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Abstract 

Objective - Measurement of the cortical tracking of continuous speech from electroencephalography (EEG) recordings using 

a forward model is an important tool in auditory neuroscience. Usually the stimulus is represented by its temporal envelope. 

Recently, the phonetic representation of speech was successfully introduced in English. We aim to show that the EEG prediction 

from phoneme-related speech features is possible in Dutch. The method requires a manual channel selection based on visual 

inspection or prior knowledge to obtain a summary measure of cortical tracking. We evaluate a method to (1) remove non-

stimulus-related activity from the EEG signals to be predicted, and (2) automatically select the channels of interest. Approach 

– Eighteen participants listened to a Flemish story, while their EEG was recorded. Subject-specific and grand-average temporal 

response functions were determined between the EEG activity in different frequency bands and several stimulus features: the 

envelope, spectrogram, phonemes, phonetic features or a combination. The temporal response functions were used to predict 

EEG from the stimulus, and the predicted was compared with the recorded EEG, yielding a measure of cortical tracking of 

stimulus features. A spatial filter was calculated based on the generalized eigenvalue decomposition (GEVD), and the effect 

on EEG prediction accuracy was determined. Main results – A model including both low- and high-level speech 

representations was able to better predict the brain responses to the speech than a model only including low-level features. The 

inclusion of a GEVD-based spatial filter in the model increased the prediction accuracy of cortical responses to each speech 

feature at both single-subject (270% improvement) and group-level (310%). Significance – We showed that the inclusion of 

acoustical and phonetic speech information and the addition of a data-driven spatial filter allow improved modelling of the 

relationship between the speech and its brain responses and offer an automatic channel selection.  

Keywords: cortical speech tracking, EEG, auditory processing, speech representations, generalized eigenvalue decomposition 

 

1. Introduction 

Understanding the brain processing of speech could impact 

our knowledge of hearing disorders, such as sensorineural 

hearing loss, and allows the improvement of current hearing 

aids and cochlear implants. In particular, brain-based 

decoding of speech features could open doors to objective 

evaluation of a patient’s speech understanding. However, 

while time-locked event-related brain responses to an isolated 

acoustic event can be extracted by averaging over several 

presentations, the response of the brain to continuous natural 

speech is complex because of the overlapping responses of 

consecutive auditory tokens, the integration of multiple 

prosodic features dynamically changing over the continuous 

speech and, higher-order processes such as semantic analysis. 

Low-frequency temporal fluctuations of the speech stimulus, 

i.e. the amplitude of the speech envelope, contain crucial 

information such as the speech rate (Ríos-López, Molnar, 
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Lizarazu, & Lallier, 2017), and contribute to the perception of 

speech (Abrams, Nicol, Zecker, & Kraus, 2008; Giraud & 

Poeppel, 2012; Rosen, 1992; Shannon, Zeng, Kamath, 

Wygonski, & Ekelid, 1995). Therefore, the envelope has been 

widely used as an input of a linear model (see (Crosse, Di 

Liberto, Bednar, & Lalor, 2016) for more details) to predict 

the electroencephalographic (EEG) responses to speech. This 

linear model is called a forward model (Di Liberto & Lalor, 

2016; Di Liberto, O’Sullivan, & Lalor, 2015). The inverse, a 

model (or decoder) to reconstruct the speech from the 

associated EEG recording, is called a backward model (N. 

Ding & Simon, 2012, 2013; O’Sullivan et al., 2015; 

Vanthornhout, Decruy, Wouters, Simon, & Francart, 2018). 

Increasingly complex attributes of speech are processed 

hierarchically in the brain, from simple acoustic deviants in 

the earlier areas, to low-level acoustic information and 

discrete features of speech (e.g., phonemes, syllables, words) 

in later areas (Chang et al., 2010; Okada et al., 2010; Peelle, 

Johnsrude, & Davis, 2010). Interestingly, Di Liberto et al. 

(2015, 2017) showed that the relationship between continuous 

English speech and its brain response could be best described 

using a model based on both the low-level acoustic (i.e., the 

spectrogram of the speech) and high-level discrete (i.e., 

phonetic tokens) representations (Di Liberto & Lalor, 2017; 

Di Liberto et al., 2015; Lesenfants, Vanthornhout, 

Verschueren, Decruy, & Francart, 2019).  

 

Both the backward and the forward model have their 

limitations. A backward model is a data-driven approach for 

optimally combining time-shifted EEG channels: a range of 

delays (classically between 0 and 250 ms) is first applied to 

each channel, then all the delayed channels are weighted in 

order to linearly reconstruct the speech envelope. Inversely, a 

forward model combines the time-shifted speech envelope in 

order to predict the EEG responses to the speech stimulus. 

While the forward model can predict responses for individual 

EEG channels, allowing to study the topology of speech 

activation across the scalp, it requires a manual channel 

selection based on visual inspection or prior knowledge to 

obtain a summary measure of cortical tracking. On the other 

hand, the backward model will automatically weigh each 

channel’s relevance using the input data with the loss of spatial 

information, but with higher resulting reconstruction 

accuracies than the forward model. Moreover, the backward 

model requires continuous speech features, excluding its 

applicability to discrete speech features such as words or 

phonemes.  

In the current study, we apply a data-driven method to remove 

non-stimulus-related activity from the EEG signals and 

automatically select the channels of interest, which is 

described in detail by Das, Vanthornhout, Francart, & 

Bertrand (2019). This method makes use of the Generalized 

Eigenvalue Decomposition GEVD (Hassani, Bertrand, & 

Moonen, 2016), which has been used to remove artefacts from 

the EEG (Somers, Francart, & Bertrand, 2018), and cancel 

EEG noise (Hajipour Sardouie, Shamsollahi, Albera, & 

Merlet, 2015; Serizel, Moonen, Van Dijk, & Wouters, 2014). 

It is closely related to the CCA-based method proposed by 

Dmochowski, Ki, DeGuzman, Sajda, & Parra (2018). 

Decomposing the stimulus-response relationship into multiple 

independent dimensions and spatially filtering by weighting 

channels’ relevance has allowed to efficiently capture the 

neural representations of speech stimuli in audio and audio-

visual paradigms (de Cheveigné & Parra, 2014; Dmochowski, 

Ki, DeGuzman, Sajda, & Parra, 2018).  

We here aim to (1) show that the temporal response function 

estimation and EEG prediction based on phonemes can be 

replicated in Dutch, (2) improve EEG prediction to several 

speech representations by removing non-stimulus-related 

components from the EEG signals, and (3) show that the 

channel selection problem of the forward model can be solved 

in a data-driven way using GEVD. 

2. Methods 

2.1 Participants 

Eighteen Flemish-speaking volunteers (7 men; age 24 ± 2 

years; two were left-handed) participated in this study. Each 

participant had normal hearing, verified by pure tone 

audiometry (thresholds lower than 20 dB HL for 125 Hz to 

8000 Hz using a MADSEN Orbiter 922–2 audiometer). The 

study was approved by the Medical Ethics Committee UZ KU 

Leuven/Research (KU Leuven, Belgium) with reference 

S59040 and all participants provided informed consent.  

2.2 Experiment 

Each participant sat in an electromagnetically shielded and 

soundproofed room and listened to the children's story 

“Milan”, written and narrated in Flemish by Stijn Vranken. 

“Milan” is a Dutch children's story, similar to “Alice in 

Wonderland” for the Anglo-Saxon community. However, the 

Milan story is generally unknown. Therefore, we hypothesize 

that the participant had maximal attention during its listening 

and that the familiarity of the participant with this story should 

not affect the cortical tracking to the speech features. The 

stimulus was 14 minutes long and was presented binaurally at 

60 dBA. It was presented  through Etymotic ER-3A insert 

phones (Etymotic Research, Inc., IL, USA) which were 

electromagnetically shielded using CFL2 boxes from 

Perancea Ltd. (London, UK). The acoustic system was 

calibrated using a 2-cm3 coupler of the artificial ear (Brüel & 

Kjær, type 4192, Nærum, Denmark). The experimenter sat 

outside the room and presented the stimuli using the APEX 3 
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(version 3.1) software platform developed at ExpORL (Dept. 

Neurosciences, KU Leuven, Belgium) [(Francart, van 

Wieringen, & Wouters, 2008) and an RME Multiface II sound 

card (RME, Haimhausen, Germany) connected to a laptop 

running Windows.  

2.3 Recordings 

EEG signals were recorded from 64 Ag/AgCl ring electrodes 

at a sampling frequency of 8192 Hz using a Biosemi 

ActiveTwo system (Amsterdam, Netherlands). The electrodes 

were placed over the scalp according to international 10-20 

standards. 

2.4 Data analysis 

All analyses were done with custom-made Matlab scripts and 

the mTRF Toolbox (Crosse et al., 2016; Gonçalves, Whelan, 

Foxe, & Lalor, 2014). 

 

Speech features – We extracted five different representations 

of the speech stimulus, selected according to (Di Liberto et al., 

2015):  

1. The broadband amplitude envelope (Env) was 

extracted as the absolute value of the (complex) 

Hilbert transform of the speech signal.  

2. The spectrogram representation (Sgram) was 

obtained by first filtering the speech stimulus into 16 

logarithmically-spaced speech frequency bands 

using zero phase Butterworth filters with 80 dB 

attenuation at 10 % outside the passband between 

250 Hz and 8 kHz, according to Greenwood's 

equation (Greenwood, 1961), assuming linear 

spacing in the cochlea. We then calculated the energy 

in each frequency band using a Hilbert transform (see 

Env).  

3. The time-aligned sequence of phonemes (Ph) was 

extracted using the speech alignment component of 

the reading tutor (Duchateau et al., 2009), which 

allows for reading miscues (skipped, repeated, 

misread words), automatically segmenting each 

word into phonemes from the Dutch International 

Phonetic Alphabet (IPA) and performing forced 

alignment. We then converted this into a binary 

matrix mask representing the starting and ending 

time-points (i.e., a ‘1’ from the start until the end of 

each presentation) for each 37 phonemes present in 

both the story and the matrix sentences.  

4. The time-aligned binary sequence of phonetic 

features (Fea) was assembled using the following 

groups of phonemes: short vowels, long vowels, 

fricative consonants, nasal consonants and plosive 

consonants. 

5. The combination of time-aligned sequence of 

phonetic features and the spectrogram as proposed by 

Di Liberto et al. (2015) (Di Liberto et al., 2015), 

hereinafter named FS.  

 

EEG signal processing – EEG artifacts were removed using a 

multi-channel Wiener filter algorithm (Somers et al., 2018). 

We then re-referenced each EEG signal to a common-average 

reference before downsampling from 8192 to 1024 Hz to 

decrease processing time. EEG signals were bandpass filtered 

between 0.5-4 Hz (delta), 4-8 Hz (theta), 8-15 Hz (alpha), 15-

30 Hz (beta), or 30-45 Hz (low gamma; for this frequency, we 

then computed the envelope of the filtered signals) using zero 

phase Butterworth filters with 80 dB attenuation at 10 % 

outside the passband. Stimulus representations and EEG 

signals were then downsampled to 128 Hz. 

 

Temporal response function (TRF) estimation – Stimulus 

representation and EEG signals were then downsampled to 

128 Hz. Each 14-min dataset was split into 7 consecutive non-

overlapping 2-min segments (segment 1: from second 0 to 

second 120; segment 2: from second 120 to second 240; etc). 

A 7-fold leave-one-out cross-validation was used to separate 

the segments in a training set and a testing set. A quantitative 

mapping (i.e., a model) between each speech representation 

and the recorded EEG (training set) was computed based on a 

least-squares linear regression with ridge regression and a 

temporal integration window of 0-400 ms. As suggested by 

Crosse et al. (2016), we selected the value of the ridge 

regression regularization parameter by cross-validation. This 

mapping was used to predict EEG signals using each stimulus 

representation from the test set. The cortical speech tracking 

was computed as the correlation (Spearman’s rank-order 

correlation) between the recorded and predicted EEG signals 

at the different electrode locations. We calculated the 

averaged correlation over an area by first computing each 

electrode’s correlation and then averaging these correlations 

over the area.  

 

A model was trained using either single-subject specific 

training data (ss or ssGEVDss; see panel A and C, Fig. 1) or a 

group-level training dataset (gen, genGEVDss or 

genGEVDgen; see panel B, D and E, Fig. 1). In the second 

case, the grand-average model is computed by averaging the 

covariance matrix across subjects. Averaging data across 

subjects (“grand-average”) has the benefit that more data is 

available, and subject-specific quirks are avoided, resulting in 

a more stable model. However, it has the downside that 

individual differences in brain anatomy and physiology are not 

taken into account. The different models specified below, are 
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designed to leverage the strengths of both grand average and 

subject-specific models.  

 

Spatial filtering – In the xGEVDy models (x = dataset used 

for training the initial TRF, y = GEVD-corrected dataset used 

for updating the TRF; x and y can either be a subject-specific, 

ss, or grand-averaged, gen, dataset), we applied a spatial filter 

U on the training and testing data allowing to remove non-

stimulus-related activity from the EEG signals to be predicted 

by optimizing the mapping between the recorded and the 

predicted EEG signals from the training dataset. In other word, 

we here make the assumption that an EEG recording 𝑒(𝑡) =

𝑒𝑠(𝑡) + 𝑒𝑟(𝑡) can be decomposed in EEG activity in response 

to the speech es(t) and EEG activity unrelated to the speech 

er(t), such that 𝑈[𝑒(𝑡)] = 𝑈[𝑒𝑠(𝑡) + 𝑒𝑟(𝑡)] = 𝑒𝑠(𝑡). The 

optimization process in this method relies on the GEVD, 

which find linear combinations that maximise the SNR (based 

on predicted clean EEG and actual EEG). Considering an N-

channel EEG recording 𝑒(𝑡) ∈ 𝑅𝑁 and a N-channel EEG 

prediction 𝑝(𝑡) ∈ 𝑅𝑁 based on a speech feature. The 

underlying assumption of this method is that a group of 

eigenvectors V can be extracted such that 𝑅𝐸 ∗ 𝑉 = 𝑅𝑃 ∗ 𝑉 ∗

𝐷, with RE, the covariance matrix of the EEG recording = 

𝐸{𝑒𝑒𝑇}; RP, the covariance matrix of the EEG prediction 

𝐸{𝑝𝑝𝑇} and D the eigen-values . Computing this joint 

diagonalization of the covariance matrices allows to extract M 

components (with M ≤ N) associated with the M highest 

eigen-values such that the N-M speech-unrelated components 

can be filtered out the EEG recordings. The mapping U is then 

equal to the M first components of D, the remaining ones 

being set to zero.  

 

A scheme of each model estimation is shown in Fig. 1. In ss 

model, TRFs were estimated using subject specific training 

data, then used to predict the EEG responses to the test speech 

data (see Fig. 1, panel A). In the gen model, the training 

datasets of all the participants were concatenated and used to 

extract the grand-average TRF of this group. Each averaged 

model is then convolved with data from the corresponding 

individual test set to predict the cortical responses to speech 

(see Fig. 1, panel B). In the ssGEVDss model, we first 

computed the subject-specific TRF as explained in the ss 

model. We then computed the mapping between the recorded 

training EEG and the predicted training EEG based on the 

speech stimuli of the training dataset. We then recomputed 

new TRFs based the newly mapped EEG training data (i.e., by 

applying the M-filtered-out-component eigenvectors of the 

GEVD on the recorded EEG training dataset related to the M-

highest eigenvalues) and applied this corrected TRF to the 

mapped test set (see Fig. 1, panel C). The genGEVDgen relied 

on the same principle of the ssGEVDss except that we used 

the concatenated group training dataset rather than the subject-

specific dataset in order to extract both the TRF and the spatial 

GEVD-mapping (see Fig. 1, panel D). Note that in the GEVD-

based models, we can either back-project the M-selected 

components in the electrode space or compute correlations 

between components extracted from the recorded and 

predicted test set. In the following, to facilitate the 

visualization of areas related to speech activation, we will 

back-project the selected components in the electrode space. 

# Insert figure 1 here 

Statistical analysis - A permutation test (Nichols & Holmes, 

2002; Noirhomme et al., 2014) was used to evaluate the 

significance level for each model (1000 repetitions, p < .01). 

The significance of change between conditions was assessed 

with a non-parametric Wilcoxon signed-rank test (alpha = 

0.01), with Bonferroni correction for multiple comparisons.  

3. Results 

In Fig 2, grand-average TRFs are shown for the different 

stimulus features, for a selection of fronto-temporal electrodes 

(F, Fc, Ft, C and T electrodes), using signal processing scheme 

A from Fig 1. The grand-average TRF of the model based on 

the envelope showed a positive activation at around 50 ms, 

150 ms and 250 ms, and a negative activation at around 100ms 

(see Fig. 2, upper left panel). For the model based on the 

spectrogram (see Fig. 2, lower left panel), we observed a 

positive activation at early latencies and between 100 ms and 

200 ms, as well as a negative activation at around 100 ms for 

frequencies below 600Hz. Frequencies above 600 Hz showed 

a positive activation at around 100 ms and a negative 

activation at around 50 ms. The phoneme-based model 

showed a positive activation for all the phonemes at 175ms 

(see Fig. 2, upper right panel) and a negative activation at 

around 125 ms. A majority of the phonemes (i.e., mainly the 

consonants) also showed an earlier positive activation at 

around 75 ms. All the different phonetic features showed a 

positive activation at 175 ms.  Interestingly, while plosive 

(resp. the nasal and fricative) consonants showed a strong 

(resp. weak) activation at around 75 ms, the long vowels 

showed no earlier activation. Short vowels presented an 

activation at around 50 ms (see Fig. 2, lower right panel).   

# Insert figure 2 here 

Fig. 3 is a replication of Di Liberto et al (2015) showing the 

impact of the frequency bands on the tracking of the speech 

features. Note that we decided to include more electrodes (see 

Fig. 3, lower right panel) in order to take into account 

topographical differences observed between the different 

frequency bands (see below; Fig. 4). The averaged EEG 

prediction in the frontotemporal regions decreased with the 

EEG frequency band frequency using a generic model. Using 

the delta or theta EEG band, the models based on FS showed 

higher EEG predictions than the others (Wilcoxon Signed-
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Rank Test, WSRT, p = 0.025 for Ph; p < 0.01 for Sgram and 

Env), except the Fea model (WSRT; for the delta band, p = 

0.14, for the theta band, p = 0.73). The Fea-based model 

showed higher EEG predictions than the models based on 

either Env or Sgram (WSRT, using the delta band: p = 0.02 

for Sgram, p < 0.01 for Env; using the theta band, p < 0.01 for 

both). The Ph-based model outperformed the Env-based 

model using the delta EEG band (WSRT, p = 0.04) and both 

the Env- and Sgram-models using the theta EEG band 

(WSRT, p < 0.01). The spectrogram-based model 

outperformed the envelope-based model using the theta EEG 

band (WSRT, p = 0.01) but not the delta EEG band. Using the 

alpha band, the FS model outperformed both the Env model 

(WSRT, p = 0.01) and the Sgram model (WSRT, p < 0.01). 

No difference could be observed between the different speech 

representations using the beta or the low-gamma EEG 

frequency bands, with correlations below the level of 

significance (at p = 0.01, significance is at around 0.007).  

# Insert figure 3 here 

A visualization of the EEG prediction over the scalp using the 

different approaches is shown in Fig. 4. For this figure, we 

used the five first components for the GEVD-based methods. 

Later in this section, we will show that five components do not 

yield the highest EEG prediction values (which are obtained 

using only a few components) but 5 components correspond 

to a plateau in the EEG predictions without a loss in the spatial 

resolution (see Fig. 5). Note the increase of the EEG prediction 

accuracy with the use of GEVD-based methods, and the 

highlight of the areas of interest (i.e., the spots in the fronto-

temporal areas as well as parieto-occipital areas). 

Interestingly, for the delta EEG band, we observed a temporal 

and occipital dominance while for the theta EEG band, we 

observed higher EEG prediction in the centralized frontal area. 

Focusing on the different ss and gen models, we observed a 

left delta dominance in the temporo-frontal area for the Env 

and Sgram model, while the other models presented a wider 

area of higher correlation connecting the left and right 

temporal areas. The ss-theta and gen-theta models showed a 

shared area of activation between the different speech 

representations; the correlation value of this area increased 

from Env to FS representations. Looking at the GEVD-based 

delta models, the left/right balance seems less pronounced and 

both sides show higher correlations than ss and gen models. 

The theta GEVD models also showed a centralized dominance 

better highlighted by the genGEVDgen models.  

# Insert figure 4 here 

For both the genGEVDgen and the ssGEVDss models, the 

highest EEG prediction could be reached using only one 

GEVD component for either a model based on the delta or 

theta EEG activity (see Fig. 5, first and second rows). This 

suggests that stimulus-related activity could be captured by 

picking the EEG responses associated with the first GEVD 

component. Predictability decreases with the number of 

components until reaching a plateau at around five 

components. The hybrid genGEVDss model showed a 

maximum correlation using two (resp. four) components using 

EEG delta (resp. theta) activity (see Fig. 5, third row).  

# Insert figure 5 here 

We investigated the addition of a GEVD approach in the 

different models using one (ssGEVDss and genGEVDgen), 

two (genGEVDss with the delta band) or four (genGEVDss 

with the delta band) components (see Fig. 6). In the following, 

we will mention the difference in the EEG prediction (i.e., the 

difference in the averaged Spearman correlations over the 

brain area shown in Fig. 3) between either the ss model and 

the ssGEVDss model, the ss model and the hybrid 

genGEVDss model, and finally the gen model and the 

genGEVDgen model. 

Using the EEG delta band, the addition of GEVD results in an 

increase in correlation (WSRT, p < 0.01 for all comparisons) 

for the individual dataset (i.e., ss vs. ssGEVDss) of 0.045 

(Env/FS models), 0.050 (Ph), 0.040 (Sgram) and 0.065 (Fea). 

The maximum Spearman correlation (0.100 ± 0.050) is 

reached using the ssGEVDss-Fea model.  Using the EEG theta 

band, the addition of a GEVD approach allows increasing the 

correlation for the Env model by 0.025 (WSRT, p = 0.03). No 

differences could be observed using higher EEG frequencies 

in single-subject models (increases in correlation were below 

0.005; WSRT, p > 0.05). Interestingly, the hybrid genGEVDss 

model improved the prediction of EEG responses to none of 

the speech features (WSRT, p > 0.05). 

Using a genGEVDgen model provides significant increases 

for each model using either the delta, theta or alpha EEG bands 

(delta : an increase of 0.040 for Env/Sgram, 0.060 for FS, 

0.065 for Ph and 0.070 for Fea; theta : an increase of 0.025 for 

Env/Sgram, 0.055 for FS, 0.050 for Ph and 0.040 for Fea; 

alpha: an increase of 0.010 for Env/Sgram, 0.020 for FS/Ph 

and 0.015 for Fea). No differences were observed using beta 

and low-gamma frequency bands (WSRT, p > 0.05).  

# Insert figure 6 here 

Different stimulus representations may be coded in different 

regions of the brain, and therefore require different spatial 

filters for optimal reconstruction. We analyzed the influence 

of the speech feature on the spatial filters obtained from the 

GEVD, to investigate whether different features require 

different filters. For the delta EEG frequency band and a 

model based on a grand-average decoder (see Fig.7, first row, 

first column), we observed that the cortical tracking with a 

model based on the Env, the Sgram or the FS speech feature 

is increased with the use of GEVD-based spatial filtering 

irrespective of the feature used to build the spatial filter 
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(WSRT, p > 0.05 for each of the Bonferroni-corrected 

comparisons of the correlation with the maximum correlation 

reached with the model, see rows in Fig. 7). Inversely, generic 

models based on Ph or Fea features reached highest cortical 

tracking using spatial filters built on Ph or Fea features only 

(WSRT, p < 0.01). For the theta EEG band, higher EEG 

predictions are reached using spatial filters based on Ph, Fea 

or FS (see Fig.7, first row, second column). For models based 

on subject-specific data (see Fig.7, second row), increased 

EEG predictions are reached using a spatial filter based on FS 

speech feature (i.e., each model reached a maximum 

correlation using a FS-based spatial filter; the delta Fea model 

reached a maximum correlation using a Fea-based spatial filter 

but no significant difference could be observed using a FS-

based spatial filter, WSRT, p = 0.07 uncorrected for multiple 

comparisons).  

 

# Insert figure 7 here 

4. Discussion 

The present study illustrates the potential of improving the 

modeling (TRF) of the brain responses to a speech stimulus 

by optimally combining EEG channels using a GEVD 

approach for predicting the brain responses to different speech 

representations. We showed that the addition of this linear 

spatial filter allows improving both EEG prediction using 

subject-specific and generic approaches. In addition, using 

GEVD avoids manual selection of channels, a limitation of 

standard forward models.  

Consistent with Di Liberto et al (2015), we showed an 

improvement of the grand-average EEG prediction (gen) 

using a FS model as compared to the Env, Sgram and Ph 

speech representations. Each hierarchical stage of the brain 

encodes a different structure of the speech: the primary stages 

encodes the acoustical information (e.g., the 

envelope/spectrogram of the speech) while the later areas 

encode the discrete tokens of the speech (e.g., phoneme, word, 

etc). As discussed in Di Liberto et al (2015), the improved 

EEG predictions highlight the benefit of using both low- and 

higher-level speech representations to model the brain 

responses-speech interaction. Interestingly, we also showed 

that higher representations capture increased information, as 

suggested by the increases of the cortical tracking to either Ph 

and Fea, as compared to Env and Sgram. However, we did not 

find any difference between Fea and FS-based models. Also, 

while Di Liberto et al (2015) showed an increase of the 

Pearson’s correlation from the delta to the theta EEG band (Di 

Liberto et al., 2015), we here observed a decrease of the EEG 

prediction with increasing EEG frequencies. This could be 

explained by a difference in the size of the dataset used for 

training and testing the decoder, or a difference in prosodic 

features between English and Dutch languages (Moskvina, 

2013). Indeed, while Di Liberto recorded EEG in response to 

an English speech during a story lasting more than one hour, 

our Dutch-narrated story lasted only around 14 min. They later 

showed that an averaged difference between the Pearson's 

correlations for the FS and S models (in their paper, referred 

to as FS-S neural index) of around 0.020 could be observed 

using only 10-min and a grand-average model (Di Liberto & 

Lalor, 2017) while we here observed a difference of 0.010 

between the two models using 12-min of data and a grand-

average model. Interestingly, this FS-S neural index increases 

to 0.04 using the genGEVDgen approach. Note that our 

electrode selection differs from Di Liberto et al (2015), who 

only used the six electrodes with the highest averaged 

correlation over the group in each temporal area. Based on the 

topographical differences observed between the different 

frequency bands, we here decided to include   central, frontal, 

as well as temporal electrodes.  

Interestingly, the temporal responses of high-level speech 

showed delayed activations (P1 at around 75 ms, N1 at around 

125 ms and P2 at 175ms) as compared to low-level speech 

representations (P1 at around 50 ms, N1 at around 90 ms and 

P2 at 140ms). This is in agreement with literature suggesting 

higher-order brain areas processing  phonemes,  compared to 

the acoustic envelope. Note that the long vowels showed a 

decreased P1 and absent N1 with a strong P2, while other 

phonetic features showed both a P1 and N1 activations. This 

could be explained by the difficulty in precisely detecting the 

onset to a long vowel, resulting in smeared TRFs as compared 

to other phonetic groups.  

The comparison of the topographic distribution of the cortical 

tracking of the speech over the scalp showed a temporo-

occipital dominance in the delta EEG band. We also observed 

a central-frontal dominance of the EEG prediction to each 

speech representation in the theta band. Ding & Simon (2014) 

(Nai Ding & Simon, 2014) suggested that the theta band 

encodes syllabic information (Drullman, Festen, & Plomp, 

1994b, 1994a; Elliott & Theunissen, 2009) present in the 

envelope while the delta EEG band is sensitive to the envelope 

prosody, in particular the sentence and word rhythms 

(Goswami & Leong, 2013). We here hypothesized that the 

frontal area, associated with top-down control, is more 

involved in the encoding of syllabic features critical for speech 

recognition, explaining this frontal-theta dominance, while 

early brain areas processed the encoding of prosodic 

information of speech, linked with the delta cortical tracking 

of the speech.   

According to our results, the GEVD-based spatial filter 

improves higher-level models more than low-level models. 

We can make several hypotheses: (1) the spatial filter and the 

brain-stimulus model positively reinforce each other, i.e., a 

good model allows to optimally predict the EEG responses to 

speech, allowing a good spatial filter estimate, resulting in an 

even better mapping between the actual and the predicted EEG 

after spatial filtering; (2) higher-level speech features activate 
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a broader network than the low-level ones, thus a robust 

mapping can more easily be extracted from each individual.  

The application of a GEVD-based spatial filter on either 

subject-specific or group data improved the EEG prediction 

accuracy for all the different speech features, using only one 

component. No difference could be observed between a fully 

generic or full subject-specific approach (i.e., genGEVDgen 

and ssGEVDss). However, the hybrid genGEVDss showed 

significantly lower cortical tracking using one brain 

component (see Fig. 6). It is important to note that a generic 

model will focus on cortical responses that are consistent 

across subjects while a subject-specific model will take into 

account anatomical and physiological differences between 

individuals. Consequently, we can here hypothesize that a 

genGEVDss approach will first spatially filter the EEG 

responses to find components that generalize between subjects 

and will then look for specific responses, which are probably 

removed from the EEG signal if only one generalized 

component is used.  

To investigate whether different speech features require 

specific spatial filters, we evaluated the impact of a spatial 

filter built on a specific speech feature on a model based on a 

different speech feature. In the case of a generic model, we 

observed that model based on low-level speech features could 

benefit from a spatial filter built on either (or both) low-level 

and higher-level speech features when using the delta EEG 

frequencies. Inversely, models based on higher-level speech 

features required higher-level speech features to reach optimal 

EEG predictions. We hypothesize that higher-level speech 

features are coded by a broader brain network, that also 

incorporates regions that code lower-level features. For 

models based on single-subject data, spatial filters based on 

FS provides the best EEG predictions for all models. We 

hypothesize that subject-specific models benefit from the 

positive reinforcement effect due to generally improved 

performance of the FS model mentioned above.  

Our pipeline consists of two different data processing stages: 

the modelling of the brain-speech interaction and the spatial 

filtering. The model requires more training data than the 

spatial filter, so the spatial filter does not require additional 

data. Consequently, we required around 10-min of data in 

order to properly model the brain-speech interaction and 

therefore ensure a proper selection of the spatial filter’s 

components (reminder, we first need to predict the EEG from 

the training dataset, then map it to the recorded EEG). A 

substantial decrease in the performance has been shown in 

both Auditory-Attention and Cortical-Tracking protocols 

when dealing with models based on less than 10-min of 

training data (Di Liberto & Lalor, 2017; Mirkovic, Debener, 

Jaeger, & De Vos, 2015).  

We demonstrated that the brain responses to naturalistic 

speech could be better predicted by including a phoneme-

based stimulus representation, and by extracting speech-

related information from the recorded EEG signals using a 

GEVD approach combined with standard multivariate TRF 

(Crosse et al., 2016). This method, which is closely related to 

the CCA-based method proposed by de Cheveigné & Parra 

(2014) and Dmochowski, Ki, DeGuzman, Sajda, & Parra 

(2018), allows substantially increasing the EEG prediction, 

with a correlation of around 0.1 reached using the delta EEG 

band and a high-level speech representation. Moreover, we 

here showed that the inclusion of this linear spatial mapping 

allows removing the impact of manual channel selection on 

the performance by automatically weighting channels in a 

data-driven way. Future research should evaluate the inclusion 

of higher-level speech features such as words or semantic 

information, phoneme-level surprisal, entropy, or phoneme 

onset in the FS-model (Brodbeck, Hong, & Simon, 2018; 

Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018). 
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Fig. 1 - Illustration of the different algorithms evaluated in the current manuscript. A quantitative mapping (TRF) computed 

between the training speech and recorded EEG was used to predict EEG signals using each stimulus representation from the 

test set (i. The cortical speech tracking was computed as the Spearman’s correlation between the recorded and predicted EEG 
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signals at the different electrode locations. A model was trained using either single-subject specific training dataset (TRFi; see 

ss and ssGEVDss models in panels A and C respectively) or group-level training dataset (µTRF; see gen, genGEVDss and 

genGEVDgen models in panels B, D and E respectively). In ssGEVDss, genGEVDss and genGEVDgen models (see panels C, 

D and E), a spatial filter U was extracted from the training dataset to remove non-stimulus-related activity from the EEG signals 

by optimally mapping the recorded and predicted EEG signals. This spatial filter was finally applied to both training and testing 

dataset prior to rebuilding the TRF and computing the model’s performance. A set (or dataset) refers to the EEG data plus the 

corresponding stimulus features.  
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Fig. 2 – Grand-average Temporal Response Function for a model based on the envelope, the spectrogram, phoneme and 

phonetic representation averaged over cross-validation folds and fronto-temporal electrodes.  
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Fig. 3 - Grand-average EEG prediction correlation (Spearman’s ρ) for each speech model using delta, theta, alpha, beta, and 

low-gamma EEG frequencies (signal processing scheme B). In grey, the level of significance at p = 0.01. Note the improved 

EEG prediction using lower frequency bands. As a reminder, for each participant, we computed a subject-specific covariance 

matrix using six out of the seven folds (corresponding to 12 out of the 14 minutes) of the whole recording (see cross-fold 

validation). We then computed a grand-average TRF by averaging the covariance matrix across subjects. Finally, this generic 

model (i.e., the grand-average TRF) was used to predict EEG signals using each stimulus representation from the test set (= the 

remaining fold, corresponding to two minutes of data). Each participant’s averaged cortical speech tracking was computed as 

the Spearman’s correlation between the recorded and predicted EEG signals in a selection of fronto-temporal electrodes (see 

low right panel). The errors bars represents correlation values from the different participants (i.e., 18 data points). 
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Fig. 4 - Spatial distribution of the cortical tracking of each speech representation over the scalp (64 electrodes) using subject-

specific (ss) or group (gen) data, as well as a GEVD approach (using the five first components). Note the temporal-occipital 

dominance of the cortical tracking using delta EEG frequency band, while the theta dominance seems more centralized in the 

frontal-temporal areas.  
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Fig. 5 - Effect of number of components included in the GEVD-based modeling of the brain responses to the speech. Note the 

decrease of the averaged Spearman correlation with increasing number of components, except for the hybrid genGEVDss 

approach.  
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Fig. 6 - Impact of the inclusion of a GEVD mapping approach on the averaged performance using different EEG frequency 

bands (delta, theta, alpha, beta, and low gamma) and speech representations (Env, Sgram, Ph, Fea, and FS) as an input to the 

linear model. Note the improved model using a GEVD approach for both single-subject and group-level decoder. The errors 

bars represents correlation values from the participants (i.e., 18 data points). 
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Fig. 7 – Influence of the speech feature on the spatial filtering of the EEG signals using one GEVD-component, computed as 

the difference in correlation with the native model. For each model (row), the difference in correlation corresponds to the 

correlation reached with the spatial filter using the specific speech feature (column) minus the correlation reached using the 

same speech feature for the model and the spatial filter (see the diagonal). Therefore positive values indicate that the spatial 

filter under investigation was better than the spatial filter corresponding to the model and vice versa. The y-axis indicates the 

speech feature used for the modelling of either a generic (first row) or  subject-specific (second row) model. The x-axis indicates 

the speech feature used for computing the spatial filter of the EEG signals over the delta (first column) or theta (second column) 

EEG signals. For each model (row), a cross means that this spatial filter provided an optimal correlation (e.g., using a generic 

model and the delta EEG band, a Fea-based model reached an optimal correlation using either a Ph-based spatial filter or a Fea-

based spatial filter). Interestingly, spatial filters built on another set of features could also improve the correlation.  
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