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Abstract
1.	 Intense anthropogenic disturbance threatens temporary pond ecosystems and 

their associated fauna across the Palearctic. Since fairy shrimps (Crustacea, 
Branchiopoda) are endemic to temporary ponds, populations are declining due to 
habitat loss and it is important to define adequate units for conservation.

2.	 Phylogeographic reconstructions, based on genetic variation, provide valuable 
information for defining evolutionary and conservation units, especially for or‐
ganisms with high levels of cryptic diversity like many fairy shrimps. We studied 
a total of 152 individuals of the fairy shrimp Branchipus schaefferi from 79 popula‐
tions across the Palearctic and used mitochondrial (CO1) and nuclear (ITS1) DNA 
data to reconstruct the phylogeography of the species.

3.	 Our results show that B. schaefferi comprises four highly diverged (10.3–16.5%) 
evolutionary clades. The present‐day haplotypes within each of the clades prob‐
ably diverged from lineages that were maintained in separate refugia during the 
Pleistocene ice ages. While two clades represent distinct geographic regions, the 
two remaining clades have more wide and overlapping ranges. In addition, the lim‐
ited number of shared haplotypes among populations from geographically distant 
regions within three of the clades suggest recent long‐distance dispersal events.
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1  | INTRODUCTION

Although temporary ponds are common aquatic habitats across 
many regions, they are increasingly threatened by human activ‐
ities including urbanisation, draining, and intensification of ag‐
riculture (Silva, Phillips, Jones, Eldridge, & O'Hara, 2007; Van den 
Broeck, Waterkeyn, Rhazi, & Brendonck, 2015a; Van den Broeck, 
Waterkeyn, Rhazi, Grillas, & Brendonck, 2015b). Due to their typi‐
cally small size and the fact that their filling and drying depends on 
rainfall and temperature, they are also particularly vulnerable to cli‐
mate change (Moss, 2012; Stoks, Geerts, & Meester, 2014; Tuytens, 
Vanschoenwinkel, Waterkeyn, & Brendonck, 2014). However, these 
systems have a high ecological importance as feeding grounds for 
migratory birds, stepping‐stones for dispersal of aquatic organisms, 
and habitats of a specialised aquatic fauna and flora with high de‐
grees of endemicity (Williams, 2006).

Large branchiopod crustaceans (Crustacea, Branchiopoda; group 
including the fairy shrimps) are an iconic group of temporary pond 
inhabitants. They typically grow and mature fast as an adaptation to 
the short growing seasons, determined by the time‐constrained wet 
phase of the pond. In addition, they bridge dry periods through the 
production of drought‐resistant dormant stages (Dumont & Negrea, 
2002). Dormant stages also serve as propagules for spatial dispersal 
via wind, flowing water, or through animal vectors (Bilton, Freeland, 
& Okamura, 2001; Pinceel, Brendonck, & Vanschoenwinkel, 2016). 
Large branchiopods are important components of food webs, for 
example as a major food source for migratory birds (Horváth, Vad, 
Vörös, & Boros, 2013) or as competitors and predators of plank‐
ton communities (Lukić, Horváth, Vad, & Ptacnik, 2018; Sánchez & 
Angeler, 2007; Waterkeyn, Grillas, Anton‐Pardo, Vanschoenwinkel, 
& Brendonck, 2011). Since temporary ponds are destroyed at a fast 
rate, large branchiopods are globally considered to be a vulnerable 
group with a constant decline in distribution (Brendonck, Rogers, 
Olesen, Weeks, & Hoeh, 2008).

The fairy shrimp Branchipus schaefferi Fischer 1934 occurs in 
temporary freshwaters across Europe, Northern Africa, and Asia (Al‐
Sayed & Zainal, 2005; Brtek & Thiéry, 1995). Given its distribution 
and phenology, B. schaefferi is considered to be a warm water spe‐
cies (Mura, 1999; Vanschoenwinkel, Brendonck, Pinceel, Dupriez, 

& Waterkeyn, 2013). In most of Europe, the species usually occurs 
from late spring to early autumn (Eder, Hödl, & Gottwald, 1997; 
Petrov & Cvetković, 1997). In warmer regions in Northern Africa, the 
Mediterranean, and Asia, populations have been reported through‐
out the year (Marrone & Mura, 2006). While the ecology, taxon‐
omy and range of occurrence of the species have been addressed 
to some extent (Brtek & Thiéry, 1995; Gandolfi, Rossi, & Zarattini, 
2015; Vanschoenwinkel et al., 2013), a range‐wide molecular phylo‐
geography is lacking. Given that a number of closely related species 
still needs to be validated (Belk & Brtek, 1995; Gandolfi et al., 2015), 
a full‐scale genetic study would provide essential complementary 
information to resolve taxonomic relationships and point to mean‐
ingful taxonomic units.

Genetic data can provide highly valuable information to study 
the history and diversity of a species. It can, for instance, be used 
to detect historical gene flow among populations and to reconstruct 
dispersal events more precisely than with only traditional methods 
based on morphological features (Freeland, Kirk, & Peterson, 2012). 
Conservation of the full adaptive potential of a species should have 
priority over simple species conservation (Moritz, 1994; Ryder, 
1986; Waples, 1995). Large branchiopods are known for high lev‐
els of cryptic genetic diversity among individuals that look morpho‐
logically similar (Aguilar et  al., 2017; Pinceel et  al., 2013a,2013b; 
Schwentner et al., 2013). Such individuals could differ extensively in 
physiology and may represent distinct evolutionary significant units 
(ESUs) for conservation (Pinceel et  al., 2013b). Finally, phylogeo‐
graphic studies may improve our understanding of the effect of past 
climate events, which, in turn, may serve to forecast consequences 
of future environmental changes (Pinceel et al., 2013a,b).

The phylogeography of a number of large branchiopod spe‐
cies in Europe and North Africa has been reconstructed and many 
studies show limited genetic divergence among populations, es‐
pecially in more northern regions of mainland Europe (Kappas 
et al., 2017; Reniers, Vanschoenwinkel, Rabet, & Brendonck, 2013; 
Vanschoenwinkel et al., 2012). This has been explained as a conse‐
quence of relatively recent range expansion from a small number of 
refugia after the Pleistocene glacials. Two studies have been under‐
taken to investigate specific aspects of the phylogeny of B. schaef‐
feri, one based on allozymes and CO1 (Gandolfi et  al., 2015) and 

4.	 Overall, the studied B. schaefferi dataset comprises high levels of genetic differen‐
tiation, without a clear morphological signal. Phylogenetic searches and pairwise 
genetic distances suggest that the studied lineages belong to a complex of four 
morphologically cryptic species. Since these four evolutionary old clades persist 
(±2 million years), despite overlapping geographic ranges and since they span a va‐
riety of ecological conditions, they should be considered as separate evolutionary 
significant units for conservation.
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another on 18S (Mioduchowska et  al., 2018). These studies were, 
however, restricted to 11 populations in Italy, Spain, and Morocco 
(Gandolfi et al., 2015) and 11 populations in Poland, Italy, and Algeria 
(Mioduchowska et al., 2018).

Here, we conduct a large‐scale phylogeographic study of the 
fairy shrimp species B. schaefferi across its range of occurrence. For 
this, we study the mitochondrial CO1 and nuclear ITS1 gene re‐
gions of individuals from 79 populations from wide areas in Europe 
and northern Africa and a single population in the Middle East. 
First of all, we perform phylogenetic searches and use sequence 
divergence based methods to verify if molecular data support the 
species status of the studied specimens, which were all identified 
as B. schaefferi based on morphological traits. Given the extensive 
geographic and ecological range of occurrence of the species, we 
expect high levels of genetic differentiation among certain popula‐
tions. Second, we use genetic divergence data among genetically 
distinct groups and standard molecular clocks, to assess the likeli‐
hood of different historic scenarios as explanation for the current 
distribution of genetic lineages. Given the fact that B.  schaef‐
feri is mostly successful under relatively high temperatures, the 
Pleistocene ice ages would have driven B. schaefferi to extinction in 
Northern regions. Therefore, we hypothesise low levels of genetic 
diversity in Northern regions compared to high levels of diversity 
around glacial refugia. Finally, based on the level of genetic differ‐
entiation between identified haplotype groups we aim to delineate 
the ESUs important for conservation of the adaptive potential 
within B. schaefferi.

2  | METHODS

2.1 | Sampling procedure

Samples were collected from a total of 68 temporary ponds in 
Europe, northern Africa and one site in Bahrain (Asia). Most speci‐
mens were field collected between 1980 and 2016 and conserved 
in ethanol of variable strength. Upon reception of the samples at 
KU Leuven (2012–2016), all ethanol was substituted by pure grade 
absolute ethanol and samples were subsequently stored in a fridge 
at 4°C. Specimens from Morocco (Timahdite, Ifrane, Ighergharen, 
and unknown localities), around Alger in Algeria, El Battan in Tunisia, 
unknown locality in Malta, and Vars and Les Cannet‐des‐Maures 
in France (for accession numbers see Table 1) were obtained after 
hatching field‐collected sediment with B. schaefferi egg banks in the 
laboratory.

2.2 | DNA extraction, polymerase chain reaction, 
DNA purification and sequencing

The molecular laboratory procedures to acquire the DNA se‐
quences for the targeted genes were performed in two laborato‐
ries separately, at the Department of Genetics and Biosystematics, 
University of Gdansk in Poland (45 specimens from 10 Polish popula‐
tions) and at the Laboratory for Animal Ecology, Global Change and 

Sustainable Development at KU Leuven in Belgium (all other speci‐
mens; see Supporting Information for both protocols).

2.3 | Phylogenetic and phylogeographical 
reconstructions

All generated B.  schaefferi CO1 sequences were assembled and 
visually checked for quality using SeqScape v2.5. Consensus se‐
quences were edited in BioEdit Sequence Alignment Editor (Hall, 
1999). All sequences that contained insertions and/or deletions 
(15 in total) were removed from the CO1 alignments to avoid the 
risk of co‐amplified nuclear mitochondrial pseudogenes inter‐
fering with the analyses (Song et al., 2008). The newly generated 
sequences of B. schaefferi, together with existing B. schaefferi se‐
quences from GenBank (Gandolfi et al., 2015), one sequence of 
Branchipus blanchardi Daday 1908 (KP702861.1) and one outgroup 
taxon (CO1: Branchipodopsis drakensbergensis GU139737.1 and ITS1: 
Branchipodopsis wolfi MN325155), were aligned with the CLUSTALW 
multiple alignment tool in BioEdit. All sequences were uploaded to 
GenBank (for accession codes see Table 1). The most probable evo‐
lutionary model for both markers was determined in PhyML (Lefort, 
Longueville, & Gascuel, 2017) based on both the Bayesian informa‐
tion criterion and Akaike information criterion (AIC). For CO1, the 
AIC selected for a general time reversible model (GTR) with dis‐
crete γ model (+G; γ  =  1.83) with invariable sites (I  =  0.57) which 
was used to assemble the Bayesian inference (BI) and maximum 
likelihood (ML) tree. To assemble neighbour joining (NJ) trees, we 
used a Tamura Nei evolutionary model (TN93; Tamura & Nei, 1993) 
with a discrete γ distribution, which was the best scored available 
model for the NJ method. For ITS1, the Bayesian information cri‐
terion selected a Kimura 2‐parametric model (K2P; Kimura, 1980), 
which was used for constructing the ML and NJ tree. The GTR with 
invariable sites was selected as most suitable evolutionary model by 
the AIC and used for assembling the BI tree since K2P models are 
not embedded within MrBayes. Substitution saturation was tested 
in DAMBE v. 7.0.28 (Xia & Kumar, 2018). The index of substitution 
saturation was significantly smaller than the critical index of substi‐
tution saturation, indicating little saturation (Xia & Lemey, 2009; Xia, 
Xie, Salemi, Chen, & Wang, 2003) for both markers. The haplotype 
number was determined based on calculated pairwise distances in 
MEGA X (Kumar, Stecher, Li, Knyaz, & Tamura, 2018).

The consensus phylogeny was constructed based on CO1 se‐
quences by comparing phylogenetic trees obtained with four differ‐
ent methods of inference: NJ, ML, maximum parsimony (MP), and 
BI. ML analyses were performed in MEGA X and PhyML (Guindon 
et  al., 2010) according to the GTR + G +  I evolutionary model for 
the CO1 and K2P model for ITS1 with 1,000 bootstrap replicates. 
The MP analyses for CO1 were performed in PAUP* v4.0 (Swofford, 
2001) and for ITS1 in MEGA. The settings included Heuristic search, 
Tree‐Bisection‐Reconnection, 1,000 saved trees, and 100 bootstrap 
replicates. The number of polymorphic and parsimony informative 
sites was also determined in PAUP*. NJ analyses were performed in 
MEGA X including 1,000 bootstrap replicates and partial deletion 
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of 90% (<10% alignment gaps, missing data, and ambiguous bases 
were allowed at any position). Bayesian inference was performed in 
MrBayes (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 
2003; Ronquist et al., 2012). Markov Chain Monte Carlo analysis ran 
for 2  ×  106 generations with a sampling frequency of 1,000 gen‐
erations and a 25% burn‐in. Pairwise genetic distances (based on 
K2P model) between all generated sequences and the mean genetic 
distances within and among the main groups in the phylogeny of 
B. schaefferi were calculated in MEGA X (Kumar, Stecher, & Tamura, 
2016) with partial deletion of 90% (373 positions in the final data 
set).

To estimate the approximate timing of divergence among phy‐
logenetic groups we applied various molecular clocks to the mini‐
mum and maximum of the calculated pairwise distances. For CO1, 
molecular clocks of 1.4 and 2.6% divergence per million years 
were applied as in Reniers et al. (2013). Eventually, the time range 
of the group split was estimated between the highest pairwise dis‐
tance (D/2) divided by the lowest rate of evolution, for the most 
distant time scenario, and the lowest pairwise distance divided by 
the highest rate of evolution for the most recent likelihood of the 
events.

We used the automatic barcoding gap discovery method (ABGD) 
(Puillandre, Lambert, Brouillet, & Achaz, 2012) and the 4×‐rule (Birky, 
Adams, Gemmel, & Perry, 2010; Birky, Wolf, Maughan, Herbertson, 
& Henry, 2005) to assess whether the most distinct B.  schaefferi 
groups within the phylogeny warrant a separate species status based 
on the studied CO1 fragment. The 4×‐rule states that the lineages 
can be considered as separate species when the mean distance be‐
tween them is at least four times larger than the mean divergence 
within the lineages (Birky et al., 2005). The ABGD method separates 
species based on the barcode gap that occurs when the divergence 
between individuals of the same species is lower that the divergence 
between the individuals of the different species (Puillandre et  al., 
2012). To run the ABGD method, we used the online version (http://
wwwabi.snv.jussi​eu.fr/publi​c/abgd/abgdw​eb.html) following the de‐
fault settings.

3  | RESULTS

We generated 117 CO1 and 79 ITS1 sequences (accession codes 
Table 1) of B. schaefferi from 13 countries and 35 regions. All ponds 
in a region are counted as one locality and NAs are counted as 
separate localities. Generated ITS1 consensus sequences ranged 
from 494 to 695  bp. The length of the produced consensus se‐
quences for CO1 ranged from 242 to 658 bp. The partial CO1 se‐
quence from the Bahrain specimen was excluded. Combined with 
sequences drawn from GenBank (Branchipus populations primar‐
ily identified as Branchipus visnyai and Branchipus pasai were here 
referred as B.  schaefferi since their synonymy was recently con‐
firmed; Gandolfi et al., 2015), we compiled an alignment with 134 
CO1 sequences from 71 populations distributed over 13 countries 
(40 regions).

3.1 | Genetic diversity

We identified a total of 31 unique CO1 haplotypes among the stud‐
ied B. schaefferi individuals, based on calculated pairwise distances 
with K2P model and partial deletion of 90%. The overall average 
intraspecific genetic divergence was 10.9% considering all lineages 
of B. schaefferi. A total of 57 (+1 B. blanchardi sequence and one out‐
group) lineages were included in phylogenetic reconstructions since 
multiple identical sequences of one locality were considered as a sin‐
gle lineage. In each case, the longest assembled sequence was cho‐
sen as representative lineage. Of 237 polymorphic sites, 178 were 
parsimony informative with a proportion of constant characters of 
63.98%. Among individuals, genetic differentiation ranged from 0 
to 19.0%. The lowest genetic differentiation was generally found 
among individuals from geographically clustered localities in France, 
Belgium, Morocco, Poland, and Austria. The highest difference was 
found between one French individual from Bidon and an individual 
from Morocco.

Based on the ITS1 marker, we identified 13 unique haplotypes. 
The overall average genetic divergence was 1.0% considering all 
lineages. A total of 59 (and one outgroup) lineages was included in 
the phylogenetic reconstructions, selected in the same manner as 
for CO1. There were 91 polymorphic sites, of which 20 were parsi‐
mony informative. Pairwise distances ranged from 0 to 2.6%, with 
the highest divergence between one specimen from the Camargue 
area (Arles) in France and one from the High Atlas mountain range 
in Morocco.

3.2 | Phylogenetic analyses based on CO1

The four different methods of phylogenetic inference (ML, MP, NJ, 
and BI) produced trees with a highly similar topology for the studied 
B. schaefferi populations (Figure 1). The phylogenetic search meth‐
ods group the studied haplotypes in four clades (A–D; Figure 2), 
except when the population from Vars in France was placed as 
a separate group (i.e. clade) in MP tree. The most basal clade A 
within the evolutionary tree groups a total of seven haplotypes 
from the Mediterranean islands (Sicily, Lampedusa, Malta) and 
Tunisia. Subsequently, a clade B grouping the studied B. schaefferi 
populations from central (Austria, northern Italy, and Poland) and 
southern Europe (France and Spain) and a single haplotype from 
northern Serbia appears to have diverged. This clade represents 
seven distinct CO1 haplotypes. Next in line comes a clade C with 
10 Moroccan haplotypes from six localities and a single population 
from Algeria and the extreme South of mainland Italy. Finally, the 
remaining seven haplotypes are grouped in a fourth monophyletic 
clade D. Although the majority of haplotypes in this clade originate 
from all across Europe, also two specific Moroccan (+1 shared with 
European populations) haplotypes and a single Algerian haplotype 
are included. Mean within‐group K2P distances were 1.59% for 
clade A, 1.69% for clade B, 2.14% for clade C, and 1.64% for clade 
D. Mean between group (K2P) distances ranged from 10.3% be‐
tween clades C and D to 16.5% between clades B and D (Table 2; 

http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
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for TN93 + G between group distances see Table S2). Mean be‐
tween group distances of B. blanchardi and four B. schaefferi clades 
were overall higher than distances between the B. schaefferi clades 
(Table 2). Both ABGD (prior maximal distance p = 0.035; Table S1) 
and the 4x‐rule suggest that the clades should be considered as 
different species.

3.3 | Phylogenetic analyses based on ITS1

All phylogenetic search methods divided the studied haplotypes in 
two groups. The first group corresponded to the clade B recognised 
for CO1 (three haplotypes), while the second group included all 
other groups (A, C, and D, overall 10 haplotypes; Figure S1). Mean 

F I G U R E  1   Consensus phylogenetic 
tree for Branchipus schaefferi, based on 
the mitochondrial CO1 gene fragment 
(maximum likelihood—ML, maximum 
parsimony—MP, neighbour joining—NJ 
and Bayesian inference—BI). The ML tree 
was used as a template. The supporting 
values of four evolution reconstruction 
methods are included close to the nodes 
(ML/MP/NJ/BI). The unsupported 
groupings are indicated with ‘–’. Codes 
within the first pair of brackets indicate 
the codes of sequenced specimens and 
numbers in the second pair of brackets 
specify the number of specimens from 
the same region that belong to the same 
haplotype. The groups (clades) identified 
by the phylogenetic search methods are 
indicated with the same colour‐coding as 
in Figure 2: yellow—Clade A, red—Clade B, 
green—Clade C and blue—Clade D [Colour 
figure can be viewed at wileyonlinelibrary.
com]

(a)

(b)

(c)

(d)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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within‐group (K2P) distances were 0.09% for clade B and 0.5% for 
the second group containing all remaining sequences. The clade B (for 
the CO1 gene) was also supported by all phylogenetic reconstructions 
based on the ITS1 region. This group contains three different ITS1 
haplotypes, two from localities in France and a third, which represents 
all other specimens. Specimens from Konjsko in Croatia, Arles and 
Le Cannet‐des‐Maures in France, and Szentbékkálla in Hungary, for 
which no CO1 sequences could be generated, were included in clade 
B (Figure 2). The second (A, C, and D) group contains 10 haplotypes. 
All phylogenetic searches grouped lineages from Tunisia together as a 
sub‐group with two haplotypes. This is consistent with the reconstruc‐
tions based on CO1, with the exception that the haplotype from Malta 
is not separated from the other lineages. It should be noted that, based 
on the ITS1 region and the partial CO1 fragment, the studied speci‐
men from Bahrain (R1) belongs to clade D.

4  | DISCUSSION

Our results demonstrate high levels of genetic differentiation 
among populations of the widely distributed Palearctic fairy 
shrimp species B. schaefferi. Pleistocene ice ages and long‐distance 
dispersal events appear to have shaped the present‐day diversity 
and distribution of genetic lineages. Phylogenetic searches and 
analyses of molecular divergence identified four major evolution‐
ary groups within B. schaefferi which, according to sequence diver‐
gence‐based species concept methods, could represent separate 
species. These clades should at least be considered separate ESUs 

for conservation purposes, especially since they have persisted 
for millions of years in separation under highly diverse ecological 
conditions.

F I G U R E  2   Distribution of sequenced Branchipus schaefferi populations. Locality numbers match to the population numbers in Table 1. 
Specimens were grouped based on the divergence of the CO1 gene (showed in different colours and shapes). Colours of the clades: (A) 
yellow, (B) red, (C) green, (D) blue. Shapes of the clades: (A) triangle, (B) square, (C) circle, (D) diamond. The coordinates for which exact 
localities were unknown were chosen based on country codes (https​://devel​opers.google.com/public-data/docs/canon​ical/count​ries_csv). 
The phylogenetic position of the specimen from Bahrain was determined based on the ITS1 and the partial CO1 sequence and the position 
of the specimens from Konjsko in Croatia, Arles and Le Cannet‐des‐Maures in France and Szentbékkálla in Hungary was based on the ITS1 
region  [Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  2   Divergence between the groups (clades) within 
Branchipus schaefferi and between Branchipus blanchardi (B.b.) and 
B. schaefferi clades

Clades

Distances (%)
Molecular 
clock (mya)Min Max Mean

A–B 11.2 18.6 14.0 6.6–2.2

A–C 12.5 16.9 15.1 6.0–2.4

A–D 12.6 14.9 13.8 5.3–2.4

B–C 13.0 16.4 14.7 5.9–2.5

B–D 10.4 19.0 16.5 6.8–2.0

C–D 9.0 13.2 10.3 4.7–1.7

B.b.–A 16.5 18.9 17.8 6.7–3.2

B.b.–B 19.0 22.6 20.0 8.1–3.6

B.b.–C 21.3 25.2 23.0 9.0–4.1

B.b.–D 20.2 22.0 20.7 7.9–3.9

The table contains minimum, maximum, and mean genetic distances be‐
tween groups (in %) and an assessment of the timing of divergence among 
groups (millions of years ago, mya). The number of base substitutions per 
site, averaged over all sequence pairs between groups, represents the 
mean distances. Analyses were conducted using the Kimura 2‐parameter 
model (Kimura, 1980). Fewer than 10% alignment gaps, missing data, and 
ambiguous bases were allowed at any position. Sequences were 373 base 
pairs in length in the final alignment. Molecular clocks ranged between 
1.4% and 2.6% of substitution per my (cf. Reniers et al., 2013).

https://developers.google.com/public-data/docs/canonical/countries_csv
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4.1 | Pleistocene glaciations shaped the 
evolutionary history of B. schaefferi

Temperate Europe was characterised by extreme climatic fluctua‐
tions throughout the Pleistocene (2.6 million years ago [mya]–11,000 
years ago). Periods of glaciation and extending ice cover were al‐
ternated with milder interglacial periods (Paillard, 1998). The Arctic 
ice cover was formed 2.4  mya and until 0.9  mya the ice coverage 
advanced and retreated in cycles of approximately 41,000 years 
(Hewitt, 2000). Later on, 0.9 mya—present, the glacial/interglacial 
cycles became more severe and typically lasted around 100,000 
years (Paillard, 1998). Most species from temperate regions were af‐
fected by prolonged ice cover, which resulted in local extinctions, 
genetic bottlenecks, and range shifts. In contrast, warmer interludes 
were typically associated with demographic and range expansions 
(Hewitt, 2000). Even based on the least conservative molecular 
clocks available for CO1, the four major B. schaefferi clades identi‐
fied in our study diverged before or during the first Pleistocene ice 
ages, around 6.8–1.7 mya. This suggests that at least four separate 
B. schaefferi refugia may have existed during the last glacial periods. 
An alternative—and non‐mutually exclusive—explanation could be 
that the clades were reproductively isolated prior to the ice ages.

It seems reasonable to assume that the clade A and C lineages 
would have been least affected by the consequences of glaciation. 
Representatives from these clades all originate from localities in the 
Mediterranean and in northern Africa, areas far less affected by cli‐
mate change throughout the Pleistocene than the more northern 
regions where B.  schaefferi occurs today (Hewitt, 2000). The high 
genetic similarity among most B. schaefferi from the northern parts 
of Europe (Poland in clade B and Belgium and Germany in clade D) 
suggests that these areas were colonised relatively recently. In con‐
trast, several of the southern populations (e.g. Morocco in clade C 
and Italy in clade A) are characterised by relatively high pairwise 
divergences. Furthermore, both within clades B and D, haplotypes 
from the most southern locations (Clade B: France and Spain; Clade 
D: Morocco and Italy) appear to be most basal in position. This is 
consistent with the notion that the Iberian and Apennine peninsula 
and the Balkans served as Pleistocene glacial refugia for many taxa 
(Hewitt, 2000), including fairy shrimps (Muñoz et al., 2008; Reniers 
et al., 2013).

Branchipus schaefferi and Chirocephalus diaphanus are both wide‐
spread species in Europe. However, they differ in some ecological 
traits. While C.  diaphanus is typically a cold‐tolerant species and 
appears in fall and early spring, B. schaefferi is a thermophilic spe‐
cies, generally present during late spring and summer in Europe (e.g. 
Petrov & Cvetković, 1997). Phylogenetic reconstructions revealed 
genetic differentiation between C.  diaphanus populations from 
eastern and western Europe (Reniers et al., 2013). Our reconstruc‐
tions for B.  schaefferi are largely consistent with this observation. 
However, a number of shared haplotypes do occur among eastern 
and western regions (e.g. specimens from Serbia and Hungary pres‐
ent in clade D and the specimen from Spain in clade B). This is sug‐
gestive of recent long‐distance dispersal events via vectors such as 

migrating water birds (Brochet et al., 2009; Green et al., 2005) and 
motorised vehicles (Waterkeyn et al., 2010).

4.2 | Indications for long distance dispersal

Within clades B and D, genetic variation is very limited among hap‐
lotypes from different localities, especially when excluding the basal 
haplotypes from France, Italy, and Spain. Relatively rapid postglacial 
recolonisation of northern regions may be a likely historic explanation 
underpinning this pattern. The fact that haplotypes are highly simi‐
lar or even shared among distant regions such as among France and 
Morocco, underlines the potential for long‐distance dispersal events 
of B. schaefferi. Recent gene flow across large geographic distances 
was also observed in other European fairy shrimp species including 
Streptocephalus torvicornis (Kappas et al., 2017) and Branchinecta ori‐
entalis (Rodríguez‐Flores, Jiménez‐Ruiz, Forró, Vörös, & García‐París, 
2017). In both studies, it is argued that effective long‐distance dis‐
persal through migratory birds is the most likely explanation. Fairy 
shrimp species produce small (typically ±200 μm for B.  schaefferi), 
drought‐resistant dormant eggs that are highly resistant to drying 
and adverse environmental conditions for periods of up to several 
years (Brendonck, Pinceel, & Ortells, 2017; Vanschoenwinkel et al., 
2013). These eggs act as propagules for passive dispersal and can 
easily be ingested by water birds or sporadically stick to their feath‐
ers (Sánchez, Hortas, Figuerola, & Green, 2012). Results from field 
studies demonstrate that eggs of the fairy shrimps can be dispersed 
across long distances in such a way (Brochet et al., 2009; Green et al., 
2005; Lovas‐Kiss et al., 2018; Rogers, 2014). It is also likely that long‐
distance dispersal of B. schaefferi is mediated by migratory birds. For 
instance, haplotype links between populations from Algeria and 
those in Belgium and Hungary in clade D match the yearly migration 
routes of some wader birds (Svensson, 2009).

4.3 | The B. schaefferi species status and 
delineating ESUs

Although delineating new species surpasses the aim of this study, 
we would like to phrase a number of critical remarks with regard to 
the current grouping of all studied B. schaefferi individuals as a single 
species. First of all, the mean genetic differentiation, on the standard 
barcoding marker CO1, among the four different B. schaefferi phylo‐
genetic clades ranged between 10.3 and 16.5%. This is in line with, 
or exceeds, commonly accepted CO1 species divergence thresholds 
of 7–10% for freshwater fairy shrimps (Cox & Hebert, 2001; Pinceel 
et al., 2013a; Reniers et al., 2013). Second, the results from the ABGD 
searches and the 4×‐rule support a separate species status for the 
four separate clades. Third, while the degree to which the clades 
are reproductively isolated remains to be assessed experimentally, 
the reconstructed phylogeography suggests a degree of isolation, at 
least among clade B and clade D lineages. Despite the fact that clade 
B and clade D have a largely overlapping geographic range, individu‐
als from both clades are genetically highly distinct, which implies that 
there is no interbreeding among representatives from the clades.
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Combined, our results suggest that the studied B. schaefferi lineages 
probably represent four morphologically cryptic species, which corre‐
spond to the four clades in the reconstructed phylogeny. Therefore, 
the species should be subject to a taxonomic revision, based on com‐
bined information from morphological, genetic and ecological analyses. 
Clades A and C are especially vulnerable due to their restricted distribu‐
tion in the Mediterranean region where their habitats are disappearing 
at an alarming rate (2015a; Van den Broeck, Waterkeyn, Rhazi, Grillas, 
et  al., 2015b; Zacharias & Zamparas, 2010). Considering the current 
threats to B. schaefferi across its range of occurrence, we would for now 
at least like to promote the recognition of the four clades within the 
phylogeny as separate ESUs for directing conservation efforts.

5  | CONCLUSIONS

Overall, our results illustrate the importance of assessing the phylo‐
geography of a species for the development of conservation strat‐
egies, especially for morphologically cryptic taxa with high genetic 
diversity. Temporary ponds contain many rare and specialist spe‐
cies, such as the studied freshwater crustacean. However, across 
the studied regions temporary ponds are also essential as sources 
of food, water, and breeding grounds to many other organisms in‐
cluding threatened birds and amphibians. Therefore, their protection 
should be considered a priority in nature management plans.
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