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Abstract Shift design is an essential step in workforce planning in which
staffing requirements must be obtained for a set of shifts which best cover
forecasted demand given as a demand pattern. Existing models for this chal-
lenging optimization problem perform well when these demand patterns fluc-
tuate around an average without any strong variability in demand. However,
when demand is irregular, these models inevitably generate solutions with a
significant amount of over- or understaffing or an excessive use of short shifts.
The present paper explores a strategy which involves modifying the demand
patterns such that the variable workload may be better matched using an
acceptable number of shifts. Integer programming is employed to solve the re-
sulting optimization problem. A computational study of the proposed model
reveals interactions between different problem parameters which control the
scope of demand modification and the type of the selected shifts. Moreover,
the potential impact from an economic point-of-view is discussed and the time
before profitability of the approach is evaluated. These insights enable opera-
tions management to better understand the trade-off between solution quality
and different types of flexibility which may be realized in an organization.
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1 Introduction

Workforce planning is a challenging task faced by many organizations. As per-
sonnel costs typically account for a significant proportion of an organization’s
operational expenses, it is vital to conduct this task as effectively as possible.
The sequence of processes to arrive at an efficient workforce plan may vary
depending on the area of application. For example, in sectors where employees
are a scarce resource, it is common for them to participate in the construction
of their own schedule. Practices such as self-rostering and preference-rostering
try to find a balance between overall cost-efficiency and employee satisfaction
(Asgeirsson, 2014; van der Veen et al., 2016). By contrast, this paper con-
siders workforce planning as a centralized decision-making process consisting
of sequential steps which may be grouped into three main processes: demand
modeling, shift rostering and disruption handling (Defraeye and Van Nieuwen-
huyse, 2016) Figure 1 provides an overview of these high-level processes with
their detailed steps. Note that the strategic level of decision-making, primar-
ily concerned with manpower planning, is also relevant in workforce planning
(Llort et al., 2019). As discussed by Komarudin et al. (2013), decisions at this
level have a significant influence upon the others, and vice versa.

Demand modeling

Task-based
(optional)

Time-based

Shift design

Days-off 
scheduling

Staff 
assignment

Task 
assignment

Shift 
scheduling

Line of work 
construction

Rostering Disruption handling

Re-rostering

Tactical Operational

Fig. 1: Overview of centralized decision-making processes in workforce plan-
ning

At the operational level of decision-making, the rostering process assigns
shifts and tasks to employees resulting in a schedule (also referred to as a ros-
ter). Several methodologies for constructing rosters have been established over
the course of many years of research (Ernst et al., 2004). The two most com-
mon approaches are to either (i) construct complete individual work schedules
which are then assigned to available employees or (ii) determine on which days
employees are working and only then assign shifts. Optimization problems en-
countered during this process are typically subject to a variety of personal and
organizational constraints such as, for example, skill requirements, contracts
and individual preferences (Van den Bergh et al., 2013). The last step in the
rostering process is to assign detailed tasks to employees, although this decision
is often integrated into the construction of individual work schedules (Smet
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et al., 2016). The dynamic nature of workforce planning is subsequently ac-
commodated via disruption handling. Disruptions caused by unforeseen events
such as, for example, employee illness, are addressed in the re-rostering step
(Gross et al., 2018; Maenhout and Vanhoucke, 2013).

At the tactical level, demand modeling determines the number of employees
required on different dates and at different times based on forecasts of the ex-
pected workload or the actual tasks to be performed (Ernst et al., 2004). Time-
based demand modeling generalizes task-based modeling and specifies demand
patterns, which can be considered functions that map required staffing levels
to time intervals (Meisen et al., 2016). These patterns may be derived from a
task-based model of the demand which specifies all the actions which must be
performed along with relevant timing information and additional task-specific
metadata (Herbers, 2006). Shift design transforms the forecasted demand into
staffing levels for shifts which may then be employed during the operational
processes (Musliu et al., 2004).

Shift design is an NP-hard combinatorial optimization problem which con-
stitutes an essential step in workforce planning (Di Gaspero et al., 2007).
Depending on the specific application, objectives and constraints may vary,
however, the core decision problem remains the same: given a large set of pos-
sible shifts, select a subset of shifts and define staffing requirements for these
shifts such that deviation from demand is minimized. While this step is re-
quired in centralized workforce planning, in decentralized approaches such as
self- or preference rostering, employees themselves may become responsible for
choosing their own working hours.

Existing models for shift design consider demand fixed and have no means
of accommodating variability in demand patterns which are common in envi-
ronments characterized by highly variable workload such as, for example, ware-
houses (Boonstra-Hörwein et al., 2011), restaurants (Love and Hoey, 1990),
hospitals (Litvak et al., 2005) or airports (Moore et al., 1996; Clausen, 2010).
As a result, existing models produce solutions with high levels of under- or
overstaffing which, in practice, translates into reduced quality of service or
idle employees, both of which are undesirable for any organization (Gärtner
and Kundi, 2005). Consider the examples shown in Figure 2 which visualize
two different shift design scenarios. In Figure 2a, the demand fluctuations are
relatively small. The amount of overstaffing in the solution is limited to 94
units, which, if one time interval lasts 15 minutes, corresponds to 23.5 hours
of idle time distributed across the workforce. Using the same model, it is im-
possible to cover the irregular demand pattern shown in Figure 2b without
incurring a significantly larger amount of overstaffing, in this example 363
units or 90.75 hours. The resulting coverage corresponds to a so-called sim-
ple peak hour approximation (Green and Kolesar, 1995). If organizations find
this level of overstaffing to be excessive they may opt to focus on the average
demand rather than on peak demand, however this will lead to understaffing
during the peaks (Green et al., 2007). Including short two- or three-hour shifts
would result in a better match of the irregular demand pattern, however, this
is typically considered undesirable for employees (Burgess, 2007). Longer shifts
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allow for a more compressed working week, which has been shown to positively
affect job satisfaction (Baltes et al., 1999). Moreover, hiring employees willing
to work short shifts it not always possible while employing temporary workers
brings it own set of challenges (Buzacott and Mandelbaum, 2008).
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(b) Irregular demand pattern

Fig. 2: Examples of demand patterns and the resulting optimal shift coverage

The present paper investigates an alternative strategy in which demand
patterns are slightly adjusted or smoothed, such that variability in demand
may be better accommodated without using an excessive number of short
shifts. The proposed approach enables quantifying the trade-off between cost
reduction for the company (by reducing under- and overstaffing) and the cost
required to modify the demand pattern. Despite the fact that demand require-
ments are often exogenous to the shift design phase and imposed by a third
party or stemming from an internal process, it is often possible to adjust these
patterns. For example, by arranging alternative delivery times of suppliers,
hiring additional workers throughout the day for internal logistic processes or
negotiating with airlines to adjust flight departure and arrival times. Oper-
ational restrictions concerning demand patterns have to be accounted for by
way of constraints which limit the scope of modifications. The proposed de-
cision support model is formulated as an integer programming problem and
is analyzed in a computational study to reveal interactions between its most
prominent parameters controlling modification flexibility and feasible shift se-
lection.

The remainder of this paper is organized as follows. Section 2 surveys pre-
vious research on related shift design problems. The proposed model for ad-
dressing shift design with demand smoothing is presented in Section 3. Section
4 introduces an integer programming formulation for the defined optimization
problem. Section 5 analyzes a series of computational experiments to general-
ize the interaction between different model parameters. The impact of demand
smoothing in practice is discussed in an economic context in Section 6. Finally,
conclusions and directions for future research are outlined in Section 7.
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2 Related work

Workforce planning, and personnel rostering in particular, has been the sub-
ject of many studies proposing different models and algorithms for a variety
of applications (Van den Bergh et al., 2013; De Bruecker et al., 2015). Shift
design, on the other hand, has received far less attention, even though it con-
stitutes an essential step in workforce planning (Ernst et al., 2004). Studies on
this problem typically consider three decisions: (i) shift selection (which shifts
to use), (ii) staffing (how many employees to assign to each shift to meet the
demand) and (iii) break scheduling (where to place the breaks in the selected
shifts).

Early models for shift design addressed the first two decisions (shift selec-
tion and staffing) as a single decision process while considering break schedul-
ing in a separate step to be solved afterward. This methodology makes the
optimization problems easier to solve although there is no guarantee that an
optimal solution with respect to shift selection and staffing will lead to a
good solution when breaks have to be scheduled. These models typically have
multiple objectives such as, for example, minimizing the deviation from the
demand, minimizing the number of shifts used or balancing workload (Musliu
et al., 2004; Di Gaspero et al., 2007). Lusby et al. (2016) include additional
hard constraints on the maximum number of shifts and the number of available
employees on each day. Even without considering breaks or skills, these opti-
mization problems are already very challenging from a computational point of
view and have lead to the development of a wide range of heuristics.

The problem of break scheduling when shift selection and staffing require-
ments are given has been studied by Widl and Musliu (2010). The objec-
tive function in their model minimizes deviation from the demand. A number
of temporal constraints concerning break placement and length must be re-
spected. For example, a break cannot be scheduled too close to the beginning
or end of the shift and the time between two breaks must be sufficiently long.

Similar to the model proposed by Bonutti et al. (2017), the present pa-
per addresses the three aforementioned decisions simultaneously considering
simplified break scheduling constraints. Di Gaspero et al. (2010), meanwhile,
present an integrated model for the three decisions including complex tempo-
ral break scheduling constraints, requiring a dedicated constraint programming
model integrated in a heuristic search algorithm to solve the resulting prob-
lem. The same problem is considered by Akkermans et al. (2019) who use a
two-phase integer programming approach in which shifts are initially chosen
while approximating the impact of breaks. The second phase then iteratively
schedules breaks for each shift. Hur et al. (2019) propose five different integer
programming models for shift selection and staffing in which breaks may be
scheduled in real-time while minimizing understaffing or maximizing the num-
ber of breaks which may be assigned. Additionally, a rolling horizon approach
is proposed designed to accommodate short-term demand forecasts in order
to efficiently manage fluctuations in demand.
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As shown in Figure 1, shift design is typically considered a tactical long-
term decision made based on workload forecasts rather than the actual work-
load at the time rosters are executed. Most studies focus on the deterministic
variant of shift design which does not take into account any uncertainty. For
applications in which workload forecasts are unreliable, these deterministic
models will often result in sub-optimal solutions in practice when the realized
workload differs significantly from the estimated workload. Uncertainty in shift
design is discussed by van Hulst et al. (2017) who apply robust optimization
to obtain a selection of shifts and staffing requirements for a practical case
involving air navigation services. Their solutions are considered robust given
that levels of under- and overstaffing will not change significantly when the ac-
tual workload differs from the forecasted workload. In a computational study
the trade-off is shown which exists between the robustness and solution quality
in terms of number of used shifts.

Table 1 compares the models and solution approaches described in the
literature to those used in this paper. The proposed model considers the
three main decisions in shift design while including demand smoothing and
most of the common problem characteristics from the literature such as night
shifts, skills and minimizing under- and overstaffing. The model introduced by
Bonutti et al. (2017) lies closest to the one considered in the present paper
with three notable differences. First, the present paper is the first to model de-
mand smoothing in shift design. Second, only a single day is considered due to
the increased computational complexity which arises from including demand
smoothing. Third, the number of shifts is not minimized. Instead, constraints
are included which limit the number of shifts, as proposed by Lusby et al.
(2016).
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3 Problem definition

As in the canonical shift design problem, the aim in the present paper is to
determine the set of shifts that best matches the demand requirements for
a single day. The one-day planning horizon is discretized into a set of time
intervals T = {1, . . . , |T |} based on a given time granularity Γ . Given the
increasingly high- and multi-skilled environments encountered in practice, the
model also includes a set of skills denoted by K = {1, ..., |K|}.

3.1 Shift characteristics

The set of all possible shifts is generated based on a set of shift templates.
A template is defined by an earliest start time, latest start time, latest end
time and minimum and maximum shift durations. A template may require one
break of a specific length to be scheduled which cannot be placed too close
to the beginning or end of the shift. Table 2 provides four examples of shift
templates. The Day template does not require a break to be scheduled. Note
that the combination of latest start time and maximum shift duration implies
the latest end time, meaning that this parameter is not explicitly required.

Table 2: Examples of shift templates

Type Earliest Latest Latest Minimum Maximum Break Start End
start start end duration duration duration offset offset

Early 6:00 8:00 - 7h 8h 1h 2h 2h
Day 9:00 11:30 - 6h 7h 30m - - -

Day-short 9:00 11:30 - 3h 30m 4h 45m 1h 1h
Late 13:00 15:00 22:30 7h 8h 1h 1h 2h

Based on the set of shift templates, the set of all possible shifts S =
{1, ..., |S|} is generated. Here, a shift may be considered a realization of a shift
template which respects all of the parameter ranges specified in the template.
A shift is characterized by specific start and end times which lay within the
bounds defined by the template. If a break is required, it should be scheduled
appropriately, in accordance with the constraints imposed by the template.
The subset of shifts which cover interval t ∈ T is denoted by St ⊆ S. Table 3
shows a subset of the shifts derived from the Early and Day-short templates
using a time granularity Γ = 30 minutes.

The proposed model distinguishes between short (shifts with a duration of
four hours or less) and long shifts, thereby enabling appropriate shift config-
urations for companies whose workforce contains a mixture of part-time and
full-time employees. The subset of short shifts is denoted by Sshort ⊆ S and
long shifts by Slong ⊆ S such that S = Sshort ∪Slong. A parameter φ restricts
the maximum number of short shifts in relation to the total number of selected
shifts. For example, if a solution uses twelve shifts in total and φ = 0.25, than
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Table 3: Shifts derived from templates in Table 2 with Γ = 30 minutes

(a) Early template

Start End Break start Break end

6:00 13:00 8:00 9:00
6:00 13:30 8:00 9:00
6:00 14:00 8:00 9:00
6:30 13:30 8:30 9:30
6:30 14:00 8:30 9:30

... ... ... ...
7:00 14:00 9:00 10:00
7:00 14:30 9:00 10:00
7:00 15:00 9:00 10:00

(b) Day-short template

Start End Break start Break end

9:00 12:30 10:00 10:45
9:00 12:30 10:30 11:15
9:00 13:00 10:00 10:45
9:00 13:00 10:30 10:45
9:00 13:00 11:00 11:45

... ... ... ...
11:30 15:30 12:45 13:30
11:30 15:30 13:15 14:00
11:30 15:30 13:45 14:30

at most three out of the twelve shifts may have a duration of less than four
hours. The total number of shifts selected from S is limited to at most η.

This model permits the inclusion of shifts which span two days such as,
for example, night shifts, by modeling them as cyclic shifts. In this case, the
final interval on a given day is assumed to be consecutive with respect to the
day’s first interval. Figure 3 illustrates an example of the intervals covered by
different types of shifts, including a cyclic night shift.

00:00 24:0006:00 12:00 18:00

Early shift
Day shift
Late shift

Night shift

Fig. 3: Intervals covered by different shifts

3.2 Demand characteristics

A demand pattern is defined by the required number of employees rtk in each
interval t ∈ T and for each skill k ∈ K. The problem environments of particular
interest to this paper are characterized by highly irregular demand patterns.
Specifically, the demand patterns contain intervals with peak demand, while
the demand between such peaks fluctuates around some base level. Let P
be the set of demand peaks. A peak p ∈ P is defined by a set of intervals
{tstartp , ..., tendp } in which the demand is considerably higher than the base level

demand. A peak may consist of only a single interval such that tstartp = tendp .
Figure 4 provides an example of an irregular demand pattern and illustrates
the various parameters associated with a peak. Note that the concept of a peak
may be generalized to any set of intervals in which demand may be modified.
Such a generalization reveals a larger field of application of the proposed model
than demand patterns with peaks which are the main focus in this paper.
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Fig. 4: Example of an irregular demand pattern with one demand peak

As mentioned before, existing models for shift design are unable to generate
acceptable solutions when demand peaks such as those illustrated in Figure 4
occur. To address this issue, the proposed model permits slight adjustments
to the demand patterns such that the demand may be better matched by the
available shifts. Adjustments occur in the form of demand redistribution in
which demand is decreased in some intervals and increased in others. This
process is denoted as demand smoothing as it aims to reduce the variability in
the demand patterns. Conservation of demand is essential in this process: de-
mand cannot be lost, that is, the total amount of demand decrease should equal
the total amount of demand increase. To account for operational limitations
with regard to demand smoothing, two additional parameters are introduced
to control the scope of the adjustments.

First, the parameter τp ∈ Z+
0 is used to define in which intervals peak

p ∈ P may be modified. Practical restrictions may limit how far away from
the peak demand can be adjusted. Therefore, the proposed model only allows
modifications to peak p in the intervals {tstartp − τp, ..., tendp + τp}. Second, the
amount of redistributed demand is controlled by a parameter βp ∈ {r ∈ R | 0 ≤
r ≤ 1}, which is used to define the maximum quantity of demand of peak p

which may be redistributed as bp = βp ×
∑tendp

t=tstartp
rtkp

, where kp is the skill

for which peak p exists.
Demand peaks are intuitively easier to match when the demand within the

peak is reduced, while demand outside the peak is increased. This intuition
is captured in the model by only allowing demand decreases for peak p in
intervals T ↓

p = {tstartp , ..., tendp } and only allowing demand increases in T ↑
p =
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{tstartp −τp, ..., tstartp −1}∪{tendp +1, ..., tendp +τp}. Figure 5 highlights these subsets
of intervals in an example with two demand peaks. Note that, depending on the
specific application, the intervals which permit modifications may be defined
based on other properties of the demand pattern, even some of which may be
unrelated to demand peaks.
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Decrease demand Increase demand

Fig. 5: Feasible ranges for demand modification of an irregular demand pattern
containing two peaks

4 Integer programming formulation

An integer programming formulation is proposed to optimize shift selection,
staffing, break scheduling and demand smoothing. For each s ∈ S, a binary
variable ys equals one if shift s is used in the solution and zero otherwise.
For each s ∈ S and k ∈ K, an integer variable xsk equals the number of
employees assigned to shift s to cover the demand of skill k. For each t ∈ T
and k ∈ K, two integer variables utk and otk are introduced which equal the
amount of under- and overstaffing for skill k in interval t. Finally, for each
p ∈ P and each t ∈ T ↓

p , the integer variable m↓
tp equals the demand decrease

of peak p in interval t. Similarly, for each p ∈ P and t ∈ T ↑
p , m↑

tp equals the
amount of demand increase of peak p in interval t. Let Co and Cu be the
weights associated with overstaffing and understaffing, respectively. For each
skill k ∈ K, the set Pk ⊆ P contains all peaks in the demand pattern for skill
k. The shift design problem with demand smoothing may now be formulated
as the following integer programming problem.
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min
∑
t∈T

∑
k∈K

(Cootk + Cuutk) (1)

s.t.
∑
s∈St

xsk + utk − otk = rtk +
∑

p∈Pk:t∈T
↑
p

m↑
tp −

∑
p∈Pk:t∈T

↓
p

m↓
tp ∀t ∈ T, k ∈ K (2)

xsk ≤Mskys ∀s ∈ S, k ∈ K (3)∑
s∈S

ys ≤ η (4)

∑
s∈Sshort

ys ≤ φ
∑
s∈S

ys (5)

∑
t∈T

↓
p

m↓
tp +

∑
t∈T

↑
p

m↑
tp ≤ 2bp ∀p ∈ P (6)

∑
t∈T

↓
p

m↓
tp −

∑
t∈T

↑
p

m↑
tp = 0 ∀p ∈ P (7)

ys ∈ {0, 1} ∀s ∈ S (8)

xsk ∈ Z+
0 ∀s ∈ S, k ∈ K (9)

utk, otk ∈ Z+
0 ∀t ∈ T, k ∈ K (10)

m↓
tp ∈ Z+

0 ∀p ∈ P, t ∈ T ↓
p (11)

m↑
tp ∈ Z+

0 ∀p ∈ P, t ∈ T ↑
p (12)

Objective function (1) minimizes a weighted sum of over- and understaffing.
Constraints (2) require the selected shifts to meet the modified demand ex-
actly except for an amount of under- or overstaffing which is penalized in
the objective function. Constraints (3) link the xsk and ys variables using a
big M formulation. An appropriate value for Msk for shift s and skill k may
be calculated as Msk = maxt∈T {rtk | s ∈ St}. Constraints (4) limit the to-
tal number of selected shifts. Constraints (5) make sure at most a fraction
φ of all selected shifts are short shifts. Constraints (6) limit the amount of
modification for each peak. Conservation in the sense that the total demand
remains unchanged no matter which modifications are made, is ensured by
Constraints (7). Constraints (8)-(10) define the domain of the ys, xsk, utk and

otk decision variables. Constraints (11) and (12) bound variables m↓
tp and m↑

tp,
as illustrated in Figure 5.

5 Computational study

Two sets of parameters in the proposed model control distinct types of flexibil-
ity it offers. First, flexibility with respect to demand smoothing is determined
by τp, which controls the range in which demand may be modified, and βp,
which limits the amount of demand to be redistributed. Second, flexibility with
respect to shift selection is controlled by η, which limits the total number of
shifts, and φ, which restricts the relative number of short shifts that can be
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selected. The computational study discussed in this section analyzes each set
of parameters to understand their effect on the problem’s solution.

5.1 Data and experimental setup

The instances used in the experiments are derived from the dataset published
by Bonutti et al. (2017). The existing demand patterns were adapted to fit
a time granularity of Γ = 30 minutes. Two types of irregular demand pat-
terns were generated based on each of the original 28 instances: one with a
single peak for each skill with tstartp ∈ [10:00, 12:00], and one with two peaks
for each skill in which the first peak has tstartp1

∈ [8:00, 9:00] and the second
peak has tstartp2

∈ [18:00, 19:00]. Peak duration was chosen to be between 30
minutes and one hour. Peak demand was set by multiplying the original de-
mand in the peak’s first interval by a value randomly sampled from the interval
[2, 3]. All peak parameters were sampled from uniform distributions. Following
this methodology, 196 instances of each type (single- and double-peak) were
generated. For the experiments in this study, 20 instances of each type were
randomly selected1. The weights for under- and overstaffing in objective func-
tion (1) were both set to one. Table 4 provides an overview of the selected
instances’ most important characteristics. In addition to the total number of
shifts, the number of night shifts and short shifts is also reported. For the
single-peak instances, the average and maximum demand for each skill is also
shown.

Table 4: Overview of instance characteristics

Instance Number of Number of Number of Number of Number of Maximum Average
templates shifts skills night shifts short shifts demand1 demand1

MS01 - day3 2 2016 2 633 144 12/12 3.4/2.3
MS02 - day4 2 2016 2 633 144 8/8 3.0/2.4
MS03 - day4 2 2016 2 633 144 16/16 3.6/2.1
MS05 - day6 3 285 2 0 0 57/57 16.1/10.5
MS06 - day2 3 285 3 0 0 112/112/112 22.7/14.4/10.3
MS07 - day5 3 285 2 0 0 114/114 19.5/13.1
MS11 - day2 3 285 2 0 0 66/66 12.2/8.0
MS12 - day1 3 285 3 0 0 67/67/67 10.1/5.0/3.2
MS12 - day2 3 285 3 0 0 60/60/60 11.2/6.1/4.0
MS13 - day0 4 1548 2 19 69 101/101 24.5/15.1
MS15 - day4 4 1548 2 19 69 90/90 15.9/11.5
MS16 - day3 4 1548 3 19 69 60/60/60 11.8/6.9/4.2
MS18 - day2 4 1548 3 19 69 76/76/76 13.8/8.6/5.4
MS19 - day1 4 1548 2 19 69 83/83 11.1/8.8
MS19 - day3 4 1548 2 19 69 72/72 13.3/8.5
MS21 - day0 10 5494 2 909 78 88/88 23.7/17.2
MS22 - day6 10 5494 3 909 78 40/40/40 13.1/8.8/5.9
MS23 - day6 10 5494 2 909 78 41/41 9.7/6.2
MS25 - day5 10 5494 2 909 78 103/103 18.3/12.6
MS28 - day3 10 5494 3 909 78 47/47/47 9.9/6.9/3.3

1 For the single-peak instance, including peak demand.

1 All instances and solutions employed in the computational study are publicly available
at http://people.cs.kuleuven.be/~pieter.smet/shiftdesign.

http://people.cs.kuleuven.be/~pieter.smet/shiftdesign
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All experiments were conducted on a Dell Poweredge T620, 2x Intel Xeon
E5-2670 with 128GB RAM. Gurobi 7.5.2 was used as the integer programming
solver with its default settings and configured to use one thread. As a stopping
criterion, a time limit of two hours was imposed for each experiment.

5.2 Demand smoothing flexibility

First, the impact of the parameters τp and βp which control the scope of
demand modification is analyzed. Parameter τp is varied from one to five while
values of 0.25, 0.5, 0.75 and 1 are considered for βp. Additionally, results are
reported for τp = 0 and βp = 0, which corresponds to solving model (1) - (12)
without allowing demand smoothing, that is, solving a standard shift design
problem. In all experiments the maximum number of shifts is fixed to η = 15
and the maximum fraction of short shifts is fixed to φ = 0.3.

Figure 6 shows the impact on the objective value, averaged over all in-
stances, of varying τp and βp for instances with one or two peaks per skill.
Note that, for different values of βp, the setting with τp = 0 always results
in the same average objective value. Indeed, demand smoothing cannot occur
when there are no intervals defined in which to redistribute the demand. In
general, given a value of βp, increasing τp results in solutions with a lower
objective value, that is, increasing the number of intervals in which demand
may be redistributed leads to less over- and understaffing. Even when set-
ting τp = 1 and βp = 0.25, which provides very little flexibility, over- and
understaffing is reduced by 22.1% and 26.1% for the single and double peak
instances, respectively. In a high-flexibility setting with τp = 5 and βp = 1,
reductions of 77.1% and 85.0% are realized. The impact of allowing demand
smoothing in more intervals around a peak is stronger for higher values of βp.
Comparing the results for instances with one peak per skill to those with two
peaks per skill, the improvements in objective value are typically larger when
two peaks are present. Organizations suffering from high variability in their
workload would thus benefit more from enabling flexibility in their demand
patterns.

The change in objective value is clearly related to the number of modifica-
tions that have been made to the demand. Figure 7 shows the total number
of modifications

∑
t∈T↓

p
m↓

tp +
∑

t∈T↑
p
m↑

tp relative to the modification bud-

get2, that is, the maximum allowed number of modifications
∑

p∈P 2 × βp ×∑tend
p

t=tstartp
rtkp

. The results show that increasing the value of τp allows the avail-

able budget to be better utilized. A usage of 100% is never realized, even when
combining the smallest budget βp = 0.25 with the largest redistribution range
τp = 5, indicating that for the considered instances, setting βp = 0.25 is already
too flexible considering the number of modifications which actually contribute

2 Budget is not expressed as a monetary cost, but rather as a parameter without unit.
Section 6 presents an analysis of the monetary costs associated with modifications.
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(b) Average over all instances with two peaks per skill

Fig. 6: Objective values for different values of βp and τp with η = 15 and
φ = 0.3

towards improving over- and understaffing. If in practice, costs would be as-
sociated with setting the modification budget, these results demonstrate that
it is only useful to provide a large budget if the range in which demand may
be modified is sufficiently large.

For instances with short shifts, Figure 8 shows the number of short shifts
used

∑
s∈Sshort ys as a fraction of the maximum number that could be used⌊

φ
∑

s∈S ys
⌋
. Recall that in these experiments the maximum number of shifts η

was fixed to 15, which was also the total number of shifts used in all solutions.
The maximum fraction of short shifts was fixed to φ = 0.3. On average, the
solutions include fewer short shifts than the maximum allowed. For sufficiently
large values of βp and τp, considerably fewer short shifts are used compared to
the setting in which no demand flexibility is permitted. These results confirm
the initial hypothesis that by allowing demand smoothing, fewer short shifts
are required, thereby potentially improving employee satisfaction. While this
benefit may be harder to quantify than over- and understaffing, organizations
should also take this aspect into account when assessing the trade-off between
demand flexibility and solution quality.

In addition to affecting solution quality, βp and τp also impact compu-
tational hardness of the integer programming problems. Table 5 shows the
number of instances solved to optimality (out of 20), the average computation
time for these instances and the average optimality gap for the instances which
were not solved to optimality. Even without allowing modifications to the de-
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Fig. 7: Use of modification budget for different values of βp and τp with η = 15
and φ = 0.3
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Fig. 8: Fraction of short shifts used for different values of βp and τp with η = 15
and φ = 0.3
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mand, optimality gaps of 18.2% and 7.1% are reported for instances with one
and two peaks, respectively. Allowing demand smoothing negatively affects
the performance of the integer programming solver. Both the computation
times and optimality gaps are significantly higher when βp > 0 and τp > 0.
For low values of τp, computation time and optimality gap are unaffected by
increasing βp. Similarly, for βp = 0.25, increasing the number of intervals in
which modifications are allowed has no significant impact. However, the aver-
age computation time for instances with two peaks per skill is decreased by
71.6% when increasing τp from four to five if βp = 1.
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Table 6 provides details on the computational results for each instance with
τp = 3 and βp = 0.5. Results are reported for the two irregular variants of each
instance as well as for the variant without demand peaks. There is a subset
of instances, MS05 to MS12, which require significantly less computation time
compared to the other instances. From Table 4 it is clear that these problems
are small in the sense that they have fewer shifts to chose from compared to
the other instances, even though the number of skills is higher or comparable
to some of the other harder instances. This trend may be observed for both
instances with regular and irregular demand. Note that while the relative gaps
appear large, the absolute gaps are small and would, in practice, correspond
to solutions in which only few intervals suffer from a limited amount of over-
or understaffing.

Table 6: Computational results for all three instance classes with τp = 3,
βp = 0.5, η = 15 and φ = 0.3

No peaks One peak per skill Two peaks per skill

Time (s) UB Gap Time (s) UB Gap Time (s) UB Gap

MS01 - day3 1806.8 1 0.0% 537.7 4 0.0% 5969.5 0 0.0%
MS02 - day4 443.9 1 0.0% 985.4 0 0.0% 1090.0 0 0.0%
MS03 - day4 394.1 0 0.0% 16.9 0 0.0% 232.0 0 0.0%
MS05 - day6 46.8 48 0.0% 7200.0 65 3.1% 0.0 122 0.0%
MS06 - day2 59.5 190 0.0% 1.9 341 0.0% 0.3 476 0.0%
MS07 - day5 0.0 143 0.0% 0.8 234 0.0% 0.5 388 0.0%
MS11 - day2 0.0 90 0.0% 0.0 113 0.0% 0.2 229 0.0%
MS12 - day1 0.0 113 0.0% 0.3 183 0.0% 0.6 209 0.0%
MS12 - day2 0.3 89 0.0% 0.3 145 0.0% 0.5 214 0.0%
MS13 - day0 7200.0 91 48.4% 7200.0 68 30.9% 7200.0 48 2.1%
MS15 - day4 7200.0 91 37.4% 7200.0 86 11.6% 7200.0 61 6.6%
MS16 - day3 7200.0 104 35.6% 7200.0 79 15.2% 7200.0 93 15.1%
MS18 - day2 7200.0 132 31.8% 7200.0 114 14.9% 7200.0 100 8.0%
MS19 - day1 7200.0 30 76.7% 7200.0 36 16.7% 7200.0 11 36.4%
MS19 - day3 7200.0 96 33.3% 7200.0 74 13.5% 7200.0 76 15.8%
MS21 - day0 7200.0 55 85.5% 7200.0 32 75.0% 7200.0 9 11.1%
MS22 - day6 7200.0 91 80.2% 7200.3 69 75.4% 7200.1 12 100.0%
MS23 - day6 7200.0 25 32.0% 7200.0 26 50.0% 7200.0 2 100.0%
MS25 - day5 7200.0 33 81.8% 7200.0 30 80.0% 7200.0 42 52.4%
MS28 - day3 7200.0 53 90.6% 7200.0 41 87.8% 7200.0 22 100.0%
Average 4097.6 73.8 31.7% 4397.2 87.0 23.7% 4324.7 105.7 22.4%

As an example, Figure 9 shows a solution for instance MS21 - day 0 with
τp = 3 and βp = 0.5. Both the original and modified demand patterns for one
of the two skills in this problem instance are shown. In addition, the coverage
realized by the selected shifts, staffing and breaks is also shown. The peak is
clearly smoothed out in the modified pattern, within the limits imposed by
the constraints, allowing the available shifts to closely match the demand.

5.3 Shift selection flexibility

The second set of parameters analyzed in the computational study affects
shift selection: the maximum number of shifts η and the maximum fraction of
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Fig. 9: Coverage, original and modified demand patterns for skill 1 in instance
MS21 - day 0 with τp = 3, βp = 0.5, η = 15 and φ = 0.3

selected short shifts φ. For βp = 0.5 and τp = 3, φ is varied between 0.1 and 0.5
while η is varied from 5 to 20. These ranges were chosen to represent scenarios
in which both the number of short shifts and shifts in total are not excessively
large as, in practice, having too many different shifts could negatively affect
subsequent steps in workforce planning (Burke and Curtois, 2014).

Figure 10 shows the impact of the shift selection parameters on solution
quality. The bars represent the objective value, averaged over all instances.
These results demonstrate that the main parameter allowing a decrease in
over- and understaffing is the maximum number of shifts η. For the considered
instances, there is also a diminishing returns-effect: the decrease in objective
value becomes smaller for increasingly large values of η. The largest improve-
ment in solution quality is realized by increasing the maximum number of shifts
from five to ten. Selecting more shifts could, however, potentially increase the
complexity of constructing the actual rosters in later steps of the workforce
planning process. The impact of allowing a larger number of short shifts is
far less pronounced. An organization could thus better focus their efforts in
efficiently managing a large number of shifts rather than re-structuring their
workforce to allow more short shifts to be assigned. These effects are observed
for instances with regular as well as with irregular demand patterns.

Figure 11 shows the number of short shifts used as a fraction of the maxi-
mum allowed for different values of η and φ. In general, increasing φ leads to
fewer short shifts being used. On the other hand, larger values of η typically
result in more short shifts. For most settings, however, the number of short
shifts always remains well below the maximum allowed, thereby explaining the
limited impact of φ on the objective value in Figure 10.

Table 7 details the impact of the shift selection parameters on the solver’s
performance. For each type of instance, the following values are reported: the
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(b) Average over all instances with one peak per skill
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(c) Average over all instances with two peaks per skill

Fig. 10: Objective values for varying values of η and φ with βp = 0.5 and
τp = 3

number of instances solved to optimality (out of 20), the average computation
time for these instances and the average optimality gap of the instances which
were not solved to optimality. The results indicate that the main driver of
the solver’s performance is the maximum number of shifts η. Allowing more
shifts to be selected increases the number of instances solved to optimality and
generally reduces the average computation time for instances where there is no
demand peak or only one demand peak per skill. On the other hand, allowing
more short shifts to be selected has a less pronounced effect on the solver’s
performance. In most experiments, the solver’s performance was unaffected by
changing the value of φ. However, for the instances with two peaks per skill,
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(b) Average over all instances with one peak per skill
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(c) Average over all instances with two peaks per skill

Fig. 11: Fraction of short shifts used for varying values of η and φ with βp = 0.5
and τp = 3

increasing φ led to more optimal solutions in less computation time when
η ≥ 15.

6 Economic impact

As demonstrated in previously published studies, increasing flexibility for em-
ployees significantly impacts an organization’s labor costs (Erhard, 2019). The
computational results reported in Section 5 showed that by increasing flexi-
bility through parameters βp, τp, η and φ, significant reductions in objective
value can be realized. This section discusses this effect in an economic con-
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Table 7: Average computation time, upper bound and gap to lower bound,
averaged over all instances for varying values of η and φ with βp = 0.5 and
τp = 3

No peaks

η φ

0.1 0.3 0.5

No. opt Time (s) Gap No. opt Time (s) Gap No. opt Time (s) Gap

5 6 100.4 46.9% 6 100.4 51.9% 6 100.8 50.1%
10 6 155.0 64.3% 6 155.0 61.6% 6 155.6 62.6%
15 9 294.2 54.8% 9 305.7 57.5% 9 972.0 54.4%
20 9 1.3 40.5% 9 1.1 46.7% 9 1.1 45.5%

One peak per skill

η φ

0.1 0.3 0.5

No. opt Time (s) Gap No. opt Time (s) Gap No. opt Time (s) Gap

5 7 633.6 50.0% 6 233.3 50.1% 7 1073.2 49.8%
10 6 528.4 55.3% 6 522.5 56.6% 6 530.1 53.0%
15 8 147.0 38.9% 8 192.9 39.6% 8 475.9 36.8%
20 12 428.6 30.9% 11 215.5 23.6% 10 18.4 19.3%

Two peaks per skill

η φ

0.1 0.3 0.5

No. opt Time (s) Gap No. opt Time (s) Gap No. opt Time (s) Gap

5 6 12.7 51.6% 6 12.7 61.6% 6 12.7 62.4%
10 6 1.8 64.1% 6 1.8 66.2% 6 1.8 66.0%
15 8 974.4 39.7% 9 810.4 40.6% 9 390.7 40.5%
20 14 449.4 24.3% 16 672.4 33.5% 16 137.2 51.0%

text to highlight the practical impact of demand smoothing in shift design.
The primary result of demand smoothing in terms of an organization’s opera-
tional expenses is that the required number of employees is reduced by better
matching the available shifts to the demand. The number of full-time equiva-
lents (FTEs) is used in this section to estimate the monetary savings achieved
through demand smoothing. Based on these savings, an organization can cal-
culate an upper bound on the cost per unit of modification in the demand
patterns.

To evaluate the impact of demand smoothing on the required number of
FTEs, model (1) - (12) is modified such that understaffing is no longer per-
mitted. Overstaffing is still minimized in the objective function. The updated
model was applied to the single-and double-peak variants of instance MS12
(day 1) with τp = 3, βp = 0.5, η = 15 and φ = 0.3. Four metrics were calculated
from the obtained optimal solutions, as reported in Table 8. First, the total
number of assigned FTEs is shown. Using the average Belgian monthly gross
salary of e3875 , the total labor cost associated with these FTEs is estimated
(Statbel, 2016). The total cost saving from applying demand smoothing is
then calculated as the difference between FTE cost without and with smooth-
ing. Note that since the monthly gross salary is used, this corresponds to the
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savings an organization may realize per month. Finally, the total number of
modifications made to the demand patterns is shown.

Using these values, Figure 12 shows the number of months before demand
smoothing becomes profitable as a function of the cost required for modifying
one unit of demand. In order to arrive at these results, it is assumed that a
one-off modification cost is required to alter the demand patterns. Examples
of such alterations include upgrading a machine or renegotiating the delivery
times of a third-party logistics provider. When considering one peak per skill,
if the organization requires profitability after one year then the maximum cost
of one unit of modification may be e18,395. However, if the time is restricted
to only six months then the maximum cost is e9,197. Clearly, there is a linear
relationship between the modification cost and the time before profitability.
The results show that the degree of variability in demand has little impact on
this length of time. As costs increase, it will require only slightly more time
before demand smoothing becomes profitable. However, it is worth noting that
this upper bound only takes into account quantifiable criteria. Side-effects of
demand smoothing which impact employee well-being, such as fewer short
shifts, are not included in this evaluation. The analysis also does not include
the additional expenses associated with part-time employees assigned to the
short shifts, which would further increase the upper bound on profitability.

Table 8: Impact of demand smoothing on required number of FTEs

No demand Smoothing with τp = 3,
smoothing βp = 0.5, η = 15, φ = 0.3

One peak per skill

No. of FTEs assigned 132 96
Total FTE cost per month e511,500 e372,000
Monthly savings from demand smoothing - e139,500
No. of modifications - 91

Two peaks per skill

No. of FTEs assigned 144 96
Total FTE cost per month e558,000 e372,000
Monthly savings from demand smoothing - e186,000
No. of modifications - 93

7 Conclusions

State-of-the-art models for shift design assume that demand may be covered
by the available shift types. However, many practical applications have highly
irregular demand patterns caused by variability in workload. Applying exist-
ing models from the academic literature to such problems leads to high levels
of under- and overstaffing, which severely impacts quality of service, or ex-
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Fig. 12: Time before profitability of demand smoothing as a function of cost
per demand modification

cessive use of short shifts, which typically violates various organizational and
legislative regulations and may conflict with employee preferences.

This paper introduces a model for the shift design problem in which vari-
able demand is accommodated by allowing minor modifications to the demand
patterns through smoothing. The model includes a set of constraints related to
operational restrictions on the permitted demand modifications and shift se-
lection. An integer programming formulation for this new shift design problem
was presented.

The trade-off between solution quality and flexibility, as controlled by the
model’s main parameters, was analyzed in a computational study which led to
the following main insights. First, increasing the permitted amount of demand
redistribution is only useful when the range in which modifications are allowed
is sufficiently large. While this effect may be intuitive, the amount of quality
improvement achieved by only slightly relaxing the demand constraints was
impressive. Reductions in over- and understaffing of up to 26% were reported
in the computational study. Second, fewer short shifts are required when the
amount of demand smoothing is increased. Third, reduction of over- and un-
derstaffing is primarily driven by the maximum number of shifts in total, and
not by the maximum number of short shifts. This last effect is somewhat
counter-intuitive and may improve employees’ employment satisfaction due to
the possibility of eliminating short shifts whenever appropriate. An analysis of
the computational results showed that significant cost savings may be realized
through demand smoothing by reducing the number of required FTEs.

The model introduced in this paper considered the shift design problem for
a single day. A natural extension of the model would be to include multiple days
such that shift selection, staffing and break scheduling decisions are made for
a longer scheduling period. Given the computational hardness of the single-
day problem, effective exact approaches or heuristics may be required. The
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relevance and ubiquitous nature of irregular demand patterns warrant further
investigation from a theoretical point-of-view as well, specifically on how to
accommodate irregular workload in the context of shift design. For example,
is it possible to identify worst cases for demand peaks, and what would their
impact on a solution be? Finally, this paper considers a deterministic shift
design problem. As this is typically a long-term decision problem in which
some parameters may vary from day to day, a stochastic model in which shift
selection, staffing and break scheduling are addressed for a typical day also
represents a relevant direction for future research.
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