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ABSTRACT

Understanding the vulnerability of tree species to anthropogenic threats is important for the 

efficient planning of restoration and conservation efforts. We quantified and compared the effects 

of future climate change and four current threats (fire, habitat conversion, overgrazing, and 

overexploitation) on the 50 most common tree species of the tropical dry forests of northwestern 

Peru and southern Ecuador. We used an ensemble modelling approach to predict species 

distribution ranges, employed freely accessible spatial datasets to map threat exposures, and 

developed a trait-based scoring approach to estimate species-specific sensitivities, using 

differentiated trait weights in accordance with their expected importance in determining species 

sensitivities to specific threats. Species-specific vulnerability maps were constructed from the 

product of the exposure maps and the sensitivity estimates. We found that all 50 species face 

considerable threats, with an average of 46% of species’ distribution ranges displaying high or 

very high vulnerability to at least one of the five threats. Our results suggest that current levels of 

habitat conversion, overexploitation, and overgrazing pose larger threats to most of the studied 

species than climate change. We present a spatially explicit planning strategy for species-specific 

restoration and conservation actions, proposing management interventions to focus on (i) in-situ 

conservation of tree populations and seed collection for tree planting activities in areas with low 

vulnerability to climate change and current threats, (ii) ex-situ conservation or translocation of 

populations in areas with high climate change vulnerability, and (iii) active planting or assisted 

regeneration in areas under high current threat vulnerability but low climate change vulnerability, 

provided that interventions are in place to lower threat pressure. We provide an online, user-

friendly tool to visualize both the vulnerability maps and the maps indicating priority restoration 

and conservation actions.
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1 INTRODUCTION

Anthropogenic threats such as climate change, habitat conversion, and overexploitation are among 

the main drivers fuelling the global biodiversity crisis (Bradshaw, Sodhi, & Brook, 2009; Ceballos 

et al., 2015). Assessing the vulnerability of ecosystems and species populations to these threats is 

critical for the planning of cost-effective restoration and conservation actions (Auerbach, Tulloch, 

& Possingham, 2014; Carwardine et al., 2012), which has led to a surge of vulnerability 

assessments over the last decade. Most studies have focused on climate change (e.g., Foden et al., 

2013; Thomas et al., 2011), or the combined effects of climate change and land use change (e.g., 

Elías-Velazco, Villalobos, Galvão, & De Marco Júnior, 2019; Reece, Noss, Oetting, Hoctor, & 

Volk, 2013). Less commonly, vulnerability assessments have also addressed other threats such as 

fire, overexploitation, and overgrazing (e.g., Gaisberger et al., 2017; Jarvis, Touval, Schmitz, 

Sotomayor, & Hyman, 2010).

Species vulnerability assessments often estimate three dimensions of vulnerability: exposure, 

sensitivity and adaptability (Pacifici et al., 2015; Wheatley et al., 2017). Exposure is defined as the 

magnitude and rate of a threat to which species populations are likely to be exposed. Sensitivity 

usually refers to the degree to which survival and reproduction are affected by the threat, whereas 

adaptability concerns the capacity of species populations to either respond to a threat through 

phenotypic plasticity and genetic adaptation, or to avoid its negative impacts through dispersal and 

colonization (Dawson, Jackson, House, Prentice, & Mace, 2011; Ofori, Stow, Baumgartner, & 

Beaumont, 2017). As the distinction between sensitivity and adaptability is not always clear-cut, 

adaptability has often been considered as an integral component of sensitivity (e.g., Williams, 

Shoo, Isaac, Hoffmann, & Langham, 2008; Young et al., 2012).

Species vulnerability assessments have employed a variety of methodologies, which can be 

grouped into correlative, trait-based and mechanistic approaches (Foden et al., 2018; Pacifici et al., 

2015). Correlative approaches use correlative species distribution models to assess species 

vulnerability, for example by projecting these models to future climate conditions (e.g., Manchego 

et al., 2017; Rogers, Jantz, & Goetz, 2017). Trait-based assessments use species traits to estimate 

species-specific sensitivities, usually combined with information on threat exposure (e.g., Foden et 

al., 2013; Spencer, Hollowed, Sigler, Hermann, & Nelson, 2019). Mechanistic approaches 

explicitly incorporate the biological processes underlying species vulnerability by parametrizing 

mechanistic models (e.g., Mantyka-Pringle, Martin, Moffatt, Linke, & Rhodes, 2014; Morin, A
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Viner, & Chuine, 2008). There is a growing consensus that a combination of different approaches 

(e.g., Aubin et al., 2018; Maggini et al., 2014) may yield the most useful results, depending on the 

study objectives and data availability (Foden & Young, 2016; Willis et al., 2015).

Because of the spatially explicit nature of anthropogenic threats and the fact that species are likely 

to respond differently to these threats, the assessment of the vulnerability of multiple species to 

multiple threats is a complex exercise. Multi-threat vulnerability assessments have therefore often 

assumed that threats are homogenous across species ranges or that different species are equally 

sensitive to threats. Only a few studies have assessed the impacts of multiple threats on multiple 

species in a species-specific and spatially explicit way (e.g., Gaisberger et al., 2017; Maggini et 

al., 2014; Reece et al., 2013).

Tropical dry forests (TDFs) are among the most threatened ecosystems worldwide (Hoekstra, 

Boucher, Ricketts, & Roberts, 2005; Janzen, 1988). In the Americas, around two-thirds of the 

original TDF cover has been converted to other land uses (Portillo-Quintero & Sánchez-Azofeifa, 

2010). In spite of this, TDFs have long been largely neglected in scientific literature, receiving 

much less attention than tropical humid forests (Pennington, Lehmann, & Rowland, 2018). While 

research efforts have been increasing in recent years (e.g., Banda et al., 2016; Derroire et al., 

2016), a pressing need remains to step up science-based restoration and conservation efforts in 

TDF ecosystems (Pennington et al., 2018). 

The TDFs of northwestern Peru and southern Ecuador are known for their high degree of 

endemism (Linares-Palomino, Kvist, Aguirre-Mendoza, & Gonzales-Inca, 2009; Marcelo-Peña, 

Huamantupa, Särkinen, & Tomazello, 2016), but they are under great pressure from anthropogenic 

threats. Some 40% of the TDFs in northwestern Peru and southern Ecuador have been converted 

to agriculture (annual crops and fruit tree plantations) by both smallholders and agribusiness 

companies, the latter of which are usually linked to large-scale irrigation projects (MAE, 2012; 

MINAM, 2018). Many of the non-converted forests are severely impacted by overexploitation, 

overgrazing, and forest fires (Aguirre-Mendoza & Geada-Lopez, 2017; Linares-Palomino, 2006; 

Marcelo-Peña et al., 2016). Overexploitation occurs both for local (timber for rural constructions, 

firewood) and commercial (charcoal, timber) purposes. Overgrazing is caused by free-roaming 

cattle, goats, and donkeys owned by smallholders, and occurs in almost all TDFs of the region. 

Most fires are caused by human activities, including fires deliberately initiated by land traffickers 

to ease land titling (Muñoz, 2018).A
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In addition to the current threats mentioned above, TDFs are expected to be sensitive to climate 

change, owing to their dependence on often erratic seasonal rainfall (Allen et al., 2017). Most 

general circulation models (GCMs) predict an increase in annual precipitation in northwestern 

Peru and southern Ecuador, but a decrease in dry season precipitation, especially in the lowland 

forests. Previous studies suggest that marked drought events can engender strong negative impacts 

on the recruitment, survival, and growth rates of TDF tree species (Castro, Sanchez-Azofeifa, & 

Sato, 2018; Maza-Villalobos, Poorter, & Martínez-Ramos, 2013; Spannl et al., 2016). 

Here we quantified and compared the effects of five key threats (climate change, habitat 

conversion, overexploitation, fire, overgrazing) on 50 common tree species of the TDFs of 

northwestern Peru and southern Ecuador. We used an ensemble modelling approach to predict 

species distribution ranges, employed freely accessible spatial datasets to estimate threat 

exposures, and developed a trait-based scoring approach to estimate species-specific sensitivities 

to each of the five threats. Our approach is similar to other vulnerability assessments combining 

correlative species distribution models and trait-based methods (e.g., Aubin et al., 2018; Garcia et 

al., 2014; Maggini et al., 2014), but to the best of our knowledge, it is the first spatially explicit 

multi-threat vulnerability assessment using species traits to estimate the sensitivity of a large 

number of tree species. We further show how the results of this study can be used to guide 

species-specific restoration and conservation actions. 

2 MATERIALS AND METHODS

2.1 Study region 

The study region comprises the TDFs of southern Ecuador and northwestern Peru between 9°30’ S 

and 3°15’ S, roughly covering an area extending from the Marañón valley in Peru in the south to 

the Jubones river in Ecuador in the north, the latter of which can be considered the northwestern 

limit of the Amotape-Huancabamba biogeographic region (Weigend, 2004). These TDFs can be 

subdivided in lowland, montane and interandean forests (Linares-Palomino, 2006). The lowland 

TDFs, located into the coastal plains on the western side of the Andes, are characterized by 

relatively low stem densities and canopy heights. With increasing altitudes along the western 

flanks of the Andes, the lowland TDFs transition into montane TDFs, reaching an altitude of ca. 

1600 masl, with higher stem densities and canopy heights (Linares-Palomino, 2006). The 

interandean TDFs are situated in the Marañón river valley and its tributaries, flanked on both sides A
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by Andean mountain ranges. Their biogeographical isolation has resulted in one the highest 

endemism rates in the world, with 33% of the woody species present in these forests being 

restricted to this valley (Marcelo-Peña et al., 2016).

2.2 Tree species occurrence records

Tree species occurrence records were compiled from a variety of sources (Supporting Information 

2). While the compilation focused on TDF records, we also included the georeferenced records of 

all tree and shrub species from national checklists of Peru (Brako & Zarucchi, 1993), Ecuador 

(Jørgensen & León-Yánez, 1999) and Colombia (Bernal, Gradstein, & Celis, 2015) available on 

the GBIF (Global Biodiversity Information Facility; www.gbif.org) and BIEN (Botanical 

Information and Ecology Network; http://biendata.org/) platforms, which were used as an input in 

the distribution modelling (section 2.5).

2.3 Modelling  the potential distribution of tropical dry forest

Given the limited quality of existing maps depicting the potential distribution of TDFs (Särkinen, 

Iganci, Linares-Palomino, Simon, & Prado, 2011), we first modelled the potential distribution of 

TDFs in the study region, using a combination of presence locations of TDF habitat specialist 

species and TDF presence points randomly sampled from existing land cover maps (MAE, 2012; 

MINAM, 2018). The use of habitat specialist species is based on the assumption that their 

presence or absence is a good proxy of the distribution of TDF (Särkinen et al., 2011). The 

selection procedure of TDF habitat specialist species, the modelling methodology and the 

corresponding results are detailed in Supporting Information 3.

2.4 Selection of tree species

We selected the 50 most frequent tree species (i.e. with most occurrence records) in our study 

region for in-depth analysis (Supporting Information 1 Table S3).Species frequency was 

determined as the number of records within the modelled TDF distribution. We determined the 

frequency of species after  spatially thinning the occurrence records with a 4 km thinning distance, 

using the spThin package for R (Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson, 

2015), in order to reduce the effects of spatial bias.
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2.5 Species distribution modelling

We estimated the distribution of the selected tree species through an ensemble modelling approach 

(i.e. combining different modelling algorithms), implemented in the BiodiversityR package for R 

(Kindt, 2018). The following twelve algorithms commonly used in distribution modelling were 

included. The corresponding package is given between parentheses: MaxEnt (dismo), random 

forests (randomForest), support vector machines (kernlab), flexible discriminant analysis (mda), 

multivariate adaptive regression splines (earth), DOMAIN (dismo), stepwise and non-stepwise 

implementations of boosted regression trees (dismo and gbm), generalized linear models (stats), 

and generalized additive models (gam). We selected these algorithms out of a total of 23 (see 

Kindt 2018) based on their superior performance during preliminary runs for the selected species, 

based on cross-validated AUC (area under the receiver operating characteristic curve) values. 

Maxent is a presence-background method, DOMAIN a presence-only method, whereas the 

remaining algorithms are presence-absence algorithms.

Presence locations used for estimating the distribution ranges of the selected tree species were 

sourced from the compiled occurrence data (section 2.2). Presence locations were filtered to a 

resolution of 30 arcsec (ca. 0.9 km at the equator) prior to modelling. After filtering, all 50 

selected tree species had more than 30 occurrence records, which is generally considered sufficient 

to build accurate distribution models (van Proosdij, Sosef, Wieringa, & Raes, 2016; Wisz et al., 

2008). 

Background points used for calibrating the Maxent models were selected using the target group 

approach, proposed by Phillips et al. (2009) as a method to reduce the effects of spatially biased 

occurrence records on model calibration. This involves the selection of background records from 

grid cells with presence coordinates of species belonging to a similar group as the target species, 

under the assumption that these locations reflect a bias similar to the sampling bias of the target 

species (Phillips et al., 2009). We constructed the target group grid using the occurrence records of 

all tree and shrub species of the national checklists of Peru, Ecuador and Colombia (section 2.2).

For the presence-absence algorithms, absence locations were selected using an approach similar to 

the target group method, by selecting grid cells that did not contain records of the modelled 

species, but that had been sufficiently covered by botanical sampling activities to provide some 

confidence of species absence. The minimum sampling intensity of each grid cell was set at a 

minimum of two forest inventory plots, ≥ 20 observed tree or shrub species from non-plot-based A
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data, or the combination of at least one inventory plot and ≥ 10 observed tree or shrub species 

from non-plot-based data. Given that the median site-level woody species richness in the TDFs of 

the study region and the interandean TDFs of Ecuador and Colombia is below twenty (Banda et 

al., 2016), these ‘target group absences’ (Mateo, Croat, Felicísimo, & Muñoz, 2010) were 

expected to be close to real absence records.

We selected 34 climatic, edaphic and topographic variables as possible predictors for modelling 

(Supporting Information 1 Table S1), consisting of 19 bioclimatic variables (Hijmans, Cameron, 

Parra, Jones, & Jarvis, 2005), annual aridity, 10 continuous soil variables (Hengl et al., 2017), and 

4 topographic variables. This set of variables was reduced to 14 variables (Supporting Information 

1 Table S1) using a stepwise procedure. First, the importance of each of the variables was 

estimated by fitting random forest distribution models for the selected tree species. Next, the 

variance inflation factors (VIFs) of the predictor variables were calculated with the usdm package 

(Naimi, Hamm, Groen, Skidmore, & Toxopeus, 2014), using extracted values of the predictor 

variables at all the locations of the compiled occurrence records within the modelling extent (see 

below). Of the three variables with the highest VIF, the one variable with the lowest average 

variable importance was discarded. This was repeated until all predictor variables had a VIF lower 

than 5.

To reduce the possible confounding effects of regional niche variation due to local adaptation 

(Dorado-Liñán et al., 2019; Hällfors et al., 2016) and to ensure the capacity of the models to 

accurately distinguish between presence and absence within the TDF biome (rather than between 

different biomes), we restricted our modelling extent to the areas within Peru, Ecuador and 

Colombia falling within the broad environmental space occupied by TDFs, slightly extended to 

include neighbouring ecosystems. TDFs can be defined as (a) having an annual aridity lower than 

1 (Murphy & Lugo, 1986), (b) a mean annual temperature higher than 17°C (Murphy & Lugo, 

1986), and (c) at least 5 months with less than 100 mm rainfall (Pennington, Pradot, & Pendry, 

2000). Accordingly, presence, absence and background points were drawn from areas with (a) an 

annual aridity lower than 1.25, (b) a mean annual temperature higher than 14°C, and (c) at least 3 

months with less than 100 mm rainfall. In addition, at least half of the occurrence records were 

always taken from the study region, randomly subsampling the occurrence records outside the 

study region if necessary. The modelling extent was further restricted to the convex hull around 
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the presence locations of the modelled species, extended with a buffer corresponding to 10% of 

the longest axis between presence points.

The accuracy of the distribution models was estimated using the AUC statistic. The AUC measure 

has been criticized, mainly because AUC values are easily inflated by increasing the 

environmental extent in which absence points are selected (Lobo, Jiménez-Valverde, & Real, 

2008). However, AUC values remain valid to compare modelling results of the same species in the 

same area (Kindt, 2018), and inflated AUC values were avoided by restricting the modelling 

extent as outlined above. Overly optimistic AUC values can also result from randomly partitioning 

spatially auto-correlated occurrence records in testing and training points (Bahn & McGill, 2013). 

The distribution models were therefore cross-validated using spatial blocks, using the blockCV 

package for R (Valavi, Elith, Lahoz-Monfort, & Guillera-Arroita, 2019). This approach, which 

partitions the presence and absence locations in training and testing locations using a set of spatial 

blocks, has the additional advantage that the obtained AUC values provide a better measure of 

model transferability, which is crucial when projecting species distributions to future climates 

(Muscarella et al., 2014; Wenger & Olden, 2012). Presence and absence points were partitioned 

using 10 folds, each fold consisting of one or more 100 km-wide squared blocks. For species for 

which the distribution range was not large enough for 10 blocks (the minimum number of 

presence and absence records per block was set at 4), fewer folds were used. 

In each of the cross-validation folds, the weights of the different algorithms in the ensemble model 

were optimized using the ensemble.tune function of the BiodiversityR package, which maximizes 

the AUC value of each ensemble model by optimizing the weights of the different algorithms 

through a factorial procedure (Kindt, 2018). The suitability predictions of the final ensemble 

model were made with the average of these optimized weights.

The suitability maps were converted to presence-absence maps by using the suitability threshold at 

which model sensitivity and specificity are equal, which is one of the two threshold selection 

methods recommended by Jiménez-Valverde & Lobo (2007). The presence-absence maps were 

masked by the aforementioned extended convex hull to exclude areas without any occurrence 

records, and masked by the modelled potential distribution of TDF to focus our analysis on the 

TDFs of our study region.
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2.6 Threat exposure

For each of the five selected threats (climate change, fire, habitat conversion, overgrazing, and 

overexploitation), threat exposure estimates were constructed using freely acessible spatial 

datasets (Table 1), based on a set of assumptions derived from literature and expert knowledge 

(see below). The exposure estimates were created as grid layers with values ranging from 0 (zero 

exposure) to 1 (maximum exposure). They reflect current exposure levels, except for climate 

change, in which case they reflect expected future exposure. All the grid layers used to construct 

the exposure maps have a resolution of 30 arcsec (ca. 0.9 km at the equator). To assess the impact 

of the aforementioned assumptions on our results, we carried out a sensitivity analysis (section 

2.9). For this purpose, the ‘reference’ exposure maps were complemented with best-case and 

worst-case threat exposure maps, the details of which are given below.

Climate change 

The calibrated distribution models of the studied species were projected to downscaled future 

climate conditions for the 2040 – 2059 period, as predicted by general circulation models (GCMs) 

under different representative concentration pathways (RPCs). The reference exposure map was 

created using RCP4.5, whereas RCP2.6 and RCP8.5 were used for the best-case and worst-case 

exposure maps, respectively. To select a number of GCMs, we first selected all GCMs that 

perform better than the median GCM performance (against observed temperature and precipitation 

values) following Knutti et al. (2013) and are available at the CCAFS Climate Data Portal 

(http://www.ccafs-climate.org/). Next, we maximized the dissimilarity between GCMs by 

selecting the GCM with the best performance in each node of the GCM family tree of Knutti et al. 

(2013), determined after cutting the tree at level 16 (Schlaepfer et al., 2017). This procedure 

resulted in the selection of 5 GCMs: CESM1(CAM5), GFDL-CM3, HADGEM2-ES, MIROC5, 

and MPI-ESM-LR.

For each of the GCMs, we created exposure maps for each of the studied species. Grid cells that 

were predicted to remain suitable (based on current suitability) were given an exposure value of 0, 

whereas those expected to lose suitability were given an exposure value of 1. In the reference 

exposure maps, grid cells predicted to remain suitable under novel climate conditions were given 

an exposure value of 0.5. Novel climate conditions were determined as those conditions outside A
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the range between the 5% and 95% percentile of the conditions used to calibrate the distribution 

models, using the ensemble.novel function of the BiodiversityR package. In the best-case exposure 

maps, novel climate conditions were given an exposure value of 0, whereas in the worst-case 

exposure maps, they were given an exposure value of 1. The overall exposure maps for each 

species were obtained by averaging the exposure maps corresponding to the five GCMs.

As many tree species are unlikely to be able to keep track of the fast-changing climate conditions 

through migration (Corlett & Westcott, 2013; Zhu, Woodall, & Clark, 2012), we aimed at 

obtaining conservative estimates of climate change vulnerability by only considering suitable 

habitat losses and no suitable habitat gains. Nevertheless, areas expected to become suitable were 

also identified as currently unsuitable areas for which at least four out of five GCMs predict 

presence under future climate conditions.

Fire

The current exposure to fire was derived from the MODIS Active Fire Detection data between 

2013 and 2017 (NASA EOSDIS, 2018). Under the assumption that grid cells bordering cells 

where fires have taken place are equally under threat, the exposure to fire of each cell was 

calculated as the sum of the number of fires in a 3x3 grid cell window. The resulting fire 

frequency grid was rescaled between 0 and 1, with the maximum exposure set at a frequency of 5 

or more (i.e. an average of one fire per year in the grid cell in question or its neighbouring grid 

cells). For the worst-case and best-case exposure maps, the maximum exposure was set at a fire 

frequency of 3 and 10, respectively.

Habitat conversion 

The current exposure to habitat conversion was estimated using the most recent land use maps of 

Peru and Ecuador, freely available in vector format (MAE, 2012; MINAM, 2018). As a proxy for 

habitat loss resulting from habitat conversion, we constructed a grid layer reflecting the proportion 

of each grid cell within the potential distribution of TDF (section 2.5) that is currently converted to 

other land uses. This proportion was obtained by dividing each 30 arcsec grid cell in sixteen 

subcells, which were considered to be converted if their centre is currently covered by an 

anthropogenic land use. A second grid layer was constructed to estimate the impact of forest 

fragmentation resulting from habitat conversion, which may negatively affect tree species through 

increased edge effects and isolation (Lôbo, Leão, Melo, Santos, & Tabarelli, 2011; Vranckx, A
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Jacquemyn, Muys, & Honnay, 2012). We constructed this grid layer using a similar approach as 

Riitters, Wickham, O’Neill, Jones, & Smith (2000): The fragmentation value of each grid cell was 

set as equal to the proportion of a 3 x 3 grid cell window converted to land uses other than TDF. 

However, contrary to Riitters et al. (2000), the central grid cell of the window was not considered, 

so that grid cells entirely surrounded by converted grid cells are always assigned the maximum 

exposure value (i.e. a value of 1) for forest fragmentation. The reference estimate of the overall 

habitat conversion exposure was obtained as the average of the two aforementioned layers, except 

for entirely converted grid cells, which were always given the maximum exposure value. In the 

best-case estimate, the layer estimating the impact of fragmentation was not included, whereas in 

the worst-case estimate, this layer was constructed using a 5x5 grid cell window, thus assuming 

that edge effects may act on a distance larger than the size of one grid cell (ca. 0.9 km).

Overexploitation

Human population density (Lloyd et al., 2017) and distance to the nearest road were used as 

proxies for the current exposure to overexploitation for local and commercial purposes 

respectively. As rural communities in dry forests usually collect wood up to only a few kilometres 

from where they live (Dons, Bhattarai, Meilby, Smith-Hall, & Panduro, 2016; Ektvedt, 2011), the 

population density map was smoothed with a moving weighted average window of 9x9 grid cells, 

roughly corresponding to a distance of ca. 4 km, with the weight decreasing linearly from the 

central grid cell of the window towards the outer grid cells. The resulting grid was rescaled 

between 0 and 1, with the maximum exposure corresponding to a population density of 95 people 

per grid cell or more. This threshold corresponds to the 90th percentile of the population density 

values of the rural areas in our study region; it is based on the assumption that only the upper 10% 

of the most populated rural areas are maximally exposed to overexploitation. For the best-case and 

worst-case exposure maps, the maximum exposure was set at population density values of 147 and 

51, corresponding to the 95th and 80th percentiles of the rural population density values, 

respectively. The exposure to overexploitation for commercial uses was assumed to decrease 

linearly with the distance to the nearest road, with the minimum exposure corresponding to 

distances beyond 10 km. This threshold was based on the findings of Asner et al. (2006), who 

found that more than 90% of the selective logging in the Brazilian Amazon occurs within a 10 km 

distance from roads. The thresholds of the worst and best-case exposure maps were set at 15 km 

and 5 km, respectively. The overall exposure maps were obtained by averaging the exposure maps A
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for local and commercial uses. As wood extraction in protected areas is regulated, exposure values 

within protected areas were multiplied with 0.25, 0.50 and 0.75 in the best-case, reference and 

worst-case scenarios, respectively.

Overgrazing 

The current exposure to overgrazing was estimated as the number of tropical livestock units 

(TLUs) per grid cell, using the Gridded Livestock of the World v2.0 dataset (Robinson et al., 

2014). One TLU is equal to a ruminant animal of 250 kg live weight; with conversion factors of 

0.7 for cattle and 0.1 for goats and sheep (Chilonda & Otte, 2006). As most livestock in the study 

region is free-roaming, the TLU density grid was smoothed using a moving weighted average 

window of 9 x 9 grid cells, under the assumption that the area grazed by animals extends ca. 4 km 

from their stables or corrals (Perevolotsky, 1991).

Optimal livestock densities in dryland ecosystems strongly depend on precipitation levels (Pallas, 

1986). For the lowland TDFs of our study region, most of which are characterized by an annual 

precipitation less than 250 mm, optimal stocking rates have been estimated as ca. 20 to 25 TLU 

per 30 arcsec grid cell (Parodi & Zambrano 1967; Solano-Zamora 1977, as cited by Perevolotsky 

1991). To the best of our knowledge, no estimates of optimal stocking rates exist for the montane 

TDFs of our study region, but estimates in ecosystems with similar climates range between ca. 40 

and 70 TLU per 30 arcsec grid cell (Isabirye, Magunda, Poesen, Maertens, & Deckers, 2013; 

Kihiu & Amuakwa-Mensah, 2015; Mulindwa, Galukande, Wurzinge, Okeyo Mwai, & Sölkner, 

2009). Optimal stocking rates are often based on the “take half, leave half” rule of thumb, 

implying that the forage consumption rate should be half of the forage production rate. Stocking 

rates 2.5 times higher than the optimal stocking rates (i.e. forage consumption rate exceeding 

biomass production rate) were therefore assumed to correspond to a maximum overgrazing 

exposure. Using the lower ends of the aforementioned ranges of optimal stocking rates, the 

maximum reference exposure was set at 50 TLU in grid cells with less than 250 mm annual 

precipitation, increasing linearly up to 100 TLU in areas with 1000 mm annual precipitation or 

more. For the worst-case and best-case exposure maps, TLU densities corresponding to a 

maximum overgrazing exposure were obtained by multiplying the optimal stocking rates by 2 and 

3, respectively. In this way, the maximum overgrazing exposure of the worst-case exposure map 

was set to vary between 40 TLU to 80 TLU, and between 60 and 120 TLU for the best-case 

estimate. As livestock access to protected areas is usually strictly regulated, the exposure inside A
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protected areas was capped at a maximum of 0, 0.25 and 0.50 for the best-case, reference and 

worst-case exposure map, respectively.

2.7 Sensitivity and vulnerability 

The sensitivity of the studied species to each of the five threats was estimated using a set of 18 

species traits (Figure 1). In line with the framework proposed by Williams et al. (2008), traits 

providing information on species’ adaptive potential were included in the estimation of the 

sensitivity values. Most of the traits are biological traits, but species cultivation status (i.e. if a 

species is cultivated or not), timber provision, and fuelwood provision were also included.

The relation between each of the traits and the sensitivity of tree species to each of the five threats 

were established through a literature study and expert judgement. The rationale is documented in 

Table S2 (Supporting Information 1). In order to obtain sensitivity scores, we assigned each trait a 

weight in accordance with the expected magnitude of its influence on species sensitivity, ranging 

from 1 to 5, i.e. very low to very high influence (Figure 1). In turn, each trait level was linked with 

a partial sensitivity score in accordance with the expected nature of its influence on species 

sensitivity, varying between zero (i.e. maximally decreasing species sensitivity) and one (i.e. 

maximally increasing species sensitivity). For example, bark thickness was given a ‘very high’ 

trait weight for estimating species sensitivity to fire, because it has been identified as the most 

important trait in determining tree sensitivity to fire (Brando et al., 2012; Pinard & Huffman, 

1997; VanderWeide & Hartnett, 2011). Species with thick (> 1 cm), intermediate (0.5 – 1 cm) and 

thin bark (< 1 cm) were given partial fire sensitivity scores of 0.5, 0.75, and 1, respectively. The 

compiled trait data are available in Supporting Information 4 and a spreadsheet with the trait-based 

sensitivity scoring approach is available in Supporting Information 5.

The overall sensitivity of species to each of the five threats was calculated as the weighted mean 

of the partial sensitivity scores (Figure 1), using the trait weights mentioned above. In some cases, 

specific trait levels were considered to play a decisive role in determining species sensitivity, in 

which case a fixed sensitivity score was used. More specifically, an overgrazing sensitivity score 

of 0.25 was given to all species with unpalatable leaves, and an overexploitation sensitivity of 0.25 

was given to species that are not used for timber nor firewood. A value of 0.25 was chosen 

because these trait levels do not necessarily render species entirely insensitive (e.g., a species with 

unpalatable leaves may still experience negative effects of overgrazing such as soil compaction 

and trampling).A
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Species-specific vulnerability maps were obtained by multiplying the threat exposure maps with 

the species-specific sensitivity values (Figure 2). The grid cells of these vulnerability maps were 

categorized into five categories (zero, low, medium, high and very high vulnerability), using 

thresholds of 0.01, 0.25, 0.50 and 0.75 respectively. In order to identify the most vulnerable 

species, we calculated two different statistics: (1) the proportion of grid cells within species 

distribution ranges with a high to very high vulnerability to at least one of the five threats, and (2) 

the average vulnerability towards all five threats of the grid cells within species distribution 

ranges.

2.8 Priority maps for restoration and conservation

The vulnerability maps were used to create species-specific maps with priority restoration and 

conservation actions. For this purpose, we considered climate change vulnerability and 

vulnerability to current threats separately, the latter of which was calculated as the highest among 

the vulnerabilities to fire, habitat conversion, overexploitation, and overgrazing. However, as 

different threat factors are likely to have additive or even synergistic effects on species’ 

vulnerability (Côté, Darling, & Brown, 2016), the vulnerability of a grid cell towards current 

threats was adjusted to ‘very high’ where its vulnerability to at least three current threats was 

‘high’, and adjusted to ‘high’ if the vulnerability to at least three current threats was ‘medium’. 

Based on the vulnerability to climate change and current threats, we present a spatially explicit and 

species-specific planning strategy. First, the in-situ conservation of seed sources and seed 

collection for tree planting activities is prioritized in areas with low vulnerability to current threats 

and climate change. In areas with low vulnerability to current threats, the likelihood that human 

disturbance has led to increased inbreeding and reduced genetic variability is reduced (Lowe, 

Boshier, Ward, Bacles, & Navarro, 2005), whereas low climate change vulnerability enhances the 

likelihood of continued seed production under future climate conditions. To maximize the 

probability of species presence in these areas, the modelled distribution was reduced to only 

include grid cells with centres within 5 km of known occurrence localities. Second, ex-situ 

conservation or translocation of populations is prioritized in areas with high climate change 

vulnerability, in order to safeguard the genetic resources that might disappear due to climate 

change. Third, active planting or assisted regeneration is recommended in areas under high to very 

high current threat vulnerability but low climate change vulnerability, provided measures are in 

place to lower threat pressure. Areas with a high or very high vulnerability to current threats were A
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assumed to be the most in need of restoration intervention, whereas the low climate change 

vulnerability increases the probability of survival of the planted or regenerating trees under future 

climate conditions. The maps also indicate the areas that are expected to become suitable under 

future climate conditions (section 2.6). In addition to the species-specific maps, we also 

constructed general maps depicting priority areas for restoration and in-situ conservation of seed 

sources, based on the proportion of species per grid cell for which the grid cell in question is 

recommended for conservation or restoration. To avoid the confounding effects of species richness 

gradients, these proportions were calculated based on the number of species for which the grid cell 

in question is predicted to be suitable under current climate conditions.

2.9 Sensitivity analysis

In light of the fact that several of the assumptions on threat exposure and sensitivity are based on 

literature and expert judgement, and that trait data was incomplete for some species, we assessed 

the robustness of our results with a one-at-a-time sensitivity analysis, analysing the impact of 

single parameters separately (Saltelli et al., 2008). The sensitivity analysis included three different 

aspects: (a) methodological decisions made when constructing threat exposure layers, (b) trait 

weighting schemes used to estimate sensitivity values, and (c) missing traits. For each aspect, two 

‘treatments’ of the vulnerability assessment were applied, the results of which were compared with 

those of the ‘reference’ treatment (i.e. the original results). The first aspect was evaluated by 

creating a best-case and worst-case version of each exposure map (treatment 1 and 2), as described 

in section 2.6. For the second aspect, two alternative trait weighting schemes (treatment 3 and 4) 

were used. In the ‘converging weights’ scheme, the reference weights, ranging between 1 and 5, 

were converted to weights between 2 and 4 (i.e. a value of 1 was summed to the weights below 3 

and subtracted from the weights above 3). Similarly, in the ‘diverging weights’ scheme, the 

reference weights were converted to weights between 0 and 6. Third, the sensitivity to missing 

trait values was assessed by replacing all missing trait values with trait levels that confer a 

minimum sensitivity and a maximum sensitivity to each of the five threats (treatment 5 and 6). 

The sensitivity analysis was carried out on the maps with priority restoration and conservation 

actions. For each species, six alternative versions of this map were made, corresponding to the six 

sensitivity treatments described above. The sensitivity of our results towards the treatments 

mentioned above was calculated as the percentage of grid cells within species distribution ranges 

that changes from one category to another (e.g., from ‘recommended for in-situ conservation of A
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seed sources’ to ‘recommended for assisted regeneration and active planting’) as compared to the 

reference map. 

3 RESULTS

3.1 Selected tree species

The selected tree species (Supporting Information 1 Table S3), all native to our study region, 

belong to 24 families, the most speciose family being Fabaceae (16 species), followed by 

Malvaceae (6 species) and Boraginaceae (3 species). 18 out of 50 species are endemic to Peru and 

Ecuador, 2 of which occur only in our study region (Schrebera americana and Tetrasida 

chachapoyensis). 

The selected tree species comprise the most important species of our study region, both in 

frequency and abundance. They account for 68% of the total frequency and 83% of the total 

abundance of 330 DRYFLOR plots in northwestern Peru (Banda et al., 2016), 58% of the total 

frequency and 64% of the total abundance of 48 transects in southern Ecuador (Espinosa & 

Cabrera, 2011), and 59 % of the total frequency and 58% of the total abundance of 92 plots of the 

Marañón valley TDFs (Marcelo-Peña et al., 2016). 

3.2 Species distribution modelling

Mean AUC values of the species distribution models ranged from 0.71 to 0.96, with an average 

value of 0.86 (Supporting Information 1 Table S3), indicating good to excellent accuracy. 

Considering the measures taken to avoid inflated AUC values (section 2.5), we considered these 

values satisfactory for using the distribution maps in the vulnerability assessment. The average 

AUC value of the individual modelling algorithms ranged from 0.77 (DOMAIN) to 0.85 (boosted 

regression trees). The ensemble model was the most accurate for 20 of 50 species, followed by 

boosted regression trees (10 species), stepwise boosted regression trees (4 species) and MaxEnt (4 

species). 

3.3 Vulnerability

The relative frequency of the different vulnerability levels to the five threats within the current 

distribution range of each of the 50 tree species is presented in Figure 3. All species showed high 

to very high vulnerability to most of the threats in a considerable part of their distribution range, 

with an average value of 21% (± 7 SD) for habitat conversion, 20% (± 8 SD) for overexploitation, A
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11% (± 9 SD) for overgrazing, 8% (± 4 SD) for fire, and 4% (± 9 SD) for climate change, 

respectively. When considering medium to very high vulnerability levels, these average values 

increase to 68% (± 26 SD) for overexploitation, 45% (± 30 SD) for overgrazing, 37% (± 10 SD) 

for habitat conversion, 18% (± 6 SD) for fire, and 13% (± 10 SD) for climate change. On average, 

46% (± 10 SD) of the grid cells within species distribution ranges had a high to very high 

vulnerability for at least one of the five threats. When medium to very high vulnerability levels are 

considered, this number increases to 87% (± 9 SD).

The average vulnerabilities of the 50 tree species are shown in Figure S1 (Supporting Information 

1), with the highest reference vulnerability values observed for overexploitation (0.35 ± 0.10 SD), 

followed by overgrazing (0.26 ± 0.12 SD), habitat conversion (0.24 ± 0.06 SD), climate change 

(0.13 ± 0.10 SD), and fire (0.11 ± 0.04 SD).

The species with the largest proportion of their distribution ranges classified as highly to very 

highly vulnerable to at least one of the five threats are Triplaris cumingiana, Schrebera 

americana, Maclura tinctoria, Loxopterygium huasango, and Handroanthus chrysanthus (Figure 

3). In terms of average vulnerability to all five threats, the most affected species are Terminalia 

valverdeae, Coccoloba ruiziana, Schrebera americana, Cordia macrantha, and Caesalpinia 

paipai (Supporting Information 1 Figure S1). 

3.4 Priority maps for restoration and conservation

Maps highlighting priority areas for restoration and conservation actions were made for all the 

selected species, distinguishing between areas that are prioritized for (i) in-situ conservation of 

seed sources and seed collection for tree planting activities, (ii) assisted regeneration or active 

planting, and (iii) ex-situ conservation of seed sources. Figure 4 shows such a map for Leucaena 

trichodes as an example. The vulnerability maps and maps highlighting restoration and 

conservation priorities are available in an online tool (section 4.4). All maps are available in a 

reference, best-case and worst-case version, based on the corresponding assumptions made when 

creating the exposure maps.

Figure 5 shows the proportion of species per grid cell for which in-situ conservation of seed 

sources and restoration are prioritized. Only a relatively small part of our study region is 

prioritized for the in-situ conservation of seed sources (panel a), whereas large parts are indicated 
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as priority areas for the assisted regeneration and active planting of the studied tree species (panel 

b).

3.5 Sensitivity analysis

The results of the sensitivity analysis (Supporting Information 1 Table S4) reveal that the maps 

with priority areas for restoration and conservation are relatively robust against the chosen trait 

weighting schemes and missing traits, but relatively sensitive to the methodological decisions 

made when creating the threat exposure layers. In the best-case priority maps, an average of 18% 

(± 6 SD) of the grid cells within species’ distribution ranges changed from one category to another 

as compared to the reference maps, whereas an average of 25% (± 8 SD) of grid cells changed 

from one category to another when considering the worst-case exposure estimates.

4 DISCUSSION 

4.1 Guiding restoration and conservation interventions 

We quantified the effects of five threats (climate change, habitat conversion, fire, overgrazing and 

overexploitation) on the vulnerability of 50 common tree species of the TDFs of northwestern 

Peru and southern Ecuador. Our results reveal that anthropogenic threats are pervasive in these 

TDFs, with tree species facing medium to very high vulnerability levels to at least one of the five 

threats in an average of 87% of their distribution range (Figure 3), underscoring the need to 

increase restoration and conservation efforts in this highly threatened ecosystem.

Our results suggest that current levels of habitat conversion, overexploitation, and overgrazing 

pose higher threats to the persistence of populations of most of the selected species than climate 

change (Figure 3). This is in line with Manchego et al. (2017), who found current habitat 

conversion rates to result in higher annual area losses than future climate change for tree species in 

the TDFs of southern Ecuador. Our models also predicted suitability gains at lower altitudes for 

many species, a consequence of the predicted increases in annual precipitation levels (Manchego 

et al., 2017). TDFs often harbour relatively high human population densities (Miles et al., 2006; 

Murphy & Lugo, 1986), which are commonly associated not only with habitat conversion but also 

high levels of overexploitation and overgrazing. The negative effects of such anthropogenic 

pressure on the remaining TDFs in our study region is confirmed by the results of a survey of 

natural regeneration of tree species throughout the TDFs of the Lambayeque region (Peru), in A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

which only one-third of the studied tree species presented healthy regeneration levels (Fremout et 

al., unpublished data). In order to better inform management decisions for ecosystems under 

pressure from resource extraction, which often affects species and ecosystem vulnerability in 

developing countries disproportionately (Schulze et al., 2018; Yiming & Wilcove, 2005), 

vulnerability assessments should categorically include threat factors other than climate change and 

habitat conversion. Similarly, restoration and conservation efforts should not overlook the 

importance of protecting TDFs from overexploitation and overgrazing.

Using two different statistics to identify the most vulnerable species (section 3.3), we found that 

only Schrebera americana occurs in the top-5 of both statistics. Its high vulnerability ranking is 

mainly a consequence of its high climate change vulnerability, which is likely related to its 

endemic status and narrow ecological niche, which tends to increase the vulnerability of species 

populations to climate change (Pearson et al., 2014; Thuiller, Lavorel, & Araújo, 2005). Several 

other species occurring in the top-5 of either one of both statistics are endemic to Peru and 

Ecuador (Cordia macrantha, Loxopterygium huasango, Terminalia valverdeae, Caesalpinia 

paipai and Coccoloba ruiziana). Among these endemics, only C. paipai has been assessed in the 

IUCN Red List. While it was given the “least concern” status (LC), only its presence inside 

protected areas is given as justification (Groom, 2012). While the global conservation status of 

these endemic species will largely depend on the restoration and conservation efforts in our study 

region, only L. huasango and C. paipai have thus far been included in restoration plantings or 

protected seed sources in the TDFs of northern Peru (Cerrón, Fremout, Atkinson, Thomas, & 

Cornelius, 2019). Future restoration and seed conservation efforts should urgently be extended to 

include a wider variety of species.

Considering the limited resources available for restoration and conservation interventions, there is 

a need to identify priority areas (Birch et al., 2010; Brooks et al., 2006; Molin, Chazdon, Frosini 

de Barros Ferraz, & Brancalion, 2018). Contributing to this need, we present a user-friendly online 

tool with species-specific and general maps highlighting recommended restoration and 

conservation actions. The conservation of seed sources is predominantly prioritized in protected 

areas (Figure 5a), underlining the pervasiveness of anthropogenic threats outside of protected 

areas. It is therefore no surprise that large parts of the distribution of most species are highlighted 

as priority areas for restoration (Figure 5b). We distinguish between converted and non-converted 

areas, as they may require different types of restoration interventions. For example, due to high A
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pressure on arable land in our study region, it is unlikely that agricultural lands will be used to 

implement large-scale restoration projects with biodiversity conservation purposes; other forest 

landscape restoration strategies such as agroforestry may be more appropriate.

4.2 Improving tree species vulnerability assessments

The results of the sensitivity analysis indicate that our approach is sensitive to the methodological 

decisions made during the construction of threat exposure maps. While it is relatively 

straightforward to create threat exposure maps with freely available proxy data (e.g., Gaisberger et 

al., 2017; van Zonneveld et al., 2018), standardizing exposure values (for example between 0 and 

1) is not trivial, as it often requires decisions on thresholds of exposure proxies (e.g., livestock 

densities). Quantitative studies on the relationship between such proxies and tree species 

vulnerability are largely lacking, making it difficult to make these decisions in a well-informed 

way. Vulnerability assessments should recognize this source of uncertainty , for example by 

considering different versions of exposure maps. More research is needed on the thresholds and 

tipping points of exposure levels which, once crossed, significantly impact the persistence of tree 

populations, for example on the livestock densities that can be sustainably supported by TDFs.

In areas with high anthropogenic disturbance, trait-based filtering is expected to drive plant 

community composition towards a higher abundance of species with traits that make them less 

sensitive to these disturbances (Bernhardt-Römermann et al., 2011; Mouillot, Graham, Villéger, 

Mason, & Bellwood, 2013). While there is anecdotal evidence for such trait-based community 

filtering in our study region (e.g., overgrazed forests dominated by grazing-resistant species in the 

understorey), formal studies on this subject are lacking. Recently, Cueva-Ortiz et al. (2019) found 

that anthropogenic disturbances affect forest structure and diversity in the TDFs of southern 

Ecuador, but species traits were not part of their study. Future research on trait-based filtering in 

response to anthropogenic threats would contribute to a better understanding of the importance of 

different traits in determining species’ sensitivities to these threats.

4.3 Study limitations

The reliability of our results depends on the quality of the exposure maps. While the proxies for 

fire, habitat conversion, overgrazing, and climate change are closely linked to the exposure to 

these threats, this is less the case for the exposure to overexploitation, for which human population 

density and distance to the nearest road were used as proxies. It is clear that these two variables A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

can only partly describe the exposure to this threat, which is also influenced by other socio-

economic characteristics (e.g., poverty status, law enforcement). In regions where spatially explicit 

data on such characteristics are available, they could be incorporated in vulnerability assessments.

The use of species traits allowed us to obtain sensitivity estimates in a transparent and scalable 

way, while also avoiding two other issues of expert appraisal of species sensitivity: Different 

experts may have different understandings of the concept of sensitivity (Gaisberger et al., 2017) 

and some species may be well-known by very few experts. The latter is especially relevant in our 

study region, which is vastly understudied and characterized by high endemism. Nevertheless, the 

trait-based approach also has limitations; the most important being the availability of data. In order 

to minimize the number of missing trait data, we focused on a set of well-known ‘soft’ functional 

traits, which are easy-to-measure and serve as proxies for functional mechanisms (Lavorel & 

Garnier, 2002), complemented by a few non-biological traits (e.g. firewood provision). However, 

more accurate sensitivity estimates could be obtained by using ‘hard’ traits more directly linked to 

these functional mechanisms (Lavorel & Garnier, 2002). For example, leaf flammability or 

observed fire mortality rates would be highly relevant to estimate species sensitivity to fire. It is 

clear that more trait-based research is needed to improve vulnerability assessments, especially in 

tropical ecosystems, where ‘hard’ trait data are usually scarce.

While we included the five most important threats to tree species in our study region, the list is not 

complete, nor does it consider the indirect consequences of the threats studied. For example, 

populations of the keystone species Prosopis pallida have experienced mortality levels exceeding 

75% in some regions (SENASA, 2016). Current research suggests that the causal agent could be 

the citrus tristeza virus (Mialhe, 2019), whose fast dispersal and disastrous impact is possibly 

related to ongoing climate change, which may have resulted in more favourable conditions for its 

yet-to-be-determined vector. Such indirect climate change effects are impossible to predict with 

our approach, underlining the need to interpret our climate change vulnerability estimates with 

care. Other indirect impacts of climate change include an increase in annual precipitation levels 

which is likely to lower the altitude threshold above which rainfed agriculture is possible, which 

will presumably lead to increased habitat conversion rates in the future. Additionally, higher 

annual precipitation combined with increasing dry season aridity will likely lead to an increase in 

fires fuelled by the biomass of annuals (Bravo, Kunst, Grau, & Aráoz, 2010; Staal et al., 2018), 

and may even cause an increase in livestock pressure during the dry season.A
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4.4 Final considerations

Our study provides the first tree species vulnerability assessment spanning the TDFs of 

northwestern Peru and southern Ecuador, using a methodology that can easily be adapted to other 

countries and ecosystems. The results are available in a tool 

(https://bioversityinternational.shinyapps.io/vulnerability_assessment/) that is easily interpretable 

by practitioners and policy makers. We hope that uptake of the tool will contribute to a science-

based restoration and conservation planning in the region, and that national and local research 

institutions will become integral players in improving the vulnerability assessment by collection of 

more field data.
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8 TABLES

Table 1: Summary of the expected impacts of the five key threats and the spatial layers used to estimate the exposure 

to these threats.

Key threat Impact at population 

level

Indicators Spatial layers

Climate change Negatively or 

positively affects the 

survival and 

reproduction of 

individuals 

Loss of modelled suitability Suitability maps projected to 

future climate conditions using 

5 Global Climate Models 

(GCMs) and three 

representative concentration 

pathways (RCP2.6, RCP4.5 and 

RCP8.5)

Fire Causes tree mortality, 

reducing abundance; 

inhibits or promotes 

natural regeneration; 

fragments populations

Fire frequency per unit area NASA Fire Information for 

Resource Management System 

(FIRMS). MODIS Active Fire 

Detections 2012 – 2017 (NASA 

EOSDIS, 2018)

Habitat 

conversion

Eliminates and 

fragments natural 

populations; promotes 

species that are 

cultivated or tolerated 

by farmers

Percentage of a grid cell 

converted to land use types 

other than tropical dry forest

Proportion of neighbouring 

grid cells converted to land 

use types other than tropical 

dry forest

National land cover maps of 

Peru and Ecuador in vector 

format (MAE, 2012; MINAM, 

2018)

Overexploitation Reduces tree density 

and genetic diversity; 

fragments populations 

Human population density

Distance to the nearest road

Presence/absence of a 

protected area

Global human population 

density (Lloyd, Sorichetta, & 

Tatem, 2017)

National road network datasets 

of Peru and Ecuador in vector 

format (IGM, 2017; MTC, 

2018)

Protected areas (SERNANP, 

2018; SNPD, 2018)A
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Overgrazing Inhibits natural 

regeneration; can 

promote seed dispersal 

of tolerant species

Number of tropical livestock 

units per unit area

Presence/absence of a 

protected area

Gridded Livestock of the World 

v2.0 (Robinson et al., 2014)

Protected areas (SERNANP, 

2018; SNPD, 2018)
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