-contour and multi-surface objects; (2) the support for 

reduced motion models (and not only an affine model; Section 

II-D2); (3) the possibility to provide an image mask (a single 

one or one per frame), allowing to indicate regions considered 

unfeasible for motion estimation (i.e. object points positioned 

within these regions are estimated based on the remaining 

points); (4) the addition of a configurable boundary mapper, 

easing the customization and increasing the algorithm’s 

versatility; and (5) the option to combine global and localized 

implementations (with independent parameters) to capture 

complex motions. 

Taking the cardiology field as example, the presented 

demos clearly proved the versatility and ease of adaptation of 

the software, namely with respect to the possible objects to be 

tracked. Indeed, although the LA endocardium is typically 

described as an open structure (demo 1, Fig. 5A and 5B, 

Movie 1a and 1b) and RV as a closed one (demo 2, Fig. 5C 

and Movie 2), both were easily described as 1D grid-like 

objects (a contour). To adapt the contour-based object to each 

case, the user must specify suitable boundary conditions (Fig. 

4), using open ones for LA (such as constant, mirror or anti-

mirror boundaries, according to the expected motion) and 

closed ones for RV (namely periodic boundaries). If trying to 

simultaneously represent multiple boundaries (namely the LV 

myocardium, as in demos 3, 4 and 5, Fig. 5D-G and Movies 3 

to 5), the structure of interest can be described as a multi-

contour object. Once again, the adequate setting of the 

boundary conditions allows to adapt this type of object to 

different structures. While demo 3 used periodic contours to 

represent the ventricle imaged from a SAx view (closed along 

the circumferential direction), mirror boundary conditions 

were used in demos 4 and 5 to represent the open-surface LV 

when imaged from a 4-chamber view (opened along the 

longitudinal direction). A similar analysis is possible in the 3D 

demos: the closed MV annulus (demo 6, Movie 6) was 

represented as a contour with periodic boundaries, while the 

AV wall (demo 7, Movie 7) was described using a surface 

with mixed boundary conditions (periodic over the 

circumferential direction and constant along the valve’s axis). 

In demo 8 (Movie 8), a surface was also used to represent the 

LV endocardium, with the anatomical boundary mapping 

modified accordingly. In this case, and since a spherical 

topology was used to represent the object, three distinct 

boundaries were used: a periodic one to represent the 

circumferential direction; a spherical boundary along the 

longitudinal direction at the apex side to provide a closed-type 

3D anatomical ROI; and a mirror boundary at the basal side 

(shown increased accuracy during experimentation). Finally, 

and as an extension of demos 3, 4 and 5 towards 3D tracking, 

the full myocardial wall (demo 9, Movie 9) was 

straightforwardly represented as a multi-surface object, with 

the motion of all layers being jointly estimated during OF 

computation. 

Besides providing adaptability in terms of represented 

objects, MITT offers the possibility to easily design tracking 

solutions for multiple modalities. In this study, the demos 

included several ultrasound acquisitions (both 2D and 3D TTE 

and TEE, imaged from different views), but also multiple MRI 

sequences (namely tagged MRI and cine MRI, in both SAx 

and 4CH views). Interestingly, the adaptation from one 

modality to another is performed simply through the 

customization of a few parameters. Taking demos 4 and 5 as 

an example (LV tracking in a 4CH view, Table I and Fig. 5E-

G), the adaptation from MRI to ultrasound required the 

modification of two parameters only: the Gaussian kernel’s 

size (based on the overall modality’s signal to noise ratio) and 

the window size (given the image resolution and overall image 

quality – i.e. MRI presents more homogeneous regions, 

requiring larger windows to capture enough information to 

estimate the motion using our differential OF strategy, while 

ultrasound has more features to track, namely the speckle 

patterns, with smaller windows being enough). Moreover, due 

to the ultrasound restricted field-of-view, demo 5 also required 

the use of a mask to limit the regions used during motion 

estimation (easily included through the command-line 

interface). Note that the object’s points that fall outside the 

provided mask (or near its edges, see Supplementary Material 

1 for details about the available options) will have their 

motion estimated based on the remaining points within the 

anatomical ROI. This strategy works for both global (same 

transformation applied to all points) and local AAOF (in 

TABLE II 

COMPUTATIONAL PERFORMANCE FOR EACH DEMO AND VERSION 
D

e
m

o
 

#
 f

ra
m

e
s  

GPU-based C/C++ 

 

CPU-based C/C++ 

 

MATLAB 

 Time (s) FPS  Time (s) FPS  Time (s) FPS 

1 30  0.53 ± 0.02 56.8  0.26 ± 0.01 113.3  1.13 ± 0.05 26.6 

2 20  0.46 ± 0.02 43.1  0.21 ± 0.01 93.0  0.92 ± 0.01 21.8 

3 32  1.10 ± 0.01 29.0  1.29 ± 0.02 24.9  4.97 ± 0.07 6.4 

4 30  1.24 ± 0.04 24.1  1.94 ± 0.09 15.5  6.27 ± 0.06 4.8 

5 44  1.32 ± 0.07 33.2  3.10 ± 0.11 14.2  4.59 ± 0.04 9.6 

6 23  1.67 ± 0.02 13.8  2.89 ± 0.07 8.0  8.28 ± 0.17 2.8 

7 71  56.79 ± 1.75 1.3  117.22 ± 1.22 0.6  428.61 ± 13.91 0.2 

8 44  16.17 ± 0.39 2.7  33.07 ± 0.55 1.3  91.26 ± 1.59 0.5 

9 44  125.90 ± 3.00 0.3  138.79 ± 2.72 0.3  - - 

FPS: frames per second (Hz). Time given as mean ± standard deviation. 

 



which estimations are local, but rely on a user-sized 

anatomical neighborhood). A similar analysis is possible when 

comparing MRI sequences (demos 3 and 4), and is expected if 

one would consider other imaging modalities (such as 

computed tomography or fluoroscopy). Importantly, within 

the same modality/sequence, most parameters are largely 

preserved across scenarios (e.g., demos 1, 2 and 4, and demos 

6, 8 and 9), ascertaining the simplicity in customizing MITT 

towards different end-goals. 

Since a software’s computational burden remains a relevant 

constraint towards clinical translation, MITT aims at 

providing an efficient base framework for tracking solutions. 

According to the experiments (Table II), the C/C++ version 

demonstrated to be viable for online processing, achieving 

over 24 fps for all 2D cases (reaching over 90 fps for single 

contours). Even for 3D tracking, it showed potential towards 

fast assessment of volumetric sequences, processing contours 

at ~14 fps and surfaces at 1 to 3 fps. The only exception 

remains for multi-surface objects, which is associated to 

computational limitations of the underlying libraries (no GPU 

implementation is available in the ITK library for convolution 

of 4D matrices). Nonetheless, if one would intend to increase 

performance, namely for potential applications like image-

based guidance in valvular transcatheter interventions (demo 6 

and 7), one could decrease the number of points used to 

represent the structure of interest or down-sample the 

volumetric sequence (in the experiments, full resolution 

images were used – Movies 6 and 7). Indeed, by subsampling 

the object by 2 in each dimension and the image volume by 3, 

one achieves ~42 and 16 fps for demos 6 and 7, respectively 

(Movies 6_sub and 7_sub). Lastly, when comparing CPU- and 

GPU-based versions, GPU consistently presented a lower 

burden, being outperformed only for single contours in 2D 

sequences. Such result is related to the faster processing of a 

contour-based tracking together with the necessity of 

transferring data between the graphics and central processing 

units in the GPU implementation. 

Although none of the experiments focused on the global 

AAOF version, one would expect that setting it as such would 

lead to a better computational performance (tests revealed a 

time reduction up to 40%, and achieving an 80% reduction for 

the multi-surface case) at the cost of a reduced ability to 

capture regional motion and deformation. In opposition, the 

combined ‘Global+Local’ tracking improves the ability to 

capture large and complex motions (i.e. large displacements 

due to motion of surrounding structures combined with local 

deformation of the object under study; demo 7), but at the 

expense of an inferior time performance with respect to either 

a pure global or localized strategy.  

With respect to the object’s regularization, although the 

presented demos only use one-sided regularization (LV apex 

in these scenarios), MITT also allows to apply a double-sided 

one (Section II.E). Nonetheless, more complex regularization 

models (namely using statistical shape models provided by the 

user to regularize the surface after each propagation step) are 

yet to be implemented. 

Interestingly, while being an object-based tracking method, 

the AAOF algorithm implemented in MITT together with the 

available inputs/parameters permit its customization towards 

the estimation of a dense motion field between frames (see 

supplementary material 2 available in the supplementary 

files/multimedia tab, and Movie 10). Indeed, if we consider a 

grid-like object in the Cartesian space (instead of defining an 

anatomical mesh topology) and set adequate boundaries 

(namely constant ones), one can estimate the motion locally 

across the entire image domain, which ultimately can be used 

to deform images, propagate single landmarks or track 

multiple objects simultaneously (Movies 11 and 12). In simple 

terms, such grid-like object transforms the anatomical 

principle behind AAOF back to the original Cartesian optical 

flow strategy, thus enabling the development of registration-

like solutions (namely global or local unimodal data alignment 

or landmark tracking, [3, 4]). Nonetheless, full support for this 

type of applications is yet to be incorporated. 

When compared to previously presented toolboxes, such as 

Elastix [39], NiftyReg [49], ANTs [50], MIRTK [51], ITK4 

[50], among many others [51], MITT presents key differences. 

While these toolboxes mostly implement image registration 

methods (from classic free-form deformation to diffeomorphic, 

sparse or shape-based one) with the key goal of aligning a pair 

of images using dense motion field estimation principles, 

MITT embeds an optical flow algorithm focused on object-

based image tracking over a full image sequence. This brings 

potential advantages, but also limitations. On the one hand, 

image registration methods are typically more robust to the 

image content than OF-based methods, given the differential 

principles of the latter and the ability to include numerous 

regularization terms in the former. However, since MITT 

restricts the OF computation to the anatomical ROI (rather 

than the entire image domain) defined based on the object to 

be tracked (which usually partly presents some contrast with 

neighbor regions), this sensitivity is minimized. Nonetheless, 

this object-based principle can also be a limitation for certain 

applications. On the other hand, OF methods tend to be 

computationally more attractive, which may be interesting in 

online scenarios. In this regard, MITT’s GPU version may be 

an added advantage. Finally, in opposition to most of the 

aforementioned toolboxes, MITT also provides a MATLAB-

to-C++ interface, allowing easy code prototype in MATLAB 

with the optimization benefits of the C++ implementation. 

Altogether, although demonstrated using examples from 

cardiac imaging only, the application scenarios shown are a 

lesser set of all the potential applications that can be tailored 

with MITT. Given the versatility in inputs and parameters, the 

toolbox may be used for a multitude of clinical applications, 

including: functional assessment during diagnosis (e.g., 

besides cardiac motion assessment, it may be employed for 

tendon or vessel displacement quantification); dynamic 

assessment during therapy planning; structure (e.g., devices, 

tumor, neighbor organs, prosthesis, etc.) or landmark (e.g., 

medical annotations) tracking during image-guided 

interventions or radiotherapy; tracking-based multimodality 

image fusion; among others. To do it, one must always define 

an object to be tracked a priori (either based on the object’s 



geometry or using a grid-like object) and set the parameters 

accordingly, modifying them to suit the application but also to 

tune the algorithm and thus improve accuracy.  

V. CONCLUSION 

In this study, we presented the Medical Image Tracking 

Toolbox (MITT) - a versatile, easy to use, computationally 

efficient and publicly available toolbox based on the AAOF 

algorithm, which may potentially be useful for researchers and 

clinicians interested in medical image tracking.  

APPENDIX 

MITT USAGE EXAMPLE FOR THE C/C++ VERSION 

Object-based image tracking using the C/C++ version of 

MITT is performed through a command-line interface. An 

example command to run MITT is as follows:  
 

MITT -i img.mhd -t obj.vtk -p param.txt -o outDir 

 

Here, the user mandatorily indicates the input images’ file 

name (img.mhd, which includes the full image sequence), the 

object’s file name (obj.vtk), the parameter text file (param.txt) 

and the output folder name (outDir, in which the VTK files of 

the tracked object will be saved). Optional arguments may 

include the mask images’ file name (-m) or the reference 

frame (-r, if the object to be tracked was not given at the first 

frame of the sequence). A complete list of mandatory and 

optional arguments, with a small description of their function, 

can be generated by calling MITT --help. 

In its turn, the parameter file includes additional settings to 

configure the tracking algorithm and its components. A 

simplified version of it might include the following: 

 (ImageDimensionality 2) // 2D image sequence 

(MeshDimensionality 1) // contour object 

(TrackingType "Global") // global AAOF 

(TrackingDirection 0) // bidirectional propagation 

(MotionType "Affine") // affine motion model 

(BoundaryDimension_1 "constant" "constant") 

More detailed examples of parameter files are given in 

supplementary data, together with usage examples. 
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