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Abstract: Rheumatic Heart Disease (RHD) is a preventable and treatable form of cardiovascular diseases.  It is also re- 
ferred to as the ailment of the disadvantaged mainly affecting children and young adults. RHD is recognized 
as a global health priority by World Health Organization. This chronic heart condition silently deteriorates the 
normal function of the heart valves which can be detected as a heart murmur using a stethoscope.  As  the 
cardiac auscultation process is an elusive process, the clinician will always be tempted to refer the patient for 
expensive and sophisticated imaging procedures like echocardiography. In this study, a machine learning 
algorithm is developed to augment the limitation in the auscultation process and transform the stethoscope as 
a powerful screening tool. For this current study, an RHD heart sound data set is recorded from one hundred 
seventy subjects. A total of twenty-six features are extracted to model murmur due to RHD. Twenty-four 
classification and regression algorithms have been tested out of which the Cubic SVM has demonstrated su- 
periority with a classification accuracy of 97.1%, with 98% sensitivity, 95.3 % of specificity 97.6% precision. 
The corresponding positive predictive values (PPV) are 96% and 97% for normal and RHD respectively. The 
results are based on data collected from a cardiology ward where there are more pathological cases than con- 
trols. Hence it is a valuable detection tool in a cardiology clinic. But in the future, integrating this machine 
learning algorithm with a mobile phone can be a powerful screening tool in places where access to echocar- 
diography and cardiologist is difficult. Thus, it can then aid a timely, affordable and reliable detection tool 
allowing a non-medically trained individual to screen and detect RHD. 

1 INTRODUCTION 

Due to the rapid epidemiological transition observed 
in developing countries, not only communicable dis- 
eases but also noncommunicable diseases are 
becoming the major cause of death risks. 
Cardiovascular diseases, cancer, chronic respiratory 
disorders, and diabetes are the most common ones. 
Among these, cardiovascular disorder takes the 
leading role (WHOAnnualReport, 2013). Worldwide, 
ischemic heart disease is the number one cause of 
death, which affects males with age usually 65 or 
more (Emelia J. Benjamin, 2019). However, RHD is 
the leading cause of cardiovascular disorders in 
middle- and low-income countries. The average age 
is around 28 years with females affected twice as 
much as men (Watkins DA, 2017). 

RHD is caused by Group A streptococcal 
Bacteria (GAS) infection. These bacteria are 

normally found in the skin and in the throat of healthy 
people. GAS is an important cause of throat infection. 
In certain susceptible people, usually children, the 
immune system becomes confused and attacks both 
the GAS bacteria and parts of the host’s body. This 
autoimmune at- tack causes the inflammation of the 
joints, skin, brain and most importantly the heart 
(Watkins DA, 2017). RHD is a chronic heart 
condition and early in the dis- ease, there are usually 
no symptoms. The disease can silently progress 
especially after repeated episodes of infection. Each 
episode brings renewed heart valve inflammation that 
eventually leads to local scarring and distortion of the 
valve architecture. First, the affected valve starts to 
leak, normally referred to as re- gurgitation; later the 
scarring can stop the valve from opening properly 
and make it narrow for sufficient blood passage, 
referred to as stenosis. These abnormalities create 
unusually turbulent blood flow in the heart chambers 



which is called heart murmur. Left untreated, RHD 
will compromise the cardiac output of the patient 
which will subsequently lead to pre- mature death 
(Walsh, 2019). The heart sound wave- form has 
distinct features called the first heart sound (S1), the 
second heart sound (S2), systole and diastole parts. 
Murmur normally presents itself in the systolic or 
diastolic parts.  The heart sound can be listened to 
and recorded using a stethoscope in the form of a 
phonocardiograph (PCG). A three second MATLAB 
plot of clean, noisy and murmur types of heart sound 
is shown in Fig. 1. The clean signal is manually 
segmented to locate S1, S2, systole and diastole. 

 
Figure 1: Time series representation of heart sounds: clean 
heart sound with S1, S2, Systole and Diastole labelled (top), 
noisy heart sound (middle), and heart sound with a murmur 
(bottom). 

The heart sound gives vital information about 
cardiac wellbeing. However, even under ideal condi- 
tions, the accuracy of diagnosis is very low (Pelech, 
2004). This is in reality attributed to the inherent 
limitation of the human auditory system to perform 
accurate auscultation. On top of that, the listening 
process is highly subjective. This usually forces 
doctors to be highly dependent on other expensive 
imaging devices like echocardiography and x-ray for 
cardiac screening (Vukanovic-Criley JM, 2006). 

To counter the subjectivity and the high percent- 
age of diagnostic errors, computer-aided diagnostic 
(CAD) systems can provide paramount importance 
(Božo Tomas, 2007), (Belloni and Spoletini, 2007). 
For the successful implementation of CADs, the qual- 
ity of the input signal should be high. Such automa- 
tion has been researched for over six decades now.  In 
the 1960s, one of the ground-breaking studies in the 
automatic classification of heart sound pathology was 
performed by (D. S. Gerbarg and Hofler, 1963). Since 
then thousands of research papers have been 
published. Some of the prominent works have been 
properly investigated in the report published in 2016 
by (Liu C1, 2016). This paper demonstrates the im- 
portance of a well-characterized dataset for develop- 
ing successful classification algorithms. This work 

also assembles the largest heart sound dataset. 
The 2016 PhysioNet Computing in Cardiology 

Challenge was one of the most successful challenges 
conducted by the program which attracted a large 
number of researchers to solve the heart sound classi- 
fication to normal and abnormal. In the competition, 
the largest heart sound dataset compiled by (Liu C1, 
2016) was provided. The winners of the competi- 
tion, Potes et al. (Cristhian Potes, 2016) have devel- 
oped a deep-learning-based classifier that combines 
time-frequency features with a reported sensitivity of 
96%, specificity of 80% and overall accuracy of 89%. 

Almost all previously proposed algorithms needed 
the segmentation of the heart sound recording into 
first heart sound, second heart sound, systole, and di- 
astole parts. This is a reasonable assumption which 
may lead to pinpointing of abnormalities in the heart 
sounds at specific temporal locations. However, the 
complexity and also the error introduced in the accu- 
rate localization of the segments have decreased the 
performance of the algorithms. 

Recently, P. Langley and A.  Murray (Cristhian 
Potes, 2017) have demonstrated the feasibility of 
accurate classification without segmentation of the 
heart sounds. The paper has a relatively lower overall 
accuracy of 79% (specificity 80%, sensitivity 77%) 
classification, and claims this is mainly due to the 
quality of the dataset used. Despite the sheer volume 
of research done in the area, the studies are critically 
hampered by the lack of high- quality recordings that 
have proper validation and standardization. This 
would have created common formatting that allows 
collaborative research, large- scale analytics, and 
tools and methodologies to be shared. The largest 
available open access data set is available which was 
compiled by Liu et al. (Liu C1, 2016). It contains 2435 
heart sound recordings from 1297 subjects. The 
dataset consists of recordings from subjects with a 
variety of abnormalities which include heart valve 
damage and coronary artery disease. The maximum 
overall accuracy reported in the literature by using this 
database is only 94% which was achieved by 
introducing different model optimization techniques 
(Suhm, 2019). 

D.B. Springer et al. (D.B. Springer, 2014) have 
worked on a dataset that is recorded to classify an 
RHD from normal heart sounds. A total of 318 
recordings from 106 subjects where 40 were identi- 
fied with RHD. Their aim was to detect systolic mur- 
mur hence the heart sound is segmented before feature 
extraction. A combination of MFCC and wavelet fea- 
tures are used. SVM classification algorithm is used 
by optimizing its parameters and the procedure is 
validated using a 10-fold cross-validation technique. 



They reported a maximum F1 score of only 0.7, the 
sensitivity of 74.8% and specificity of 74.5%. Poor 
quality recording and external generator noise were to 
blame for such low performance. This demonstrates 
the necessity for a large and reliable dataset which 
takes into account specific pathology. 

For the current study, we gathered one of the 
largest available heart sound data set by recording it 
from one hundred seventy subjects with a state-of-the- 
art electronic stethoscope and addresses a particular 
type of valvular heart disease called RHD. Twenty- 
six different features are used and the features are 
computed from a non-segmented data. These features 
include time-domain components, frequency compo- 
nents, and perceptual components. These features are 
extracted from the entire signal to properly deal with 
systolic as well as diastolic murmurs. 

2 MATERIALS AND METHODS 

2.1 Data Collection 

The heart sound data was collected at Tikur Anbessa 
Referral Teaching Hospital, College of Health Sci- 
ences, Addis Ababa University, Addis Ababa, 
Ethiopia from August 2018 to July 2019. The study 
protocol was approved by the Research Ethics Com- 
mittee of the Department of Internal Medicine (Ethi- 
cal Clearance No: 014/2018). 

The heart sound data were recorded from one 
hundred seventy subjects, one hundred twenty four 
were confirmed RHD patients (seventy four females, 
fifty males) with ages from 9 to 47 with mean and SD 
of 22.9±8.9 years. The time since the first diagnosis 
is from two months to 20 years with mean and SD of 
3.3±3.1 years. Each diagnosis is confirmed by 
echocardiographic imaging and a cardiologist 
analysis. There were 46 normal subjects (15 females, 
31, males) with age 5 to 37 years with mean and SD 
of 14.4±10.5 years. The electronic heart sound was 
recorded by ThinklabsOneTM digital stethoscope with 
a sampling frequency of 44.1KHz. An average of 3.88 
minutes of recording per subject is acquired. The 
digital stethoscope was positioned at the fifth 
intercostal space around the midclavicular line to 
properly record the mitral valve sound. The audio data 
is transferred to a mobile phone and is saved as a wav 
file. 

2.2 Visualization 

A ten-second waveform of a normal heart sound from 
a healthy subject is shown in Fig. 2 (top). In this fig- 

ure, the S1 and the S2 are clearly identifiable. Fig. 2 
(bottom) shows the corresponding spectrogram to vi- 
sualize how the energy is distributed over time. Clicks 
and glitches which are common features of a murmur 
can be very well visualized in the spectrogram. 

 

Figure 2: Healthy Subject: Time domain wave from (top) 
and spectrogram in Mel-frequency scale shown thermal col- 
ormap 

Instead of a linear scale, the Mel- frequency scale 
is used to roughly resemble the resolution of the hu- 
man auditory system. The spectrogram in the Mel- 
frequency scale shows much of the spectral density 
that belongs to S1 and S2 whereas systole and dias- 
tole durations contain very little concentration. Fig. 3 
shows is a recording from an RHD patient. In this 
recording, S1 and S2 can still be easily identified. 
However, looking at the corresponding spectrogram, 
it can be seen that there is a significant amount of en- 
ergy in the systole and diastole parts which indicates 
the presence of murmur. 

 
Figure 3: RHD Patient: Time domain wave from (top) and 
spectrogram in Mel-frequency scale shown thermal color 
map. 

2.3 System Architecture 

This section presents the complete workflow of devel- 
oping a machine learning application to automatically 
detect RHD. The data acquisition, pre-processing, 
feature extraction, and classification steps are pre- 
sented in detail. The classification performance of 
various classification algorithms is also investigated. 



The overall architecture of the system is shown in 
Fig. 4. Detail explanation of all the steps is presented 
below. 

 
Figure 4: Overall System Architecture. 

2.3.1 Pre-processing 

The original data is sampled at 44.1kHz. Experiments 
conducted at a sampling rate greater than or equal to 
2kHz showed that the performance of the classifica- 
tion algorithm is not significantly affected. Hence, the 
data is down sampled to 2kHz. Each record is labelled 
as Normal and RHD based on echocardiography anal- 
ysis and cardiologist decision. The records are split to 
more manageable windows of 5 seconds and are ready 
for feature extraction. As the data is recorded in an 
uncontrolled environment and many of the record- 
ings are corrupted by various types of noises such as 
movement artefact, talking, mobile phone inter- 
ference, traffic sound, coughing, lung sounds, gas- 
trointestinal sounds, pounding and clicks due to high 
volume recording. However, no filtering or noise re- 
moval was done on the data to make sure that the sys- 
tem resembles a real practice scenario. 

2.3.2 Feature Extraction 

In RHD patients, auscultation reveals the 
characteristic systolic murmur of mitral regurgitation. 
When the disease progresses, an additional diastolic 
murmur may also be present. The intensity of the 
murmur generally correlates with the severity of the 
disease (Liesl Zühlke, 2019). Different representations 
of the recorded heart sound are required to detect these 
abnormalities. In the literature, several features are 
proposed in order to properly characterize murmur 
due to RHD (Zümray Dokur, 2009).  These features 
are extracted from the entire signal to properly deal 
with systolic as well as diastolic murmurs. Finally, 
twenty six features were extracted which include 
Time Domain Features (Median, Standard Deviation, 
Mean Absolution Deviation, 25th percentile, 75th 

percentile, Inter Quartile Distance, Skewness, 
Kurtosis), Frequency Domain Features (Shannon’s 
Energy, Spectral Entropy, Dominant Frequency, 
Energy Magnitude at the Dominant Frequency, 
Dominant Frequency Ratio), and Perceptual Features 

which first thirteen elements of the Mel frequency 
cepstral coefficients (MFCC). Table 1 presents the 
formulas and descriptions used in computing the 
above features. 

2.3.3 Classification 

There exist several machine learning algorithms spe- 
cially tailored for predictive modeling. Selecting the 
best one is usually a tradeoff between speed of train- 
ing, memory usage and predictive accuracy on new 
data. In medical applications, not only the accuracy 
but also specificity and sensitivity are also important. 
Several existing classification algorithms are exper- 
imentally compared to our heart sound dataset col- 
lected from one hundred seventy subjects. Support 
Vector Machines (SVM), K-Nearest Neighbor (KNN) 
classification algorithms have found to classify the 
data with superior accuracy. 

2.3.4 Validation 

The classification performance of the different algo- 
rithms is compared by the overall accuracy, sensitiv- 
ity, specificity and F1-Score on the 30% holdout val- 
idation data. The confusion matrix is also computed. 
Table 2 presents the validation parameters and corre- 
sponding formulas. 

3 RESULTS 

Two experiments are conducted to evaluate the 
classification performance of Cubic SVM and Fine 
KNN. The experimental results are shown in Table 3. 

3.1 Experiment I 

The first experiment is done on our collected heart 
sound data. This set has a total of 170 subjects (124 
confirmed RHD patients and 46 Normal Subjects). A 
total of 3957 (2886 RHD and 1071 Normal) records 
with a 10-second duration are used. This data is 
further split into 5-second intervals as mentioned in 
the pre-processing step. The data is recorded in an 
uncontrolled environment and many of the record- 
ings are corrupted by various types of noises such as 
movement artefact, talking, mobile phone interfer- 
ence, traffic sound, coughing, lung sounds, gastroin- 
testinal sounds, pounding and clicks due to high  vol- 
ume recording. No pre-processing or removal of the 
data was done to simulate an actual auscultation en- 
vironment. For this setup, Cubic  SVM  has  an  over- 

 



Table 1: Formulas and description to compute features. 

Feature Formula /Description
Median  

Standard Deviation  

Mean Absolute 
deviation 

1
1mean.dev(x)

N
ii

X
N

μ
=

= −  
X is the heart sound Signal 

Skewness  

Kurtosis 
Shannon Entropy 

Spectral Entropy 

Dominant 
Frequency 

The frequency at which the 
maximum of the spectrum occurs 

Dominant 
Frequency ratio 

The ratio of the energy of the 
maximum to the total energy of  
the signal 

Mel-frequency 
Cepstral 
Coefficients 

The steps followed are: 

1. preemphasise heart sound 
signal using a first-order FIR filter 
with preemphasis coefficient of 
0.97. 
2. Computer short-time Fourier 
transforms. 
3. Magnitude spectrum com- 
putation followed by filter bank 
design with 20 triangular filters 
uniformly spaced on the Mel scale 
between 10Hz and 700Hz to span 
the standard frequency range of 
heart sounds. 
4. The filter bank is applied to 
the magnitude spectrum values to 
produce filter bank energies 
(FBEs) (20 per frame) 
5. Log-compressed FBEs are 
then decorrelated using the 
discrete cosine transform to 
produce cepstral coefficients. 
6. apply sinusoidal lifter to 
produce liftered MFCCs. 

 
all   accuracy   of   98.5%   with   97.4%   sensitivity, 
99.0% specificity, and 98.1% precision. The 
corresponding PPV is 98% for normal and 99% for 
RHD. 
 
 
 
 

Table 2: Validation Parameters. 

Parameter Formula
Accuracy T p+Tn 

T p+Tn+F p+Fn 

Sensitivity T p 
T p+F p 

Specificity Tn 
Tn+F p 

Precision T p 
T p+F p 

3.2 Experiment II 

It is noted that both the training and validation sets are 
unbalanced. This can only demonstrate a clinical 
setup where there are more positives than negatives. 
This second experiment is done to check the ro- 
bustness of the system against noise and different 
recording environments. For this purpose, 231 clean 
heart sound recordings from normal subjects and 120 
heart sound recordings with a substantial amount of 
background noise and distortion are included from the 
Bentley et al. (Bentley et al., 2011) open dataset. 
These data are collected using iStethoscope ProTM 
iPhone app and DigiScopeTM from the general 
public and clinical trials. A total of 4308 (2886 RHD 
and 1422 Normal) records with a 10-second duration 
is used for this experiment.  The data is further split 
into a 5-second duration as mentioned in the pre-
processing step. The Cubic SVM algorithm has again 
proved to be resilient to the noise by achieved 97.1% 
accuracy with 98% sensitivity, 95.3% of specificity 
and 97.6% precision. The corresponding PPV values 
are 96% for normal and 97% for RHD. 

Table 3: Experimental Results. 

 

4 DISCUSSION AND 
CONCLUSIONS 

Although heart sounds can actually tell you a lot about 
a patient, auscultation proficiency is declining fast. 
This is mainly due to the intrinsic weakness of the 
human auditory system and the technical ability gap 
in which a clinician can explain why I need to know it 
where there is more advanced technology to do it. Due 
to this instead of auscultation, echocardiography is 
considered as a gold standard to screen and diagnose 
valve damage in the heart. Unfortunately, in 
developing countries, such an advanced device is very 
expensive and cardiologists who can use it are rare. 



To make matters worse, the burden of cardio-vascular 
disease due to the non-curable but treatable and 
preventable rheumatic heart disease is very high in 
these countries. The damage to the heart valves due to 
RHD can be reduced if it is detected early. The most 
straightforward and cheapest approach to detect 
valvular damage is detected by listening to the heart 
murmurs. In this study, one of the largest heart sound 
dataset is collected. Using this dataset, a compre- 
hensive machine learning method is deployed. This 
study has demonstrated the performance of the ma- 
chine learning algorithm with extensive characteriza- 
tion methods to quantify and accurately classify heart 
sounds of a normal and confirmed Rheumatic Heart 
Disease. A total of 26 features that encompass time 
domain, frequency domain, and perceptual character- 
istics are carefully selected and computed. The results 
of the current study are very promising with respect to 
classification accuracy of 97.1 %, with 98 % sensitiv- 
ity, 95.3 % specificity, and 97.6% precision and a pos- 
itive predictive value of 99% in detecting RHD. Our 
data depicts better results in terms of classification ac- 
curacy, sensitivity, and specificity than previously re- 
ported studies available on heart sound data. While 
this study considers a specific type of heart disease, 
the other studies were trying to model generic types 
of heart diseases. 

Furthermore, we hope that this technology cou-
pled with mobile phone devices can be used as a 
screening tool in a clinical environment where access 
to echocardiography and cardiologist is difficult. This 
will make it a timely, affordable and reliable detec- 
tion tool allowing a non-medically trained individual 
to diagnose and screen for RHD. 
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