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Abstract

This thesis analyzes the security of cryptographic primitives, and more in par-
ticular of block ciphers. A new model is introduced that takes into account
side-channel attacks; these attacks exploit the characteristics of the implemen-
tation of a block cipher. Our research has also contributed to the selection
process of the Advanced Encryption Standard (AES).

A first part of the thesis concentrates on cryptanalysis. A detailed analysis is
made of Hellman’s time-memory tradeoff and its optimization using the tech-
nique of distinguished points. Next an improved linear cryptanalysis is presented
of the block ciphers RC5 and the AES candidate RC6. The analysis takes into
account the fact that standard assumptions in linear cryptanalysis do not ap-
ply. A new tool is introduced, the non-uniformity function. Then key schedule
weaknesses are demonstrated in the AES candidate CRYPTON.

In a second part techniques are studied that can improve resistance against
side-channel analysis such as timing analysis, simple power analysis, and differ-
ential power analysis. Concrete countermeasures against these new attacks are
proposed and analyzed.

The third part introduces a new conservative design strategy for a block ci-
pher. This strategy takes into account from the beginning the resistance to
side-channel attacks. The methodology consists of the insertion of several ci-
phers into a single structure while keeping an acceptable performance. The
block cipher GRAND CRU is proposed as an example of such a design.






Notation

List of Abbreviations

3GPP
ANSI
ASCII
CBC
CFB
CPU
DC
DP
DPA
ECB
EEPROM
EFF
EMV
EP
GSM
IEC
IETF
IK
ISO
v
LAN
LC
LFSR
LSB
MAC
MK
MSB
NESSIE
NIST
NSA
OFB

: 3rd Generation Partnership Project

: American National Standards Institute

: American Standard Code for Information Interchange
: Cipher Block Chaining

: Cipher FeedBack

: Central Processing Unit

: Differential Cryptanalysis

: Distinguished Point

: Differential Power Analysis

: Electronic Code Book

: Electrically Erasable Programmable ROM

: Electronic Frontier Foundation
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: End Point

: Global System for Mobile Communications

: International Electrotechnical Commission

: Internet Engineering Task Force

: Intermediate Key

: International Organisation for Standardisation
: Initializing Value
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: Linear Cryptanalysis

: Linear Feedback Shift Register
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: Message Authentication Code

: Master Key
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: New European Schemes for Signature, Integrity and Encryption
: National Institute for Standards and Technology
: National Security Agency

: Output FeedBack



X NOTATION

PGP : Pretty Good Privacy

RAM : Random Access Memory
RFC : Request For Comments
ROM : Read Only Memory

SIM : Subscriber Identity Module
SK : Session Key

S/MIME : Secure MIME

SP : Start Point

SPA : Simple Power Analysis

List of Cryptographic Algorithms
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AES : Advanced Encryption Standard [2, 56)
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FEAL : Fast Encryption Algorithm
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IDEA : Improved Data Encryption Algorithm [90]
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Mars : AES finalist

Matyas-Meyer-Oseas : hash function based on block cipher
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MD5 : Message Digest 5 [115]

MDC-2 : Manipulation Detection Code-2
MDC-4 : Manipulation Detection Code-4
Misty1, Misty2 : block ciphers [98]

PES : Proposed Encryption Standard [89]
Rabin-Williams : public-key encryption algorithm
RC2 : block cipher [83]

RC5 : block cipher [116, 117]

RC6 : AES finalist [120]
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Chapter 1

Introduction

1.1 The Role of Security Analysis

In our current society an increasing amount of information is stored, transmitted
or processed in a digital form. Amongst others this is caused by the increas-
ing use of computers and local area networks, the growth of the Internet, the
increasing popularity of mobile communications and the growing use of smart
cards. However, digital information has different properties than its physical
equivalents, which implies that to specify its role and functions in current so-
ciety, several questions should be addressed and specific problems should be
solved.

If not secured, digital information can be easily accessed by unauthorized
persons, copied, changed, erased, etc. For example, messages sent over the
Internet can be eavesdropped, files on a PC or laptop can usually be read by
anyone who gains access to the machine, memory on smart cards has to be
secured otherwise confidential and valuable information could be compromised.

Furthermore, digital information is not easily combined to ownership and
it is not straightforward to make hard commitments based on transactions of
digital information. For example, how do you know the name above an email
belongs to the person who sent it to you purely based on the content of the
email? How can one prevent that someone denies previous commitments if
these were registered in a digital form?

The possibilities and success of ecommerce, the electronic ‘variant’ of com-
merce is partly based on answers to the above questions. The field of information
security studies technical aspects of the above questions and provides solutions.
Such a solution addresses specified security objectives and has a certain level of
security. Many of these solutions make use of techniques that were traditionally
used for encryption, i.e., keeping information secret for unauthorized persons
by using a different representation (sometimes referred to as secret code).

There are many solutions that address or claim to address security objectives
and many more are being developed. This situation is caused by several factors.
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Firstly, for few solutions a mathematical or logical proof exists that the security
objective is addressed, hence they are not ‘provable secure’. Besides that, most
provable secure solutions are not practically usable due to implementation re-
strictions such as high memory requirements or low performance. Furthermore,
solutions can be patented and hence (too) costly to use. Finally, the suitability
of a solution partly depends on the specific application and platform.

Hence, we have a situation where many solutions are developed, but for
which security claims are made on an ad hoc basis. It is important that the
security level of a solution gets well analyzed, preferably in an early stadium of
the design. This reduces the number of design flaws and all costly consequences
of such as flaws and it increases the trust in a solution.

1.2 This Thesis

In this thesis we analyze building blocks or cryptographic primitives for the
above mentioned solutions. In particular we perform security analysis on cryp-
tographic algorithms including aspects concerning their implementation and
function in an architecture. Part of the analysis is determining the level of se-
curity and pointing out design criteria that can be used to improve the level of
security, either in concrete proposals or for generic designs.

The kind of primitive that will get most attention is the block cipher, but
part of the results are extendable to other cryptographic primitives. Block
ciphers can be used in several modes for encryption, but also as building block
for other cryptographic primitives to provide different security services.

The aim of this analysis is to suggest improvements for or to build up trust
in cryptographic primitives that are used in practice or that are proposed to be
used in practice. The specific primitives and designs that are analyzed in this
thesis all have in common that they are widely used in commercial products or
standards, or that they are candidates for standardization.

Due to the rapidly evolving fields of information security and cryptography
and the fact that this thesis was meant to deal with current practical issues,
a more specified ultimate goal of the research has not been set. Instead two
actual processes have influenced the direction of this thesis.

The first one is the AES standardization process to determine the new block
cipher standard for use by the U.S. federal government. It started in 1997
and in 2000 the algorithm that was selected to be standardized, Rijndael, was
announced. DES, the predecessor of the AES as American federal standard,
was incorporated in several banking standards and has been used worldwide for
almost all financial transactions and other applications for over 20 years.

A second development was the introduction of techniques that exploit char-
acteristics of the implementation of an algorithm to break it. These are so-called
side-channel attacks. Especially power attacks, which exploit differences in the
power consumption of a cryptographic implementation, are particularly appli-
cable to smart cards. This has led to a boost of research and development of
countermeasures.
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This thesis contains security analysis results concerning both processes, to
which we have contributed. From these results as well as for other developments
in these processes, design criteria and specific designs have been derived.

1.3 Outline and Main Contributions

The remainder of this thesis is organized as follows.

In Chapter 2 we introduce the field of information security. We determine
its objectives, i.e., a formal explanation on security requirements, and classify
methods to achieve these objectives. We also specify the role of cryptology in
achieving security objectives and give an overview of the primitives relevant
to the work in our thesis. Furthermore, we give a classification of evaluation
criteria, security evaluation methods and introduce concepts to determine the
level of security. A contribution of this chapter is that it integrates side channel
analysis in the classical framework. We also provide an overview of current stan-
dardization processes and practical applications emphasizing on the primitives:
block ciphers, one-way functions and hash functions.

In Chapter 3 we describe a generic or brute-force attack, which is appli-
cable to block ciphers, one-way functions and stream ciphers. The method is
based on a previous method introduced by Hellman. Building on an idea of
Rivest we show that the method presented has significant practical advantages
compared to Hellman’s method. We present an analysis of the complexity and
success probability of the algorithm, which depends on generic parameters of
the underlying primitive. These results make it practically possible to choose
the optimal parameters to mount an attack, based on available resources and
specific requirements. This is the main contribution of this chapter. This chap-
ter has evolved from joint work with Preneel and Vandewalle. Parts of it have
been published in [22].

Chapter 4 presents results of a security analysis of the block cipher RC5 and
the consequences for the former AES candidate RC6. We present an evaluation
of the resistance of RC5 against linear cryptanalysis, taking into account the
restrictions of standard methods caused by the fact that standard assumptions
do not hold for the specific cipher. The main contribution of this chapter is
the description of an attack that breaks reduced round versions of RC5. Addi-
tional contributions are a mathematical analysis of the complexity and success
probability of the attack and the introduction of a new tool that is used in the
attack algorithm. We also discuss the consequences for RC6, which has a better
resistance against this attack. Part of this chapter has been published as a joint
work with Preneel and Vandewalle in [23].

Chapter 5 presents weaknesses in the block cipher CRYPTON, that was
an AES candidate. These weaknesses are caused by design flaws in the key
schedule in combination with the structure of the algorithm. We also present
how to exploit these weaknesses, when CRYPTON is used in a popular hash
function construction. This is the main contribution of this chapter. Since
CRYPTON was designed with similar security design criteria as the for AES
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selected algorithm Rijndael, this indicates that a good design strategy does not
offer a guarantee for a secure design. Part of the results of this chapter have
been sent as a comment to NIST [18] as input for the AES selection process.
CRYPTON did not get selected for the second evaluation round of AES.

In Chapter 6 power attacks are studied. These attacks exploit differences
in the power consumption of the implementation of a cryptographic algorithm.
We give an extensive overview of the different kinds of power attacks and make
a classification of possible countermeasures, which is a first contribution of this
chapter. The remainder of the chapter studies the applicability of increasing re-
sistance against power analysis by taking countermeasures at the protocol level.
This is applied to a typical smart card application that uses triple-DES. These
results are a second contribution of this chapter and have been developed in co-
operation with Rijmen and Preneel. Parts of this chapter have been published
in [21, 24].

Chapter 7 presents a new design strategy for block ciphers based on the new
concept of multiple layered security. It also presents a concrete block cipher
proposal based on this strategy and on the security and elegance of Rijndael.
These are the two main contributions of this chapter. The proposed design
strategy is conservative, in the sense that its aim is to base its security on
several different and complementary security motivations. This is achieved by
inserting several ciphers in a structure while keeping an acceptable performance.
This design approach can be used to increase security against classical as well
as against side-channel attacks. The block cipher proposal is submitted to the
NESSIE project [104] under the name GRAND CRU.

We conclude in Chapter 8.



Chapter 2

Information Security and
Cryptology

2.1 Introduction

Achieving information security for a system involves shifting the trust from un-
trusted components to trustworthy components. This can efficiently be achieved
with cryptographic techniques. The design and evaluation of cryptographic
techniques form an involved and interactive process.

In this chapter we introduce the field of cryptology, state its connection with
information security and give all relevant definitions and applications, consider-
ing theory and practice. Furthermore we describe different areas and techniques
in cryptology to situate our research area: security analysis and design of cryp-
tosystems based on block ciphers. We show its relevance and point out the areas
in which this thesis contributes.

For a more elaborate overview of cryptology we refer to [101, 131].

The remainder of this chapter is organized as follows. In Sect. 2.2 we describe
the objectives of information security and the function of cryptology in achieving
them. The tools of cryptology, primitives and evaluation criteria, are described
in Sect. 2.3. In Sect. 2.4 we expand on the most important evaluation criterion:
security. We give an overview, description, evaluation criteria and proposals of
the classes of primitives, block ciphers, one-way functions and hash functions in
Sect. 2.5 and 2.6. We conclude and summarize the contributions of this chapter
in Sect. 2.7.

2.2 Objectives

Information was traditionally stored and transmitted using physical media, such
as paper. In the past few decades this has drastically been changed due to
the introduction and development of electronic storage media and (wireless)

5
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communication networks such as the Internet. Amongst others this has led
to the development of mobile communications (GSM, UMTS) and electronic
commerce. Compared to paper based information this makes it an easy target
for copying, concealment, loss, fraud and other (possibly unintentional) abuse.
Information security’ has many possible objectives. The most well-known
objective is confidentiality, but besides that there are many other objectives,
such as signatures, authorization, validation, ownership, voting, anonymity, wit-
nessing, non-repudiation, time of occurrence, registration, (non)approval, etc.

Cryptology. Many security objectives can be achieved by technical means,
possibly in combination with other means, such as legal, computer and network
architectural means. The technical methods to secure information in electronic
form are comprised in cryptology, which is defined as follows.

Definition 2.1 Cryptology is the study of mathematical and logical aspects of
(advanced) techniques that do not use physical characteristics of the information
carrier or channel to achieve objectives of information security.

Definition 2.2 The set of mathematical and logical aspects, that do not use
physical characteristics of the information carrier or channel, of a solution to
achieve a security objective is called a cryptosystem.

Cryptology is subdivided into two areas: cryptography and cryptanalysis. They
are defined as follows.

Definition 2.3 Cryptography is the science of designing cryptosystems.

Definition 2.4 Cryptanalysis is the science of the security analysis of cryp-
tosystems.

There is a strong interaction between the two areas: during the design of a
system all relevant security analyses should be taken into account, designs are
the subject of cryptanalysis, and cryptanalysis of a design can lead to new design
guidelines. Often the term cryptography is used in the meaning of Definition 2.1.

According to [101] all objectives that can be met by cryptology can be de-
rived from a framework based on the following four concepts:

e Confidentiality. This is a service to keep information secret from all but
those who are authorized to see it.

e Data integrity is a service that addresses the unauthorized alteration of
information. It provides mechanisms to detect unauthorized alteration,
such as deletion, insertion and substitution.

e Authentication, that can be subdivided into

— Entity authentication provides methods by which communicating
parties can identify each other.

1Simmons uses the term information integrity in [131].
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— Data origin authentication provides methods by which data can
be linked to the origin of the data.

e Non-repudiation is a service that prevents an entity from denying pre-
vious commitments or actions.

This classification is not strict: the objective of data integrity is implicitly met
if data origin authentication is met.

The parties that are involved in achieving a security objective are also called
entities.

2.3 Primitives

In order to achieve the objectives in the previous section one can distinguish
between a number of cryptographic tools or security primitives. These primitives
can be used as building blocks for other primitives, (cryptographic) protocols
or cryptosystems. Cryptographic primitives and cryptosystems are also often
referred to as cryptographic algorithms or designs. A cryptographic protocol is
a distributed algorithm that specifies a sequence of actions required of two or
more entities to achieve a security objective [101].

2.3.1 Encryption

An example of a cryptographic primitive is a cipher.

Definition 2.5 Let P, C and K denote sets that we call plaintext space, ci-
phertext space and key space, resp. A cipher (or encryption system) is defined

by
o aset {Ek :P — C|K € K} of encryption functions and
e aset {Dk :C — P|K € K} of decryption functions
with the property that for each Ky € K there is a key Ky € K such that
Dk,(Ek,(P)) =P for all P € P. (2.1)
Such a corresponding pair (K1, K>2) is called a key pair.

A cipher can be used to achieve confidentiality as follows. Suppose a sender
A wants to send a message P to receiver B over an insecure channel, i.e. in-
formation sent over an insecure channel can be read by unauthorized parties.
Assume they have a cipher according to Definition 2.5. Suppose A and B share
the key pair (K1, K»); for example they have agreed on it via a secure channel.
Then A can compute C = Ek, (P) (this computation is called encryption) and
send it to B. Upon receipt of C, B can compute P = Dk, (C) (which is re-
ferred to as decryption). P is referred to as plaintext and C as ciphertext. This
is visualized in Figure 2.1. Note that C can be read by unauthorized parties.
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insecure channel
A
sender receiver
P—— E | > D —> P
F
K, : K,
Y
secure channel

Figure 2.1: Using a cipher to provide confidentiality.

Confidentiality is achieved if no information about K> is known to any unautho-
rized entity and it is infeasible to obtain any previously unknown information
about P from C' without knowledge of K>, including the information about K»
that can directly be derived from K;. Often the total of encryption, sending
ciphertexts and decryption is referred to as the encryption process.

The technique of encryption can be seen as a basis for solving many other
security objectives. The field of cryptology often is referred to as encryption
technology.

2.3.2 Secret-key and Public-key Cryptography

Ciphers for which it is feasible to deduce K> from K; are called symmetric or
secret-key ciphers. If it is infeasible they are called asymmetric or public-key
ciphers and K is called a public key and K> a private key. In that case there
is no need for Alice and Bob to share the key pair (K1, K»): it is sufficient that
Bob makes K; public and keeps the corresponding key K5 private. Public-key
cryptography was introduced by Diffie and Hellman in [38]. It makes the follow-
ing possible. Many entities can encrypt messages that can only be decrypted by
one entity and one entity can encrypt messages that many people can decrypt.
The first capacity has its merits for key management. If A wants to communi-
cate to B using a public key cipher, it is sufficient that A knows the public key
of B. The system is secure as long as the private keys remain secret. Hence,
contrary to secret-key ciphers the keys do not need to be established via a secure
channel. Furthermore, not every pair of entities who want to communicate need
to share a (secret-)key pair: one public-key pair for each entity is sufficient. The
second capacity can be used to produce digital signatures in an efficient way.
With public-key techniques it is possible to create digital signatures that are
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verifiable if one knows the public key of the signer. However, to make a public
signature knowledge of the private key is required. Public-key cryptography has
a major disadvantage: it is considerably slower than symmetric-key cryptogra-
phy. For this reason for encryption of large amounts of data where efficiency is
an important factor (bulk encryption) symmetric-key ciphers will be preferred.
Many systems make use of both techniques: they use public-key cryptography
for key establishment of the secret symmetric keys and secret-key cryptography
for secure and efficient communication.
Cryptographic primitives can be classified as follows.

e Symmetric-key (or secret-key) primitives: For these primitives the
security relies on the secrecy of all key material to unauthorized parties.
Examples are: block ciphers, stream ciphers, MACs, pseudo-random string
generators, etc.

e Asymmetric-key (or public-key) primitives: These primitives use a
key pair of a private and a public key. The security relies on the secrecy
of the private key to unauthorized parties. Examples are: public-key ci-
phers, digital signature schemes, key exchange protocols, etc. The best
known asymmetric cryptographic primitive is RSA, named after its inven-
tors Rivest, Shamir and Adleman. Currently, RSA Security Inc. is also
the name of a world leading security company.

e Unkeyed primitives: These primitives do not use keys. Examples are:
cryptographic hash-functions, one-way functions, secret sharing schemes,
etc.

In this thesis we shall study symmetric key primitives, in particular block
ciphers, and their applications.

2.3.3 Evaluation Criteria

Al primitives that are applied in a cryptosystem need to conform to certain
criteria; in [101, p. 5-6] the following criteria are listed.

1. Level of security: It depends on the objective how well this can be
quantified. Methods to express it are often given by computation power
needed to defeat the objective, statements that defeating the objective
is at least as difficult as a difficult problem or defeating the objective of
another primitive, and the amount and quality of independent security
evaluations.

2. Functionality: Some primitives meet several security objectives to a
certain extent and to a certain level of security. Which primitive can
be chosen to meet a certain security objective in combination with other
primitives should be evaluated.

3. Methods of operation: Mostly a primitive has a basic mode, but prim-
itives can often be used in different modes of operation, i.e. restricting
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the output, combining input and output, etc. Different modes can even
be used to obtain different objectives. It should be evaluated if a prim-
itive can be used in a certain mode and how well it meets the intended
(security) objectives.

4. Performance: This is the speed (an implementation of) a primitive can
achieve, for example expressed in output bits per second or CPU clock cy-
cles per operation. The performance is platform dependent. It is possible
to optimize an implementation for performance on specific platforms.

5. Ease of implementation: Here one evaluates how well a primitive can
be implemented given certain resources. One can for example have a
situation where the code should fit in restricted memory or a hardware
environment with a restricted number of gates. Often such restrictions
also limit the performance of a primitive, since the optimal implementation
would exceed the available resources.

Of course evaluation criteria should form the spine of a design process.

The level of security seems to be the most difficult to evaluate [101]. The
design of a cryptosystem involves a combined evaluation on all criteria, but since
the main goal is to meet a security objective, the design process is guided by
the security evaluation. In this thesis we will meet aspects of all criteria, with
an emphasis on security evaluation.

2.3.4 Standards

For many designs of cryptosystems it is necessary or preferable to develop new
primitives and/or modes of use. Other cryptosystems benefit from known prim-
itives that are well evaluated, known to be cryptographically sound and trusted.
Besides that it is sound practice to (pro-actively) design a cryptosystem such
that it is efficiently interoperable with other cryptosystems. These two require-
ments are supported by standards.
International and national organizations that have standardized cryptographic

and information security techniques that are globally applied are:

International Organisation for Standardisation (ISO).

International Electrotechnical Commission (IEC).

e American National Standards Institute (ANSI).

e National Institute of Standards and Technology (NIST).

e Internet Engineering Task Force (IETF).
Many standards have been developed jointly by ISO and IEC. Banking secu-
rity standards can be divided into wholesale banking, involving transactions be-
tween financial institutions and retail banking between institutions and private

individuals. Such standards are developed by ISO or by its national members
such as ANSI. NIST specifies Federal Information Processing Standards (FIPS),
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that provide guidelines for the U.S. federal government departments. The IETF
makes recommendations for standards for use by the Internet community. Their
official working notes are called Requests for Comments (RFCs). The standard-
ization processes contain overlapping objectives and hence influence each other
in a technical sense. For an overview and details of standards see [101].

Besides dedicated standardization organizations, there are also partnerships
or projects founded by several organizations or companies in order to develop
standards. Such standardization processes that include cryptographic and in-
formation security techniques are:

e Europay-MasterCard-Visa (EMV) [45]: A joint industry working group
(formed by Europay, MasterCard and Visa) created to facilitate the in-
troduction of smart card technology into the international payment sys-
tems environment by developing joint specifications for Integrated Circuit
Cards (ICC) and terminals for payment systems. The EMV specifications
serve as the global framework for chip card and terminal manufacturers
worldwide.

e Third Generation Partnership Project (3GPP) [1]: A partnership of world-
wide leading telecommunications companies to develop technical specifi-
cations for the third generation of mobile communication systems (the
successors of GSM).

e New European Schemes for Signature, Integrity, and Encryption (NESSIE)
[104]: A project within the Information Societies Technology (IST) pro-
gramme of the European Commission. Participants are several European
universities, in cooperation with an industry board. Goal of the project is
to put forward a portfolio of strong cryptographic primitives for a number
of different platforms.

Besides standards of cryptographic methods there also exist patents. On
the one hand a patent (and corresponding evaluation) might induce trust in
the soundness of a primitive or cryptosystem, but on the other hand it can be
a reason not to choose a particular cryptographic solution to meet a security
objective.

Hence, the existence of standards and patents can be seen as design or
evaluation criteria.

In this thesis we shall present results that are of direct relevance to stan-
dardization processes of NIST, EMV and 3GPP. Furthermore we shall present
a design that has been submitted to NESSIE.

2.4 Security Evaluation

As stated before the level of security is the most important evaluation criterion
but also the one that is most difficult to quantify. The common model intro-
duces an unauthorized entity, an adversary or attacker, and analyzes its possible
actions, called attacks, and their consequences.
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2.4.1 Approaches

There are different approaches to analyze or define security for primitives. We
give the following categorization. All arguments also apply for the security of
cryptosystems.

e Information-theoretical approach. Security in the information-theore-
tical sense is also called unconditional security and for encryption schemes
perfect secrecy. Here an attacker is assumed to have unlimited computa-
tional resources. There are few cryptosystems resistant against an attack
of such an opponent. The most well-known example is the one-time pad,
proposed by Vernam in [137]. Encryption is performed by xoring an n-
bit plaintext with an n-bit key. The best an attacker can do is to try
each possible key to decrypt the ciphertext. As each key is assumed to
be equally likely, no information can be gained about the plaintext. The
disadvantage of this system is that for each message of n bits an n-bit key
should be used. In general systems with unconditional security are not
practically usable.

e Complexity-theoretical approach. Here an adversary is assumed to
have polynomial limited computational power and memory resources, i.e.
his resources are polynomial in the size of appropriate security parameters.
Few practical methods have resulted from this approach.

e Provable security. In this approach one tries to link security to another
difficult problem with statements as attacking a system is equivalent to
or at least as difficult as solving that problem. We make a distinction
between three approaches.

— Related to an attack scenario. There exist different scenarios to at-
tack a primitive or system. It is good practice to prove that an
attack can not be successful in certain settings, especially if this at-
tack was very successful for other primitives or systems of the same
kind. Examples: Nyberg’s and Knudsen’s provable security against
a differential attack [106], Vaudenay’s decorrelation theory [136], the
design strategy of Matsui for the block cipher Misty [98], the Wide
Trail Strategy of Daemen as can be found in [30] and Chapter 5.

— Related to a difficult problem. There exist mathematical problems
that are not efficiently solvable. Examples are factoring the product
of large primes and solving the discrete logarithm problem over cer-
tain large finite groups. For several cryptographic primitives it has
been proven that breaking them would be equivalent to solving such
a problem (for example, the Rabin-Williams public-key encryption
algorithm [101]).

— Related to the security of another primitive. This approach can often
be used when constructing systems or primitives from other primi-
tives. An example would be the design of triple-DES.
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e Computational and resource-based security or practical security.
Here an attacker is assumed to have limited computational power and lim-
ited resources. These assumptions are linked to practical considerations:
which gain does an attacker have by breaking a system, how much can he
afford to invest, does the duration of an attack need to be considered? The
security analysis will then proceed according to the analysis of the best
known and relevant attacks. Provable security can be seen as a special
case of this. With few exceptions one can not get around this approach.

e Ad hoc approaches or heuristic security. This is the approach that
uses any convincing arguments that do not fit in any of the above cate-
gories to make plausible that any attack will require more computational
power or resources than available to an opponent. Although at first sight
this might seem a suspicious approach, the trust in most systems and
primitives that are currently used in practice is largely based on this con-
cept, mostly in combination with security arguments of one of the above
approaches. Shannon’s concepts confusion and diffusion [127] can be seen
as fitting in this approach. Another (non-mathematical) argument for se-
curity in this sense is linking the level of security (trust) of a primitive or
system to the quality and quantity of independent security analysis it has
received. Note that this assumes that the primitive has received attention
from the cryptographic community and that it is suitable for analysis, i.e.
has a clear structure. A drawback of this argument is that it will need
some time before the primitive can be trusted to be secure.

e Security through obscurity. Nowadays, this is usually considered bad
practice, with few exceptions. One can differentiate between two ap-
proaches.

— Keeping the design secret. A motivation to do this would be that the
secrecy would be an extra barrier for an attacker. However, there are
two main reasons against this.

Firstly, it is very difficult to keep a system secret, especially if it
would be profitable to break it. Re-engineering and social engineer-
ing usually are sufficient. An example for this is the set of security
algorithms used for the GSM, that were designed in secrecy but all
specifications were reconstructed.

Secondly, the important ad hoc security argument that trust in a
cryptosystem’s security depends on the independent analysis that it
has received is difficult to support when the design is secret. An
illustration of this is the GSM MAC-algorithm COMP128, that was
easily broken after its specification was published [57]. Exception
to this rule form organizations such as SSW.ILF.T. that can and do
invest sufficiently in the security of their proprietary algorithms.

— Unmotivated complication of the design. This has the following draw-
backs. It makes a design more difficult to analyze and without anal-
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ysis it is difficult to trust its security. Furthermore, complicated sys-
tems are often harder to implement efficiently. A secure design does
not need any additional complication added. Besides that, compli-
cated designs take more effort to implement and are in general less
performant.

In practice security evaluation (and design) uses a combination of these
different approaches. The best current practice seems to be: provable security
arguments where and if possible, a relevant amount of computational security
arguments and convincing heuristic arguments. The more weight is given to the
heuristic arguments, the more time should be spent in independent analysis.

In practice a designer should make his design and corresponding claims con-
cerning security (as well as other evaluation criteria, of course) available for
analysis. If these claims are not refuted after considerable attention of indepen-
dent experts (the cryptographic community), this will contribute to the trust in
the validity of the claims.

In this thesis we shall present analysis results of provable, practical and
ad hoc security of several primitives and systems. The analysis is based on
mathematical and cryptographic techniques. The underlying assumptions shall
be verified. Every analysis shall be compared with experimental results. We
believe that this should be the approach for each security analysis.

Furthermore we shall present some designs of primitives and systems. The
approach here is conservative. It shall include well studied and motivated ar-
guments and principles from provable and practical security. Considering ad
hoc security, only arguments will be used that are generally accepted and well
known.

2.4.2 Security Analysis of Symmetric Ciphers

We give an overview of the possible settings and goals of an attack that have to
be taken into considerations for the security analysis of symmetric ciphers.

Goals. We call the cipher under attack the target cipher and secret key that
is used the target key. The purpose of an attack is to deduce information about
plaintexts or target key that was not prior knowledge to the attacker. A first
classification can be made, based on the achievement of an attack [76].

e Key recovery: The attack deduces the value of the key.

e Global deduction: Here the attacker derives an equivalent function of
the encryption or decryption function, without deducing the key value.

e Local deduction: The attacker gains the ability to encrypt/decrypt part
of the plaintext/ciphertext space.

e Information deduction: Here an attacker acquires some information
about plaintext, ciphertext or key, that he did not know prior to the
attack, not covered by the above possibilities.
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Basic assumptions. Another classification can be made, based on the knowl-
edge that an attacker can acquire about the encryption process. Since data is
transmitted over an insecure channel, we assume the following:

Assumption 2.1 An attacker has always knowledge of the ciphertexts.
A classical assumption that is generally made is Kerckhoffs’ assumption [101].

Assumption 2.2 [Kerckhoffs] An attacker knows all details about the en-
cryption (and decryption) function except for the value of the secret key.

However, with side-channel analysis in mind we reformulate this assumption
slightly to keep it more into accordance with current practice.

Assumption 2.3 [Modified Kerckhoffs] An attacker knows all details about
the mathematical method that is used to derive ciphertext from plaintext (and
vice versa) except for the secret key.

Note that Assumption 2.3 excludes an attacker to have knowledge about the
implementation of the encryption function which was not anticipated in As-
sumption 2.2.

In the remainder of this thesis we make Assumptions 2.1 and 2.3. We further
divide attacks into:

e Classical attacks are solely based on knowledge of plaintexts and cipher-
texts (information access).

e Side channel attacks exploit characteristics of the implementation of
an algorithm. These characteristics are called side channels and include
power consumption and computation time.

e Fault based attack exploit (induced) faults in cryptographic computa-
tions.

Note that the last two items are in accordance with Definition 2.1: they exploit
physical characteristics of the device that performs the cryptographic computa-
tions, they do not exploit physical characteristics of the information carrier or
channel. In this thesis we shall present results for the first two items.

Information access. A classification of attacks based on the access and in-
fluence an attacker has to the input and output of the encryption process can
be made as follows:

1. Ciphertext only attack: It is assumed that an attacker has only ac-
cess to the ciphertexts and has some information about the plaintexts.
This information consists for example of the knowledge that a sequence of
plaintexts consists of an English or Dutch text, coded in ASCII, but not
of specific or partly known values of plaintexts. Hence, the attacker has
knowledge about the probability distribution of plaintext values.
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2. Known plaintext attack: Here, the attacker has access to a number of
plaintexts with corresponding ciphertexts.

3. Chosen plaintext attack: The attacker can choose a number of plain-
texts with corresponding ciphertexts. A variation is an adaptive chosen
plaintext attack, where the choice of plaintexts depends on previously ob-
tained plaintext-ciphertext pairs.

4. Chosen ciphertext attack: The attacker has the ability to acquire
corresponding plaintexts for ciphertexts of his choice. A variation is an
adaptive chosen ciphertext attack.

The success of an attack typically depends on the number of texts that an
attacker can access. Usually the probability to mount a successful attack will
rise considering the scenario’s from 1 to 4. For example, a chosen plaintext
attack can be seen as a known plaintext attack with a lower success probability.

An alternative class of attacks are related key attacks. Here, an attacker
has access to an encryption process performed with different keys, whose values
are related. The significance of these kind of attacks depends on the application
in which the cipher is used or on the key management.

Side channels. A side channel of a cipher is a characteristic of a cryptographic
implementation that can be measured during a cryptographic computation by
a certain device and that can be exploited. Side channels can typically only
be measured in the proximity of the cryptographic device. Devices that are
particularly suited for mounting side channel attacks are smart cards.

Security evaluation of a primitive or system against side channel attacks can
not be done solely based on the mathematical specifications. Ideally an attack
should be tested on an actual implementation. Note that to test an attack on
an implementation it is not necessary to know how the target cryptographic
primitive is implemented, i.e., Assumption 2.3 does not necessarily need to be
extended for this attack model. Of course, detailed knowledge of the implemen-
tation would be more convenient to interpret the test results and to indicate
changes to improve resistance of the implementation.

The most important side channel attacks are the following:

e Timing attacks were introduced in the open literature by Kocher in [85].
These attacks exploit the fact that the execution time of some implemen-
tations of cryptographic functions depends on the key material. Most
of these weaknesses are caused by the fact that the implementation was
optimized for speed.

e Power attacks are described by Kocher et al. in [86]; the idea is to extract
the key of a cryptographic device by analyzing its power consumption
during cryptographic computations.

In this thesis we will study power attacks and possible countermeasures; we
will also present a cipher design strategy that results in designs with a high
resistance against side channel attacks.
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Complexity. To express the level of security one needs a means to measure
it. This can be done by measuring the number of (chosen) ciphertexts and
plaintexts, the computation time and the memory capacity that is required to
achieve an attack goal with a certain probability. In particular we specify the
following complexities.

e Number of required texts or encryption/decryption samples, if
relevant divided into chosen/known ciphertexts/plaintexts. A suitable
unit (bits, bytes, blocks) should be used. For side channel attacks this
unit could be the amount of cryptographic computations for which a side
channel measurement has been performed (samples).

e Computation complexity, subdivided into:

— Precomputation complexity: the computation time of computa-
tions that can be performed before the acquired texts are processed.

— Processing complexity: the computation time required to process
the acquired texts.

Typically this complexity is measured in the number of evaluations of
the target cipher. This has as advantage that a complexity comparison
to other attacks is easier; especially a comparison to brute force attacks
since these are most naturally expressed in this way.

¢ Memory complexity or storage complexity: the amount of memory
that is required for the attack. As for other complexities, a suitable unit
could be specified, e.g., one block.

e Complexity caused by the requirements of other resources: an
example is the amount of required memory accesses.

e Success probability: the probability that the goal of the attack is
achieved.

It is also possible to include the specific goal into this list. We prefer not to do
that since usually the achievement of any goal is considered a weakness of the
primitive or cryptosystem.

It is not always necessary to take into account all items in the complexity
analysis of an attack. Considering the practical application and the specific
properties of the attack the relevant complexities have to be set. This deduction
of relevant properties can even lead to considerable changes to improve an attack
algorithm.

Methods. Contrary to the goals of an attack that can be clearly defined, it is
impossible to present a complete and sufficiently specified overview of methods
to achieve such a goal. Finding new methods to attack or new extensions of
existing attacks is ongoing research. In this thesis we shall contribute to this
area. Attacks on primitives can be divided into two categories:
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e Brute force attacks or generic attacks. These are attacks that can
be applied to any cipher and whose complexity and success probability
only depend on the values of certain parameters of the cipher (such as key
length, block size or internal memory).

e Shortcut attacks. These are attacks that exploit the internal structure
of a specific cipher.

The results of brute force attacks indicate which values of parameters can be
used in practice for which applications. The (lack of) results of shortcut attacks
indicate the amount of trust a cipher deserves. In this thesis we shall present
results in both categories.

A cipher is called broken if there exists an attack, such that the cipher does
not meet the intended security objectives. We define the following gradations
of how a cipher can be broken.

Definition 2.6 A cipher is theoretically broken if there exists a shortcut attack
that achieves better complexity than the best brute force attack.

Attacks that break a cipher theoretically are also called academic attacks. If the
complexity of the brute force attack is not reduced by a significant amount, then
usually these kind of attacks do not have any consequences for the use of the
cipher in practice. However, such results are valuable to get insight in the way
the cipher provides security and hence to derive design and analysis criteria.
Besides that they may lead to other attacks that decrease the complexities
and eventually lead to a break in the sense of the following definitions. The
process of making improvements to existing attacks on a cipher also may form
a motivation for the amount of trust in a cipher and forms an illustration of the
attention and of the amount of analysis that the cipher has received.

Definition 2.7 A cipher is broken concerning the claims of the designer if
there exists an attack with lower complexity than is claimed by the designer at
the introduction of the cipher.

This security criterion is amongst others used as a security evaluation criterion
for NESSIE submissions. The NESSIE project has stated that a submission
that gets broken in this sense will probably be disqualified.

Definition 2.8 A cipher is broken with respect to an application if there exists
an attack with lower complexity than the required minimum complexity for this
application.

Of course a cipher that gets broken in the sense of Definition 2.8 should not be
used in the relevant application. It also seems sensible to prefer an alternative
cipher for other applications.

Definition 2.9 A cipher is (practically) broken if there exists an attack with
lower complezity than the required minimum complexity for a typical application.
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In our opinion a cipher that is broken in the sense of Definition 2.9 should not
be used in practice at all, that is, it should not even be used in an application
for which it is not broken, provided that there is an alternative solution.

2.5 Block Ciphers

The class of symmetric ciphers can be divided into block ciphers and stream
ciphers. Concerning encryption the distinction between the two is that stream
ciphers encrypt characters with a transformation that changes in time and block
ciphers encrypt blocks with a fixed transformation. A block can be seen as a
sequence of characters; hence the set of possible blocks is considerably larger
than the set of possible characters. Characters are typically bits or bytes, while
a typical block typically consists of a sequence of 64 or 128 bits.

Encryption with a block cipher can be performed according to different
modes. Furthermore, block ciphers can be used both in the construction of other
symmetric-key primitives such as other block ciphers, stream ciphers, MACs,
and unkeyed primitives such as hash functions and pseudo-random string gen-
erators.

2.5.1 Definitions and Properties

A block cipher is a symmetric cipher (according to Definition 2.5), where the
plaintext P and ciphertext space C contain the same finite number of elements.
Usually P = C. Typically the size of the set is a power of two. In that case, there
exists an integer n such that any text can be uniquely expressed as an element
of {0,1}™. An n-bit block cipher is a symmetric cipher with P =C = {0,1}™

Definition 2.10 Let P = C = {0,1}" be the plaintext and ciphertext space and
K = {0,1}* be the key space. Define a function E: P x K — C. Then E is an
n-bit block cipher if for each K € K, E(.,K) = Ex(.) is invertible. The inverse
of E is denoted with D(.,K) = Dg(.). n is called the block length and k is
called the key length.

Usually the term block cipher is used for an n-bit block cipher. The elements of
P and C are called plaintext and ciphertext blocks, resp., in the remainder also
often referred to as plaintexts and ciphertexts, resp.

NIST has standardized four modes to use a block cipher for encryption
in [53]. We assume that Py, P»,... is a stream of plaintext blocks of length m
that are to be encrypted to a stream of ciphertext blocks Cy,Ca,. ...

e FElectronic Code Book (ECB): each plaintext block of length m = n is
encrypted independently of the others.

Encryption: C; = Ex(P;).

Decryption: P; = Dk (C;) .
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e Cipher Block Chaining (CBC): each plaintext block of length m = n is
xored with the previous ciphertext block before encryption with the block
cipher.

Encryption: C; = Ex(P; & C;—1) .

Decryption: Pz = DK(CZ) D Ci—l .

Cy has a chosen initial value. This value also is referred to as initial vector
or IV.

o Cipher Feedback (CFB): plaintext blocks of length m € {1,...,n} are
encrypted as follows.

Encryption: C; = P; ® MSB,,(Ek(X;))
Xit1 = LSBp_m(X))||C: .

Decryption: P, = C; ® MSB,,(Ex(X;))
Xiy1 = LSB, n(X))||C;.

Here X; has a chosen initial value, || represents concatenation of strings
and MSB; and LSB; refer to the s most significant or s least significant
bits, respectively.

e Output Feedback (OFB): plaintext blocks of length n are encrypted as

follows.
Encryption: C; = P;® Eg(X;)
Xiy1 = Eg(Xy).
Decryption: P; = C; ® Ex(X;)
Xiyn = Eg(Xi).

X1 has a chosen initial value. This mode is also defined for m < n.

A block cipher has one principal design criterion, concerning its security
properties. For this we introduce the concept random permutation models.

Definition 2.11 [101] Let F,, denote the set of all permutations from a finite
domain of size n to a finite co-domain of size n. Models where random elements
of Fn are considered are called random permutation models.

Properties of random permutations are described in [51, 101]. The main design
criterion of a block cipher is the following

Property 2.1 A block cipher should be (practically) indistinguishable from a
random permutation for every key.
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Hence, a block cipher can be modeled as a random permutation. Every success-
ful attack on a block cipher is in fact a method to distinguish it from a random
permutation. Note that not every method to distinguish a block cipher from a
random permutation can be directly used to mount a key-recovery attack.

For many block ciphers the encryption algorithm E and the decryption algo-
rithm D have a similar structure; this simplifies implementations. Furthermore,
for efficient implementations most block ciphers have an iterated structure. A
block cipher can transform a plaintext into a ciphertext by iterating a round
transformation (or round function) r times. The round transformation is a
(mostly insecure) block cipher, and hence takes a key as input in each iteration.
These keys are called round keys and are derived from the original key (user
key). Let E denote the block cipher, F' the round function and Kj,... , K, the
round keys. Then a plaintext P is encrypted by

Ex (P) = Fg,(Fk,_, (... (Fk, (P)))) - (2.2)

This is visualized in Figure 2.2. In some block ciphers the round function
F' can be different in different rounds. Furthermore many block ciphers have
alternative initial or final transformations. All block ciphers that have such
structures are called iterated block ciphers.

Usually the resistance of a block cipher against shortcut attacks increases
if the number of rounds increases. On the other hand the performance of the
cipher decreases with the addition of every round. An important part of the
design for efficient iterated block ciphers is to set the appropriate number of
rounds: too few is insecure, too many is inefficient. For this purpose reduced
round versions are analyzed and tested for the randomness properties. The
number of rounds is usually set to resist the best estimated attack with some
extra rounds in order to provide some margin against new developments (or
inaccurate analysis).

Y
-
-
@]

Figure 2.2: An iterated block cipher.
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2.5.2 Brute Force Attacks

The generic parameters of a block cipher are its key length k and its block length
n. The following attacks are always feasible for a block cipher.

e Exhaustive key search: This is a key recovery and known plaintext
attack. An attacker acquires a plaintext/ciphertext pair and encrypts the
plaintext with all possible keys until he finds the corresponding cipher-
text. With high probability this key is the target key. The time needed
for a successful key search depends on the key length and the available
technology.

— Distributed software searches. The use of general purpose machines
for key search is particularly useful in distributed efforts. For compa-
rable small key sizes a medium sized LAN is often sufficient. Another
approach is to run key search clients that use idle CPU cycles on ma-
chines around the world that are connected via the internet.

— Dedicated hardware. Several papers have been written studying the
possibility to build a dedicated key search machine. The efficiency
of the machine depends on the financial investment. A standard ref-
erence is the design of Wiener [139]. In 1998 the Electronic Frontier
Foundation (EFF) built a machine to crack DES by exhaustive key
search [44]. This machine was used to solve the RSA DES II Chal-
lenge Contest, a 56-bit key search, in less than 3 days. Total cost for
design and equipment was less than $250,000.

From 1997 RSA Laboratories has organized its secret-key challenge [122].
The challenge consists of several contests. Each contest provides a known
plaintext, encrypted by a block cipher, and a ciphertext for which the
plaintext is unknown. The goal is to find the unknown plaintext. In
twelve of the contests the cipher is 12-round RC5, with a variable key
length: 40, 48, 56, ..., 128 bits. Four of the contests used DES (56-bit
key) for encryption. The contests solved in October 2000 are summarized
in Table 2.1. Tt provides a quantification of the security offered by the key
size of a symmetric cipher.

A rough method to estimate the key length that is needed for sufficient
security in the future is the cost variant of Moore’s law, which states that
the computing power for a given cost doubles every 18 months. An esti-
mate of the security of symmetric key sizes depending on the resources of
an attacker has been made in 1996 by Blaze et al. in [16]. Their conclusion
was that for the next 20 years (starting from 1996) a key length of 90 bits
would provide sufficient security against exhaustive key search attacks of
any practical attacker.

Based on these results we conclude that a key size of 128 bits provides
sufficient security against exhaustive key search.
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Table 2.1: Results of the RSA secret-key challenge (October 2000).
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Contest Time to solve Percentage Method
of key space
RC5 40-bit 3.5 hrs LAN
RC5 48-bit 313 hrs Distributed over internet
RC5 56-bit 265 days Distributed over internet
RC5 > 64-bit ongoing
DES1I 140 days 25% Distributed over internet
DES II-1 40 days 87% Distributed over internet
DES II-2 3 days EFF DES cracker
DES III 22 hrs EFF DES cracker &
distributed over internet

e Table precomputation: This is a key recovery and chosen plaintext
attack. An attacker takes a plaintext of his choice, encrypts it under all
possible keys and stores the ciphertexts linked to the key values. This is the
precomputation of the attack. Next the attacker acquires the encryption of
his chosen plaintext with the target key. He then retrieves this ciphertext
amongst his stored ciphertexts and hence retrieves the target key (or at
least a few possibilities for the target key).

e Hellman’s time-memory tradeoff: The aim of a time-memory tradeoff
is to mount an attack which has a lower online processing complexity than
exhaustive key search and a lower memory complexity than table precom-
putation, as indicated in the third column of Table 2.2. A first method
was introduced by Hellman in [63]. Its complexity and success probability
are summarized in the fourth column of Table 2.2. For the definition of
the variables see Table 3.1. We shall elaborate on it in Chapter 3.

¢ Distinguished points time-memory tradeoff: This is a variation on
the Hellman tradeoff, that was introduced by us in [22] and independently
by Quisquater and Stern in [110]. It is based on an idea of Rivest [36,
p.100]. The main advantage of this method over Hellman’s is that it
reduces the number of memory accesses significantly. We describe, discuss
and analyze this method in Chapter 3. The results are summarized in the
fifth column of Table 2.2; variables are defined in Table 3.2 on p. 47.

The complexities and success probabilities of these brute force attacks are sum-
marized in Table 2.2. Note that the success probabilities for exhaustive key
search and table precomputation are given as 1 with [£]. Here [z] denotes the
smallest integer larger than or equal to z. For key deduction the success prob-
ability is 1 — % With probability % an attacker finds more than 1 possible key
value. The target key can then be uniquely deduced by encrypting extra known
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plaintexts. In case of the time-memory trade-off methods, the error probability
is a real error probability p. This means that, with probability p, a key cannot
be identified based on the given memory content after the precomputation.

Table 2.2: Expected complexities of brute force attacks on block ciphers.

Attack Key Table Tradeoff Hellman DP
Search method
Known k
plaintexts [w] _ — — —
Chosen i i B .
plaintexts T [w] (o] (] (]
Precomp. A
— ?
complexity 2 : ThMhth Tmy
Memory R X
complexity o 2 <2 MATh ar
Memory ok
accesses o - MATh r
Processing A X
complexity 2 o <2 Thin ry
Success . B
? _ —D(mpu,tr) ¢ TR
probability 1 1 ! 1—e 2k 1—e 2F

2.5.3 Shortcut Attacks

Although shortcut attacks exploit the internal structure of a block cipher and
hence need to be constructed specific for each cipher, there are several generic
techniques for mounting an attack and for analyzing the resistance against it.
Care has to be taken when trying to optimally apply these techniques, since each
attack requires thorough analysis of all kinds of properties of the structure of
an algorithm, a thourough understanding of the limitations of these techniques
and last but not least a sufficient amount of intuition of the evaluator.

We summarize the techniques that have been proven to be successfully ap-
plicable to state-of-the-art designs of block ciphers.

e Linear cryptanalysis (LC) was introduced and developed by Matsui
in [96, 97]. It is a known plaintext attack. Additional advanced tech-
niques that are relevant can be found in [80, 71, 105, 135]. A basic linear
attack makes use of a linear approximation between bits of the plaintext
P, bits of the ciphertext C' and bits of the expanded key K. Such a linear
approximation is a probabilistic relation that can be denoted as

a-PoB-K=n~-C, (2.3)
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where o, and v are binary vectors and x - X = @, x;X; for x =
(x05X1,---)- Instead of P or C one can use intermediate values that
can be computed from P or C by guessing (part of) a key value. If a
linear approximation holds with probability p = % + 6 with 6 # 0, a linear
attack can be mounted which needs about c|§|~2 plaintexts. The value of
¢ depends on the attacking algorithm that is used. Here ¢ is called the
deviation and |§| = € is called the bias.?2 A predecessor of this technique
is given by Matsui and Yamagishi in [99]. Here, all ‘approximations’ had
bias 1.

A cryptanalyst typically considers plaintexts and ciphertexts for a fixed
but unknown key value K. For such a fixed key, 8- K is a constant (either
0 or 1), hence (2.3) can be transformed into (2.4) without changing the
bias:

a-P=~-C, (2.4)

Note however that the probability of the approximation, that is, the sign
of §, will change for keys K with §-K = 1. We say that for certain values
P and C, (2.4) behaves in the deviation direction if .- P®~y-C = b and
a-P @v-C =bhas a positive deviation.

A linear approximation for the whole cipher can be derived by ‘chain-
ing’ linear approximations between intermediate values. If the probabil-
ities of these approximations are independent, the value of the deviation
of the derived approximation can be computed with Matsui’s Piling Up
Lemma [96].

Theorem 2.1 [Matsui’s Piling Up Lemma] The deviation § of n chained
approximations with deviations §; is given by

5 == 2n—1 f[ 6, .
i=1

if all deviations &; are independent.

A proof can be found in [96].

e Differential cryptanalysis (DC) was introduced by Biham and Shamir
in [9] and exploits the propagation of differences through a block cipher.
To mount an attack one has to choose plaintext pairs with certain dif-
ferences. Hence, differential cryptanalysis is viewed as a chosen plaintext
attack. Mostly an attacker can choose plaintext values in an efficient way,
such that from a set of chosen plaintexts many different pairs can be con-
structed with required differences. Such sets are called structures. The

21In the literature sometimes different names are used or the deviation is called bias and vice
versa. Daemen introduced even different concepts such as correlation coefficients for linear
cryptanalysis (for an overview see [30]) that are related to the concepts used throughout this
work. Care has to be taken when comparing different sources.
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chosen plaintext scenario can be changed into a known plaintext scenario
that requires more plaintexts. This can be done as follows:

Theorem 2.2 Let b denote the block length. Then a set of V2 - N -2b
texts is expected to contain about N pairs of each possible difference.

A proof can be found in [9]. Theorem 2.2 implies the following.

Theorem 2.3 Let b denote the block length. A differential attack that
requires N pairs with a chosen plaintext difference can be performed as an
attack that requires V2 - N - 20 known plaintexts.

The technique of differential cryptanalysis has its merits in the analysis
of several constructions, for example hash functions or one-way functions,
and related key analysis of block ciphers.

e LLC and DC related attacks. Some attacks have been described that
generalize or combine LC or DC in some way. We mention the following,
which have been successfully applied in practice.

— Truncated differentials have been introduced by Knudsen in [77]. Like
differential they consider difference propagation. Compared to differ-
entials, only part of the difference propagation is taken into account,
i.e., only part of the intermediate value is predicted. Truncated dif-
ferentials seem to be most suited for attacking ciphers that mainly
use operations on words of a small size.

— Linear-differential cryptanalysis was introduced by Hellman and Lang-
ford in [64]. An attack is mounted by passing a first part of the cipher
with a differential and the remaining part with a linear approxima-
tion.

— Impossible differentials were introduced by Biham, Biryukov and
Shamir in [8] and by Knudsen in the paper that analyzes the AES
candidate DEAL. In these attacks the phenemenon of differences in
intermediate values that never occur for a given input difference are
exploited.

e x? cryptanalysis was introduced by Vaudenay in [135]. Vaudenay’s sta-
tistical model will be described later in this section. His x? cryptanalysis
is the most general instantiation that has resulted in practical attacks.

e Others.

— Meet-in-the-middle attack. This method was originally introduced
by Diffie and Hellman in [39] as an attack on multiple encryption
schemes, i.e., the concatenation of several ciphers. Suppose E is a
block cipher that can be written as

2 1
EK - EK2 o EK17
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where the lengths of K3 and Kj are k1 < k and ks < k, with &k < ko.
Then a shortcut known plaintext attack can be mounted as follows.
Suppose P, C' is a corresponding plaintext/ciphertext pair.

1. For K =0 to 2"
a. Compute Mg = EL(P).
b. Store Mk, K.
2. For K =0 to 2k2
a. Compute Nx = D%(C).
b. If Nk is in the stored list,
then check the suggested key with additional
plaintext /ciphertext pairs.

This attack has a processing complexity of 2¥2 computations of E?
and a memory complexity of 2F1. Time-memory tradeoffs are possible
and the attack can be generalized to a concatenation of more than 2
ciphers, which is described in [101].

— Interpolation attacks were introduced by Jacobsen and Knudsen in [70]
and further extended by Jakobsen in [69]. The basic idea is to find
an expression for (part of) the target cipher as a polynomial with few
coeflicients that is a function of the input, output and key. If there is
an expression that is suitable, interpolation techniques can be used
to find an alternative representation of the cipher or for key recovery.

— Slide attacks were introduced by Biryukov and Wagner in [14]. These
attacks exploit similarities in the round function and symmetries in
the key schedule. An example of such an attack is given in Sect. 7.6.3.

— Dedicated Square attack. This attack was already described by the
designers of Square at its introduction in [31]. All ciphers that are
designed based on the same principles as Square are potentially vul-
nerable and hence need to be evaluated for resistance against this
method. It exploits the slow diffusion and byte wise structure of a
cipher.

Except for the last kind (others), all attacks exploit some property that propa-
gates with a certain probability through the cipher, i.e., linear approximations,
differentials, characteristics, truncated differentials, etc. Note, that finding such
a property with sufficiently high probability implies that the target cipher can
be distinguished from a random permutation. Typically a cryptanalyst that
wants to mount an attack has two tasks.

e Finding a ‘good’ propagation property. Hence finding a linear ap-
proximation with high bias, characteristic with high probability, etc. The
search has to be performed efficiently since trying all possibilities is com-
putationally infeasible. The typical method is to analyze smaller compo-
nents of the cipher for propagation properties and to combine this analysis
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to give an estimate for the propagation properties concerning the whole
cipher. The iterated structure has resulted in strategies that base their ap-
proximation on the iteration of propagation properties for the individual
rounds.

Care has to be taken when applying such an analysis. To facilitate the
analysis mostly some assumptions are made. Three typical assumptions
are:

Assumption 2.4 In the propagation of a property through different com-
ponents the individual probabilities are assumed to be independent.

Assumption 2.5 [The hypothesis of stochastic equivalence [88]] The prop-
agation of the property through o key-dependent component is assumed to
be stochastically independent of the specific key values. The computation
of this property can then be done by averaging over all possible key values.

Assumption 2.6 The probability of propagation of a property through the
different key-dependent components is assumed to be stochastically inde-
pendent of the specific key values.

Analysis where situations are pointed out where these assumptions do
not hold and how they can be exploited can be found in [19, 30, 111]. An
interesting overview concerning these assumptions and linear cryptanalysis
can be found in [126]. In this thesis we shall show situations where these
standard assumptions do not hold and how to perform a good analysis
nevertheless.

e Exploiting the property. There are two approaches. If the property
depends on subkey values, these can be deduced with statistical methods
(assuming sufficient texts and a sufficiently high probability of the prop-
erty). A method that can be more efficient to deduce key material is to
make a statistical analysis by guessing key material in the outer rounds.
This allows to ‘peel off” one or more rounds. The assumption behind this
method is that the statistical property will be more apparent for a correct
guess than for a wrong guess. These techniques are called outer round
tricks or Ir tricks.

Hence, for research in the area of these attacks a distinction can be made
between research in methods for the distinct tasks. In general one can say that
the probability of a propagation property decreases if the number of components
increases. This has led to a design process where the number of rounds is derived
by taking the number of rounds that resists the best known (theoretically)
exploitable property and adding several rounds to resist outer round tricks.
Of course increasing the number of rounds implies a decrease in performance.
Hence, much research in this area consists of cryptanalyzing (and breaking)
iterated block ciphers with a reduced number of rounds.
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1. Unless the claims of the designer are refuted, such attacks increase the
amount of trust in the full round version of the cipher.

2. These attacks lead to design principles, since they show exploitable weak-
nesses in the components or their interaction.

Besides analyzing reduced round versions of an iterated cipher, results have
also been published on reduced ciphers using a different approach: the cipher
can also be reduced by omitting or changing components, such that the round
structure of a cipher is changed.

Vaudenay’s statistical cryptanalysis attack model. The attacks that use
propagation properties all fall in the category of statistical attacks as defined
by Vaudenay in [135]. Statistical cryptanalysis exploits statistically non-random
properties that depend on key material. This non-random behavior can be mea-
sured from values that are computed using plaintext and ciphertext values and
some key material that is known, i.e., in an attack this key material is guessed
and for the right key guess non-random behavior is expected and for other key
values random behavior. Furthermore, the attack is not only applicable to block
ciphers, but also to stream ciphers. It is formalized in [135] as follows.

Let P, C and K denote the sets as in Definition 2.5 (for a block cipher as
in Definition 2.10). Then in the statistical attack model three functions are
defined:

e hy: K — L, where |l = |£] < |K|. This is typically a function that derives
subkey material from the user key.

e he : P"xC" — S, where r is an integer (for the introduction of the model
in [135] r was taken to be 1, but later implicitly generalized to any integer)
and |S| < |P|-|C|. Sis called the sample space; hy derives the ‘exploitable’
information from plaintext/ciphertext tuples.

e h3: L xS — Q. Typically, the values of @ are intermediate values of the
encryption.

The input of hs is a key material guess and a sample. Hence, for N samples
|£] distributions on Q can be made. Typically Q contains all possibilities for
an intermediate value. For the right key guess this intermediate value would be
computed. In this thesis we will present a situation in which this is not the case.
For a successful attack a statistical measurement function X is required that can
distinguish the distribution of the target key value from that of the other distri-
butions. As a generalization this function could rank all key guesses, according
to the (computed) probability that they are the target key. We formalize this
as

¥ : QN - [0,1], where N is an integer and Z Y(g) =1.
qeQN
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If ¥ is chosen to be a x? test, then analysis according to this model is called
x2 cryptanalysis. It also is possible to describe the model where hs and ¥ are
integrated in one function. The general attack can be described as consisting of
four phases:

1. Counting phase. N samples S; = ho(P;,C;),i=1,...,N, are collected.

2. Analysis phase.
For each candidate K of the [ candidates for the key material:
1. For all i compute X; = h3(K, S;).
2. Compute the ‘mark’ My = X(Xy,...,XnN)-

3. Sorting phase. Sort the candidates according to their marks.

4. Searching phase. FExhaustively try all candidates according to their
marks.

Note that this model does not allow adaptive chosen plaintext attacks. How-
ever, one could extend it by allowing alternate counting and analysis phases.
Furthermore, it can be more efficient (for example for decreasing the required
memory) in practical situations to compute X; directly after obtaining (P;, C;),
hence the counting and analysis phase can be performed in an interleaved way.

For more details on how to choose the characteristic and the statistical mea-
surement function, and a more detailed general complexity analysis we refer
to [135].

2.5.4 Standards and Proposals

Data Encryption Standard (DES) and Advanced Encryption Stan-
dard (AES). The best known and most widely used block cipher is DES. It
has a 64-bit block size and a 56-bit key size. DES was designed in 1977 by IBM
in collaboration with the National Security Agency (NSA), which designed the
S-boxes. DES was standardized by NIST in [52]. This standard was followed
by ANSI with [3].

The design criteria have always been kept secret, although some of them
have more or less been revealed by Coppersmith (one of the designers) as a
reaction on the discoveries of differential and linear cryptanalysis [29]. The first
shortcut attack was a differential attack, published by Biham and Shamir in [9].
Currently the best shortcut attack is a known plaintext attack by Shimoyama
and Kaneko [129], which is an improvement of the linear attack by Matsui [96,
97]. Knudsen and Mathiassen have developed a chosen plaintext variant [80]
with lower complexity.

Nowadays the 56-bit key is considered too short for many applications and as
a more secure alternative (two-key) triple-DES is used. This is a cipher for which
encryption consists of a DES encryption, followed by a DES decryption, followed
by a DES encryption. The DES encryptions are performed using the same key,
hence the key length of triple-DES is 112 bits. This mode is standardized by
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ANSI in [4] and by ISO in [66]. Another alternative, based on DES is DESX,
that was introduced by Rivest and described in [74].

Because of the small key length of DES and the performance penalty induced
by the use of triple-DES, in 1997 NIST has initiated a standardization process
for a new block cipher standard to replace the DES: the Advanced Encryption
Standard (AES) [2, 56]. The new standard should support key sizes of 128, 196
and 256 bits. An additional security related criterion is that the new standard
should have a block size of 128 bits for resistance against dictionary like attacks.
Furthermore it should be efficiently implementable on a variety of platforms.

For this purpose NIST has issued an open call for algorithms, i.e., the ‘pub-
lic’ was asked to submit proposals for the new standard. In August 1998 fifteen
algorithms were accepted that satisfied the submission criteria. In August 1999
after a first period of analysis, including two AES conferences, from the fif-
teen candidates five algorithms remained: MARS, RC6, Rijndael, Serpent, and
Twofish. The choice for the final choice was made in October 2000. NIST
selected the algorithm Rijndael, designed by Daemen and Rijmen for AES.

Intermediate era. Even before the initiative of NIST for a new block cipher
standard, a number of other block ciphers have been proposed. We summarize
the most prominent ones.

e FEAL is the name of a family of block ciphers that have played a critical
role in the development of several cryptanalytic techniques, in particular
linear and differential cryptanalysis. An overview of and references to
design and analysis can be found in [101].

e IDEA. The original design criteria of this algorithm were introduced by
Massey and Lai in [89], which lead to a design, called PES. In [90] design
weaknesses were discovered, which lead to a design called IPES, that now
is known as IDEA. It has a 64-bit block length and 128-bit key length.
IDEA is used in many commercial products, amongst others in PGP. The
best attacks are by the author, Knudsen and Rijmen in [19], and by Biham,
Biryukov and Shamir in [7].

e SAFER is the name of several block ciphers, all (co)designed by Massey,
originally introduced in [94, 95]. The best attacks on the first versions
were published by Knudsen and Berson in [79]. Knudsen also gives an
overview of analysis results and describes a new key schedule in [78]. All
versions have 64-bit block size. These ciphers were the basis for SAFER+,
one of the 15 original AES candidates, designed by Khachatrian, Kuregian
and Massey.

e Blowfish was introduced by Schneier in [123]. It has gained much pop-
ularity, not in the last place because its designer is the author of [124].
Its security is based on large S-boxes, that are computed from the key
using an involved computation. Although, this was initially an ad hoc
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argument, the fact that no impressive results are known makes it a trust-
worthy cipher. The best attacks are by Van Rompay and Verelst in [133],
and Vaudenay in [134].

RC?2 was designed by Rivest in the eighties and originally kept confidential.
It was commercialized by RSA Inc. and used in many commercial products
such as Netscape Communicator and Microsoft’s Internet Explorer. A
description and the best attack by Knudsen, Rijmen, Rivest and Robshaw
can be found in [83].

RC5 was introduced by Rivest in [116, 117]. It has a simple structure and
lends itself to analysis. Its security is based on the use of data dependent
rotations; this method is even patented in [118, 119]. It has a variable
block (64 or 128 bits) and key size. The best attacks are by Biryukov and
Kushilevitz in [11], and the attack by the author, Preneel and Vandewalle,
published in [23], that is described in Chapter 4. RC5 is commercialized
by RSA Inc. From RC5 the former AES candidate RC6 was developed.

Square was introduced by Daemen and Rijmen in [31]. Tt has a 128-bit
block size and 128-bit key size. Its design and security are based on the
Wide Trail Strategy as described by Daemen in [30] and Chapter 5. The
best attack is given by its designers and Knudsen in [31]. Square was the
basis for Rijndael, which was selected as AES.

Misty. In [98] Matsui introduced two ciphers called Mistyl and Misty2.
Both are constructions of ciphers that are provable secure against differ-

ential and linear cryptanalysis. This has also been the basis for the block
cipher KASUMI [47], that is used as a primitive in the UMTS standard.

Skipjack. Skipjack was originally a confidential design by the NSA to be
embedded in tamper-resistant chips, that were commercially available on
Fortezza PC cards. Recently it has been disclosed [8, 84]. It has a 64-bit
block length and an 80-bit key size. The best attack is by Biham, Biryukov
and Shamir [8].

2.6 One-Way Functions and Hash Functions

2.6.1 Definitions and Properties

One-way functions and cryptographic hash functions are unkeyed cryptographic
primitives that share the following property.

Property 2.2 A one-way function or cryptographic hash function f has the
property ease of computation: for every input x (from the domain of f) f(z) is
‘easy’ to compute.

Furthermore a hash function has the extra property:
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Property 2.3 A hash function f maps an input x of arbitrary bit length to an
output h(z) of fixed bit length.

Concerning their cryptographic properties; they (should) have at least one of
the following three properties.

Definition 2.12 Preimage resistance The function f is preimage resistant
or one-way if the following holds. Given any image y, for which there exists an
x with f(x) =y, it is computationally infeasible to compute any preimage z'
with f(z') = y.

Definition 2.13 Second-preimage resistance or weak collision resistance.
The function f is second-preimage resistant if the following holds. Given any
preimage x it is computationally infeasible to find a 2nd-preimage x' # x with

f(z) = (")

Definition 2.14 Collision resistance or strong collision resistance. The
function f is collision resistant if the following holds. It is computationally
infeasible to find any two distinct inputs xz,x' such that f(z) = f(z').

Similar to the main design criterion for block ciphers, (well designed) one-way
and hash functions have the following property.

Property 2.4 A one-way function with or restricted to a finite domain or a
hash-function restricted to a finite domain should be (practically) indistinguish-
able from a random mapping.

Formalization of this property is a little bit more tricky: if a function is com-
pletely specified, it is easy to distinguish it from a random mapping; a way
around this is to define a family of functions.

2.6.2 Brute Force Attacks

Considering the security evaluation of one-way and hash functions with respect
to Definitions 2.12, 2.13 and 2.14, the following attacks are always feasible. Let
f be such a function with a range of all n-bit values.

e Preimage resistance: To produce a preimage of y, an attacker computes
the image of different input values, until he finds an z with f(z) = y. The
processing complexity is approximately 2™.

e Second-preimage resistance: Given an input z, an attacker computes
the image of different input values (not equal to z), until he finds an ' # z
with f(z') = f(z). The processing complexity is approximately 2.

e Time-memory tradeoffs: The online processing complexity (or success
probability) for finding preimages and second preimages can be improved if
an attacker invests in precomputations, i.e., he can precompute a number
of images. This has important consequences if the target function has a
restricted domain, for example only can take inputs of a given length. A
description of such methods can be found in Chapter 3.
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e Collision resistance: An attacker computes the images of different in-
puts until he has found two that collide. The processing complexity is
approximately 2"/2, with a success probability of about 0.39, or 2(7/2)+1,
with a success probability of about 0.63. Hence, a naive implementation
of this attack would require a memory complexity of 27/2. In [108, 109
Quisquater and Delescaille describe a method for which memory require-
ments are negligible.

The complexities are summarized in Table 2.3.

Table 2.3: Expected complexities of brute force attacks on one-way functions
and hash functions.

| Attack || Preimage | 2nd Preimage | Tradeoff | Collision |

Precomp. ,
complexity !
Memory
0 -
complexity ! negligible
Memory
‘? . .
accesses ¢ negligible
PI'OCeSSi‘ng on on < on 2n/2+1
complexity
Success ) ) ) 063
probability ! .

2.6.3 Standards and Proposals

Most efficient and practically used one-way functions are hash functions with a
restricted domain.

Almost all practically used hash functions are based on iterated compression
functions:

Definition 2.15 An m,n-bit iterated compression function is a function f :
{0,1}™ x {0,1}™ — {0,1}™, that is used to compress a string zi,...,z: of
n-bit blocks to a m-bit value H; that is iteratively computed by

H@ = IV (2.5)
H; = f(Hi—laxi) fOT?:: 1,...,%, (26)

where IV is called an initialization value.

The initialization value can be predefined or is to be chosen (randomly) for
each hash computation, depending on the hash function specification. Concern-
ing information access for a hash function attack one defines free-start attacks
as attacks where an adversary can choose the initialization value.
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The generic scheme of a hash function, that takes as input arbitrarily length
input and gives as output an r-bit result, based on an iterated compression
function is the following.

1.
2.
3.

The input is padded to a string x1, ... ,z; of n-bit blocks.
The value H, is computed using (2.6).

The hash value is given by the output g(H;), where g : {0,1}™ — {0,1}"
is called the output function. (Often m = r and g(H:) = H;.)

A distinction can be made between two types of hash functions and one-way
functions: dedicated constructions, and constructions using a block cipher as a
building block. We will give a short overview of the most popular functions; all
of them are based on an iterated compression function.

e MDJ, MD5. MD4 was introduced by Rivest in [113]. It produces a 128-

bit output. Due to analysis by Den Boer and Bosselaers in [15], Rivest
proposed in [115] a strengthened version: MD5, which also produces a
128-bit output. Indeed, later in [40] Dobbertin presented an attack that
found collisions for MD4. The analysis by Dobbertin in [42] also creates
doubts about its preimage resistance; therefore MD4 has become obsolete.
Dobbertin has also found collisions for the compression function of MD5
[41]; finding collisions for MD5 itself is now believed to be feasible.

SHA, SHA-1, SHA-256, SHA-384, SHA-512. The NSA has designed the
hash function SHA-1, which has a 160-bit output. It is standardized by
NIST in [54]. Originally NSA had proposed the design SHA (sometimes
referred to as SHA-0), but due to a weakness a slight modification has been
introduced which resulted in SHA-1. This weakness as well as the other
design motivations are confidential. Analysis that possibly motivates the
change from SHA into SHA-1 can be found in [28]. Recently NIST has
requested NSA to design extensions of SHA-1 with longer results: SHA-
256, SHA-384 and SHA-512 [55].

RIPEMD-160. RIPEMD-160 is a hash function with a 160-bit output,
which was designed by Dobbertin, Bosselaers and Preneel. It is described
in [43]. SHA-1 and RIPEMD-160 are also standardized by ISO/IEC
in [68].

Block Cipher Constructions. There are several (secure) constructions for
hash functions based on block ciphers. A synthetic approach of generic
schemes to construct a hash function from a block cipher where the out-
put size is equal to the block size is given by Preneel in [107]. Three
popular schemes that have good properties according to that analysis are
the following. All schemes are defined by specifying the function f in
equation (2.6). A characteristic of these schemes is their rate: this is the
inverse of the number of block encryptions that have to be computed to
process each message block.
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Davies-Meyer:
Hi = Hi,]_ (&) Ezi (H,',]_) . (27)

It has a rate of k/n, with k the key length (in bits) and n the block length
(in bits). Hence, this mode seems particularly suitable when used with
block ciphers that permit large key lengths.

Matyas-Meyer-Oseas:
H;,=z; ® Eh(Hi_l)(xi) , (28)

where h maps the chaining variable to a key of suitable length. It has rate
1.

Miyaguchi-Preneel:
H,=H, 1®xz;® Eh(Hi_1)(xi) . (2.9)

This scheme has rate 1.

Popular constructions where the output size is twice the block length are
MDC-2 and MDC-4 with rate 1 and 1, respectively. The Matyas-Meyer-
Oseas and MDC-2 scheme are included in the ISO standard 10118-2 [67].

For an elaborate treatment of one-way functions and hash functions we refer
to [107] by Preneel.

2.7 Conclusions

In this chapter we have introduced the field of information security, its ap-
plications and objectives. Cryptology offers important tools to achieve many
objectives of information security with technical methods. We have given a
framework from which the security objectives can be derived, that are achiev-
able with cryptographic techniques. This framework consists of the concepts:
confidentiality, data integrity, authentication and non-repudiation.

We have given a classification of the cryptographic tools or primitives that
can be used to achieve these objectives and we have described their evaluation
criteria. For reasons of interoperability and as a certification mark for the
level of soundness and trust, primitives and their modes of use are described in
standards, which are developed by several standardization bodies.

The design of cryptographic primitives or cryptosystems and their security
evaluation are highly interactive. To design a cryptosystem a thorough knowl-
edge of and experience with security evaluation techniques (generic as well as ad
hoc) seems required. There are several approaches to evaluate and determine
the level of security of a primitive or cryptosystem of which we have given an
overview. At the moment provable security is out of reach. Hence, each de-
sign requires independent analysis. The most suitable design approach seems



2.7. CONCLUSIONS 37

to be the conservative approach: use provable and practical security arguments
if possible and use ad hoc arguments that are generally accepted.

We have given several classifications of security analysis and attacks on sym-
metric ciphers by determining the goals, assumptions, methods of information
access, the use of classical and side channel analysis, the level of complexity
and the exploited feature of the attack. This chapter contributes to the existing
theory by fitting in side channel analysis in the classical framework. Another
contribution is the determining of four definitions of breaking a cipher and their
relevance. This gives an extra criterion to choose the most suitable cipher for
an application.

An important class of cryptographic primitives is the class of block ciphers,
since they can be used as building blocks for many other cryptographic prim-
itives and cryptosystems. We have given a succinct overview of current state-
of-the-art in design and analysis of block ciphers, one-way and hash functions,
comprising of properties, brute force and shortcut attack methods as well as
proposals and standards.
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Chapter 3

A Time-Memory Tradeoff
Attack

3.1 Introduction

This chapter studies a method to invert a one-way function (that may have
a domain and range of different size), where precomputation of an amount of
memory is used to reduce the time needed for inversion. This has as main ap-
plication: improved brute force key search on symmetric encryption algorithms,
which is mainly important for production cryptanalysis, where a large number
of keys has to be recovered. We describe the method in the context of a cho-
sen plaintext attack on a block cipher; the attack requires the encryption of a
single fixed set of plaintexts, the value of which does not matter. We describe
and analyze a variation that was introduced in [22] by the author, Preneel,
and Vandewalle, and independently also by Quisquater and Stern in [110]. We
also show its advantages in practical adaptation. Furthermore, we have imple-
mented the variation and show experimental results that are in accordance with
the analysis.

The remainder of this chapter is organized as follows. We summarize the
previous work and our contribution in Sect. 3.2. In Sect. 3.3 we describe the
application of the time-memory tradeoff. In Sect. 3.4 we show how to construct
a one-way function from a block cipher, for which inverting it is equivalent to
breaking the cipher. In Sect. 3.5 we describe Hellman’s method to invert it
and in Sect. 3.6 the method using distinguished points. The analysis of the
distinguished points method is included in the remaining part: Sections 3.7
and 3.8 contain some preliminary work and in Sect. 3.9 the complexities and
success probability of the method are derived. We compare the two methods in
Sect. 3.11 and conclude in Sect. 3.12.

39
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3.2 History

The tradeoff method was introduced and applied to DES in [63] by Hellman.
In [50] Fiat and Naor propose a variant that is applicable to any cipher at the
cost of extra workload and/or memory. Kusuda and Matsumoto generalize the
Hellman method in [87]; they derive stricter bounds on the success probability
and give relationships between the memory complexity, processing complexity,
and success probability. This enables to optimize the tradeoff with respect to
memory and processing cost and results in estimates for the cost and capacities
of key search machines using dedicated hardware.

In all previous work the number of memory accesses was considered to be
negligible. However, this is not always the case; one practical example would be
when one uses Hellman’s tradeoff method to perform a distributed key search
over a LAN or over the Internet. A new tradeoff method was introduced inde-
pendently by the author, Preneel, and Vandewalle in [22] and Quisquater and
Stern in [110]. It is based on distinguished points and reduces the expected num-
ber of memory accesses with a large factor and thus overcomes these problems.
It was based on an idea by Rivest [36, p.100].

The comparison of our method compared to Hellman’s and the relationship
with other brute force attacks is summarized in Table 2.2.

3.3 Applications

The aim of a time-memory tradeoff (for a block cipher attack) is to mount
an attack which has a lower online processing complexity than exhaustive key
search and a lower memory complexity than table precomputation, as indicated
in the third column of Table 2.2.

Cryptosystems. The method as introduced by Hellman as well as our vari-
ation is actually an efficient method to compute the preimage of inputs of a
function, if a certain amount of precomputation is invested. It can be applied
to many cryptosystems:

e One-way functions and hash functions: The tradeoff method can be
used to retrieve first and second preimages. The success probability and
complexity depend on the input and output sizes of the function.

e Asynchronous stream ciphers and key stream generators: For a
stream cipher a known plaintext attack can reduce part of the key stream.
If sufficient key stream is known (part of) the internal state or seed can
be deduced by exhaustive searching. For this the online complexity can
be reduced using a time memory tradeoff. An interesting application of
this kind of attack is given by Biryukov, Shamir and Wagner in [13] for
the GSM encryption algorithm A5/1.
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e Block ciphers: In the next section we will show a method to construct
one-way functions from a block cipher for which holds that finding a cer-
tain preimage is (with high probability) equivalent for key recovery. It is
a chosen plaintext attack.

Chosen plaintext attack on block ciphers. The attack as described in the
next section is a chosen plaintext attack on a block cipher in ECB-mode and
can be prevented by using CBC-mode with a random IV-vector. Still there are
practical applications, which would be vulnerable to a chosen plaintext attack.
We give the following examples.

e In the UNIX-password one-way function [101], a user password of 8 ASCII-
characters is used to encrypt 0...0 with DES 25 times iterated. Although
password salting gives 2'2 variations of the block cipher, it is possible to
make a database for part of the salt values or for a library of passwords
of a given structure (for example passwords only consisting of a subset of
all ASCII characters).

e S/MIME is an email security protocol that for example is used in Netscape
Communicator and Microsoft’s Internet Explorer. Besides DES it sup-
ports RC2 with a 40-bit key. The block cipher is used in CBC-mode, but
the first encrypted block is always the ASCII-equivalent of ‘Content-’. It
is encrypted using a random IV -vector, which is then sent along with the
message. If the random generator is predictable or can be influenced, then
an attacker might profit by making tables for the corresponding I'V-values.

e Many file formats begin with a standard header such as % !PS-Adobe-3.0,
\documentclass and many Microsoft formats, although these are not in
readable ASCII. This may always give rise to a chosen plaintext attack.

We conclude that time-memory tradeoff attacks need to be taken seriously into
account in the design of secure systems.

3.4 A One-Way Function

In this section we show how to construct a one-way function f from a block
cipher and a set of chosen plaintexts. It has the property that for ciphertexts
corresponding to the chosen plaintexts, the target key can be found by inverting
the function for a point that depends on the ciphertexts. In the next two sections
we give two methods for inversion, namely Hellman’s method [63] and the new
method, denoted Distinguished Point (DP) method.

Let E : {0,1}" x {0,1}* — {0,1}" be a block cipher with block length n
and key length k.

Define ¢ = [£], hence g is the required amount of known plaintexts or
chosen plaintexts to determine the target key by exhaustive key search or table
precomputation, for which the complexities are summarized in the first two
columns of Table 2.2.
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Define a function g : {0,1}9" — {0, 1}* as
9(X)=9(Xq,..., Xgn) = (Xiy,...,X;,) for all X = (Xq,...,X,,) € {0,1}97,

where the 4;’s are different elements of {1,... ,¢qn}. This function has the fol-
lowing two properties, which are important for our purpose. It is efficiently
computable and there are many, namely (q(gf)!)!, different possibilities to define
the function g.

Next, define on the key space a function f: {0,1}* — {0,1}* as

fY)=g(Ey(P1)|...|Ey(P,)) for all Y € {0, 1}, (3.1)

where Py, ..., P, are g different (chosen) plaintexts. This construction was in-
troduced in [87] and is a generalization for the construction as given by Hellman
in [63], which only holds for the case kK < n. The function has the following
property:

Property 3.1
{Ci = Ex(P;) fori=1,...,q} = g(Ci|...|Cy) = f(K),

hence g(C4]...|Cy) is the image of K under f, or in other words K is a prede-
cessor of g(C4]...|Cy). So a method to invert f is a method that can determine
the secret key.

Property 3.2 For a well designed block cipher the one-way function (3.1) can
be modeled as a random mapping.

This follows directly from Property 2.1.

Note that from g¢(Ci|...|Cq) = f(K) it does not necessarily follow that
C; = Ex(P;) fori =1,...,q, since g(C) can have more than one predecessor,
from which one is the target key. The situation where an inversion method finds
another predecessor is called a false alarm. False alarms do make sense in the
case of a block cipher inversion; they do not make sense if one just wants to find
a preimage of a function (unless one wants to find a specific preimage).

3.5 Hellman’s Tradeoff Method

For the sake of clarity the variables, definitions and functions for Hellman’s
method are summarized in Table 3.1.

Chains. For arandom start point SP € {0, 1}*, define a chain Ko, K1, ... ,K;
of length # + 1 as

Ko = SP=f%Ko)
K, = f(Kzfl) = fz(K(]) for i = 1,.. . ,f.
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Table 3.1: Overview of variables, definitions and functions concerning Hellman’s
method.

| Variable | Meaning | Pointer |
th Number of iterations that is done on Alg. 1
a start point.
mp Number of chains in a table. Alg 1
Th Number of tables. Alg. 1
D(mp,tn) || Number of different points in a table. (3.2)
E(F) Expected number of false alarms per table. | (3.5)

- f(o)=K,

Figure 3.1: Iteration of the one-way function.
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This iteration is visualized in Figure 3.1.

If only the start point and end point EP = Kj; are stored, then it is possible
to determine whether a key K is equal to K; for some i € {1,... %} and, if so,
to determine its predecessor in the chain, all with a complexity of £ operations.
This can be achieved as follows.

Determining if a key is in a chain. Let K € {0,1}*.

1. Forl =1tot do
2. Check if f{(K) = EP, if so then the predecessor of K is fi=1(SP).
3. Else, take next [.

In the tradeoff method one tries to store information about as many dif-
ferent predecessors as possible by taking 7 different random start points and
constructing thus 7 chains of length £+ 1. A set of 7 chains of length ¢ + 1 can
contain information about at most /it different predecessors, but can contain
several predecessors that are equal, which we call overlap. Overlap is caused by
one of the following two situations.

o A chain can cycle. This is the situation in which there are an ¢ and j with
i # j and K;y1 = K;. This is visualized in Figure 3.2.

e Two chains can merge. This is the situation in which two keys in different
chains have the same image. Note that this means that from the moment
of the merge till the end of at least one chain, both chains contain the
same keys. This is visualized in Figure 3.3

=K, K, Kj =K1 K,

f f
———— »0--------0—————— - 2
R =Ko Kha K f Khj+1  Kn=ER,
f Il I
>0 -------
S?:Km Ki1 KIJ Ki,j+1 Klt

Figure 3.3: Two merging chains.
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This implies that taking 77 and # large would mean that there would be
a significant overlap. Hence, we take the values for / and £ not too high.
Furthermore, to reduce the overlap caused by the merging of two chains we take
different functions f by choosing different functions g. We call a set of chains
that are computed with the same function f a table.

Hellman’s method. Hellman introduced the following precomputation algo-
rithm and search algorithm, that use parameters my, t and 7.

Precomputation algorithm 1
Make ry, tables with my (SP, EP)-pairs, sorted on EP.

1. Choose 7}, different random functions g;,72 = 1,... ,74.
2. Fori=1tory,
A. Choose my, different random starting points SP&’), - ,SPS?}L.

B. Compute my, end points EP;i) = f?h(SPg.i)).

3

C. Store in table i: my (SP, EP)-pairs, sorted on end point.

Search algorithm 1
Given C; = Ex(P;),i=1,... ,q. Find K.
Fori=1tor,
2. For j =0 to tp — 1
AIfY = EPl(i) for some | then
a. Compute predecessor K = ffh_l_j(SPl(i)).
b. If C = Ez(P) then K = K: stop.
c. If C # E(P) then false alarm.
B. Set Y = f(Y).

Note 3.1 Precomputation algorithm 1 and Search algorithm 1 are given
in the typical setting of a (software) search on one machine; the tables are
generated and searched sequentially. Of course this can be parallelized up to a
parallel search in ry, tables.

The attack has the following complexities. We shall analyze the complexities
for the sequential case; adaptation to the parallel case is straightforward.

Memory complexity. Storage is needed for r, tables. Each table contains
my, chains. These are in the form of pairs and other well-known tricks can be
done to save on required space, such as choosing start points that need less
storage. Hence, memory for myr, table entries is needed.
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Success probability. In [87] the number of different points D(mp,ts) cov-
ered by a Hellman table is estimated as

2

2k [foE 1 —e7®
D(mn, tn) ~ / °  dz. (3.2)
0

th z

It holds under the restrictions that mp > 1, t, > 1, and mpt, < 2%. Further,

according to the experimental results in [87] the approximation gets worse if
mhti
ok

gets larger than 1.

All points in the same table are different, but there can be overlap between
different tables, i.e., a point can be covered by several tables. The success
probability, the probability that some key K is at least in one of the tables, is
given by

Th

Prsuccess = 1- H PI‘(K not in table 1,)
i=1
- D(mp, tn)

~ 1-JJa- )
i=1
D(mn,tn) .,
= 1-(1- =) (3.3)
N l—e (3.4)

Precomputation complexity. In the precomputation phase r, tables are
computed. For each table my chains of length t; are computed. Hence, this
gives a complexity of rpmpt;, computations of the one-way function.

Processing complexity. The following analysis was given by Hellman in [63].
The expected number of false alarms per table tried is bounded by [63]:

B(F) < mptn(th + 1)

< (3.5)

At most t;, operations are required to distinguish a false alarm from the re-
covery of the target key. If mpt? =~ 2*, then the expected processing complexity
due to false alarms increases the expected processing complexity by at most 50
percent.

Hence, the processing complexity can be estimated to be in the order of rty,.

The success probability and precomputation, memory and processing com-
plexity are summarized in the fourth column of Table 2.2. Note that the pro-
cessing complexity caused by false alarms can be neglected [63, 87]. When the
attack is mounted with a precomputation complexity of 2¥ and memory com-
plexity equal to processing complexity, then m =t = r = 2*¥/3 and the success
probability is around 0.55 [63].
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Table 3.2: Overview of variables, definitions and functions concerning the Dis-
tinguished Point method.

| Variable || Meaning Pointer
d Order of the DP-property. Alg. 2
t Maximum number of iterations that is done on Alg. 2
a start point.
m Initial number of start points to create a table. Alg. 2
r Number of tables. Alg. 2
Inax Maximum length of a chain in table . Alg. 2
a Expected (average) number of chains in a table. (3.10), (3.12)
B Expected (average) chain length. (3.10), (3.12)
vy Expected (average) amount of iterations made (3.15)
for a point during precomputation.
Bo Expected (average) chain length before discarding (3.8)
chains with the same end point.
b1 Expected (average) chain length of discarded (3.10), (3.12)
chains.
p1(8) Probability that a distinguished point is (3.6), (3.7)
reached in < s iterations.
c Expected number of tables to be checked (3.17)
in a search.
a Expected fraction of tables that has to be (2)
checked before a success.

3.6 The Tradeoff Method Using Distinguished
Points

For clarity we summarize the variables, definitions and functions that concern
the distinguished points method and its complexity computations in Table 3.2.
For the distinguished points method, we need the following definition.

Definition 3.1 Let K € {0,1}* and d € {1,...,k —1}. Then K is a distin-
guished point (DP) of order d if there is an easily checked property which holds
for K and which holds for 2¥=¢ different elements of {0,1}*.

Here ‘easily checked’ means a property that can be checked with a lower
complexity than needed for a search in a table of about 2¢ elements. An eas-
ily checked DP-property is for example having d bits with a fixed value on d
specified places.

The new algorithm requires the choice of a DP-property of order d. Again
r tables will be precomputed by choosing r different iteration functions f, but
now each end point in each table will be a DP. For each iteration function m
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different start points will be randomly chosen. For each start point a chain will
be computed until a DP is encountered or until the chain has length ¢ + 1.

Only start points that iterate to a DP in less than ¢ iterations will be stored
(with the corresponding chain length), the others will be discarded. Hence, all
chains that cycle are discarded. Moreover, if the same DP is an end point for
different chains, then only the chain of maximal length will be stored. Hence,
no two chains merge. Consequently there is no overlap in a single table. If the
parameters d, t and m are chosen properly, the extra computation that has been
done for discarded points is negligible.

Precomputation algorithm 2
Generate r tables with (SP, EP,1)-triples, sorted on end point.
1. Choose a DP-property of order d.
2. Choose r different random functions g;, 1 =1,... 7.
3.Fori=1tor
A. Choose m random start points SPY), . ,SPS;).
B.Forj=1tom,l=1tot
a. Compute f! (SP;’)).
b. If f/(SP'") is a DP, then
Store the triple (SP{", EPS") = f}(SP\),1) and take next j.
c. If I > t “forget’ SPE-Z) and take next j.
C. Sort triples on end points.
If several end points are the same, only store the triple
with the largest [.
D. Store maximum / for each table: [}

max”

Tables constructed according to Precomputation algorithm 2 have the fol-
lowing property.

Property 3.3 For the search algorithm it holds that a table only has to be
accessed when a DP is encountered during an iteration. Moreover, if the en-
countered DP is not in the table, then one will not find the target key by iterating
further.

Hence, then the current search can now skip the rest of this table.

Search algorithm 2
Given C; = Eg(P;),i=1,...,q. Find K.
Fori=1tor

1. Look up 1% ..
2. Y =gi(C1,...,Cy).
3.Forj=0tol} . —1
A. If Y is a DP then

a. If Y in table ¢ and j < [, then

i. Compute predecessor K = f-l_l_j(SPl(j)).

k2
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ii. If C = Eg(P) then K = K: stop.
iii. If C # Eg(P), take next 3.
b. Else take next i.
B. Set Y = f(Y).

Note 3.2 Precomputation algorithm 2 and Search algorithm 2 are given
for the non-parallelized case. See also Note 3.1.

Note 3.3 It is also possible as suggested in [110] to discard chains that have a
length that is lower than a certain lower bound. However, for practical parame-
ters the consequences for the complexity and success probability are marginal.

Experiments. The time-memory tradeoff using distinguished points has been
implemented and tested on the block cipher RC2 for several key lengths and
tradeoff parameters. RC2 has a block length of 64 bits. As key length a variable
amount of bytes can be chosen. We have performed experiments for key lengths
of 16, 24 and 32 bits. For the table generation, the choice of the g-functions
and start points has been done pseudo-randomly, using a construction, based
on the C rand () function.

We have chosen to do experiments with RC2 because it is for example used
in the S/MIME-protocols of Netscape Communicator and Microsoft’s Internet
Explorer. In particular a 40-bit key length is supported. The block cipher is
used in CBC-mode, but the first encrypted block is always the ASCII-equivalent
of ‘Content-’. It is encrypted using a random IV -vector, which is then sent along
with the message. If the random generator is predictable or can be influenced,
then an attacker might profit by making tables for the corresponding I'V-values.

In the next section we shall start making an analysis of the tradeoff and
compare our results to the experimental values.

3.7 Properties of the Iteration

Our analysis assumes Property 3.2.!

The precomputation creates chains with end points that are distinguished.
In both the precomputation and processing algorithm we iterate from a (start)
point until we reach a distinguished point or until we have reached a maximum
number of iterations (either ¢ in the precomputation or lj,,, in the search).
Hence, to analyze the complexities of precomputation and search we study the
probability that, when iterating from a random point, we reach a distinguished
point in a certain number of steps. As a first step we will use these results to
establish estimates for the expected chain length and the number of chains in a
table, which we will do in the next section.

!In [13] Biryukov, Shamir and Wagner have found a one-way function that does not behave
as a random mapping. They exploit this property to optimize their attack and pose a design
criterion for similar constructions based on that.
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The probability that we reach a distinguished point in < s iterations is given
by

pi(s) = Pr(— DPin < s iterations)
= 1—Pr(+4 DPin < s iterations)
= 1-(1-2"%°. (3.6)

According to [102, Prop.B2] the following holds
ez - (1-2720.5) < (1-279)° < e 2d

for 274 <1, s > 1 and 272¢ . s « 1. Since in practical situation of the time-
memory tradeoff this will always hold, we can make the following approximation,
which we will need further on.

pi(s)m1—e 2l (3.7

Concerning the choice of the parameter ¢t: we do not want to make any
unnecessary computations in the precomputation. Hence ¢ should be chosen
such that the probability that a distinguished point is reached in less than ¢
iterations is large. Hence p; (t) should be large. A reasonable choice is ¢ = 2943,
since with the previous approximation

p1(29T3) ~ 1 - e 2~ 1.

On the other hand ¢ should not be chosen too large since then there is a sig-

nificant probability that we would continue to iterate when the chain is already

cycling. But this is a less important restriction: we can easily upper bound

it with (1 — 27971 . 5l n e=8. L1 < 21 Hence, the expected number of

starting points that will cycle is uppper bounded by m - tz_—,cl Practical values
2k

for m are much less than ;. From this and our experiments it follows that

t = 291+3 ig a well-balanced value.

3.8 Expected Number of Chains and Chain Length

The questions we consider in his section are: consider one table which we make
with variables ¢, m and d.

1. How many chains will be left in a table? We call this amount a.

2. What is the average length of a chain? We call this value 5.

Note that it is easy to see that & < m and § < t. The parameters a and g play
an important role in expressing the complexities and success probability of the
tradeoff method as we will see in Sect. 3.9. In this section we will derive some
relationships between a and 8. Moreover, we will reduce the two questions to a
single one: finding an expression for 8; (defined in Sect. 3.8.1 below) or a or 3
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Table 3.3: Comparison of the experimental values obtained using the block
cipher RC2 and the values computed with (3.12).

k d m o B P a-B | D(a,Po)
(3.12)
16 5 16 14 30 38 426 437
16 5 32 26 29 40 752 802
16 5 64 46 27 41 1250 | 1412
16 5 128 76 25 40 || 1921 | 2336
16 6 16 12 52 68 606 654
16 6 32 19 49 71 948 1097
16 6 64 31 44 69 || 1363 | 1725
16 6 128 48 39 68 || 1839 | 2616
20 6 32 30 62 88 || 1885 | 1833
20 6 64 57 61 90 || 3476 | 3457
20 6 128 | 106 58 89 || 6145 | 6090
20 6 256 || 187 | 55 87 || 10202 | 10018
20 7 32 27 115 | 162 || 3062 | 2820
20 7 64 47 108 | 165 || 5062 | 4922
20 7 128 79 99 164 || 7789 | 7538
20 7 256 || 127 | 88 160 || 11254 | 10672
24 7 128 || 121 | 124 | 183 | 14999 | 14962
24 7 256 || 230 | 121 | 182 || 27797 | 27684
24 7 512 || 423 | 116 | 180 || 49134 | 48790
24 7 1024 || 746 | 109 | 175 || 81368 | 80189
24 8 128 || 106 | 231 | 357 | 24516 | 24317
24 8 256 || 187 | 218 | 350 || 40656 | 40072
24 8 512 || 315 | 199 | 341 || 62732 | 61022
24 8 1024 || 507 | 178 | 328 || 90471 | 85712
24 9 128 79 396 | 664 | 31201 | 30273
24 9 256 || 127 | 353 | 643 || 44860 | 42679
24 9 512 198 | 307 | 618 || 61006 | 56167
24 9 1024 || 301 | 263 | 597 || 78883 | 69751
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would result in expressions for a and 5. We would like to propose this question
as an interesting topic for further research. We give experimental values for a
and S in the fourth and fifth column of Table 3.3.

In most practical cases one can efficiently and inexpensively experimentally
compute a and g for given parameters k, d, m, and ¢. This will usually suffice
to choose the optimal parameters based on the resources and goal of an attacker
for a given application as we will motivate in Sect. 3.10.

3.8.1 First Relationship Between o and f

We consider the table of chains before sorting the triples (Step 3C. in Precom-
putation algorithm 2). It contains the chains that iterate to a distinguished
point in < ¢ iterations. We argued in the previous section that this table con-
tains about m chains, i.e., t is chosen such that this is expected to happen.

We call the average length of these chains fy. Note that § < Gy < t. The
following holds for Sy:

Bo = D _1-Pr(chain in table has length I)
1=
151 -1 4 i 1 » i
= El-{l;[l(l—2 —2—k)—i1;[1(1—2 -5}
t l— l
I DA (R e S
=1
~ Y - {1-27"- 2,:;2)“ —(1-27"- 2,f+2)l}
=1
= AET i), (338)
where
fil@y) = Y (-2t - (1-2))
=1 -
= 1-y(l—a¥+) (1-a)
=1
_ l—y(l—:zr)y—}—(l—;c)l_(1;$)y_1
= 1—y(1_x)y+l_1_M
T T
= -+ (-2 (39)

Table 3.4 compares the values for By, computed according to (3.8), with the
values of the experiments we have done for several parameters. This shows that
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the approximations, made in the derivation were justified. Furthermore, the
average length of a chain (that does not cycle) is expected to be 2¢. Since our
algorithm stops after ¢ iterations, By is slightly smaller than 2¢: this also follows
from (3.8).

Table 3.4: Expected chain length £y before throwing away chains.

| k| d ] Boexperimental | By according to (3.8) |
16 5 31.1 31.0
16 6 57.2 56.8
20 6 63.6 63.3
20 7 123.7 123.8
24 7 127.3 127.4
24 8 253.6 253.3
24 9 498.4 495.3

The next step in constructing the (final) table is throwing away chains for
which there is a longer chain in the table with the same end point. We call the
average length of the thrown away chains ;. In Table 3.3 the experimental
values of B; are summarized. Note that (contrary to fy) the value of £; also
depends on m, not just on k and d. Now it is possible to express the average
length of the chains in a table as

50'm—51'(m—a).

a

8= (3.10)
This is the first relationship between a and . In the next section we shall derive
another one. Hence, with an expression for 8; and these two relationships it is
possible to derive values of a and S, given the parameters k, t and m of the
tradeoft.

3.8.2 Second Relationship Between o and f

The second relationship between a and 8 makes use of (3.2). A table con-
structed according to our method covers afy points before sorting the triples.
We estimate that in accordance with the Hellman method D(a, o) of these
points are different. Furthermore we assume that most of the points covered by
chains that are discarded because of same end points are still covered in the final
table. (After all this was the purpose of throwing them away in the first place.)
The construction implies that no point is covered twice in the final table.

The expected number of points in the final table can be estimated as approx-
imately af under the assumption that the distributions of values of a and
are independent. This independence increases if the values of m and k increase.
Hence,

E(# points covered by a table) ~ af . (3.11)
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The final table covers approximately af points. Using (3.2) this quantity
can now be estimated as

aff ~ D(a, Bo) - (3.12)

This is the second relationship between a and . In Table 3.3 we provide

experimental justification for (3.12). Note that when %ﬁ,ﬁ exceeds the value
1 the approximation is inaccurate. This is in accordance with the conditions
of (3.2).

If an expression for f; is derived then with (3.10) and (3.12) it is possible
to write down explicit expressions for a and 3, depending on m and d (and k
of course). They do not depend on ¢ as long as ¢ is chosen sufficiently large:
t > 2943,

3.9 Complexity and Success Probability

In this section we will derive estimates for the precomputation, memory and
processing complexity and furthermore for the success probability. These are
summarized in Table 2.2.

3.9.1 Memory Complexity

Storage is needed for r tables. Each table contains about « chains. These are in
the form of triples or pairs and other well-known tricks can be done to save on
needed space, such as choosing start points that need less storage. The storage
for the maximal chain length per table If,,, can be neglected. Hence, memory
for ar table entries is needed.

3.9.2 Success Probability

We assume (3.11): a table is expected to contain af points. All points in the
same table are different, but there can be overlap between different tables, i.e., a
point can be covered by several tables. The success probability, the probability
that some key K is at least in one of the tables, is given by

Prosccess = 1-— H Pr(K not in table 7)
i=1
r aIB
~ 1-JJa- o)
i=1
af.,
= 1-(1- 2—k) (3.13)
N loe 5. (3.14)

This is in accordance with our experimental results.
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3.9.3 Precomputation Complexity

In the precomputation for each point iterations are performed either until a
distinguished point is reached or ¢ iterations have been made. If a distinguished
point is reached, then on the average g iterations were computed. If a distin-
guished point is not reached then ¢ iterations were computed. If we define the
expected iterations for one point as 7y then this can be estimated accordingly as

v & (1 —pi(t) + Bopa (t) - (3.15)

Note that v & By for t > 29+3. Tterations are made on rm start points, hence
the precomputation complexity Cprec can be estimated by

Cprec Ty . (316)

3.9.4 Processing Complexity

We only consider the expected amount of iterations in the search, since the
amount of table lookups is < r and thus negligible. In the search we start
with one point. For a table iterations are done on this point either until a
distinguished point is reached or until I, iterations have been performed. For
a choice of ¢ ~ 29*3 it will hold that I%,,, ~ t, hence the expected amount of
iterations per table is about . Not all r tables have to be checked: if the key
is found in a table the algorithm will stop; an unsuccessful search will make
iterations for all r tables. The expected fraction of tables that are checked is
some variable ¢ between 0 and 1, that depends on the success probability. It is
given by

cC = Prsuccess + (]- - Prsuccess)
1 — (1 — ¢1)Prsuccess » (3.17)

where ¢; is the expected fraction of tables that has to be checked before a
success. We assume (3.11). Then the following expression can be derived:

1 I
= - Zl - Pr(key in table [ and not in table s <)
=1
_ 1 : aBy_1 ab
= ;Zl.(1_2_k) ok
=1
_ of ¢ of 1y
= gl -5
=1
apf af
= r .ok 'f2(2_ka'r)a (318)
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where

Y

fo(z,y) = Y 1-(1—2)!
=1
Q-z)¥vH(zy+1)—1+z

= &1 . (3.19)

Hence, the average processing complexity for a successful search would be

Cproc(successful search) = ¢iry
af ap
~ 2_k 'f2(2—k,7") '/307 (320)

where we have used that v ~ Sy for t < 2913, which was mentioned in the
previous section and holds for the range of parameters used in the experiments.
We verified (3.20) experimentally and summarize the results in Table 3.5. This
leaves the following estimate for the processing complexity.

Coroc & cry < 17. (3.21)

3.10 Choosing Optimal Tradeoff Parameters

Hellman concluded in [63] that an optimal choice of parameters for his method
would be to take my, t; and 7, all approximately equal to 2¥/3. This was de-
rived under the assumption of a precomputation complexity equal to exhaustive
key search and the assumption that investment in memory and processing com-
plexity should be about equal. Kusuda and Matsumoto showed in [87] that for
the Hellman method the success probility can be optimized based on the cost
of memory and processing complexity.

In order to implement the tradeoff, the following parameters have to be set:
the order of the distinguished points d, the number of starting points in a table
m, the number of tables r, and the maximal chain length ¢. In Sect. 3.7 we
already motivated to choose t = 2913,

The following items should be taken into account when choosing optimal
parameters.

e The availability or investment in memory.

e The available computing power, for online processing as well as precom-
putation.

e The required or possible succes probability.

We have derived expressions for the memory, precomputation and processing
complexity, as well as for the success probability. All these parameters depend
on the values of a and 8. In practice one can compute a few test tables for
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Table 3.5: Processing complexity: on-line computation required to recover a
key using the Distinguished Point method. Comparison of experimental values
(obtained using RC2) and values computed with (3.20).

k d m Chroc(successful search) | Cproc(successful search)
experimental according to (3.20)
16 5 16 4218 4714
16 5 32 2285 2678
16 5 64 1732 1643
16 5 128 1079 1064
16 6 16 6126 6147
16 6 32 4194 3990
16 6 64 3584 2739
16 6 128 2783 2032
20 6 32 19845 19527
20 6 64 16460 16402
20 6 128 10188 10635
20 6 256 7810 6503
20 7 32 36360 33704
20 7 64 25935 24478
20 7 128 18830 16622
20 7 256 12379 11561
24 7 128 26869 33334
24 7 256 42079 38922
24 7 512 36736 34839
24 7 1024 27054 25123
24 8 128 81592 76396
24 8 256 67482 74306
24 8 512 56264 60842
24 8 1024 44520 45879
24 9 128 176463 152364
24 9 256 148447 141513
24 9 512 132195 121335
24 9 1024 105957 101121
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Figure 3.4: Success probability depending on the number of tables. Solid line:
Hellman-method (my = t, = 28). Other lines: Distinguished Point method
(upper: m = 2°, d = 28 and lower m = d = 28).

several choices of parameters and experimentally evaluate o and . Taking into
account which complexities should be optimized, from these values the optimal
values for the parameters can be derived. The rough choices of parameters to
make the test tables are mostly clear; for example optimization of the success
probability under the assumption of a prexomputation equal to exhaustive key
search and an equal investment in memory and online processing complexity
would suggest values of d e m ~r =~ %k in accordance with Hellman’s results.

3.11 Comparison with Hellman’s Method

In Figure 3.4 we give the success probability, depending on the number of tables
r for k = 22%. The solid line is the theoretical result for Hellman’s method with
parameters my, = t5 = 28 (the optimal settings [63]), the other two lines depict
our algorithm with parameters m = 2° and d = 2% for the upper line and m =
d = 28 for the lower one. The processing and memory complexity is the same
in all three cases. But the precomputation complexity of the implementation
with m = 2° would be two times larger than that of either one of the other two.
We conclude that the optimal success probability of the Hellman method can
be achieved for slightly more precomputation.

In the DP-method for each table the list of end points has to be checked for
membership in the table at most once. Taking into consideration false alarms,
in the Hellman method this number has an expected value of ¢;,. Less memory
accesses are for example advantageous in a distributed key search over a LAN
or over the Internet or for search machines using dedicated hardware.
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Distributed key search. Assume that the precomputation is feasible, for
example with a distributed key search over the Internet or a LAN or with the
temporarily borrowed dedicated search machine of a friendly intelligence agency,
and that the tables are stored somewhere safely. A possible way to speed up
the actual attack is a distributed key search over the Internet or a LAN, where
the tables are searched through in parallel. Hence, one central server distributes
the tables over many clients. We examine two different methods for this.

In the first method the central server sends whole tables and corresponding
g-functions (and of course the known ciphertext(s)). Each client performs one
of the previously described search algorithms with his part of the tables.

This has the following disadvantages.

e In practice the central server has to distribute large amounts of data. This
takes time.

e The tables that have to be sent contain sensitive information that should
not fall in the wrong hands, and hence need to be sent encrypted,? espe-
cially when sent over the Internet. The needed encryption and decryption
would again slow down the search considerably.

As alternative for this method there is a second one which only can be
done with the DP-method and which does not have the disadvantages described
above. In this method the central server distributes the tables by sending only
the g-functions with corresponding /.. Now each client iterates f; and there
are the following possibilities.

e A DP is encountered after j iterations, then the client sends j, ¢ and f! (K)
to the central server, which checks whether the DP is an end point in the
corresponding table and, if so, checks whether the target key is in the
corresponding chain.

e If no DP is produced within I¢ __ iterations the n the target key is not in

table i: the table does not need to be searched.

The second method has as advantage that no table needs to be sent at all.
If we assume that 2¢ ~ m ~ 2*/3 the workload that the central server has to
do, caused by checking the received DP’s, can be loosely upper bounded by

1
r - Pr(DP in table) - E(# iterations to find predecessor) < 7 - % . 5ﬂ
2¢.m -t
d
< 2t
~ 2¢.4.

Hence, in practical cases this workload can be neglected. Thus we have identi-
fied a situation in which the DP-method should be preferred over the Hellman
method.

2In this case the encryption can be done provably secure. The security goal is to prevent

an attacker to gain information on how to mount an attack on the target cipher. The solution
to that is to encrypt the table that are to be sent with the target cipher.
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Hardware. A similar situation exists for dedicated hardware. A key search
machine that performs a time memory tradeoff search consists of three compo-
nents:

e Memory for storing the tables. This is typically ROM.
e The encryption chips that perform the iterations and RAM memory.
e A controller that connects the two other units.

For a key search the controller loads the tables from ROM and stores them in
the RAM. Each chip then proceeds by searching the tables in parallel. For the
Hellman search the amount of memory accesses to the RAM would be about
tp, for each table. In the case of the distinguished points method this would be
decreased to at most one access per table.

3.12 Conclusions

Hellman’s time-memory tradeoff is a brute force attack that requires lower pro-
cessing complexity than exhaustive key search and has lower memory require-
ments than table precomputation. It can be used to mount attacks on one-way
functions, cryptographic hash functions, stream ciphers and block ciphers.

The contribution of this chapter is the description of a new variation on
Hellman’s tradeoff. Its main advantage is a significant decrease of required
memory accesses. This is advantageous in many situations: distributed key
search as well as for the construction of key search machines using dedicated
hardware.

We have analyzed this method and given expressions for its memory, precom-
putation and processing complexity and for its success probability, depending
on the parameters of the target cipher and parameters of the search method,
which is another contribution of this chapter. These results make it practically
possible to choose the optimal parameters for a key search, based on available
resources and specific requirements.

Of theoretical interest remains the open problem to deduce expressions for
the parameters a and 8. Our results have reduced the solution to this problem
to finding only one parameter: either a, 8 or 8;. We would like to encourage
further research on this topic.



Chapter 4

Cryptanalysis of reduced
round versions of RC5 and
RC6

4.1 Introduction

In this chapter we evaluate the resistance of the block cipher RC5 against linear
cryptanalysis. Standard techniques from linear cryptanalysis to analyze this
cipher are not applicable due to certain properties of the structure of the cipher.
This is illustrated by the publication of a linear attack by Kaliski and Yin in [72];
after a few years Selcuk discovered that this attack did not work due to the
special properties of the cipher [125]. The probabilities of linear approximations
for the individual components of the cipher are highly dependent on each other
and for the key dependent components they are highly key dependent as well.
Hence, none of the Assumptions 2.4, 2.5 or 2.6 holds. Under these constraints
we perform an analysis to find a good linear approximation. In order to do this
we introduce the concept of a non-uniformity function and modify Vaudenay’s
statistical attack model slightly. Furthermore, to mount an attack we construct
a method to perform a last round trick in order to exploit this approximation.
This results in a known plaintext attack that can break RC5-32 (block size 64)
with 10 rounds and RC5-64 (block size 128) with 15 rounds. These attacks
break RC5 in the sense of Definition 2.6 and 2.7. Besides the analysis we
have implemented the attack and the estimates and experimental results are in
agreement. At this moment these are the best known plaintext attacks on RC5,
which have negligible storage requirements and do not make any assumption on
the plaintext distribution. These results were published in [23] by the author,
Preneel and Vandewalle. We also analyze and discuss the consequences of our
attack for former AES candidate RC6 and compare our results to more recently
published related work.

61



62 CHAPTER 4. CRYPTANALYSIS OF RC5 AND RC6

The remainder of this chapter is organized as follows. In Sect. 4.2 we give an
overview of the history of RC5 and the results concerning security analysis. We
show the merits and limitations of linear cryptanalysis techniques when applied
to RC5 in Sect. 4.3. In Sect. 4.4 we describe our attack on RC5 and we give
experimental results on RC5-32 and RC5-64. We discuss the consequences for
RC6 in Sect. 4.5, compare our results to an attack based on the recent results
on RC6 in Sect. 4.6 and conclude in Sect. 4.7.

4.2 History and Results for RC5

The iterated block cipher RC5 was introduced by Rivest in [116, 117]. It
has been patented by RSA in [118, 119] and was published by the IETF in
RFC 2040 [5]. It was also used as basis for the former AES candidate RC6. It
has a variable number of rounds denoted with r and a key size of b bytes. The
design is word-oriented for word sizes w = 32,64 and the block size is 2w. The
choice of parameters is usually denoted by RC5-w, RC5-w/r, or RC5-w/r/b.
Currently RC5-32/16/16 is recommended to give sufficient resistance against
linear and differential attacks [73]. However, when it was introduced in [117]
the “nominal choices” for parameters were suggested to be RC5-32/12/16 and
RC5-64/16/16. Hence, this is an increase of 4 rounds in 3 years.

RC5 has been analyzed intensively. Main reasons for this are its transparent
structure and the reputation of its inventor (the R of RSA). RC5 has a simple
structure such that its cryptographic strength would be rapidly determined.
A new feature was its use of data-dependent rotations, which should increase
the resistance against linear and differential analysis. The heavy use of data
dependent rotations in ciphers is actually one of the items that has been patented
in [118, 119]. We give an overview of the currently obtained results. The results
refer to RC5 with block size 32, unless explicitly stated otherwise.

A first evaluation was published by Kaliski and Yin in [72], where its strength
is analyzed against linear and differential cryptanalysis. They presented a dif-
ferential attack that would require 252 plaintext pairs for 12 rounds and a linear
attack that would require 257 plaintexts for 6 rounds. They conjectured that
their linear analysis is optimal, hence LC would not improve on exhaustive key
search for more than 6 rounds. In [81] Knudsen and Meier improved the differ-
ential attack by a factor up to 512. They also presented an attack on the RC5
with 64-bit words that required 2'2% plaintexts for 24 rounds.

Biryukov and Kushilevitz developed some advanced techniques to mount a
differential attack on RC5 in [11]. They presented an attack on 12 rounds that
requires 2** chosen plaintexts. Although the attack makes use of very sophis-
ticated techniques, according to its inventors the required amount of chosen
plaintexts for the attack on 12 rounds might be reduced to 238 [11]. Further-
more, they estimate that an attack on RC5-32/12/16 is feasible and will require
less than 293 chosen plaintexts. The good results in differential cryptanalysis
were further exploited in [12] by Biryukov and Kushilevitz to mount known ci-
phertext attacks on reduced round versions of RC5, that they have practically
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implemented. They assumed that the encrypted plaintext was English text,
coded in ASCII. This assumption caused the exploitable differences to appear
more often than for random plaintexts.

Linear analysis has had no impressive results until [125], where Selguk im-
plemented the linear attack of Kaliski and Yin and found that it did not work
as expected. This was caused by the fact that the probability of the linear re-
lation that it should exploit as well as the success of the method to exploit it
were estimated under assumptions that did not hold. Selck analyzes this effect
in [125]. This was the inspiration of our work on RC5, that we describe in this
chapter.

Currently the best published chosen plaintext attack is by Biryukov and
Kushilevitz [11]. 'We summarize the complexities for different round versions
of RC5-32 in the second column of Table 4.1. As this is a differential attack,
it yields a known plaintext attack for a larger amount of known plaintexts
according to Theorem 2.3. We give the estimated required amount of known
plaintexts in the third column of Table 4.1. The known plaintext attack however
needs a storage capacity for all the required plaintexts, i.e., the attack can not
be mounted in a way that the attacker obtains and analyzes the plaintexts one
by one. We give the estimated required storage capacity of the known plaintext-
version in the fourth column. For example, to mount this attack for 4 rounds
one would need to store 23¢ plaintexts with corresponding ciphertexts, which
is about 1 GByte. The attack described in this chapter requires a negligible
storage capacity. We give the required amount of plaintexts in the fifth column
of Table 4.1.

Table 4.1: Comparison of the complexities of the attack on RC5-32 of Biryukov
and Kushilevitz and the attack as presented in this chapter. The table contains
the binary logarithm (lg) of the number of known plaintexts, chosen plaintexts
and memory requirements.

Biryukov/Kushilevitz Our attack

Rounds | Chosen | Known | Memory | Known | Memory

texts texts | (# texts) | texts | (# texts)

1 7 36 36 28 | negligible

6 16 40.5 40.5 40 negligible

8 28 46.5 46.5 52 negligible

10 36 50.5 50.5 64 negligible
12 44 54.5 54.5 - -

Our attack is a linear attack, whose high success rate is based on a large
linear hull-effect [105]. To our knowledge it is the first time that this effect has
significant consequences in the evaluation of the resistance of a cipher against
linear attacks. Furthermore we use techniques closely related to multiple linear
approximations to set up a practical attack.
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4.3 RC5 and Linear Cryptanalysis

RC5 is defined as follows. First 2r+2 round keys S; € {0,1}*,i=0,...,2r+1,
are derived from the user key!. If (Lo, Ro) € {0,1}* x {0,1}* is the plaintext,
then the ciphertext (Laq41, Ror41) is computed iteratively with:

Li = Lo+ Sy (4.1)

Ri = Ro+5: (4.2)

U, = L;®R; (4.3)

Vi = UK R (4.4)

Riyw = Vi+Sin (4.5)

Livwn = R;, (4.6)

for i = 1,...,2r. Here + denotes addition modulo 2* and z < y rotation of

w-bit word z to the left over y mod w places. The computation of (L;;2, Rit2)
from (L;, R;) with i odd is considered as one round of RC5. In Fig. 4.1 a
graphical representation of one round is given.

4.3.1 Linear Approximations

We shall consider the following linear approximations for xor, data-dependent
rotation and addition. We only look at approximations that consider one bit of
each term of the equation. The binary vector that has a 1 on position ¢ and is
0 everywhere else, will be denoted with e;. Let A = B® C. Then:

ei-A=¢€;-Bde;-C, 5:2_1, (47)
fori € {0,...,w—1}. Let D = E < F. Then:
ei-D=¢;-E®er-Fd®e,-(i—j), 6=27"8""1, (4.8)

fori,j €{0,...,w—1}and k € {0,...,lgw—1}. Here lg denotes the logarithm
to the base 2. (Note that we have abused the “-”-notation slightly to denote
the k-th bit in the binary representation of ¢ — j.) If one is only interested in
the bias of (4.8), one can leave out the term ey - (i — j) or even ey - F, see for
example [73]. We use (4.7) and (4.8) to pass the xor and rotation in RC5 as
follows. Let j,k € {0,... ,lgw — 1}. Then

ej-U,- = ej-LiGBej-Ri, §=271 (49)
er'Vi = ej-Uide; - Ride;-(k—j), §=27"8""1. (4.10)

Chaining these two yields:

ex-Vi=e;-Lidej-(k—j), §=271ew"1, (4.11)

1As the key schedule of RC5 has no relevance for our analysis we refer to [117] for a
description. However for our experiments we have used the key schedule.
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Figure 4.1: One round of RC5.

Finally, let G = H + S, where S is fixed. Then:

e0-G = e-Hdey-S, §=271 (4.12)
;-G = e -H®e;-S, 6§=2"1—-27"9[i], (4.13)
fori € {1,...,w—1}. Here S[z] = S mod 2**!, hence the z LSBs of S. Hence,

depending on the key, the bias of (4.13) can vary between 0 and 1. On the
average it is 1.

4.3.2 Key Dependency and Piling-Up

Because of the fact that (4.12) has a bigger bias than (4.13), ‘traditionally’
approximations on the LSB have been considered to be most useful for a linear
attack (see [72, 73]). Using Approximations (4.7), (4.8) and (4.12) one can
derive the following iterative approximation for one round of RC5:

eo-Li®eo-Siy1 =eo-Ligp (i>1), §=2""8v"1, (4.14)
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This approximation can be chained to [ rounds as follows.
-1
eo-L; ® @60 Sit1t2; = €0 Liyor (i>1), §=7. (4.15)
=0

According to the Piling Up Lemma (2.1) this approximation would have devi-
ation § = 2-12(-lgw—1)l — 9—tlgw—1 jf the chained approximations would be
independent. This is however not the case.

To illustrate this consider (4.15) for | = 2. The deviation of this approx-
imation depends on the lgw least significant bits of S;12. This can be seen
as follows. The probability that (4.14), i.e., the approximation over the first
round, holds depends on the value of R; mod w. If R; modw = 0 it always
holds, otherwise it holds with probability 1. Hence, the deviation of (4.14)
is computed under the assumption that every value of R; mod w is equally
likely. If R; mod w = 0 then the lgw least significant bits of L;y; are known.
Now consider the approximation for each possible value of R; i separately. If
Riyamodw € {0,...,lgw—1,w—lgw+1,... ,w — 1} then, depending on
the value of S; 2 mod w, part of the lgw least significant bits of R;;2 can be
computed. It turns out that the values of R; ;3 are not equally likely. Hence,
the Piling Up Lemma cannot be applied.

To illustrate this effect we have computed the bias of the two round approx-
imation for RC5-32 for every value of S;;o mod w. These results are given in
Table 4.2. Tt can be seen that the bias can vary significantly between ~ 2710
and ~ 276 On the other hand the average value is & > o0 |0,| ~ 271, Since
0, # 0 for all z, the average amount of expected plaintexts needed based on
Table 4.2 is given by -5 31 5.2 ~ 222, Both are in accordance with the Piling
Up Lemma.

Note further that for two values of S;y2 mod w the deviation is negative.
For those values this means that if one would mount a basic linear attack (Al-
gorithm 1 in [96]) on four rounds using (4.15) to find Sy @ S2 & S4 based on the
Piling Up Lemma, most likely one would find Sy & Sz & Sy & 1, given enough
texts.

We can conclude that although the deviation can vary significantly, the Piling
Up Lemma gives a good estimate for the average bias for RC5. We will show
that this estimate can be used to compute the expected average success rate of
a linear attack that does not use the sign of the deviation, but only its absolute
value: the bias.

4.3.3 Key Dependency and Linear Hulls

The concept (approximate) linear hull was introduced by Nyberg [105]. We will
use the term linear hull in the way it was used in [27]. A linear hull is the set of
all chains of linear equations over (a part of) the cipher that produce the same
linear equation. The existence of this effect for RC5 was first noticed in [27, 121]
where also some preliminary work in determining the linear hull effects for RC6
(and some simplified versions) can be found.
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Table 4.2: The deviation §, of Approximation (4.15) with [ = 2 for RC5-32,
depending on z = S;;2 mod w.

x = Siy2 mod w 1036, lg |6:| || # = Sit2 mod w 1034, lg |6, |
00 0.930786 | -10.07 10 0.228882 | -12.09
01 0.991821 | - 9.98 11 0.656128 | -10.57
02 0.473022 | -11.05 12 0.015259 | -16
03 0.564575 | -10.79 13 -0.015259 | -16
04 0.595093 | -10.71 14 0.137329 | -12.83
05 0.686646 | -10.51 15 0.534058 | -10.87
06 0.473022 | -11.05 16 0.503540 | -10.96
07 0.503540 | -10.96 17 0.717163 | -10.45
08 0.595093 | -10.71 18 0.625610 | -10.64
09 0.564575 | -10.79 19 0.778198 | -10.33
Oa 0.289917 | -11.75 la 0.747681 | -10.39
0b 0.381470 | -11.36 1b 0.839233 | -10.22
Oc 0.411987 | -11.25 1c 0.381470 | -11.36
0d 0.289917 | -11.75 1d 0.381470 | -11.36
Oe 0.106812 | -13.19 le 0.076294 | -13.68
of 0.228882 | -12.09 1f -0.045776 | -14.42

The following linear hull for an approximation of two rounds (i till 7 + 3) of
RC5 can be noticed. Let j,I € {0,...,w — 1}. Using (4.7), (4.8), (4.12) and
(4.13) for j the following lgw approximations for two rounds can be derived.?

e; - L;® e; - (k’ - ]) D e - Si+1 =é - Li_;,_g, 0= 6j,k s (4.16)

for k =0,...,lgw— 1. Likewise for the next two rounds and [ also lg w approx-
imations can be derived:

er-Lito@ey - (l — k) @e-Siyg=¢€r-Liys, 0= 6k,l . (4.17)

for k=0,...,lgw — 1. Hence, one can chain lgw pairs of (4.16) and (4.17) to
obtain the two round approximation

ej-Li®er-Siy1@e-Siyz®ej-(k—j)@er-(I—k)=e-Liya, §=06p1-
(4.18)

Neglecting the key-dependency of chaining and using the Piling Up Lemma one

2Note that in Equation (4.16) and others §; ; is not the Kronecker delta, but a variable §
with indices j and k.
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gets for this bias

2-2lgw—1 k=0,0=0

P 2-2lgw=l(] —2=k+1g, [k —1]) kE#0,0=0
DhETY 9-2lgw—1(q _9-H+1g, o[l —1]) E=0,1#0
272Bw-l(1 _o=ktlg, [k —1])(1 — 2711831 - 1]) k#0,1#0.

(4.19)

We note two things about (4.18) and its deviation given in (4.19). Firstly it
is clear from (4.19) that the deviation is key dependent, i.e., dependent on the
lgw—1 LSBs of S;+1 and S;13. But we will show that because of the linear hull
effect, this key dependency is negligible. Secondly, for each choice of the triple
J.k,l the term Cjr; = er-Siy1 Der-Siys ®ej- (k—j) Der- (I — k) is constant,
either 0 or 1. This constant actually determines the sign of the deviation of the
following approximation, which can be derived from (4.18) by leaving out C; 1 ;.

€; - Li =€ Li+4, 0= Sj’l . (4.20)

For the deviation the following holds:

Sj,l = Z 0 k1 — Z 0 k1, (4.21)

kEV; kZVi1
where V]'J = {k € {0, s lgw — 1}|Cj,k,l = 0}.
One can extend approximation (4.20) to hold for r subsequent rounds. In
this way one gets the following approximation for r rounds.

ej-Li=e - Lijor, 6 =081, (4.22)

where i,j € {0,... ,w — 1}. The deviation can be computed/approximated by
considering the parts of the different chains, for the k-th round in the chain
given by

€. - Litar = er,, - Lijoky2 (4.23)
where k € {0,...,r—1} and
o =j ifk=0
1 €fo,...,Jlgw—1} ifk#0
I €{0,...,1gw—1} ifk#r—1
k :l lfk:T—l
and

jkzlk—l forkG{l,...,T—l}-
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It follows that Equation (4.22) is a linear hull that consists of (Igw)"~! different
chains, namely for all of the choices of ji,l;. When we take the average bias of
1 for the approximation of addition on non-LSBs, we get for the bias of (4.22):

o _foer) ifl=0
dl = { le(r) ifl#0, (4.24)
where ¢(r) can be estimated as
r—1 r—1
C("') oy (Z ( b )(lgw _ 1)k2(—1gw—1)r+1-_1_k)
k=0
r—1 r—1
-7 (2(lgw1)T > ( k )(lgw - 1)k2’”1k>
k=0
(gt
r—1
= <M> ’ (4.25)
2w 2w

where v is a factor that accounts for the effect of different chains that cancel
each others contribution. The increment factor ¢*(r) of the bias is expressed as

c(r+1)=ct(r) -c(r), forr=2,... (4.26)

Hence, if a linear attack can be mounted on RC5 with r rounds using x known
plaintexts, then this attack will have the same success probability if adapted to
RC5 with (r+1) rounds if (¢t (r)) =2z known plaintexts are available. From (4.25)
and (4.26) follows ¢t = 2t Now, for RC5-32 we have ¢*(r) ~ 2734 and
for RC5-64 we have ct(r) =~ 27%2. In Sect. 4.4.5 we will show that the at-
tacks that we have implemented for RC5-32 and RC5-64 approximately behave
according to the previously derived approximate expectations. Hence, we can
neglect the key dependency in (4.22): the bias given according to (4.24) is a
sufficient practical estimate.

An alternative treatment of the linear hull effect for the case of RC6 can be
found in [27, 121].

4.4 The Attack on RC5

This section presents an attack based on our findings on the properties of the
internal structure of RC5 in the previous section.

4.4.1 Outline

As explained in Sect. 2.5.3 to mount a linear attack an attacker has two main
tasks: finding a good propagation property, i.e., a linear approximation and ex-
ploiting it. In the previous section we have made a study of the properties of the
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linear approximations for RC5 and analyzed their probabilities. Based on this
analysis we choose the one that can be exploited. However, the exploitation also
can not be done straightforwardly with standard techniques from linear crypt-
analysis. The linear approximations we use do not involve any key material,
hence to exploit them an outer round trick is required. Standard outer round
tricks as published in literature are not directly applicable for use with this
approximation. Hence, we introduce a new concept: a non-uniformity function.

4.4.2 The Linear Approximations

We have derived and implemented a linear attack that uses approximation (4.22).
Since this approximation does not involve any key bits, a basic linear attack is
not possible. In particular for an r-round attack we will use (4.22) with ¢ =0
and k = r. The first addition, adding Sy, will be passed with an approximation
on the LSB, since this has bias % Therefore we take 7 = 0 in (4.22). We also
choose I = 0 in (4.22) because then also the last key-addition in the whole ap-
proximation will be passed with bias % It might be possible to further improve
the attack by (also) using approximations with other values for j and I, but we
have not found a method to do this.

To attack r rounds of RC5 we use the fact that each linear path that is
part of the hull given by (4.22) is a chain of 7 1-round approximations of the
form (4.23). We will split the approximation into two parts. The first contains
the approximation for the first key addition and the first round. This gives
us the following lgw approximations. Each is the first part of a set of linear
approximations that is contained in the linear hull of (4.22).

eo-Lo=ey-Lyfork=0,...,Igw—1. (4.27)

The remainder of the whole approximation can be specified by the following
lg w approximations, each beginning with a different bit of Ls:

er L3 =e€g-Lapys for k=0,...,lgw—1. (4.28)

When for a certain plaintext encryption the intermediate value Ry mod w = k,
hence an element of {0,1,...,lgw — 1}, then (4.27) behaves in the deviation
direction. Hence, if also (4.28) behaves in the deviation direction then the whole
approximation behaves in that direction. On the other hand, if Ry mod w ¢
{0,1,...,lgw — 1} then the probability that the whole approximation behaves
in the direction of the deviation is much lower.

In the attack we want to check for every text if one of the approximations
that correspond to (4.28) was followed. Since we have no information about any
intermediate values we do not have a criterion that always holds. In the next
section we will show how we nevertheless can exploit these approximations to
deduce key material.

4.4.3 A Non-Uniformity Function

We will introduce the concept of a non-uniformity function as follows.
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Definition 4.1 A non-uniformity rule hj§ is a function that takes as input a
set of samples S (as defined in Vaudenay’s statistical attack model) and gives as
output a Tule to increase or decrease the values of an array v = (v(0),... ,v(m—
1)) of m counters:

hy : 8 —Z™.

We call the values of v non-uniformity values and v a non-uniformity array or
non-uniformity function. From the array v o guess for target key material can
be derived using a statistical measurement function.

This extends Vaudenay’s model of statistical analysis in a way that an attack
can be more efficiently described. The analysis phase as given in Sect. 2.5.3 can
now be described as.

Analysis phase.

1. Initialize the counter array v = (v(0),... ,v(m — 1)) to 0™.

2. For all i adjust the counter array v according to the non-uniformity function.
3. For each candidate k of the [ candidates for the key material: Compute the
‘mark’ My = X(v(0),...,v(m —1)).

The ‘difference’ with Vaudenay’s description is summarized by the following
note.

Note 4.1 The statistical attack using a non-uniformity function is a special
case of Vaudenay’s statistical attack in the sense that in the attack algorithm
the first time that the computations depend on the guessed value of the key
material is the moment that the marks are computed.

RC5. We will derive a statistical measurement function that is expected to
give higher values when one of the approximations was followed. Hence this func-
tion will have higher values for encryptions where Ry mod w € {0,1,... ,lgw —
1} than for other Ry values. Because Ry mod w = (Ry — S1) mod w and Ry is
known we can guess S; mod w from this.

The non-uniformity function v computes non-uniformity values for a given
set of corresponding plaintext/ciphertext pairs. This set is divided into w sub-
sets, each set contains plaintexts with the same Ry mod w-value. For each set
a non-uniformity value can be computed.

We look at the last round of the encryption. Suppose that one approximation
of the linear hull corresponding to (4.28) is followed up to the last round. Say
that in this particular case ey, - La,._1 was biased for some k € {0,... ,lgw —1}.
Then following the approximation to the end would mean that Rg,_1 mod w =
(w—k) mod w with a higher probability than other values. As seen in Sect. 4.3.2
depending on the subkeys also the other possible values of Ra,_1 mod w might
not be uniformly distributed. But in any case certain values of Rg,._1 mod w
will have a higher probability when (4.28) behaves in the deviation direction
than when it does not behave in that way.
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If we knew the value of Ry, mod w it would be possible to compute lgw
bits of S2,41 or two possible values for those bits from the ciphertext with:

Sor41 = Rorg1 — (R2r—1 ® Layy1) < Lopy1, (4.29)

since the values of Rs,y1 and Ls,41 are known from the ciphertext. We will
use S(n) to denote the lgw-bit string, given by the bits (n + lgw — 1) mod
w,...,(n+ 1) mod w,n of S. The value of La,y; mod w determines for which
lgw bits of Sa,41 information can be computed, namely S(Lo,4+1 mod w) . If
Lsry1 mod w = 0 then the lg w LSBs can be computed. When La,1 mod w # 0
we can compute two values for S(La,,1 mod w). The carry bit of the addition
in (4.29) determines which one is the correct one.

In the attack we do not know the value of R5,_; mod w or even which value
would be the most probable. Instead of trying to compute lgw bits of Sa.11
we make a similar computation for a value which we call S’. Tt is computed by
taking Ry, 1 mod w = 0 in (4.29), i.e.,

S" = Ryry1 — (Lary1 € Lopg1) - (4.30)

Due to the non-uniform distribution of Rs,._; mod w it is expected that the
distribution of S'(-)-values will be more non-uniform for encryptions where the
approximation was followed than for others.

Hence, in the attack we use a counter array A(i, j, k) for 4,5,k =0,... ,w—1,
where each ¢ corresponds to a possible value of Ry mod w, each j to a possible
value of La,y1; mod w and each k to a possible value of S'(La,+1 mod w). For
each text we check if the approximation holds. If it holds, we change the counter
array as follows. If Ly, 1 mod w = 0, we increase A(Ry mod w, La,+1 mod w,v)
by 2, where v is the suggested S’{Lor4+1 mod w)-value. If Lo,41 mod w # 0, we
increase A(Rp mod w, La,41 mod w,vg) and A(Ry mod w, Lar+1 mod w,v;) by
1, where vy and v; are the suggested values. If the approximation does not hold,
we decrease the specific array entries accordingly.

Each (Ro mod w, La,y; mod w)-combination gives a distribution of S’(-)-
values. From Sect. 4.4.2 we know that the distributions corresponding to the
values Ry mod w € {0,...,lgw — 1} will be the most non-uniform. To measure
the non-uniformity we check for all w bits of our S’ based on the S'(-)-values how
many times 0 is suggested and how many times 1 and take the difference of these
amounts. For each Ry mod w we take the sum over all possible L1 mod w of
the absolute values of these differences. In this way the non-uniformity function
v:{0,...,w—1} = N is defined:

w—1 lgw-—1

V(TO) = Z Z | Z A(TO;l2r+1 + w,'U) - Z A(Ir07l27’+1 + .’L',U)l )

lop31=0 z=0 wv:iez-v=0 vieg v=1

(4.31)

where all indices of A are taken modw. We expect that the sum of lgw non-
uniformity values will be maximal for the values corresponding to texts with
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R; mod w € {0,...,lgw—1}. Hence, we define ¥ to give the highest probability
to the corresponding value. The final step of the algorithm guesses the value of
S1 mod w accordingly. For our experiments we choose ¥ to only rank the value
first that gives the highest probability.

The observant reader will have noticed that according to the above descrip-
tion it is not necessary to have counters for the S'(-)-values. Instead of this one
could use counters corresponding to the bits of S’ and change these accordingly.
The description above is used to emphasize that with the S’(-)-distribution also
other non-uniformity measurements could be used. For example, one could look
at all possible values for two subsequent bits of S’. Also it is probably possible to
derive information about the actual value of Sa,.1 from the S’(-)-distribution.
This seems an open topic for further research.

Description according to Vaudenay’s modified model. The attack falls
in the category of statistical attacks, hence it can be described in the form of
the model as described in Sect. 2.5.3. However, to give a formal description
using this exact model would complicate the overview of the attack. Hence, we
describe the attack formally using the modified model with the non-uniformity
function as defined at the beginning of this section. Hence, instead of hs we
have a non-uniformity rule h%. For the attack, we have the following functions
and sets.

e P=C={0,1}?>" and K = {0,1}'?8.

L contains all possible values of S; mod w, hence £ = {0,... ,w —1}.

e S contains the tuples of all possible values of Ry, 1 mod w, Ly, Ry mod
w, and eg - Lo, hence S = {0,1}18%¥ x {0,1}* x {0,1}'8* x {0, 1}.

e Q does not have to be defined since we work with a non-uniformity func-
tion.

e hy is defined as the part of the RC5 key schedule that derives the lgw
least significant bits from the user key.

e r =1 and hs is defined by the function that hashes a plaintext, ciphertext
pair a tuple of the values Ra,1 mod w, La.11, Ry mod w, and eg - L.

e hf is the rule to create the non-uniformity function, given by (4.31).

e The measurement function ¥ is defined as

lgw—1

(@)= Y (=g +i) modw)].
i=0



74 CHAPTER 4. CRYPTANALYSIS OF RC5 AND RC6

4.4.4 The Algorithm

The pseudo-code of the algorithm corresponding to the attack as described in
the previous section is as follows.

1. Acquire N known plaintext/ciphertext-pairs (Pp, Co), ... , (PnN-1,CN-1).
2. Initialize a counter array>® A(i,j,k) :==0fori,j,k=0,... ,w — 1.

3. For each plaintext/ciphertext-pair do:
If Lo,41 mod w = 0 then

(a) Compute S’{0)-guess v.
(b) If €9 - LO =€ - L2r+l then A(Ro, L2T+1,U)—|— =2.
If [ LO = €9 - L2r+l d1 then A(Ro, L2T+1,U)— = 2.
If Lyry1 mod w # 0 then

(a) Compute S’{Lor+1 mod w)-guesses vy and v;.
If [ LO EN L2T+1 then A(RO, L27-+1, U0)+
(b) and A(RO, L27‘+1, U1)+
If eg - Lo 75 €g - L2T+1 then A(RQ, L2T+1, Uo)—
and  A(Rq, Lary1,v1)—

—

4. Compute w non-uniformity values v(4) according to (4.31), where i corre-
sponds with a value of Ry mod w.

5. Find the value z € {0,... ,w — 1} for which E;g:%’_l |v((z + i) mod w)]| is
maximal.

6. Guess S; mod w = w — .

4.4.5 The Results

We have implemented the attack on RC5-32 and RC5-64. The results are given
in Table 4.3 and Table 4.4. As can be seen in the tables, we have done tests for up
to 5 rounds of RC5-32 and up to 4 rounds of RC5-64. For each number of rounds
tests were performed for several amounts of plaintexts. To give an indication of
the practical aspects of the experiments: with our RC5-implementation carrying
out the attack on the 5-round version for 10 keys with 232 plaintexts took
about 21 hours on a 333 MHz Pentium. To our knowledge these are the first
experimentally executed known plaintext attacks on reduced versions of RC5,
which require a negligible storage.

As stated at the end of Sect. 4.3.3, we would expect that an attack on r
rounds of RC5 with z known plaintexts should have the same success probability
as an attack on 7 + 1 rounds with (¢*) 2z texts. For RC5-32 it holds that

3For clarity in the following description of the algorithm we have left out mod w when
referring to indices of A.
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Table 4.3: Experimental results of the attack on RC5-32.

Table 4.4: Experimental results of the attack on RC5-64.

Rounds Known Success
plaintexts rate
2 213 28/100
214 46/100
215 89/100
216 92/100
3 217 7/100
218 15/100
219 28/100
220 49/100
22! 69/100
222 81/100
4 224 7/100
225 26/100
226 44/100
227 77/100
228 82/100
5 232 4/10
233 7/10
234 9/10

| Rounds | Known plaintexts | Success rate |

2 217 39/100
o18 82/100
919 96/100

3 2% 28750
226 40/50
227 47/50

1 551 9/10

75
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(ct)™2 =~ 268 for RC5-64 (ct)~2 ~ 284, Tt can be seen from the tables that
the results are better than expected, i.e., the factor to attack an extra round is
~ 2% for RC5-32 and ~ 2% for RC5-64. We conjecture that the reason for this is
that the value of R;> mod w depends significantly on the value of R; mod w.
Supporting experimental results are given in the next section, where we discuss
the consequences for RC6.

Based on the experimental results and the theoretical estimation of the bias
of the linear approximation we can estimate the complexity of the attack on more
than 4 or 5 rounds (cf. Table 4.5). It follows that an attack can be mounted on
RC5-32 with 10 rounds that has a success probability of 45% if 22 plaintexts
are available. An attack on RC5-64 with 15 rounds has a success probability of
90% if 2123 plaintexts are available.

Table 4.5: Expected number of required plaintexts for a known plaintext attack
on r(> 2) rounds of RC5-32 or RC5-64.

Success probability: 45% 90%
RC5-32 22+67 24+6r
RC5-64 glsr go+er

4.5 Consequences for RC6

The block cipher RC6 [120] has been submitted to NIST as an AES-candidate.
Its design was based on RC5 and the security evaluation of RC5. To meet the
block size requirement of 128 bits and to keep a 32-bit processor oriented design
for this block size, RC6 was designed as two RC5-32’s (with some changes) in
parallel that interact.* Hence, cryptanalysis of RC5 can mostly be adapted for
analysis of RC6.

However, the RC5-structure used in RC6 differs from the original version,
which can be seen from the following description of RC6, and its visualisation
given by Figure 4.2 (taken from [27]). The word size is w. First 2r + 4 w-bit
round keys are derived: Sp...S2,y3. If (Ao, Bo, Co, Do) € {0,1}* x {0,1}* x
{0,1}* x {0,1}* is the plaintext, then the ciphertext (4,42, Bry2, Criy2, Dyy2)

4 Actually, the design of RC6 also is word oriented and the block size is 4w, where w is the
word size. We only discuss the 128-block size version, as it is the main object for the AES
standardization process.
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is computed iteratively with:

A1 = Ao (4.32)
B: = Bi+5 (4.33)
c = Co (4.34)
D, = Di+5 (4.35)
i = (Bi2B;+1)) <lgw (4.36)

w, = (D;(2D;+1)) K 1gw (4.37)
Aiy1 = B; (4.38)
Bivi = ((Ci®wu;) < t;) + Saitr (4.39)
Cit1i = C; (4.40)
Dit1 = ((Aidt;) < ui)+ Sa (4.41)
Aryr = Arj1+ Sor42 (4.42)
Biis = By (4.43)
Cryz = Crpr+ Sarss (4.44)
D.yo = Dy, (4.45)

fori=1,...,2r.

One of the most important differences is the following. The amount of
rotation in RC5-32 was determined by taking the 5 LSBs of a 32-bit word. In
RC6, the 5 bits that determine the amount of rotation depend on all 32 bits of
a 32-bit word.

In the first place these changes to RC5 were made to preclude the successful
differential attacks on RC5 [11, 120]. These attacks make use of the fact that
only five LSBs determine the rotations. However, these changes also provide
increased resistance to the attack method described in this paper.

To illustrate this we look at a transition version between RC5 and RC6. In
the definition of RC5, replace (4.3) and (4.4) with

T, = (R, (2Ri + 1)) <5 (4.46)
Vi = ULT;. (4.48)

For our theoretical analysis concerning the linear hull effect, this change makes
little difference. One can still use the same linear approximations. However,
the first round trick and last round trick we have used now become more com-
plicated. To compute Ty mod 32, one has to guess all® bits of S; and the con-
struction of a non-uniformity function is not obvious.

We have done tests on the above described intermediate version with the
last and first round replaced with a normal RC5-round. Then the first and last

5The online complexity can be decreased by precomputing Tj mod 32 for all possible values
of S1 and storing these in a table. This would require 232 — 227 entries, since one could omit
the values for one specific rotation amount.
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Figure 4.2: The cipher RC6. Here f(z) = z(2z + 1) and the symbol S[i] should
be read as S;.

round trick are straightforward. We have implemented the attack for 3 and 4
rounds of the cipher and results indicate that the increase in the number of
necessary plaintexts for the same success probability was more in accordance
with the theoretical results for RC5. Hence, the application of the extra function
to determine the rotation amounts causes these values to be more independent.

Using similar ideas as for the described attack on RC5 several attacks on RC6
were described by Knudsen and Meier in [82], and by Gilbert, Handschuh, Joux
and Vaudenay in [6, 58]. The attacks were however described in the context
of generic statistical attacks based on statistical observations in reduced round
versions.

In [82] the property is exploited that if for a number of texts the least signif-
icant bits of Ay and Cy are fixed to zero, then the values of the concatenation
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of As; and Cy; are not uniformly distributed if 4 is not too large. This has been
measured experimentally with x? tests up to 6 rounds in [82]. This resulted in
a method to distinguish RC6 with up to 15 rounds from a random permutation
and a key recovery attack with a lower complexity than required for exhaustive
key search for up to 15 rounds. Both are chosen plaintext attacks.

In [58] it has been heuristically argued and experimentally tested that there
exist probabilistic relations between input and output variables that only depend
on fixed values of the key. For this they constructed statistical tests that verify
this behavior. They have exploited this in a method that can distinguish RC6
with up to 13 rounds from a random permutation and a key recovery attack for
up to 14 rounds. Both are known plaintext attacks.

In comparison with our attack the key recovery attacks are of interest. Both
attacks use generic statistical tests to measure the non-randomness of their
propagation property. However, we believe that a test that exploits the inner
structure of RC6 might improve the attacks. Such a test might involve a non-
uniformity function. We give some motivation in the next section.

4.6 Comparison to a Statistical Attack on RC5

In both papers [58, 82] it is mentioned that their techniques might be used
to attack RC5, although no experimental evidence is given to illustrate the
complexity. The approach of [82] has been applied to RC5-32 in [130] by Shi-
moyama, Takeuchi and Hayakawa with interesting results. In our context, their
key recovery attack according to their Algorithm 5.1 is of interest. (They also
describe a chosen ciphertext attack that can distinguish RC5-32 from a random
permutation for up to 10 rounds, a chosen plaintext attack that requires 256
texts to break RC5-32 for up to 8.5 rounds, and some analysis of simplified
versions of RC6.) This algorithm can be described as follows:

Algorithm 5.1 (Modified Knudsen, Meier) [130]

1. Acquire an amount of corresponding plaintext ciphertext pairs
(Lo, Ro), (L, R;) with Ly mod 32 = 0.

2. Initialize 2'° counters to 0: A[0,...,2% —1][0,...,25 — 1], corresponding to
all possible values of pairs of Sp mod 32 and L, mod 32.

3. For each text:
a. Compute Sy mod 32 = 32 — (Rp mod 32).
b. Increase the counter corresponding to Sy, (L, mod 32) by 1.

4. For each value of Sy mod 32 compute the x? value over the set of values
{A[So mod 32][z]|z € {0,...,2° — 1}}.

5. Guess So mod 32 has the value for which the x? value is maximal.

The results of this algorithm are summarized in Table 4.6. The third column
gives the success probability that the algorithm outputs the correct value of
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So mod 32. The fourth column gives the probability that the output of the
algorithm and the value of Sy mod 32 only differ at most 1 bit.

Table 4.6: Experimental results of the statistical attack on RC5-32 where a 2
test is used as described in [130]. The third column shows the success probability
to find five target key bits, the fourth column the success probability to find the
value of five target key bits of which one is incorrect.

Rounds Chosen Success prob. | Almost success
plaintexts | x? att. [130] | x2 att. [130]
3 o4 5% 15 %
217 15 % 30 %
218 16 % 40 %
219 18 % 52 %
220 19 % 58 %
221 20 % 58 %
222 23 % 62 %
4 220 2% 15 %
224 18 % 46 %
225 22 % 50 %
226 22 % 55 %
227 23 % 60 %
228 25 % 65 %

When comparing the results of Table 4.3 on p. 75 with those of Table 4.6,
one can see the following.

e To achieve the same success probability for an extra round, both attacks
require an increase in the amount of plaintexts by the same factor of about
26 (extra experimental motivation for this can be found in [130]). Hence,
it seems that they exploit the same propagation property.

e The success probability of the x2 algorithm is larger at first, but after a
certain amount of plaintexts is exceeded, the success probability of our
attack is the largest of the two.

Since our attack exploits a linear approximation, the first item supports the
existence of a relation between the statistical effect as exploited in [130] and
the propagation of the linear equation. The second item is an illustration of
the advantages of having a theoretical explanation for non-random statistical
behavior of a cipher.

It remains an open question if the statistical behavior as exploited for attacks
on RC6 as described in [58, 82] can be explained by a more structural analysis
such as linear cryptanalysis. If so, this might be exploitable by using more
advanced outer round techniques. We want to encourage further research in
this direction.
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4.7 Conclusions

In this chapter we have evaluated the resistance of RC5 against linear attacks.
Previous evaluation of Kaliski and Yin [72] had proven to be incorrect by Selguk
due to hidden assumptions under which they made their analysis [125]. We have
taken into account the applicability of the Piling Up Lemma and the conse-
quences of linear hull effects, both in combination with possible key dependency.
This resulted in estimates for the complexity to mount a linear attack. This is
the first contribution of this chapter.

A second and main contribution is the construction of an attack that exploits
the linear hull effect that we described. A third contribution is the introduction
of the concept of a non-uniformity function. This concept fits in the concept of
Vaudenay’s statistical attack model and extends the tools available to a crypt-
analyst. We have implemented the attack on reduced versions of RC5-32 and
RC5-64 and compared the results with the theoretical estimates. The results
were slightly better.

In this way we estimate that our attack can theoretically break RC5-32 with
10 rounds and RC5-64 with 15 rounds. In comparison with previous attacks on
RC5, our attack needs negligible storage capacity, i.e., it could be practically
implemented.

We also evaluated the resistance of RC6 to this attack. The attack method
has no serious consequences for the security of RC6. Apparently the precautions
that the designers made to make RC6 more resistant against differential attacks,
also made RC6 more resistant against more sophisticated linear attack methods.

We described more recently introduced theoretical attacks on reduced ver-
sions of RC6 [58, 82]. The attack on RC6 of Knudsen and Meier [82] has been
described and implemented on RC5 by Shimoyama et al. [130]. The statistical
properties exploited by this attack are similar to the linear approximation ex-
ploited in our attack. Experimental evidence support the advantage of using a
non-uniformity function instead of a x? test in this case, where it resulted in
higher success probabilities.

This leads to the interesting open question if the key recovery attack of
Knudsen and Meyer can be improved by a more structural analysis.
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Chapter 5

Key Schedule Analysis

5.1 Introduction

An important aspect of block cipher design is the key schedule. The key schedule
is a function that derives round keys from the user key. The requirements
are similar to those f