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Abstract12

Purpose: Robust optimization is becoming the gold standard for generating robust13

plans against various kinds of treatment uncertainties. Today, most robust optimiza-14

tion strategies use a pragmatic set of treatment scenarios (so-called uncertainty set)15

consisting of combinations of maximum errors, of each considered uncertainty source.16

This approach presents two key issues. First, a subset of considered scenarios are un-17

necessarily improbable which could potentially compromise the plan quality. Second,18

the resulting uncertainty set leads to long plan computation times, which limits the19

potential for robust optimization as a standard clinical tool. In order to address these20

issues, a method is introduced which is able to pre-select a limited set of relevant treat-21

ment error scenarios.22

Methods: Uncertainties due to systematic setup errors, image-conversion errors and23

respiratory organ motion are considered. A 4D-equiprobability hypersurface is defined,24

which takes into account the joint probabilities of the above-mentioned uncertainty25

sources. Only scenarios that lie on the pre-defined 4D hypersurface are considered,26

guaranteeing statistical consistency of the uncertainty set. In this regard, twelve sce-27

narios are selected that cover maximum spatial displacements of the tumor during28

breathing. Subsequently, additional scenarios are considered (sampled from the afore-29

mentioned 4D hypersurface) in order to cover any estimated residual range errors. Two30

i



different scenario-selection procedures were tested: (1) the maximum displacements31

(MD) method that only considers twelve scaled maximum displacement scenarios and32

(2) maximum displacements and residual range (MDR) method which, in addition33

to the scaled maximum displacement scenarios, considers additional maximum range34

uncertainty scenarios. The methods were tested for five lung cancer patients by per-35

forming comprehensive Monte Carlo robustness evaluations.36

Results: A plan computation time gain of 78% is achieved by applying the MD37

method, whilst obtaining a target robustness of D95 larger than 95% of the prescribed38

dose, for the worst-case scenario. Additionally, MD method has the potential to be39

fully automatic which makes it a promising candidate for fast automatic planning40

workflows. The MDR method produced plans with excellent target robustness (D9941

larger than 95% of the prescribed dose, even for the worst-case scenario), whilst still42

obtaining a significant plan computation time gain of 57%.43

Conclusions: Two scenario-selection procedures were developed which achieved sig-44

nificant reduction of plan computation time and memory consumption, without com-45

promising plan quality or robustness.46

Keywords— proton therapy, robust optimization, lung tumors47
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I. Introduction48

Clinical trials have indicated a potential clinical benefit of proton therapy, due to its improved49

physical dose deposition properties.1, 2, 3 Such benefit is related to the steep dose fall-off at the pro-50

ton’s end-of-range (so-called “Bragg peak”) which creates the possibility to spare healthy tissues51

without compromising target coverage. Unfortunately, the high dose gradients make intensity-52

modulated proton therapy (IMPT) plans sensitive to treatment uncertainties. Important sources53

of uncertainties include, amongst others, setup errors as well as image-conversion errors (related54

to the CT image and conversion of the CT Hounsfield units (HUs) to stopping powers). Addition-55

ally, tumor motion is another important source of uncertainty which is composed of the following56

two main elements: (1) changes in the local position of the tumor during delivery (intra-fraction57

motion), with potential issues related to the interplay effect,4, 5, 6 and (2) changes in the average58

position of the tumor over a respiratory cycle, referred to as a “baseline shift” (with both intra- and59

inter-fraction components).7, 8 In addition to geometrical uncertainties, the aforementioned errors60

induce an uncertainty on the estimated proton range, i.e. uncertainty on the position of the Bragg61

peak, which may cause a deterioration of the actual delivered dose distribution.9, 10, 11, 12, 13, 14, 15, 1662

Hence, taking uncertainties into account at the planning stage is critical for successfully treating63

patients.64

To this end, two main robust planning formalisms have been developed: (1) safety margins,65

and (2) robust optimization. The safety margin approach aims at covering treatment errors by geo-66

metrically expanding the “clinical target volume” (CTV) into a “planning target volume” (PTV). A67

well-known margin recipe is the one developed by van Herk.17 However, studies have demonstrated68

that the classic CTV-PTV margin is unable to cover for the range errors in proton therapy; this69

is due to the failure of the margin recipe’s implicitly assumed “static dose cloud approximation”70

in proton dose distributions.18, 19 Consequently, beam-specific PTVs (BSPTVs) were introduced71

which adequately account for range uncertainties, under the influence of various treatment er-72

rors.20 Unfortunately, BSPTVs can only be used in single-field uniform dose optimization which is73

considered inferior to multi-field optimization in proton therapy.2174

Alternatively, robust optimization methods have been introduced, in which treatment errors75

are directly incorporated in the optimization process.22, 23, 24, 25, 26 In this study, we focus on a76

robust optimization method commonly called ’worst-case’ robust optimization. Worst-case robust77
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optimization aims at ensuring adequate target coverage by defining an uncertainty set of treatment78

error scenarios, defined as the realizations of specific combinations of treatment errors. These79

error scenarios are evaluated at each iteration of the optimization process with the optimization80

variables (i.e., the spot weights) adjusted so that the objective function of the current worst-case81

scenario (the one with the highest value) will be minimized. A popular implementation of worst-case82

robust optimization is the so-called “minimax” optimization of Fredriksson.24 Studies demonstrate83

that worst-case robust optimization can outperform PTV based plans in terms of guaranteeing84

robustness of the target coverage.27, 28, 2985

Two issues are identified in the typical worst-case robust optimization workflow. First, the86

conventional choice of the uncertainty set limits the ability to handle various types of errors in a87

statistically sound way. Second, the increased computational burden of the optimization algorithm,88

related to the high number of required error scenarios, hampers the use of robust optimization89

in the clinical environment. The availability of computationally cheap algorithms is particularly90

important in online adaptive workflows, where robust optimization is considered unsuitable due to91

its long computation time.3092

More specifically, worst-case robust optimization aims at achieving robustness, by selecting93

scenarios which represent combinations of maximum errors of each considered uncertainty source,94

within a pre-defined confidence interval.24 For instance, a moving lung tumor case typically uses95

combinations of ±5 mm setup errors in the three directions,24, 31, 32 flat image-conversion errors of96

±3%24, 15, 32 and maximum inhale/exhale breathing phases, giving an uncertainty set of 63 error97

scenarios (7 setup error scenarios × 3 image-conversion error scenarios × 3 breathing phases).98

However, this approach is statistically inconsistent as it does not account for the joint probabilities99

of the considered error sources. Moreover, such approach overlooks the fact that intermediate setup100

errors could potentially result in even larger range uncertainties.101

Additionally, because all error sources are handled in a mutually independent way,24 an in-102

crease of the amount of considered error sources is not practically realizable as this will exponentially103

increase the size of the uncertainty set. For instance, if baseline shifts or delineation errors are also104

considered, then the required number of scenarios scale from 63 to hundreds or even thousands105

scenarios. Attempts have been made to mitigate the need for a large uncertainty set, by deriving106

empirical formulas which convert robustness parameters of one type of error source into another.33107
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However, this solution is limited as evaluations for a different tumor location requires re-evaluation108

of the recipe.109

This study aims at establishing a scenario-selection procedure that addresses the above-110

mentioned issues. The focus lies in an efficient pre-selection of a limited number of relevant error111

scenarios, which are later on fed to a worst-case robust optimizer. As will be illustrated, the result-112

ing uncertainty set contains scenarios that are statistically consistent, whilst its reduced size limits113

the computational burden of the optimization process.114

II. Material and Methods115

In this section, first the statistical framework is presented, followed by a detailed explanation of116

the proposed methods and reference method. Afterwards, we give an overview of the planning and117

evaluation software applied for testing the respective methods. Finally, the section concludes with118

a description of the patient data and the quality metrics for the evaluation and comparison of the119

treatment plans.120

II.A. Methodology121

II.A.1. Statistical Framework122

Uncertainties due to systematic setup errors, image-conversion errors and respiratory organ motion123

are considered. Because the organ motion is represented by a set of equally spaced phases in time124

(see Section II.E.), each phase is assumed to be equally probable.125

The systematic setup errors xs = (xs, ys, zs) along left-right x, anterior-posterior y and superior-126

inferior z directions are assumed to be described by a 3D-Gaussian probability distribution (charac-127

terized by a standard deviation Σs = (Σxs,Σys,Σzs)).
a By following Van Herk’s margin recipe,17128

a confidence interval for the above-mentioned 3D distribution is generated by considering all setup129

errors that satisfy the following inequality:130 (
xs

Σxs

)2

+

(
ys

Σys

)2

+

(
zs

Σzs

)2

≤ α2
3D, (1)131

with α3D being a coverage parameter that can be adapted to specify the integration limit in the132

error scenario space, or in other words, to fix the width of the confidence interval. Values for α133

aBold symbols represent vectors.
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in 1D, 2D and 3D can be found in Van Herk.17 For the general N -dimensional case, the following134

formula can be used to evaluate αND numerically:34135

αND =
√

inv-χ2(C,N), (2)136

with C the confidence interval and inv-χ2 the inverse cumulative density function of the chi-squared137

distribution. Equation 2 was evaluated with Matlab in order to obtain the different values for138

αND. For a perfect 3D dose conformation of the target, the clinically recommended confidence139

interval is 90%, which corresponds to a value for α3D of 2.5. A 3D-equiprobability hypersurface140

can subsequently be constructed by regarding the maximum setup errors, limited by the inequality141

in Equation 1:142 (
xs

Σxs

)2

+

(
ys

Σys

)2

+

(
zs

Σzs

)2

= α2
3D. (3)143

In proton therapy planning, image-conversion errors must also be handled. In contrast to144

setup errors, image-conversion errors r only vary in one dimension and are thus described by a 1D-145

Gaussian probability distribution (characterized by sigma Σr).9 Hence, if both setup errors and146

image-conversion errors are considered, the probability of a treatment error scenario (defined as a147

specific combination of a setup error and image-conversion error) has to be treated with increased148

dimensionality as compared to the confidence interval that defines the hypersurface of Equation149

3. As a result, the probability distribution that describes the treatment error realizations is four-150

dimensional and the scenarios that lie within the pre-defined confidence interval (in scenario space),151

are represented by:152 (
xs

Σxs

)2

+

(
ys

Σys

)2

+

(
zs

Σzs

)2

+

(
r

Σr

)2

≤ α2
4D. (4)153

In this case, the 90% confidence interval is represented by a value for α4D of 2.8 (using Equation154

2). The inequality of Equation 4 defines the following 4D-equiprobability hypersurface:155 (
xs

Σxs

)2

+

(
ys

Σys

)2

+

(
zs

Σzs

)2

+

(
r

Σr

)2

= α2
4D. (5)156

Hence, we can sample equiprobable scenarios (xs, ys, zs, r), i.e. specific combinations of setup errors

and image-conversion errors, which are positioned exactly on the edge of the pre-defined confidence

interval. Two conditions are defined which must be satisfied by the considered scenarios:(
xs

Σxs

)2

+

(
ys

Σys

)2

+

(
zs

Σzs

)2

≤ α2
3D, (6)(

xs
Σxs

)2

+

(
ys

Σys

)2

+

(
zs

Σzs

)2

+

(
r

Σr

)2

= α2
4D. (7)
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The first condition (Equation 6) restricts the magnitude of the setup errors and is identical to157

the condition that yields the margin recipe (Equation 3). Hence, the spatial displacements of the158

CTV will be limited by the maximum considered setup error. The second condition (Equation 7)159

guarantees that only scenarios of equal probability, defined by the coverage parameter α4D, are160

selected. The 90% equiprobability line, from which the scenarios are sampled, is shown in Figure 1.161

As illustrated in the figure, the constraint of the maximum setup error, imposed by the inequality162

of Equation 6, reduces the considered confidence interval in scenario space. A maximum setup error163

of 5 mm is chosen in order to limit the maximum setup error to a value commonly found in other164

worst-case robust optimization studies, see for example24, 31, 22, 32. Nevertheless, we must rely on165

an unbiased robustness evaluation to check if the treatment plan satisfies the robustness criteria as166

defined by the confidence interval in dosimetric space.167

Values for the setup error standard deviation Σxs = Σys = Σzs are set equal to 2 mm in168

order to provide a uniform maximum setup error of 5 mm (= xs,max = ys,max = zs,max), at a 90%169

confidence intervalb . Following the review of Paganetti,9 the magnitude of the image-conversion170

error standard deviation Σr is set equal to 1.6% (this value was reported for calculations with a171

Monte Carlo dose engine).172

II.A.2. Scenario-Selection Procedures173

Using the formulation described in Section II.A.1., two different procedures of selecting relevant174

error scenarios are investigated: (1) maximum displacements method (MD) and (2) maximum175

displacements and residual range method (MDR). Both procedures are described in detail below.176

Afterwards, the performance of the two proposed scenario-selection methods (MD and MDR) will177

be compared to the conventional robust optimization (without pre-selection of scenarios), where178

the treatment plans are constructed using an uncertainty set of 63 scenarios, i.e. combinations of179

±5 mm setup errors in the three directions, ±2.6% image-conversion error (see Section II.B.) and180

maximum inhale/exhale breathing phases (as it would be performed conventionally in commercial181

TPSs).182

busing Equation 6, Σxs = xs,max/α3D, with xs,max = 5 mm and α3D = 2.5 at a 90% confidence interval
(analogous for the other directions ys,max and zs,max).
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Figure 1: 2D-Gaussian probability distribution, defined by ‖Σs‖ and ‖Σr‖, representing the
likelihood of sampled scenarios (the lighter, the more unlikely). The 90% equiprobability
line (green) defines all possible scenarios that are positioned exactly on the edge of the 90%
confidence interval. The scenarios within the conventional uncertainty set (combinations of
±5 mm setup errors and flat ±3% image-conversion errors) are depicted by the red circles
(7 scenarios in 2D). The maximum displacement (MD) scenarios (as explained in Section
II.A.2.) are depicted by the blue circles (4 scenarios in 2D).

Maximum displacements (MD)183

In the MD method, twelve scenarios are selected that aim to cover the extreme positions reached184

by the tumor. If respiratory motion is considered, these scenarios are determined as follows: first,185

the target centers of mass are computed for all breathing phases. Then, six phases are selected186

where the center of mass reaches its maximum value, along along the three directions (±x, ±y and187

±z). For each of the resulting six phases, a maximum setup error (= 5 mm), in the direction of188

largest spatial displacement is applied, by rigidly shifting the chosen CT images. For example, in the189

breathing phase with largest displacement in the +x direction, a setup error of +xs = (+5mm,0,0) is190

applied. Analogously for the other directions. In the case of non-moving tumors, the six maximum191

displacement scenarios are simply represented by the maximum setup error along ±x, ±y and ±z192

II.. MATERIAL AND METHODS
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directions. Finally, to each scenario, an image-conversion error is applied with a magnitude equal193

to the maximum value ±r allowed by the 4D-equiprobability hypersurface (Equation 7). That is,194

each of the six scenarios are scaled with both positive and negative image-conversion errors ±r195

(equal to ±2%), providing twelve scenarios in total.196

The application of image-conversion errors on the CT image is performed by uniformly scaling197

the mass densities obtained from the CT image (using the same CT calibration curve as in the dose198

calculation). The twelve scaled maximum spatial displacement scenarios can be interpreted by the199

intersection of the 90% equiprobability line with the box, which is constructed by the scenarios200

of the conventional uncertainty set, at the 5 mm setup error. The uncertainty set of the MD201

method, contains thirteen scenarios (twelve selected scenarios in addition to the nominal scenario202

(= planning CT)). Each selected error scenario is simulated by modifying the original CT with the203

chosen error values, generating virtual CTs that will later be imported in the treatment planning204

system (TPS).205

Maximum displacements and residual range (MDR)206

In the MDR method, in addition to the MD scenarios, additional scenarios are considered which207

have estimated range errors larger than the ones induced by the twelve MD scenarios already208

present in the uncertainty set. In other words, we want to include scenarios that will cover any209

residual range errors, i.e. range errors that are not yet covered by previously included scenarios.210

These scenarios are selected as follows: first, proton ranges can be estimated by converting the211

considered breathing CT images into maps of water-equivalent path lengths (WEPLs).c Because212

WEPLs are beam-specific, each breathing phase has a separate WEPL map for each respective213

beam angle. Scenarios are then simulated by sampling treatment errors as follows:214

• Random selection of a breathing phase and beam angle, as well as,215

• Random sampling of a combination of setup error (xs,ys,zs) and image-conversion error r216

that satisfies both Equations 6 and 7.217

cThe WEPL in a voxel is obtained by integrating the relative stopping power ratio (RLSP) of the voxels

along the beam path: WEPL =
∫ L

0
RLSP (HU, l)dl for each beam angle. WEPL maps are computed using

the open-source platform OpenReggui35 which uses a fast ray-tracing algorithm36 for its WEPL calculations.

Last edited September 2, 2019 II.. MATERIAL AND METHODS
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The sampling of breathing phases can be omitted if breathing motion is not considered. For each

scenario, the sampled setup error is applied by rigidly translating the pre-computed WEPL map

image. For the image-conversion error, the WEPL values are scaled with the respective error value

r. By repeating this process, a distribution of WEPL values for all target voxels is obtained across

all scenarios. Finally, a voxel-based scenario selection is performed by identifying which scenario s

has induced the largest residual range for most of the target voxels (see Figure 2). To compute this,

the following four matrices are stored. First, the maximum and minimum WEPLs, for each target

voxel, across the MD scenarios, are stored in Wmax
MD and Wmin

MD , respectively. Second, the maximum

and minimum WEPLs, for each target voxel, across all randomly sampled scenarios, are stored

in Wmax
rand and Wmin

rand, respectively. Afterwards, we can identify worst-case overshoot scenarios by

computing for each randomly sampled scenario, the number of voxels Nmax that it has in common

with Wmax
rand and that induce WEPL values larger than Wmax

MD . Analogously, worst-case undershoot

scenario are classified according to the number of voxels Nmin that each sampled scenario has in

common with Wmin
rand and smaller than Wmin

MD :

Nmax = #{ni | Ws(i) = Wmax
rand(i) & Ws(i) > Wmax

MD (i)}i∈CTV, (8)

Nmax = #{ni | Ws(i) = Wmin
rand(i) & Ws(i) < Wmin

MD (i)}i∈CTV, (9)

with ni an auxiliary variable, Ws the WEPL map of scenario s and i the vector that represents218

the voxels in the CTV. In other words, worst-case scenarios are selected in which the combination219

of setup errors, image-conversion errors and breathing phases have estimated proton ranges that220

deviate most from the values in the previously included scaled maximum spatial displacement221

scenarios.222

In order to limit the size of the uncertainty set, we define a threshold (Figure 2) that discards223

scenarios which induce maximum residual ranges in less than 2% of target voxels (= 2%NCTV with224

NCTV the total number of CTV voxels). Using Equations 8 and 9, the scenarios that do not meet225

Nmax < 2%NCTV and Nmin < 2%NCTV are discarded for the overshoot and undershoot scenarios,226

respectively. By doing so, we avoid the selection of scenarios that cover only few range errors (see227

Discussion in Section IV.). As a result, the MDR method’s uncertainty set contains the twelve228

maximum displacement scenarios, with additional error scenarios that aim at covering any residual229

range errors. Analogous to the MD method, virtual CTs are generated that represent the selected230

error scenarios.231

II.. MATERIAL AND METHODS
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(a) Undershoot scenarios
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Figure 2: Illustration of the voxel based scenario selection. For example, scenario with ID
s induces a worst-case range error for y number of voxels in the target volume (maximum
WEPL for overshoot and minimum WEPL for undershoot). Hence, scenarios are ordered
according to the maximum range error they induced in most target voxels (left panel: worst-
case undershoot scenarios, right panel: worst-case overshoot scenarios).

It must be noted that, in the scenario-selection procedure, the calculation of the WEPL maps232

consumes the largest share of the total pre-computation time. Moving lung tumor cases, together233

with three beam plans, require 69 WEPL maps (11 breathing phases + 12 MD scenarios, each with234

three beam angles). For a single scenario, the calculation of a WEPL map takes approximately235

6 seconds for smaller target volumes (∼41 cm3) and 15 seconds for a deep-seated larger target236

volume (∼152 cm3), amounting to an upper limit of 17 minutes. Moreover, once the WEPL maps237

are stored, errors scenarios are generated quasi instantaneously. The advantage of this approach is238

that it does not involve any dose evaluations and, hence, many scenarios (>104) can be evaluated239

in a very short time period. Sampling and evaluation of 104 scenarios typically takes less than 2240

minutes. Together with the WEPL map calculations and scenario creation (max. 4 minutes), this241

gives a maximum pre-computation time of 23 minutes.242

II.B. Treatment Planning System243

Treatment plan optimization is performed with the 4D-robust optimization algorithm of the TPS244

RayStation research version v7.99 (RaySearch Laboratories, Stockholm, Sweden). The time-245

averaged mid-position CT is used as the nominal planning CT which was created with the open-246
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source platform OpenReggui.37, 35 OpenReggui calculates the mid-position CT by computing the247

mean position over the respiratory cycle after deformable registration between all phases of the248

4D-CT image set. The Monte Carlo dose engine of the TPS is used for the dose calculations with249

104 ions per spot and a 3×3×3 mm3 dose calculation grid.250

For the conventional method, the robust optimization tool of the TPS is used, selecting robust-251

ness parameters of 5 mm setup errors in all directions, 2.6% image-conversion errors and maximum252

inhale and maximum exhale phases (total of 63 scenarios). A value of 2.6% is chosen because it253

represents the value at which 90% of image-conversion errors are covered, assuming they are de-254

scribed by a 1-D Gaussian distribution, i.e. 2.6% = α1DΣr with α1D = 1.64 (Equation 2) and Σr =255

1.6%. As mentioned in Section II.A., treatment plans of the MD and MDR methods are obtained256

by importing the DICOM CT data of the virtual CTs in the TPS, which represent the selected set257

of error scenarios. A 4D-robust plan optimization is then performed over the imported CT images.258

II.C. Evaluation Software259

Treatment plans are evaluated with the independent Monte Carlo dose engine MCsquare, available260

open-source.38 MCsquare has been commissioned and validated for clinical practice. The same261

beam model (optimised from the commissioning measurements) was used for the Monte Carlo and262

TPS dose calculations, thus avoiding possible errors due to algorithm-machine calibration. The263

dose level difference (evaluated at D95) between a MCsquare and the TPS is typically less than 0.1264

Gy, for final dose calculation at a 1% statistical uncertainty.265

The effects of systematic setup errors, image-conversion errors and breathing motion on the266

planned dose distribution are evaluated by performing comprehensive robustness evaluations with267

MCsquare.39 In each robustness test, a set of 250 error scenarios were sampled with the number of268

protons selected in order to reach a statistical uncertainty of 1%.269

MCsquare follows a Monte Carlo approach for its robustness evaluation, by randomly sampling270

error scenarios according to the error distributions mentioned below.40 For all error scenarios, the271

dose distributions are recomputed, discarding the 10% worst scenarios (based on the target D95).272

Because scenarios are sampled from the entire dosimetric error space, the selection of evaluation273

scenarios is not limited by the 90% equiprobability hypervolume in the scenario space, utilized for274
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the selection of the optimization scenarios (see Section II.A.1.). Hence, the robustness tests can be275

considered as an unbiased representation of the plan’s sensitivity to the treatment errors.276

Probability distributions for setup errors and image-conversion errors are identical to the277

distributions used in the planning process (standard deviations of 2 mm and 1.6% for setup and278

image-conversion errors, respectively). MCsquare models the setup errors and image-conversion279

errors by rigidly translating the CT image (= shifting the beam isocenter) for the first one, whilst280

scaling the CT densities for the latter. Breathing motion is simulated by recomputing the dose281

distribution for each breathing phase and accumulating the dose on the mid-position CT.282

II.D. Patient Cases283

Lung tumor cases were chosen with the purpose of testing the proposed methods, as they typically284

present difficulties in terms of ensuring target robustness (large density heterogeneities and large285

tumor motion). Treatment plans were calculated for five lung tumor patients, all diagnosed with286

single tumor volume, delineated on the CT data. The set of patients presented a wide range of287

varying tumor size and motion amplitude, therefore representative of the entire patient population.288

Patient data were characterized by a 4D-CT image set, binned in ten breathing phases, equally289

spaced in time. The main features of the patient cohort are summarized in Table 1. All treatment290

plans were designed using a configuration of three co-planar fields, delivered via IMPT with the291

pencil beam scanning (PBS) technique (see Table 1).292

Treatment plans were constructed with identical target and OARs objectives in the optimiza-293

tion. Patients had a dose prescription of 60 Gy to the CTV. Target coverage was considered294

acceptable if 95% of the CTV received more that 95% of the prescribed dose (Dpresc), whilst no295

more than 5% of the CTV received over 105% of Dpresc, even for the worst-case scenario. However,296

in order to test the proposed methods, we focus on target coverage during the optimization, by297

aiming to reach CTV D99 ≥ 95%Dpresc, in the nominal case.298
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Table 1: Patient characteristics including tumor size, tumor motion amplitude (in left-right
(LR), anterior-posterior (AP) and superior-inferior (SI) directions), tumor position (right-
middle lobe (RML), left-lower lobe (LLL), right-upper lobe (RUL), left-upper lobe (LUL))
and beam configuration.

Patient CTV size Motion Amplitude Tumor position Gantry angles

LR AP SI
[cm3] [mm] [mm] [mm] [◦]

P1 152.6 4.2 2.1 3.1 RML 0, 270, 310
P2 107.7 3.1 2.9 3.7 LLL 90,135, 180
P3 41.3 1.4 2.9 0.8 RUL 180, 225, 270
P4 70.3 0.8 1.2 0.5 LUL 90, 135, 180
P5 109.6 2.2 1.8 6.6 RUL 180, 225, 270

III. Results299

By comparing target coverage and OAR dose, the methods are assessed for their quality and300

robustness and their ability to spare the normal tissues. The coverage metrics for the relevant301

regions-of-interest (ROIs), are derived from the DVHs of the plan’s robustness evaluation. The302

results of the nominal plans were normalized by applying a correction factor in such a way that303

50% of the target volume received the prescribed dose. The evaluation dose distributions, for each304

patient, were scaled with its respective correction factor. The lung, bronchus and heart received305

significant dose levels and are therefore the OARs reported in the figures and tables.306

Figure 3 illustrates the result of the robustness test by displaying the DVH bands of the CTV,307

lung, bronchus and heart along with the nominal DVHs, for a single patient. The results for the308

other patients are presented in Tables 4 and 5. The results are concentrated in a summary table309

(Table 2), displaying for each metric the difference between the value obtained by the conventional310

method with MD method, averaged across all patients and analogously, the difference between the311

conventional method and MDR method. For each evaluation metric, the results are reported in312

respectively, the average, worst-case and nominal scenarios.313

In terms of target coverage, results show treatment plans obtained from all methods passed the314

target coverage acceptability limit of worst-case D95 ≥ 95%Dpresc. Only the MDR and conventional315

methods exceeded a target coverage of D99 ≥ 95%Dpresc, in the worst-case scenario, for all patients.316

Comparing the MDR method with the conventional method shows that a similar target coverage is317
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obtained (average reduction of only 0.1 Gy D99 for the worst-case scenario) whilst improving slightly318

the normal-tissue sparing (sparing of the lung, on average, 1.9% and 0.9 Gy for V20 and Dmean,319

respectively and, on average, reducing maximum bronchus dose 0.3 Gy, evaluated for the worst-case320

scenario). In order to evaluate the plan’s sensitivity to the treatment errors, the dose homogeneity321

of the target volume is calculated by subtracting the worst-case CTV D98 from the worst-case CTV322

D2 (see Table 3). In general, MDR method produced plans closest to the conventional method in323

terms of homogeneity (an average difference of only 0.2 Gy between both methods).324

Table 3 reports the plan computation times, together with the simulated number of scenarios.325

Results show that the MD method achieved an average time gain of 78% with respect to the326

conventional method. By using the MDR method, the number of optimization scenarios is reduced327

by approximately a factor of three, on average, which translated in an average time gain of 57%.328

Table 2: Difference of the average (across all patients) target and organ-at-risk DVH metrics
between plans of the MD with the conventional method (MD-Ref) and difference of the
average metrics between the MDR with the conventional method (MDR-Ref).

CTV

∆D99 ∆D95 ∆D5

[Gy] [Gy] [Gy]

MD-Ref MDR-Ref MD-Ref MDR-Ref MD-Ref MDR-Ref

Avg. -0.5 -0.1 -0.1 0.0 0.0 0.0
Worst -1.6 -0.1 -0.5 0.0 0.0 0.0
Nom. -0.2 0.0 -0.1 0.0 0.0 0.0

Lung Bronchus Heart

∆V20 ∆Dmean ∆Dmax ∆V40

[%] [Gy] [Gy] [%]

MD-Ref MDR-Ref MD-Ref MDR-Ref MD-Ref MDR-Ref MD-Ref MDR-Ref

Avg. -2.2 -1.7 -1.4 -0.9 -0.4 -0.1 -0.4 -0.2
Worst -2.8 -1.9 -1.4 -0.9 -0.7 -0.3 -0.4 -0.2
Nom. -2.7 -1.7 -1.3 -0.8 -0.3 0.0 -0.4 -0.2
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Table 3: Plan computation time, number of scenarios and dose homogeneity for plans of each
patient (P), obtained using the conventional (Ref), MD and MDR methods. The average
time differences ∆t and average dose homogeneity, across all patients, are reported at the
bottom. For the reference method, the plan computation time comprises only of the plan
calculation time (= mainly dose-influence matrix calculations and plan optimization). For
the MD and MDR method, the total computation time is reported as the pre-computation
time + the plan calculation time. The pre-computation time consists of the scenario creation
(both MD and MDR methods), WEPL map calculation and scenario sampling (only MDR
method).

Computation time Scenarios Dose Homogeneity
[min] [Gy]

Ref MD MDR Ref MD MDR Ref MD MDR

P1 229 2 + 41 = 43 22 + 73 = 95 63 13 21 2.8 5.1 3.5
P2 156 2 + 32 = 34 21 + 44 = 65 63 13 15 2.1 3.6 2.7
P3 58 2 + 12 = 14 10 + 21 = 31 63 13 20 3.0 3.8 3.0
P4 94 2 + 19 = 21 13 + 32 = 45 63 13 22 2.5 3.7 2.3
P5 141 2 + 28 = 30 21 + 33 = 54 63 13 15 2.8 2.8 2.6

Avg. ∆t = -78% ∆t = -57% 63 13 19 2.6 3.8 2.8

IV. Discussion329

The rationale for introducing a scenario-selection procedure was twofold:330

First, the scenario-selection procedure guarantees statistical consistency across scenarios331

present in the uncertainty set. As Fig. 1 illustrates, the conventional uncertainty set (result-332

ing from the use of a flat ±2.6% image-conversion error) contains scenarios that are positioned333

outside the equiprobability line. The proposed methods (MD and MDR) do not emphasize these334

unlikely scenarios and only select equiprobable scenarios that lie within the pre-defined confidence335

interval, which is set at 90%.336

Second, the scenario-selection procedure allows for a reduction of the size of the uncertainty set.337

Reducing the uncertainty set is important as, for a given patient, the number of input optimization338

scenarios is directly proportional to the plan computation time (see Figure 4). The main reason for339

this is that the amount of beamlet dose-influence matrices must be computed and stored for each340

optimization scenario. Moreover, fewer dose evaluations, at each iteration, improve the speed of the341

optimization process and reduce the memory consumption. Deciding the optimal robust planning342
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method will depend on the intended goals of the planning workflow: (A) fast and automatic343

planning, or (B) robust target coverage.344

(A) If focus lies on limiting the computation time, then the time-gain can be maximised345

by applying the MD method, provided that a target robustness of D95 ≥ 95%Dpresc is deemed346

acceptable. An additional benefit of this method is its potential to be fully automatic and the347

fact that the number of pre-computations are limited. In its current implementation, selected error348

scenarios must be imported manually. However, this can easily be implemented in most commercial349

TPSs which provide standard scripting tools.350

(B) If focus lies on target coverage, then the robustness of the treatment plan can be increased351

by utilizing the MDR method. Results show that target robustness is significantly improved (D99 ≥352

95%Dpresc) whilst still achieving a time gain of 57%, on average. These results indicate that by353

considering an additional number of estimated worst-case error scenarios, robustness criteria can354

be satisfied whilst avoiding overly robust solutions. The two main disadvantages of the MDR355

method are: (1) the necessity of a pre-computation process outside of the TPS (mainly WEPL356

map calculations), and (2) a prior analysis in order to fix the value of the coverage threshold (see357

Section II.A.2.). Retrospective analysis found that (see Figure 4), based on the population of358

patients in this study, discarding scenarios that do not induce residual ranges for more than 2%359

of target voxels (Nmax < 2%NCTV and Nmin < 2%NCTV , see Equations 8 and 9) resulted in an360

optimal balance between the number of selected scenarios and the amount of covered range errors.361

As Figure 4 shows, a more conservative approach may be employed by reducing this threshold362

even further, with a corresponding increase in the number of selected scenarios. However, because363

WEPL map evaluations treat each beam angle separately, the effect of the treatment errors in the364

WEPL space can be considered more substantial than its corresponding effect in the real dosimetric365

space. Hence, this threshold is deemed satisfactory in order to achieve the necessary robustness of366

the treatment plan.367

The present study focused on moving lung tumor cases where the aim was to achieve robustness368

against systematic setup errors, image-conversion errors and breathing motion. Random errors369

should also be considered as they present an important source of range uncertainties. However,370

random errors require the simulation of fractionation effects for which a pre-selection of optimization371

scenarios does not suffice. Solutions dealing with random errors simulate their effect during the372

plan calculation. However, because access to the source code of the TPS is restricted, random373
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errors have been omitted from the evaluation. In the literature, the following solutions exist which374

could potentially be used in conjunction with the scenario-selection methods: (1) random errors375

can be simulated in the Monte Carlo calculations of the beamlet dose-influence matrices, under376

the assumption of an infinite number of fractions,41 and (2) the method by Fredriksson42 can be377

employed which modifies the optimization objective function in order to include random errors, for378

a finite number of fractions.379

The scenario-selection procedure provides a method for handling other yet unconsidered sys-380

tematic error sources, within a statistically consistent framework. However, these potential error381

sources, such as baseline shifts or anatomical changes, should be able to be realistically modeled382

by creating virtual CTs (analogous to setup and range errors). Furthermore, the method does not383

change the fundamental worst-case robust optimization algorithm. It can therefore be integrated in384

any robust planning workflow where a TPS is used that is able to perform 4D-robust optimization.385

V. Conclusions386

This study introduces a scenario-selection procedure which enables the reduction of the uncertainty387

set used in worst-case robust optimization. Relevant optimization scenarios are selected according388

to: (1) maximum spatial displacements of the tumor, and (2) largest estimated range uncertainties.389

Based on the scenario-selection procedure, two pre-selection methods are proposed and tested for390

moving lung tumor cases as follows:.391

First, the maximum spatial displacements (MD) method only considers scenarios correspond-392

ing to the maximum spatial displacements of the tumor during breathing, with CT-HU values393

scaled according to the image-conversion error defined by a pre-defined 4D-equiprobability hyper-394

surface. Because its uncertainty set contains thirteen scenarios (twelve selected scenarios together395

with the nominal scenario), a reduction of 78% plan computation time is achieved. Moreover, the396

MD method has the potential to be fully automatic which makes it a promising candidate for fast397

automatic planning workflows. Second, the maximum displacements and residual range (MDR)398

method is proposed, which adds additional scenarios to the uncertainty set in order to cover for399

any residual range errors. Results show that this method produces plans with target robustness of400

CTV D99 ≥ 95%Dpresc, whilst achieving a 57% reduction of plan computation time with respect401

to the sixty-three scenario conventional method. Future efforts will concentrate on extending the402
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scenario-selection procedure by including additional uncertainty sources. This will provide useful403

insights on the full robust picture and is topic of future research.404
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Additional Figures and Tables413

(a) Conventional (b) MD

(c) MDR

Figure 3: DVH bands for the CTV, lung and bronchus for plans obtained using the (a) con-
ventional, (b) maximum displacements (MD) and (c) maximum displacements and residual
range (MDR) methods, for a single patient (Patient 2).
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Figure 4: Effect of the a certain threshold value. Left: influence on the number of selected
scenarios in the MDR method for patients 1 to 5. Right: example of the influence on the
resulting treatment plan (worst-case D99 and plan optimization time topt).

Table 4: Target DVH metrics for plans of each patient (P), obtained using the conventional
(Ref), maximum displacements (MD) and (c) maximum displacements and residual range
(MDR) methods.

CTV

D99 D95 D5

[Gy] [Gy] [Gy]

Ref MD MDR Ref MD MDR Ref MD MDR

Avg. 58.8 57.4 58.4 59.2 58.9 59.1 60.8 60.7 60.8
P1 Worst 57.6 54.7 57.0 59.0 57.9 58.8 60.9 60.9 61.0

Nom. 58.9 58.1 58.8 59.3 59.1 59.2 60.8 60.7 60.8

Avg. 59.0 58.5 58.9 59.3 59.2 59.3 60.7 60.7 60.7
P2 Worst 58.4 56.6 58.2 59.2 58.6 59.2 60.8 60.8 60.8

Nom. 59.1 59.0 59.1 59.3 59.3 59.4 60.7 60.7 60.6

Avg. 58.5 58.1 58.5 59.0 58.8 59.0 60.9 60.8 60.8
P3 Worst 57.6 56.6 57.5 58.8 58.4 58.8 61.0 61.0 60.9

Nom. 58.6 58.5 58.7 59.1 59.0 59.1 60.8 60.8 60.7

Avg. 58.8 58.7 58.9 59.2 59.1 59.2 60.7 60.7 60.7
P4 Worst 57.5 56.2 58.3 59.1 58.7 59.1 60.8 60.8 60.8

Nom. 59.0 59.0 59.0 59.3 59.3 59.3 60.7 60.8 60.8

Avg. 58.8 58.7 58.7 59.2 59.2 59.2 60.8 60.8 60.7
P5 Worst 58.2 57.2 58.0 59.1 59.0 59.0 60.9 60.8 60.8

Nom. 58.8 58.9 58.9 59.2 59.2 59.3 60.8 60.7 60.7
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Table 5: Organ-at-risk DVH metrics (lung, bronchus and heart) for plans of each patient
(P), obtained using the conventional (Ref), maximum displacements (MD) and (c) maximum
displacements and residual range (MDR) methods.

Lung Bronchus Heart

V20 Dmean Dmax V40

[%] [Gy] [Gy] [%]

Ref MD MDR Ref MD MDR Ref MD MDR Ref MD MDR

Avg. 36.3 30.8 32.1 16.8 14.7 15.3 62.8 62.5 63.3 2.8 1.9 2.6
P1 Worst 39.1 33.6 34.8 18.1 15.8 16.3 63.4 63.1 63.9 3.6 2.7 3.4

Nom. 36.7 31.1 32.6 17.0 14.8 15.6 62.6 62.7 63.5 2.9 2.0 2.7

Avg. 32.1 29.2 31.3 16.4 14.5 15.8 61.2 61.2 61.2 4.3 3.7 3.8
P2 Worst 33.9 30.9 32.7 17.2 15.4 16.5 61.5 61.6 61.6 5.6 4.9 5

Nom. 32.3 29.4 31.4 16.5 14.6 15.9 61.7 61.5 61.0 4.5 3.9 3.9

Avg. 14.3 13.5 14.0 7.8 7.1 7.4 61.1 61.0 60.9 0.0 0.0 0.0
P3 Worst 15.1 14.4 14.9 8.2 7.7 7.9 61.5 61.5 61.4 0.0 0.0 0.0

Nom. 14.4 13.6 14.1 7.8 7.2 7.5 61.3 60.9 60.9 0.0 0.0 0.0

Avg. 21.5 20.3 21.0 11.2 10.5 10.9 9.6 8.5 9.4 0.0 0.0 0.0
P4 Worst 23.4 21.8 22.8 12.0 11.3 11.8 17.4 14.6 16.3 0.0 0.0 0.0

Nom. 21.7 20.6 21.2 11.2 10.7 11.0 9.7 8.8 9.7 0.0 0.0 0.0

Avg. 25.4 22.5 22.6 12.7 11.2 11.3 63.3 62.9 62.6 1.3 1.0 1.1
P5 Worst 26.3 23.1 23.2 13.2 11.5 11.7 64.3 63.7 63.4 1.7 1.4 1.5

Nom. 25.6 22.7 22.8 12.8 11.3 11.4 63.0 62.7 63.2 1.4 1.1 1.2
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