
ABSTRACT: An enantioselective, radical-based 
method for the intramolecular hydroamination of al-
kenes with sulfonamides is reported. These reactions are 
proposed to proceed via N-centered radicals formed by 
proton-coupled electron transfer (PCET) activation of 
sulfonamide N–H bonds. Non-covalent interactions be-
tween the neutral sulfonamidyl radical and a chiral 
phosphoric acid generated in the PCET event are hy-
pothesized to serve as the basis for asymmetric induc-
tion in a subsequent C–N bond forming step, achieving 
selectivities of up to 98:2 er. These results offer further 
support for the ability of non-covalent interactions to en-
force stereoselectivity in reactions of transient and 
highly reactive open-shell intermediates. 

   Non-covalent interactions provide a powerful means to 
control selectivity in asymmetric transformations, both in 
nature and in the laboratory.1 However, a lack of clear un-
derstanding about how these weak interactions can serve 
to bind and activate open-shell intermediates has largely 
precluded their use a control element in the enantioselec-
tive reactions of free radical species.2-4 Seeking address 
this deficit, our group has become interested in the use of 
proton-coupled electron transfer (PCET) as a platform for 
developing catalytic asymmetric free radical chemistry. 
Oxidative PCET—which effects formal bond homolysis 
through the joint movement of a proton and electron to a 
Brønsted base and one-electron oxidant, respectively5— 
generally requires pre-equilibrium hydrogen bonding be-
tween the reactive E–H bond of the substrate and the 
Brønsted base prior to the electron transfer step. In addition 
to controlling site-selectivity,6 this H–bond interface can 
remain intact following the PCET event, furnishing a tran-
sient hydrogen-bonded complex between the nascent free 
radical and the conjugate acid of the Brønsted base.7 In 
principle, this association can then serve as a basis for 
achieving asymmetric induction in subsequent bond form-
ing steps when chiral bases are employed.  

This manner of asymmetric PCET activation has 
been demonstrated previously in a reductive aza-pinacol 
cyclization and in the oxidative activation of indoles en 
route to the formation of pyrolloindolines (Figure 1a).8 
In these examples, the neutral ketyl radical and indole 
radical cation remain associated with a chiral anionic 
phosphate, wherein the negatively charged acceptor was 
proposed to increase the strength of the post-PCET hy-
drogen bonding interaction. We questioned whether this 
blueprint could be extended further to enable high enan-
tioselectivity in the reactions of neutral free radical in-

Figure 1. (a) Examples of PCET-enabled enantioselective 
reactions; (b) Hypothesis for PCET-enabled asymmetric 
olefin hydroamination. (c) Enantioselective hydroamina-
tion with sulfonamides  
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termediates associated with neutral hydrogen bond do-
nors. To evaluate this hypothesis, we chose to investi-
gate enantioselective variants of a recently reported hy-
droamination of alkenes with sulfonamides.9,10 This 
transformation proceeds through a key sulfonamidyl 
radical intermediate generated via PCET activation of 
the substrate N–H bond by an excited-state Ir(III) oxi-
dant and a dialkyl phosphate base. This electrophilic ni-
trogen-centered radical then undergoes addition to a 
pendant olefin to furnish a new C–N bond.11 We hypoth-
esized that if chiral phosphate bases were employed, 
then a successor H-bonding complex between the chiral 
phosphoric acid and the neutral sulfonamidyl radical 
could nucleate a network of non-covalent interactions 
that would in turn differentiate competing diastereo-
meric transition states for C–N bond formation (Figure 
1b).7 Here, we report the successful realization of this 
goal, and preliminary mechanistic observations con-
sistent with the design hypothesis presented above (Fig-
ure 1c). To put this effort in context, we note that rela-
tively few methods for catalytic asymmetric C–N bond 
formation with N-radical intermediates have been re-
ported to date, and all involve strong bonding interac-
tions between the substrates and the chiral catalysts. 
Meggers and MacMillan13 have reported methods 
where a free N-radical undergoes addition to an alkene 
acceptor bound to either a chiral Rh-complex or a chiral 
enamine, respectively, while Zhang and Chemler have 
developed approaches using metalloradical com-
plexes.14 

     We began by evaluating the cyclization of acy-
clic 4-methoxyphenyl (PMP) sulfonamide 1 to form 
pyrrolidine 2 under the previously reported PCET con-
ditions for hydroamination in the presence of a variety 
of chiral phosphate bases. Phenyl-substituted BINOL 
phosphate P1 and commercially available TRIP-
phosphate P2 provided pyrrolidine product 2 in reason-
able yield and low, but measurable levels of enantiose-
lectivity (Table 1, Entries 1 and 2). A modest increase in 
selectivity and reactivity was observed with 9-phenan-
threne substituted P3, affording 2 in 96% yield and 
35:65 er (Table 1, Entry 3). Further evaluation of chiral 
phosphate scaffolds led to an improvement in selectivity 
with the analogous 1,2,3- triazole containing P4, which 
provided 2 in 62% yield and 86:14 er (Table 1, Entry 
4).15 As this 1,2,3-triazole containing chiral phosphate 
scaffold provided higher enantioselectivity, we evalu-
ated the effect of substitution pattern on the aryl triazole 
moiety. The parent phenyl substituted catalyst P5 af-
forded 2 in 93:7 er.  Substituents at the ortho positions 
(P6) were detrimental to selectivity compared to P5 
yielding the product in 87:13 er (Table 1, Entry 5). Of 
the catalysts examined, the highest selectivities were 
observed with meta substituents on the arene (See SI, 

Tables S1 and S2). Of these, phosphate P7 proved opti-
mal, affording the product 2 in 85% yield and 95:5 er 
(Table 1, Entry 7). 

     With phosphate P7, we next evaluated the sensi-
tivity of the transformation to variations in other reac-
tion parameters. At room temperature, 2 was formed in 
93% yield, but with a lower selectively of 89:11 er (Ta-
ble 1, entry 8). Further changes to the conditions, such 
as substituting commercially available thiophenol for 
TRIP-thiophenol resulted in a similar enantioselectivity 
of 94:6 er (Table 1, Entry 9). Increasing the catalyst 
loading of P7 to 10 mol% improved the yield margin-
ally, but afforded no enhancement in selectivity (Table 
1, Entry 10). Control reactions excluding base, light, and 
photocatalyst resulted in no detectable product for-
mation, and only trace product was observed in the ab-
sence of the thiol HAT catalyst (Table 1, Entries 11–14). 

    We then sought to evaluate the reaction scope 
with respect to both the sulfonamide (products 2–22) 
and alkene (products 23–27) moieties of the substrate. 
Uniformly high selectivities were observed upon varia-
tion of the para substituent of the sulfonamide arene 

Table 1. Optimization Studiesa 

a Reactions were conducted on a 0.05 mmol scale, 
and yields determined by NMR analysis relative to an 
internal standard. Enantioselectivity was determined 
by HPLC analysis on a chiral stationary phase.
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(2– 8). Substituents at the ortho positions (9, 91% yield, 
92:8 er & 10, 78% yield, 90:10 er) modestly reduced the 
observed enantioselectivity, whereas selectivity was re-
tained upon meta substitution (11, 79% yield, 95:5 er). 
The reaction accommodated benzofuran (12, 92% yield, 
96:4 er), thiophene (13, 53% yield, 93:7 er), and thiazole 
(14, 79% yield, 97:3 er) heterocycles. Benzyl substitu-
tion on the sulfonamide led to a modest decrease in se-
lectivity (15, 98% yield, 91:9 er), whereas a longer 
phenethyl chain was well tolerated (16, 98% yield, 96:4 
er). The reaction was also successful for sulfamate ester 
(17, 87% yield, 92:8 er) and sulfamide (18, 80% yield, 
94:6 er) substrates. We further applied this methodology 
to more complex sulfonamide substrates. Product 19, 
containing a thioether linked 1,2,4-triazole moiety, was 

afforded in 84% yield and 87:13 er at room temperature 
under otherwise standard conditions. Sultiame-derived 
product 20 was isolated in 89% yield and 96:4 er, and 
the reaction of a celecoxib-derived sulfonamide pro-
vided cyclized product 21 in 83% and 95:5 er. The reac-
tion also tolerated the presence of other hydrogen bond-
ing donor and acceptor functionalities to afford sildena-
fil derivative 22 in 50% yield and 96:4 er.  

    The enantioselectivity of the reaction was then 
probed for a variety of alkene substitution patterns 
(products 23–27). Cyclohexyl-substituted product 23 
was delivered in 98% yield and 94:6 er and protected 
piperidine-substituted alkene provided the cyclized chi-
ral product 24 in 91% yield and 90:10 er. Cyclobutyl-
substituted 25 was afforded in 96% yield and 95:5 er. 

a Yields and enantioselectivities are for isolated material following chromatography on silica gel and are the 
average of two experiments. Reactions were conducted on 0.5 mmol scale. b Reaction was run at room temperature. 
c Reaction was run in dichloromethane. d Reactions were run at 0 ˚C with substitution of TRIP-disulfide for thiol. 

Table 2. Scope of Enantioselective Amination Reactiona 
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The conditions also afforded high levels of enantiose-
lectivity for cis and trans disubstituted alkenes. While 
initial reactivity of these substrates was low at –20 ˚C, 
the yields were significantly improved with an increase 
in reaction temperature to 0 ˚C and substitution of 15 
mol% of TRIP-disulfide for the thiol (See SI, Table S2). 
Product 26 was afforded in 72% yield and 93:7 er from 
the cis-disubstituted alkene, while the trans isomer af-
forded 26 in 93% yield and 95:5 er. A bulkier tert-butyl 
substituted alkene provided product 27 in 93% yield and 
98:2 er from the cis isomer. 27 was also generated in 
48% yield and 96:4 er from the corresponding trans iso-
mer of the starting acyclic alkene. Unsymmetrical tri-
substituted alkene substrates were also effective with a 
nerol-derived sulfonamide furnishing 28 in 85% yield 
as a 1.5:1 mixture of diastereomers, wherein each dia-
stereomer was generated in 96:4 er.16

 Seeking to shed light on the enantiodetermining 
step of this transformation, we conducted an amination 
experiment where the thiol co-catalyst was removed 
from solution and several equivalents of methyl vinyl 
ketone were added (Figure 2). From this reaction carbo-
amination product 29 was isolated in 65% yield and 
95:5 er - a nearly identical enantioselectivity to the hy-
droamination reaction of the same sulfonamide sub-
strate. These results suggest that the common C–N bond 
forming step is stereoselectivity-determining in both 
transformations. 

    With this information in hand, we sought to better 
understand the nature of the interaction between the sub-
strate and the chiral catalyst. While our initial design 
conjectured a neutral hydrogen bonding interaction re-
sulting from a PCET-generated sulfonamidyl radical, 
we also considered that an alternative ion-pairing path-
way may be responsible for asymmetric induction as 
previously proposed by Luo and Nicewicz.17 This inter-
action could arise by an alternative mechanism where 
the pendant olefin (Ep/2(2-methyl-2-butene) = +1.60 V 
vs. Fc+/Fc) undergoes an endergonic single electron ox-
idation by the excited state of the Ir photocatalyst (E1/2 
[*Ir(III)/(II)] = +1.30 V vs. Fc+/Fc).18,19 The resulting 
ion pairing interaction between the alkene radical cation 
and chiral phosphate anion would then provide a basis 
for enantioinduction.  

   In seeking to distinguish between these pathways, 
we note that previously reported cyclic voltammetry and 
Stern-Volmer quenching studies were consistent with 
PCET-activation of sulfonamides under nearly identical 
conditions using achiral phosphate bases.20 Moreover, 

in the absence of the phosphate base (Table 1, Entry 11) 
no cyclized product is detected, and increased loadings 
of phosphate (Table 1, Entry 10) do not result in higher 
observed enantioselectivities. These results suggest the 
absence of a racemic background reaction proceeding 
through alkene oxidation.21 Furthermore, high reactivity 
and enantioselectivity were observed in reactions of di-
substituted alkenes (products 26–27), for which single 
electron oxidation is prohibitively endergonic (Ep/2(cy-
clopentene) = +1.99 V vs. Fc+/Fc) for the Ir complex 
employed.17  

     Lastly, an inverse relationship between solvent 
polarity and enantioselectivity is often been taken as 
support for an ion pairing mechanism. 22 In contrast, we 
observed that the enantioselectivity of this hydroamina-
tion reaction was notably insensitive to solvent dielec-
tric. Nearly identical selectivities are observed for reac-
tions run in either toluene (𝜀 = 2.4, er = 93:7) or acetoni-
trile (𝜀 = 36.6, er = 94:6), and only a moderate decrease 
was found for reactions run in highly polar propylene 
carbonate (𝜀 = 66.2, er = 85:15) (Table 4, Entries 1,5, 
and 6), though the reactivity was significantly diminsi-
hed.23 This insensitivity to solvent polarity argues 
strongly against a key role for ionic intermediates in C–
N bond forming step.  

   In conclusion, we have developed a PCET-based 
protocol for the asymmetric hydroamination of alkenes 
with sulfonamides to prepare enantioenriched pyrroli-
dine products. This method shows high enantioselectiv-
ity for a variety of alkene substitution patterns and sul-
fonamide substrates, including complex drug-derived 
examples. A variety of observations are consistent with 
a neutral catalyst-substrate interaction governing selec-
tivity in an enantiodetermining C–N bond forming step. 
Further work will aim to elucidate the precise interac-
tions underlying the observed selectivity, including the 
potential role of a post-PCET hydrogen bonding inter-

a Reactions were conducted on a 0.05 mmol 
scale, and yields determined by NMR analysis rela-
tive to an internal standard. Enantioselectivity deter-
mined by HPLC analysis on a chiral stationary 
phase. 
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action to the nitrogen radical that served as the key de-
sign hypothesis in the development of this work. We are 
optimistic that the results presented here can be ex-
tended more broadly to enable the development of other 
enantioselective reactions of free radical intermediates 
mediated solely by non-covalent associations.  
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