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Abstract

Earth observation satellites (EOSs) are specially equipped with remote sensing instru-

ments to acquire images. In practical EOS scheduling, the uncertainty of cloud coverage

is inevitable. We are the first to address robust EOS scheduling under uncertainty due

to cloud coverage where the objective function aims to maximize the entire observa-

tion profit. We provide a robust formulation of the scheduling problem on the basis

of a budgeted uncertainty set, while preserving the formulation linearity. A column-

generation-based heuristic is also developed, in which the scheduling decisions in each

satellite orbit are represented as columns. Eventually, a high-quality feasible solution is

obtained using the generated columns. Extensive simulations are conducted on the basis

of one of China’s EOS constellations. The results indicate that the average optimality

gap is less than 5%, which validates the performance of the proposed heuristic.

Keywords: Earth observation satellites, robust scheduling, cloud coverage, budgeted

∗Corresponding author
Email address: hanchao@buaa.edu.cn (Chao Han)

1This work was supported by the China Scholarship Council and the Academic Excellence Foundation
of BUAA for PhD students.

Preprint submitted to IEEE Transactions on Aerospace and Electronic Systems March 18, 2020



uncertainty set, column-generation heuristic

1. Introduction

Earth observation satellites (EOSs) utilize remote sensing instruments to acquire im-

ages of the Earth surface, performing observations with large field of view according to

users requirements. The broad range of applications of EOSs includes the fields of Earth

resource exploration, global climate monitoring and disaster surveillance. With the num-

ber of orbiting EOSs and observation demands continuously growing [1], scheduling the

observation targets for a set of EOSs has also become of the utmost importance. In this

process of EOS scheduling, each satellite is designated to execute specific observation

missions; in this work, an observation mission refers to the observation of one specific

ground target by one given satellite within a specific observation time window (OTW ).

As seen in Figure 1, a typical EOS has limited attitude maneuvering capacity along

the roll axis, leading to a fixed OTW for targets in a given satellite orbit. The EOS can

only start its observation at a pre-determined time ta and end the observation at time tb.

EOS scheduling has been well studied recently. Lin et al. [2] have developed an integer

programming model to solve the imaging order scheduling problem for the EOS ROCSAT-

II. Gabrel and Vanderpooten [3] formulate an EOS scheduling problem as the selection of

a multiple-criteria path in a graph without cycles (a cycle is a path in which the first and

last vertex are the same). Two stages are designed to generate efficient paths and select

satisfactory paths using a multiple-criteria interactive procedure. Vasquez and Hao [4]
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Figure 1: Illustration of the fixed observation interval of an EOS.

consider a large number of logical constraints and present a knapsack model [5]. Perea

et al. [6] propose an EOS swath acquisition scheduling problem, which is modeled with a

set covering formulation. A greedy randomized adaptive search procedure (GRASP) [7]

is then introduced to find heuristic solutions. Considering the drift-angle constraint,

Du et al. [8] provide an area target observation scheduling formulation and propose

an ant colony algorithm to solve the problem. Ntagiou et al. [9] design an automated

mission scheduling model for an Earth imaging mission and a data relay mission. Ant

colony optimization is then applied to address these problems. Several constraint-

satisfaction-based models [10, 11, 12] have also been proposed. In order to address the

scheduling problem described with the use of these models, genetic algorithms are widely

utilized [12, 13, 14, 15, 16], and other heuristic techniques have been developed [4, 12, 17].

Similarly, other satellite scheduling problems that aim to maximize the data transition

throughput (downlink or uplink) have also been addressed [18, 19].

3



In practical EOS scheduling, the uncertainty of cloud coverage is inevitable. Ju and

Roy [20] report that the pictures obtained by the Landsat-7 sensor were covered by clouds

for around 35% on average, demonstrating that cloud coverage seems to be inevitable.

Algra [21] proposes cloud-cover avoidance methods to improve system efficiency, while

maintaining effective revisit time performance. Liao and Yang [22] consider current and

future weather conditions to provide qualified pictures satisfying customer requirements,

and establish a stochastic integer programming model. Lin et al. [2], Lin and Liao [23],

and Lin and Chang [24] use cloud-coverage prediction data sets from weather forecasts

and acquire substantially cloud-free images. Wang et al. [25] formulate cloud coverage as

a stochastic event and propose an integer linear programming model based on a sample

approximation method. Pang et al. [26] design an energy-efficient scheduling method

considering stochastic failures where scenario optimization is utilized. Zhai et al. [27]

consider that the observation missions may not be completed due to changing weather

conditions, and propose a mission rearrangement method.

It is worth pointing out that all existing models considering cloud-coverage uncertainty

have assumed that an observation mission is not awarded any profit once there are clouds

in the picture. Nevertheless, pictures with partial cloud coverage can still be useful

and entail a certain profit via cloud removal and image analysis in practice [28, 29, 30].

Consequently, the actual profit obtained from each observation mission will typically be

a value strictly between zero and the profit without cloud coverage. To the best of our
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knowledge, none of the existing models in this domain can readily be applied to optimize

the actual profit retained in practice. In order to accurately describe the actual profit

from each candidate observation mission, we will define a bounded profit range with a

nominal and a deviation value, where the nominal value is the expected mission profit

according to the mission’s importance and the predicted cloud coverage, and the deviation

value depends on the accuracy of the weather forecast. The actual observation profit is

known when the actual weather condition is revealed.

There are two major paradigms for incorporating uncertainty into an optimization

problem, namely stochastic programming and robust optimization. Stochastic program-

ming involves a probability distribution for the uncertain parameters [31], while the

accurate distributions are hard to obtain or even estimate in practice. Robust optimiza-

tion, on the other hand, can still work with incomplete probabilistic information, and is

typically more tractable from a practical point of view [32, 33]. Robust optimization has

received significant attention ever since the work of Soyster [34], who applies a robust re-

formulation to find a solution that is feasible for all scenarios and has the best worst-case

performance. Kouvelis and Yu [35] further extend and develop the robustness approach

to decision making, assuming inadequate knowledge of the decision maker about the ran-

dom state of nature. The aforementioned worst-case methods, however, tend to produce

overly conservative solutions, and to accommodate this over-conservatism Bertsimas and

Sim [36, 37] define a budgeted uncertainty set, where the level of conservatism can be
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controlled while the robust formulation remains linear. With the advantages of flexibil-

ity and tractability, the concept of a budgeted uncertainty set has been widely applied

in many application areas, such as power system operations [38], inventory theory [39],

vehicle routing [40] and bin packing [41].

In this paper, we address a robust EOS scheduling problem with cloud-coverage un-

certainty, subsequently referred to as “RSS.” We aim to maximize the entire observation

profit subject to various practical constraints when the cloud coverage, which influences

the actual observation profit, is uncertain. The robust formulation is described on the

basis of a budgeted uncertainty set.

Large RSS instances typically require models with a great number of variables. We

therefore resort to column generation (CG), which is a standard tool for solving a math-

ematical formulation with a high number of columns, by iteratively adding variables

(colums) to a restricted model with a subset of the columns [42]. We decompose an ini-

tial compact formulation of RSS into different orbits, and represent the schedule in each

satellite orbit as a column. Then a CG procedure is executed where the optimal solution

of the restricted master problem (RMP) provides a linear programming (LP) bound for

RSS. The RMP is iteratively solved by a commercial solver and the pricing problems are

tackled with a dynamic programming (DP) method, until the optimal solution of RMP is

found. Subsequently, a high-quality integer solution to RSS is obtained using all columns

generated in the CG phase.
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The main contributions of this paper are threefold. (1) We study an EOS scheduling

problem under cloud-coverage uncertainty, with a bounded profit range to describe the

actual profit in practice. (2) For the first time, a budgeted certainty set [37] is introduced

to describe the uncertainty of cloud coverage in EOS scheduling, providing a trade-off

between cost and robustness while preserving formulation linearity. (3) A compact robust

formulation for RSS cannot be effectively handled by a generic commercial solver, and we

therefore propose a CG-based heuristic, with a DP procedure for the pricing problems.

The remainder of this paper is structured as follows. A deterministic and a robust

variant of RSS are defined in Section 2. The CG-based heuristic is sketched in Section 3.

Section 4 contains a series of computational results which demonstrate the performance

of the proposed model and method. We conclude our work in Section 5.

2. Problem statement

In this section, the deterministic EOS scheduling problem is first introduced, followed

by a robust reformulation.

2.1. Deterministic EOS scheduling

The following assumptions will be maintained throughout this text regarding EOS

scheduling:

1. A set of multiple EOSs executes observation missions for given targets within a

given horizon.
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2. Each satellite processes at most one observation mission at a given time, and ob-

servation preemption is not allowed.

3. Each target can be observed more than once to generate a higher profit, while there

is an profit upper bound for each target.

4. The mission transformation time, energy consumption and memory capacity are

considered as hard constraints.

5. The process of data transmission is not considered since we assume there are enough

ground transmission stations and relay satellites to satisfy the data downlink re-

quirements.

An overview of the most important symbols is as follows.

• T : the set of observation targets

• S: the set of satellites

• Bj: the set of orbits for satellite j ∈ S

• Mjk: the set of candidate observation missions for each orbit k ∈ Bj

• (OTWjkp, i, ρjkp): a tuple denoting each observation mission p in orbit k ∈ Bj,

where i represents the associated target and ρjkp is the received observation profit

• Ui: profit upper bound for each target i ∈ T

• xjkpq: binary decision variable for observation missions p and q in orbit k ∈ Bj
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• yi: real variable representing the actual observation profit for each target i ∈ T

The value of ρjkp is typically determined by the observation target, the specific ob-

servation time window and the corresponding cloud coverage conditions. In practice, the

range of ρjkp is given as input. Typically, multiple missions are associated with each

target. Since we cannot receive unlimited profit for multiple observations for one tar-

get (see assumption 3 above), a profit upper bound Ui is defined for each target i ∈ T .

For a first intuitive formulation of the deterministic variant of RSS, we define decision

variable xjkpq, which equals 1 when observation mission q is the immediate successor of

mission p in orbit k ∈ Bj, and xjkpq = 0 otherwise. Dummy missions sjk and ejk are

added as source and sink nodes respectively in each satellite orbit. Moreover, variable yi

is introduced, with 0 ≤ yi ≤ Ui, to represent the actual observation profit for each target

i ∈ T .

Transformation constraints between two missions are checked in a preprocessing step:

the decision variable xjkpq is defined only on condition that the sum of the completion time

of mission p and the transformation time ∆T
jkpq is not greater than the starting time of

mission q in orbit k ∈ Bj. In fact, we only check transitions from one observation mission

to other missions in the same orbit, since missions in different orbits always have enough

transformation time. In the worst case when all targets are accessible by the satellite

in one orbit, the computational complexity of the preprocessing is still O(n2), with n

the number of observation targets. The quantity ∆T
jkpq consists of attitude maneuvering

9



time ∆V
jkpq and attitude stabilization time ∆S

jkpq, which are known values for the decision

makers.

For modelling the memory constraints, we define MC
j and M I

j as, respectively, the

satellite memory capacity in each orbit and the unit-time imaging memory occupation

of satellite j. The total memory occupation of observation missions in each orbit cannot

exceed the corresponding memory capacity. The maximal energy capacity of satellite j

can be assumed to be constant [25] and is denoted as EC
j in each orbit. Finally, we rep-

resent the unit-time imaging energy consumption and maneuvering energy consumption

as EI
j and EM

j for satellite j, respectively. Our model for deterministic EOS scheduling

is then:

max
∑
i∈T

yi (1)

subject to

∑
j∈S

∑
k∈Bj

∑
p∈M i

jk

∑
q∈Mjk∪e

ρjkp · xjkpq ≥ yi ∀i ∈ T (2)

0 ≤ yi ≤ Ui ∀i ∈ T (3)
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∑
q∈Mjk∪e

xjkpq −
∑

q∈Mjk∪s

xjkqp =



1, p = sjk

0, ∀p ∈Mjk

−1, p = ejk

∀k ∈ Bj, j ∈ S (4)

∑
p∈Mjk

∑
q∈Mjk∪e

xjkpqdjkpM
I
j ≤MC

j ∀k ∈ Bj, j ∈ S (5)

∑
p∈Mjk

∑
q∈Mjk∪e

xjkpqdjkpE
I
j +

∑
p∈Mjk

∑
q∈Mjk

xjkpq∆
V
jkpqE

M
j ≤ EC

j ∀k ∈ Bj, j ∈ S (6)

xjkpq ∈ {0, 1} ∀q ∈Mjk∪e, p ∈Mjk∪s, k ∈ Bj, j ∈ S (7)

where M i
jk stands for the observation mission set associated with target i in orbit k ∈

Bj, Mjk∪s = Mjk

⋃
{sjk}, Mjk∪e = Mjk

⋃
{ejk} and djkp is the observation duration

of OTWjkp. In this model, constraints (2) indicate that observation profit is obtained

according to the scheduled observation missions for each target when the target profit is

bounded by constraints (3). Constraint set (4) ensures flow generation and conservation.

The memory and energy constraints are satisfied through (5) and (6), respectively. A

variant of the foregoing model, which does not consider cloud coverage and with a profit

function that is non-linear in the number of observations, was studied earlier in [43].

2.2. Robust reformulation

Uncertainty is inevitable in EOS scheduling, and cloud coverage is one of the main

causes. Dependent on the mission importance and the weather conditions, the actual
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profit of mission p in orbit k ∈ Bj is bounded to an interval [ρ̄jkp− ρ̂jkp, ρ̄jkp + ρ̂jkp], where

ρ̄jkp is the nominal profit and ρ̂jkp is the deviation; ρ̄jkp and ρ̂jkp are non-negative, with

ρ̄jkp ≥ ρ̂jkp. The deviation value depends on the accuracy of the weather forecast. In

line with the ideas in [37], an integer Γi is input, serving as a budget for the number of

scheduled missions associated with target i that can deviate from their nominal profit,

which controls the so-called “price” of robustness. The value of Γi should be set by the

decision maker according to the operational cost of the satellites and the desired level of

conservativeness.

A robust solution protects against the extreme situation where multiple missions

with worst-case profit deviation are associated with the same target (namely, up to Γi

for target i). The constraints (2) are then replaced by

∑
j∈S

∑
k∈Bj

∑
p∈M i

jk

∑
q∈Mjk∪e

ρ̄jkpxjkpq − max
M̄⊂M i:|M̄ |≤Γi

∑
p∈M̄

ρ̂jkpxjkpq ≥ yi, ∀i ∈ T (8)

where M i =
⋃

k∈Bj ,j∈S M
i
jk, the set of candidate missions for target i across all orbits and

satellites. For each target i, the second term in the left-hand side of equation (8), which

represents the protection for a mission schedule x∗, can be denoted as βi(x
∗,Γ). This

value can be computed via the following auxiliary program:

βi(x
∗,Γ) = max

∑
p∈M i

ρ̂jkpx
∗
jkpqzjkpq (9)

12



s.t.
∑
p∈M i

zjkpq ≤ Γi (10)

0 ≤ zjkpq ≤ 1 ∀q ∈Mjk∪e, p ∈M i
jk, k ∈ Bj, j ∈ S (11)

For a solution to βi(x
∗,Γ), we can simply sort all missions associated with target i

in non-ascending order of profit deviation and pick at most Γi observation missions from

the beginning of the list.

We associate the dual variables θ1
i with constraints (10) and dual variables θ2

jkpq with

constraints (11). Then the dual formulation of model (9)–(11) is (for a given i ∈ T ):

min Γiθ
1
i +

∑
j∈S

∑
k∈Bj

∑
p∈M i

jk

∑
q∈Mjk∪e

θ2
jkpq (12)

s.t. θ1
i ≥ 0 (13)

θ1
i + θ2

jkpq ≥ ρ̂jkpx
∗
jkpq ∀q ∈Mjk∪e, p ∈M i

jk, k ∈ Bj, j ∈ S (14)

θ2
jkpq ≥ 0 ∀q ∈Mjk∪e, p ∈M i

jk, k ∈ Bj, j ∈ S (15)

By strong duality, the optimal value of (12)–(15) equals βi(x
∗,Γ). Substituting this

formulation into (8), the problem RSS can be captured as the maximization of (1) subject

to constraints (3)–(7), (13), (15) and

∑
j∈S

∑
k∈Bj

∑
p∈M i

jk

∑
q∈Mjk∪e

ρ̄jkpxjkpq ≥ yi + Γiθ
1
i +

∑
j∈S

∑
k∈Bj

∑
p∈M i

jk

∑
q∈Mjk∪e

θ2
jkpq ∀i ∈ T (16)
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θ1
i + θ2

jkpq ≥ ρ̂jkpxjkpq ∀q ∈Mjk∪e, p ∈M i
jk, k ∈ Bj, j ∈ S, i ∈ T (17)

Although a large number of dual constraints are introduced into the robust model,

the robust reformulation remains linear.

2.3. Illustration

To further distinguish the robust model from the deterministic one, an illustrative

instance is presented in this section. We consider one satellite only, for which the param-

eters for five potential non-dummy observation missions in three different satellite orbits

are presented in Table 1, where the first column is the mission index, and columns ρ̄ and

ρ̂ are the nominal profit and the profit deviation, respectively. The remaining columns

contain the observation time window, the target and the orbit per mission. The profit

upper bound Ui and uncertainty budget Γi are set as 12 and 1, respectively, for all tar-

gets i. Memory and energy constraints are not considered here for simplicity. Notice that

observation missions 1 and 2 overlap and thus cannot be scheduled together; the same

goes for missions 3 and 4.

Table 1: An illustrative instance.

mission ρ̄ ρ̂ OTW target orbit

1 9 3 [20, 30] 1 1
2 6 1 [25, 35] 2 1
3 8 3 [200, 210] 2 2
4 7 1 [205, 215] 1 2
5 5 1 [300, 310] 3 3
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The deterministic model, in which each ρjkp = ρ̄jkp, has an optimal solution that

executes missions 1, 3 and 5, achieving a maximal profit of 9 + 8 + 5 = 22.

In the robust formulation with uncertainty budget, the same schedule receives a profit

of (9−3)+(8−3)+(5−1) = 15. An optimal robust schedule, however, executes missions

1, 4 and 5, with profit (9− 3) + (7− 1) + (5− 1) = 16. This example clearly shows that

the incorporation of uncertainty has a strong influence on the scheduling results.

3. Column-generation heuristic

CG, which was first proposed in [44, 45] for the cutting-stock problem, has been

used for decades in various fields [42, 46, 47, 48]. The main advantage of CG is that

not all possible variables need to be enumerated. Below we describe a decomposition of

the compact formulation for RSS proposed in Section 2.2, leading to a new model that

typically has a better LP bound but with a large number of variables, which will be the

basis for the CG heuristic that is developed.

3.1. Formulation decomposition and pricing problems

The original model for RSS is decomposed by enumerating all possible solutions per

satellite orbit. The schedules xjkpq in each orbit k are regarded as columns. Denote the

set of schedules for satellite orbit k ∈ Bj as Rjk. Each schedule m ∈ Rjk contains values

xmjkpq, where xmjkpq = 1 if the mission p is the immediate predecessor of mission q, and

xmjkpq = 0 otherwise. A binary variable zjkm is introduced so that zjkm = 1 when schedule
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m ∈ Rjk is chosen and 0 otherwise. The resulting master problem is then to maximize (1)

subject to (3), (13), (15) and

∑
j∈S

∑
k∈Bj

∑
p∈M i

jk

∑
q∈Mjk∪e

∑
m∈Rjk

ρ̄jkpx
m
jkpqzjkm ≥ yi + Γiθ

1
i +

∑
j∈S

∑
k∈Bj

∑
p∈M i

jk

∑
q∈Mjk∪e

θ2
jkpq ∀i ∈ T

(18)

θ1
i + θ2

jkpq ≥
∑

m∈Rjk

ρ̂jkpx
m
jkpqzjkm ∀q ∈Mjk∪e, p ∈M i

jk, k ∈ Bj, j ∈ S, i ∈ T (19)

∑
m∈Rjk

zjkm = 1 ∀k ∈ Bj, j ∈ S (20)

zjkm ∈ {0, 1} ∀m ∈ Rjk, k ∈ Bj, j ∈ S (21)

Constraints (18) and (19) correspond with (16) and (17). Constraints (20) state that

only one scheduling solution is selected per orbit.

The integrality of the master problem is removed for the LP relaxation. With dual

variables π1
i with constraints (3), variables π2

i with constraints (18), variables π3
jkpq with

constraints (19), and variables π4
jk with constraints (20), we obtain the following dual:

min
∑
i∈T

π1
iUi +

∑
j∈S

∑
k∈Bj

π4
jk (22)
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subject to

π1
i − π2

i ≥ 1 ∀i ∈ T (23)

− Γiπ
2
i +

∑
j∈S

∑
k∈Bj

∑
p∈M i

jk

∑
q∈Mjk∪e

π3
jkpq ≥ 0 ∀i ∈ T (24)

− π2
i + π3

jkpq ≥ 0 ∀q ∈Mjk∪e, p ∈M i
jk, k ∈ Bj, j ∈ S, i ∈ T (25)∑

i∈T

∑
p∈M i

jk

∑
q∈Mjk∪e

(ρ̄jkpπ
2
i − ρ̂jkpπ3

jkpq)x
m
jkpq + π4

jk ≥ 0 ∀m ∈ Rjk, k ∈ Bj, j ∈ S (26)

π1
i ≥ 0, π2

i ≤ 0 ∀i ∈ T (27)

π3
jkpq ≤ 0 ∀q ∈Mjk∪e, p ∈M i

jk, k ∈ Bj, j ∈ S, i ∈ T (28)

π4
jk ∈ R ∀k ∈ Bj, j ∈ S (29)

In the RMP, not all columns in Rjk are included, but for LP optimality we should

check all the constraints (26) at each CG iteration. If a non-included column with a

violated constraint exists, it should be added to the model and otherwise the solution

to the RMP is optimal also for the full master with all columns. The LP relaxation is

typically solved faster by adding strongly violated constraints, and this equates with the

search for columns in the primal master with most negative reduced cost. This search is

referred to as a pricing problem, separately for each satellite orbit k ∈ Bj, as follows:

min
∑
i∈T

∑
p∈M i

jk

∑
q∈Mjk∪e

(ρ̄jkpπ
2
i − ρ̂jkpπ3

jkpq)xjkpq + π4
jk (30)
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s.t.
∑

q∈Mjk∪e

xjkpq −
∑

q∈Mjk∪s

xjkqp =



1, p = sjk

0, ∀p ∈Mjk

−1, p = ejk

(31)

∑
p∈Mjk

∑
q∈Mjk∪e

xjkpqdjkpM
I
j ≤MC

j (32)

∑
p∈Mjk

∑
q∈Mjk∪e

xjkpqdjkpE
I
j +

∑
p∈Mjk

∑
q∈Mjk

xjkpq∆
V
jkpqE

M
j ≤ EC

j (33)

For each pricing problem (each satellite orbit), if the optimal value of the pricing

problem is less than 0, then a new column is generated with lowest reduced cost in the

corresponding orbit; otherwise no column is appended. The iterative CG procedure halts

when the pricing problem for each satellite orbit obtains an optimal value not less than 0,

indicating that constraints (26) are satisfied. In our computational experiments described

in Section 4, the number of CG iterations typically depends on the size of instance, mainly

on the number of observation targets. The corresponding LP objective value constitutes

a tight upper bound for problem RSS.

3.2. Column initialization

We introduce a dominance relation among the columns to improve the initialization

process. For each satellite orbit, if the worst-case profit of the scheduled observations for

any target in column m1 is no less than the nominal profit of the corresponding target

in column m2, and for at least one target, the worst-case profit in column m1 is strictly
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greater than that of column m2, then column m2 can be discarded since column m1 offers

more contribution to the objective function even in the worst situation.

The random column initialization process proceeds as follows. The number of at-

tempts generating initial columns in each satellite orbit is given as input. For each

generation iteration in orbit k ∈ Bj, we randomly re-order the observation missions and

check whether they can be greedily added into the current schedule CurR. After the

generation of the CurR, we then check whether it is dominated by the existing columns

in Rjk. CurR is discarded if it is dominated, otherwise CurR is added into the column

pool Rjk. Similarly, if a column currently in the column set is dominated by CurR, then

we remove the dominated column.

3.3. Dynamic programming for pricing

The pricing problems in each orbit need to be solved iteratively in the CG process.

Following Gabrel and Vanderpooten [3], a DP method with partial path dominance cri-

teria is designed for solving the pricing problems efficiently.

For each pricing problem in satellite orbit k ∈ Bj, a directed acyclic graph Gjk =

(Njk, Ejk) is defined initially, where the vertex set Njk contains all candidate observation

missions and dummy missions sjk and ejk, and an edge is present in the edge set Ejk if

the mission corresponding with the destination node can be executed immediately after

the origin node. We also include edges from sjk to each other vertex, and ejk has edges

incoming from all other vertices. Then we define partial paths in graph Gjk as follows.
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Definition 1. Partial Path. For the pricing problem in satellite orbit k ∈ Bj, a partial

path Pjkpt is a tuple (PCostjkpt, PMjkpt, PEjkpt), representing a path that connects the

dummy source mission to an actual observation mission or dummy sink mission p, with t

an index of the different paths ending at mission p, PCostjkpt representing the sum of the

mission cost along the path, and PMjkpt and PEjkpt denoting the consumption of mission

memory occupation and energy along the path, respectively.

Note that the partial path can contain several missions, as long as all constraints are

satisfied. The mission cost MCostjkp of mission p in orbit k ∈ Bj equals ρ̄jkpπ
2
i −ρ̂jkpπ3

jkpq,

where i is the associated mission target and q is the immediate predecessor mission (see

objective function (30)). For the dummy source and sink missions, the mission cost is

chosen as π4
jk/2, and the mission memory and energy consumption are set to 0. The

search for a column with the most negative reduced cost now transforms to the search of

a partial path with minimal mission cost from source to sink.

We denote the set of partial paths ending at mission p as Pjkp, and further introduce

the concept of partial path dominance to enhance the algorithmic efficiency of the DP

method.

Definition 2. Path dominance. We say that in the set of partial paths Pjkp, partial

path Pjkpt1 dominates Pjkpt2 when the following conditions hold, and at least one of the

inequalities is strict: 1) PCostjkpt1 ≤ PCostjkpt2; 2) PMjkpt1 ≤ PMjkpt2; 3) PEjkpt1 ≤

PEjkpt2.
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For the pricing problem in a given satellite orbit, a dominated partial path can be

discarded without losing all optimal solutions. The DP method with partial path domi-

nance is described in Algorithm 1. The observation missions in orbit k ∈ Bj are ordered

in increasing observation starting time so that each edge in Gjk leads to a mission with

a strictly larger starting time than its origin node. For each mission p in orbit k ∈ Bj,

we denote the set of candidate predecessor missions as M−p
jk , and we invoke function

GetCurPreMisIndex() to obtain the mission index of the predecessor mission. We then

extend the path in Pjkr ending at mission r by appending the current cost MCostjkp,

memory consumption MMjkp and energy MEjkp. Function CheckConstraints() returns

true when the extended path satisfies all constraints and returns false otherwise. Func-

tion CheckPathDominance() returns true if NewP is not dominated by paths in Pjkp

and false otherwise. The extended path can be added into Pjkp after the dominance

check. We also check whether NewP dominates the paths in Pjkp. Eventually, we ob-

tain a path with minimal cost in Pjke, which coincides with a minimum for objective

function (30).

3.4. Framework of the CG heuristic

The framework of the CG-based heuristic is sketched in Algorithm 2. After initializa-

tion of the column pool, the RMP is iteratively solved by a commercial solver while the

pricing problems are tackled with the DP method. Function CheckOptFound() returns

true when there is no new column generated for any of the satellite orbits; otherwise it
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Algorithm 1 DP for pricing
1: Order missions Mjk in ascending observation starting time;
2: for each mission p ∈Mjk

⋃
{ejk} do

3: Pjkp = ∅;
4: for each predecessor mission in M−p

jk do
5: r = GetCurPreMisIndex();
6: for each Pjkrt′ ∈Pjkr do
7: NewP = (PCostjkrt′ + MCostjkp, PMjkrt′ + MMjkp, PEjkrt′ + MEjkp);
8: if CheckConstraints(NewP ) then
9: if CheckPathDominance(Pjkq, NewP ) then

10: Pjkp = Pjkp

⋃
{NewP};

11: end if
12: end if
13: end for
14: end for
15: end for
16: Output a minimal-cost path in Pjke

returns false. Function CheckV iolationExist() returns true when the optimal solution

of the pricing problem violates the dual constraint, and false otherwise. At the end, a

feasible schedule is generated for RSS by solving the RMP with all the generated columns

as an integer program.

Algorithm 2 CG heuristic
1: Column initialization;
2: while CheckOptFound() do
3: Solve RMP and update dual parameters;
4: for each j ∈ S do
5: for each k ∈ Bj do
6: Solve the pricing problem via DP;
7: if CheckV iolationExist() then
8: Generate new column for current satellite orbit;
9: end if

10: end for
11: end for
12: end while
13: Solve the integer master problem of RSS with all the existing columns
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Table 2: Orbital parameters of the satellite constellation Gaojing-1.

ID a (km) i (◦) Ω (◦) e ω (◦) M (◦)

Sat1 6903.673 97.5839 97.8446 0.0016546 50.5083 2.0288
Sat2 6903.730 97.5310 95.1761 0.0015583 52.2620 31.4501
Sat3 6909.065 97.5840 93.1999 0.0009966 254.4613 155.2256
Sat4 6898.602 97.5825 92.3563 0.0014595 276.7332 140.1878

4. Computational experiments

4.1. Data generation

One of China’s high resolution EOS constellations, namely Gaojing-1 (SuperView-1) [49],

is used as the basis for the data generation. Gaojing-1 is a Chinese commercial constella-

tion of four remote sensing satellites. In Table 2, the first column ID is the name of the

satellite, and the other columns contain the parameter values for the satellite semi-major

axis a, inclination i, right ascension of the ascending node Ω, eccentricity e, argument of

perigee ω and mean anomaly M . In addition, the satellite platform of the constellation

allows up to 30◦ maneuvers along the roll axis.

Since there is no common benchmark for EOS scheduling with cloud coverage uncer-

tainty, the experiments are conducted on a diverse set of instances. Following [50, 51], we

generate instances in which the observation targets are randomly distributed worldwide,

augmented with concentrations in specific interest areas. The total number of observa-

tion targets is 150, 200, 250 or 300, with a worldwide distribution of 150 targets, and

additionally zero, one, two or three interest areas with 50 targets each are generated in

each instance. We assume that each target is relatively small and that the satellite can
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entirely observe the target with a large-scale field of view for each observation mission.

The mission horizon is set as 72 hours (three days).

For each target i ∈ T , we define the target profit ρi, which is uniformly distributed

from 1 to 10, as the maximal observation profit that each mission associated with target i

can obtain. The upper profit Ui of target i is uniformly distributed from 1 to 2 times

ρi. The nominal profit of target i varies from 0 to ρi, indicating that the mission profit

depends on mission target’s importance as well as on predicted cloud-coverage conditions.

The profit deviation is uniformly distributed from 0.1 to 0.5 times the corresponding

nominal mission profit. In order to test the influence of various degrees of cloud-coverage

uncertainty, the budget value Γi is set as 1, 2 or 3, and takes the same value for all targets

i ∈ T in the instance.

Since the satellites in the Gaojing-1 constellation have very similar properties, we take

their parameters as identical. The unit-time imaging memory occupation M I is 10 MB/s,

while the unit-time imaging consumption EI and maneuvering energy consumption EM

are 500 and 1000 W , respectively. The memory capacity MC is set as 400, 500 or 600 MB.

The energy capacity EC is either 40, 50 or 60 kJ. For each combination of values for the

parameters, 10 instances are randomly generated.
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4.2. Computational results

4.2.1. Setup

The computational experiments are conducted on a laptop with Intel Core i5-7200

CPU at 2.5 GHz and 8 GB of RAM on a Windows 10 64-bit OS. Our algorithms are

implemented in Visual C++. All LPs and integer programs are solved by CPLEX 12.6.3

using Concert Technology with four threads on two cores. The optimality gap tolerance

of the integer solver and the time limit for each run are set as 1% and 1200 seconds,

respectively.

In the following tables, the columns labelled opt report the number of instances whose

integer master problem is solved within the time limit, out of 10 instances per setting.

The entries gap represent the relative gap between the integer solution obtained from

the CG heuristic and the LP bound. Columns time and mas report the total average

runtime, and the runtime spent on the integer master problem, respectively (both in

seconds).

4.2.2. Results and discussion

We first report the CPU time of the original compact robust formulation of Section 2.2

for instances with 150 and 200 targets in Table 3, where the columns gapc contain the rel-

ative solution gap (expressed as a percentage) reported by CPLEX. The solver efficiently

obtains optimal solutions for instances with 150 targets, although there is a slightly in-

creasing trend in the runtime as the budgeted value increases. For all instances with 200
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targets, however, the original formulation struggles due to its large size and does not run

to optimality within the time limit; the solution gaps are significant, and are increasing

with Γi. Due to this poor computational performance, we will not include the results of

the original formulation for the larger instances.

Table 3: Results of the compact robust formulation for instances with 150 and 200 targets.

150 targets 200 targets

Γi = 1 Γi = 2 Γi = 3 Γi = 1 Γi = 2 Γi = 3

MC EC time time time time gapc time gapc time gapc

400 40 1.91 5.73 6.30 1200.00 11.4 1200.00 18.9 1200.00 22.3
50 1.23 3.38 4.88 1200.00 8.8 1200.00 13.4 1200.00 16.1
60 0.99 2.84 3.89 1200.00 6.1 1200.00 10.1 1200.00 12.8

500 40 2.42 6.32 6.40 1200.00 12.6 1200.00 24.2 1200.00 25.4
50 1.22 3.84 10.09 1200.00 7.3 1200.00 19.7 1200.00 28.2
60 0.77 2.48 8.56 1200.00 6.8 1200.00 12.6 1200.00 20.9

600 40 2.05 4.17 11.67 1200.00 10.2 1200.00 16.6 1200.00 26.6
50 1.27 3.85 12.99 1200.00 7.7 1200.00 13.3 1200.00 31.7
60 0.72 1.72 6.55 1200.00 5.6 1200.00 9.5 1200.00 17.8

Overall 1.40 3.81 8.10 1200.00 8.9 1200.00 15.4 1200.00 22.4

The CG-based heuristic, referred as CGH below, is tested on instances with 150, 200,

250 and 300 targets, and the computational results are summarized in Tables 4 to 7.

Overall, CGH performs consistently well, obtaining high-quality solutions with less

than 4% average optimality gap. CGH produces integer solutions within limited time

for all instances with 150, 200 and 250 targets. For 46 out of the 270 instances with

300 targets, CGH is unable to complete the integer master problem within the imposed

limit of 1200 seconds, since CPLEX struggles with the branch-and-bound procedure for

large instances (the CG phase for the LP relaxation is very fast). The average gap between
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Table 4: Results for CGH on instances with 150 targets.

Γi = 1 Γi = 2 Γi = 3

MC EC opt gap time mas opt gap time mas opt gap time mas

400 40 10 2.18 4.24 0.46 10 2.60 4.05 1.01 10 2.47 4.76 1.27
50 10 2.06 4.52 0.44 10 2.48 4.21 0.89 10 2.37 4.56 1.13
60 10 2.02 4.51 0.37 10 2.44 4.42 0.87 10 2.38 4.62 1.12

500 40 10 2.13 3.73 0.48 10 2.58 4.09 0.94 10 2.44 4.75 1.06
50 10 1.93 4.51 0.33 10 2.35 4.44 0.83 10 2.34 4.49 0.99
60 10 1.87 3.97 0.24 10 2.29 3.99 0.59 10 2.22 4.15 0.91

600 40 10 2.11 3.46 0.44 10 2.58 3.89 0.97 10 2.43 4.07 0.99
50 10 1.98 4.18 0.32 10 2.31 4.49 0.71 10 2.35 3.85 0.93
60 10 1.85 4.03 0.22 10 2.17 3.93 0.49 10 2.16 3.94 0.80

Overall 90 2.01 4.13 0.37 90 2.42 4.17 0.81 90 2.35 4.35 1.02

Table 5: Results for CGH on instances with 200 targets.

Γi = 1 Γi = 2 Γi = 3

MC EC opt gap time mas opt gap time mas opt gap time mas

400 40 10 2.87 5.16 1.44 10 3.62 7.08 3.36 10 3.62 8.51 4.56
50 10 2.83 4.85 1.08 10 3.50 6.20 2.63 10 3.38 7.68 3.70
60 10 2.76 5.24 1.12 10 3.58 6.75 2.88 10 3.38 7.47 3.55

500 40 10 2.85 5.02 1.34 10 3.70 6.64 2.97 10 3.46 7.82 3.89
50 10 2.67 4.43 0.89 10 3.34 5.68 2.19 10 3.25 6.68 2.83
60 10 2.60 5.03 0.89 10 3.29 6.08 2.18 10 3.17 6.65 2.72

600 40 10 2.70 4.92 1.06 10 3.57 6.68 2.94 10 3.47 7.34 3.64
50 10 2.59 4.60 0.75 10 3.34 5.82 2.14 10 3.23 6.64 2.96
60 10 2.53 4.89 0.62 10 3.22 6.25 1.83 10 3.14 6.67 2.26

Overall 90 2.71 4.90 1.02 90 3.46 6.35 2.56 90 3.34 7.27 3.35

Table 6: Results for CGH on instances with 250 targets.

Γi = 1 Γi = 2 Γi = 3

MC EC opt gap time mas opt gap time mas opt gap time mas

400 40 10 3.21 9.72 4.53 10 4.10 16.20 10.82 10 3.79 23.24 18.10
50 10 3.27 10.84 5.35 10 4.03 22.29 16.46 10 3.70 26.45 20.76
60 10 3.22 10.90 4.83 10 4.00 18.71 12.91 10 3.69 24.92 18.98

500 40 10 3.63 17.26 12.08 10 3.43 14.91 9.63 10 4.08 47.09 41.68
50 10 3.28 11.80 5.82 10 3.84 21.14 15.21 10 3.72 21.32 27.28
60 10 3.39 24.76 18.56 10 3.26 14.75 7.93 10 3.84 20.71 14.37

600 40 10 3.24 10.50 5.37 10 4.01 20.99 15.81 10 3.85 22.56 17.27
50 10 3.14 12.25 6.21 10 3.99 21.76 15.48 10 3.71 24.14 18.13
60 10 3.02 11.84 5.05 10 3.79 19.42 12.00 10 3.61 25.39 18.53

Overall 90 3.27 13.32 7.53 90 3.83 18.91 12.92 90 3.78 26.20 21.68
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Table 7: Results for CGH on instances with 300 targets.

Γi = 1 Γi = 2 Γi = 3

MC EC opt gap time mas opt gap time mas opt gap time mas

400 40 10 3.64 24.80 17.74 8 4.54 313.74 306.67 8 4.16 292.43 284.76
50 10 3.51 29.47 22.08 7 4.41 380.99 373.17 8 4.16 292.37 283.65
60 10 3.58 20.33 12.91 7 4.45 423.70 414.96 8 4.22 336.69 327.05

500 40 10 3.47 24.20 16.37 7 4.42 321.18 313.26 8 4.14 308.05 299.60
50 10 3.45 29.09 19.90 8 4.34 397.10 386.77 8 4.07 339.14 329.61
60 10 3.47 22.61 13.18 7 4.34 387.22 377.65 7 4.12 398.47 386.03

600 40 10 3.54 29.68 21.56 7 4.39 370.90 362.89 7 4.14 396.48 387.57
50 10 3.36 20.98 13.28 7 4.30 384.96 375.72 8 4.00 354.12 344.90
60 10 3.36 25.66 15.02 7 4.28 389.85 379.89 7 4.07 399.22 387.90

Overall 90 3.49 25.20 16.89 65 4.38 374.40 365.66 69 4.12 346.33 336.79

the best obtained solution after 1200 seconds and the LP bound for these instances is

still less than 5%, however, which indicates that the integer master problem is probably

nearly solved to optimality.

We also observe that as the number of targets increases, the average LP gap (between

the best solution found and the LP bound) rises slightly but never exceeds 5% for any

setting. It is worth pointing out that the real optimality gap between the solution output

by CGH and the optimal objective-function value is typically far smaller than the value

gap, since the LP bound is only an upper bound. Different values of Γi also lead to

different LP gaps; this influence is analyzed more explicitly in Section 4.2.3.

The values of the memory capacity MC and energy capacity EC do not have much

impact on the performance of CGH. This is because the number of candidate missions

in the instances is never more than 2000, which ensures that the pricing problems can

be efficiently solved by the DP algorithm. Even for the largest instances, the resolution
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Table 8: The impact of the budget on the solutions and the runtime.

Γi obj gap time

0 14570 1.08 3.73
1 13524 3.18 11.05
2 12989 3.67 18.50
3 12751 3.17 21.40
4 12625 3.20 25.04
5 12578 2.61 17.13
6 12554 2.11 12.43
7 12550 1.73 9.73
8 12545 1.44 7.28
9 12542 1.24 6.83

Overall 12923 2.34 13.31

of the LP relaxation (RMP) never exceeds 10 seconds, and most of the CGH runtime

is spent on the integer master problem. The proportion of time spent on the integer

program thus goes up as the number of targets increases. Especially for 300 targets

and Γi equal to 2 or 3, the integer master problem occupies more than 95% of the total

runtime.

4.2.3. Sensitivity analysis

The budgeted value Γi is the key parameter of the robust model. In this section, we

examine its influence on the solutions and the runtime. We fix the energy and memory

capacity of the satellites as 50 kJ and 500 MB, and 10 instances with 250 targets are

used to conduct this small sensitivity analysis of the performance of CGH.

The simulation results are reported in Table 8, where column obj represents the

average objective-function value over the 10 instances. Clearly, the highest objective

value is obtained when Γi = 0, since then we simply do not consider cloud-coverage
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uncertainty at all. The objective function decreases with larger Γi, which indicates that

more conservative scheduling results are produced when we account for cloud-coverage

uncertainty; the deterioration in the objective can be seen as the “price of robustness.”

The decrease gradually diminishes with higher budget, and is very limited upon going

from Γi = 8 to 9. This is logical: for each target, when the number of candidate missions

is less than Γi, the achieved mission profit for target i remains unchanged.
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Figure 2: The influence of budgeted value on the runtime and LP gap.

As seen in the table and in Figure 2, the budget also has a significant impact on the

runtime. The figure clearly shows an easy-hard-easy transition, where the average runtime

first climbs with increasing Γi, then reaches a peak around 25 seconds for Γi = 4, and then

goes down again when Γi increases beyond 4. For small Γi (≤ 4), the increase in runtime

occurs because of the increasing difficulty of protection against uncertainty, with more

non-dominated columns generated. For larger budget, protection against uncertainty

becomes easier for more targets, and when Γi is greater than or equal to the number of
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candidate missions of target i, all candidate missions with target i are forced to contribute

their worst-case profit. The figure shows a similar pattern for the LP gap.

The length of the mission horizon also influences the performance of the proposed

CGH. We select one instance with 250 targets and set the budgeted value as 2. The

memory and energy capacities of the satellites remain as 50 kJ and 500 MB.

Table 9 contains the results of a sensitivity analysis with respect to the horizon length,

where the columns Horizon and |M | denote the mission horizon (in days) and the number

of candidate observation missions, respectively. We observe that a longer horizon leads

to more orbits, which provides a higher chance of generating more candidate observation

missions and thus obtaining higher profits. A detailed computational procedure can be

found in [52], where a rapid satellite-to-target access determination method is designed

for generating candidate missions; the number of such missions is approximately linear

in the horizon length. The profit growth declines for longer horizons, however. This is

logical: each target’s profit is upper bounded, and thus also the maximum attainable

overall profit, such that the gap becomes smaller with longer horizons. The runtime

also follows an easy-hard-easy transition with the horizon length. When the horizon is

relatively short, CGH can struggle with large instances due to an increasing number of

candidate observation missions; for larger horizons, the objective-function value gradually

approaches the profit upper bound, making the model easy to solve.
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Table 9: The impact of the horizon length.

Horizon |M | obj gap time

1 386 7601 5.97 8.55
3 1119 11381 3.19 20.51
5 1758 13720 2.82 492.18
7 2348 15051 1.18 280.56
10 3400 15155 0.99 26.27

Overall 1802 12582 2.83 181.91

5. Conclusions

In this article, we have studied the robust scheduling of Earth observation satellites

with cloud-coverage uncertainty. We aim to maximize the total observation profit, which

is influenced by the conditions of cloud coverage. A robust model with budgeted uncer-

tainty set is developed, where we control the price of robustness via a budget value. A

compact robust formulation with rather poor computational performance is decomposed

according to the different satellite orbits, and we propose a column-generation heuristic

based on the reformulation. Computational results show that the original robust for-

mulation can only solve small instances, while the proposed heuristic efficiently obtains

near-optimal solutions also for large instances.

Future research on robust EOS scheduling with protection from cloud coverage may

be oriented in several directions. Agile EOSs with strong attitude maneuvering ability

can generate more candidates missions, but the scheduling complexity is obviously signif-

icantly increased by this agile character [53, 54]. Preliminary experiments demonstrate

that the method proposed in this work cannot be readily applied for agile EOS scheduling
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under uncertainty, which is still a largely unexplored topic. Another valuable avenue for

future research is a more accurate modelling of the data transmission constraints (uplink

and downlink). Finally, autonomous satellite scheduling systems have received signif-

icant attention recently [55, 56]; combining planning methods under uncertainty with

autonomous planning platforms is also a promising opportunity for future engineering

practice.
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