
Learning Linear Programs from Data
Elias Arnold Schede

KU Leuven
Leuven, Belgium

eliasarnold.schede@student.kuleuven.be

Samuel Kolb
KU Leuven

Leuven, Belgium
samuel.kolb@cs.kuleuven.be

Stefano Teso
KU Leuven

Leuven, Belgium
stefano.teso@cs.kuleuven.be

Abstract—Linear Programming lies at the core of mathemati-
cal modelling and optimization. Designing linear programs (LPs)
is a difficult and expensive process, as it requires both mathe-
matical programming and domain expertise, and it involves both
designing an objective function and feasibility constraints. To
support this design process, we propose INCALP, an algorithm
for inducing linear programs from examples. Since the objective
can often be learned with standard techniques (e.g. regression),
INCALP learns the hard constraints only. It does so by encoding
constraint learning as a mixed integer linear program. INCALP
achieves significant efficiency gains by considering gradually
larger subsets of examples, and terminating as soon as a
suitable program is found. In addition, INCALP encourages both
compactness and sparsity of the learned program. Our empirical
analysis on synthetic data and textbook problems highlights the
promise of the approach.

Index Terms—machine learning, operations research, con-
straint learning, linear programming

I. INTRODUCTION

Linear programming is the backbone of mathematical mod-
elling and optimization; its applications in science and busi-
ness are too many to list [1]. Despite its popularity, design-
ing linear programs (LPs) by hand is an arduous and time
consuming task [2] as it requires both domain knowledge
and modelling expertise. In line with research on constraint
learning [3] and programming by example [4], we propose to
facilitate the design step by acquiring LPs from data. Doing
so involves inducing the objective function and the feasibility
constraints. Since the first task can often be tackled with
standard machine learning techniques (as explained below), we
focus on the much harder task of acquiring linear constraints
from examples of feasible and infeasible solutions.

Most existing approaches are not immediately applicable
to learning LPs. Methods based on constraint learning [5]
and syntax-guided synthesis [6] do not consider the case
of continuous variables, while machine learning methods for
inducing convex polytopes [7], [8] and unions thereof [9] often
rely on greedy heuristics which may fail to identify a correct
LP. Finally, inverse optimization methods [10], [11] assume a
good initial guess for the LP to be available.

Recently, however, two suitable approaches have emerged:
INCAL [12] and the method of Pawlak and Krawiec [2], which
we indicate as MILPCS. INCAL induces Satisfiability Modulo

This work has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme
(grant agreement No [694980] SYNTH: Synthesising Inductive Data Models).
Samuel Kolb is supported by the Research Foundation-Flanders (FWO).

Linear Real Arithmetic (SMT(LRA), or SMT for short) for-
mulas from data. SMT extends propositional logic by allowing
continuous variables and linear inequalities over them, and
subsumes linear programming as a special case [13]. INCAL
encodes the learning step in terms of SMT(LRA) satisfiability
and applies an efficient off-the-shelf solver to obtain a formula
compatible with all examples. Similarly, MILPCS induces
linear, quadratic, and trigonometric constraints over continuous
variables by solving a mixed-integer linear program (MILP),
i.e., an LP where some variables are required to be integral.

INCAL and MILPCS have complementary strengths and
weaknesses: a) INCAL sports an efficient, exact incremental
strategy for learning formulas while only looking at a small
(active) subset of examples, while MILPCS always considers
all examples; b) INCAL encodes the learning problem as an
SMT problem, while MILPCS encodes it as a MILP one, which
is a better fit for the problems with a mostly continuous nature
like LP learning; c) INCAL favours learning compact but dense
formulas, while MILPCS encourages learning sparser programs
instead – but both size and sparsity are important for learning
interpretable programs.

We introduce INCALP, a non-greedy learning algorithm
for LPs that merges the incremental, compactness-inducing
strategy of INCAL with the efficient, sparsity-inducing MILP
encoding of MILPCS. INCALP automatically uncovers LPs that
are both compact and sparse, while simultaneously improving
upon the deficiencies of INCALP and MILPCS. In addition, we
further improve the incremental learning strategy through the
use of a new heuristic (SELECTDT), which uses a decision tree
to model the importance of examples to be added to the active
set. This heuristic can substantially improve the run-time of
INCALP without affecting the correctness of the learned LP.

To summarize, we make the following contributions: 1)
INCALP, a non-greedy LP learner that combines the advan-
tages of INCAL and MILPCS to obtain substantial efficiency
improvements while learning interpretable constraints. 2) SE-
LECTDT, a new heuristic for exact incremental learning based
on a decision tree surrogate of the decision boundary. 3) An
extensive comparison on benchmark LPs, textbook examples,
and synthetic instances, showing that INCALP can find LPs of
comparable or better quality than competing approaches faster.

II. RELATED WORK

Our work is inspired by efforts in constraint learning [3],
[5], [14] and programming by example [4] to automate the de-



sign of constraint theories and programs. Existing approaches
in these areas focus on models over discrete variables only,
and cannot be straightforwardly adapted to learning LPs.

Most machine learning methods for inducing linear con-
straints (convex polytopes) from data follow a pragmatic
approach and employ greedy or approximate learning schemas,
often based on stochastic gradient descent [7], [8]. Similarly,
techniques for learning oblique decision trees (which include
arbitrary linear separators at the inner nodes and are strictly
more general than convex polytopes) either follow a greedy
top-down induction strategy [15], [16] or approximately min-
imize a complex global loss function [9]. The downside of
these heuristic procedures is that they can get stuck in local
optima, producing inaccurate models that do not fit the training
examples—even when these are noiseless.

The most common setup for exact approaches is syntax-
guided learning [6]. In this setting, the learning problem is
cast as a global satisfaction or optimization problem, like
SMT(LRA) or MILP, and solved in practice with an appro-
priate solver. This strategy is more computationally expensive
than the alternative, but it guarantees that the learned model
and the examples match. INCALP combines and improves
upon two methods that follow this setup: INCAL [12] and
MILPCS [2]. These two methods are discussed in detail in
Section III. Another exact method was proposed in [17]
for learning optimal decision trees (ODTs). Compared to
INCALP, however, it uses a more complex MILP formulation
(suitable for learning ODTs) and does not support incremental
learning. Syntax-guided synthetis approaches can also make
use of heuristic search techniques (such as evolutionary algo-
rithms [18]), but the result lose all exactness guarantees in this
case.

Inverse optimization (IO) is also very related. Given an input
optimization problem—possibly an LP—and a set of configu-
rations, the goal of IO is to minimally perturb the problem so
that the configurations become optimal [19], [20]. Despite the
similarities to LP learning, IO assumes a source problem close
to the intended result to be available. Moreover, while c and
b are adapted to the data, the coefficient matrix A is not [10],
[11], [21]. Approaches to linear system identification do not
have these limitation, but they are limited to two-dimensional
problems [22] or non-negative coefficients [23] only.

III. BACKGROUND

A. Linear programming and extensions

A linear program P over n real variables x ∈ Rn, x ≥ 0,
consists of a linear objective function and m linear feasibility
constraints [1]. Letting x ·z indicate the dot product

∑
i xizi,

any LP can be written in canonical form as:

maxx c · x (1)
s.t. aj · x ≤ bj j = 1, . . . ,m (2)

Here c ∈ Rn defines the objective function, while aj ∈ Rn

and bj ∈ R, for j = 1, . . . ,m, encode the feasibility con-
straints. The set of feasible assignments for P is the polytope

X (P) = {x ∈ Rn : Ax ≤ b}, where A = [a1; . . . ; am] ∈
Rm×n and b = (b1, . . . , bm). It is well known that linear
programming is solvable in polynomial time [24] and very
large LPs are routinely solved in practice.

Mixed-integer linear programming (MILP) generalizes lin-
ear programming by allowing some of the variables to be
integral. MILP is a very popular framework for modelling and
solving complex combinatorial problems. Despite being NP-
complete, the importance of MILP has led to the developement
of industrial-grade solvers capable of efficiently solving large
instances, like Gurobi [25] and CPLEX [26].

B. Learning SMT formulas with INCAL

Satisfiability Modulo Linear Real Arithmetic (abbreviated
as SMT(LRA) or simply as SMT) is a formalism that mixes
propositional logic together with linear constraints [13]. An
SMT formula includes both Boolean and continuous variables
and combines Boolean atoms with linear constraints through
standard logical connectives (conjunction, disjunction, nega-
tion, etc.). SMT formulas can capture arbitrary unions of poly-
topes, and are thus strictly more expressive than conjunctions
of linear constraints. As in propositional logic, satisfaction in
SMT amounts to finding a variable assignment that makes a
target formula true and is NP-complete, but efficient practical
solvers are available.

INCAL is a non-greedy algorithm for inducing SMT formu-
las from examples [12]. Given a set of feasible and infeasible
variable assignments and a target formula complexity, INCAL
finds an SMT formula ϕ (in conjunctive or disjunctive normal
form) of the given complexity that correctly classifies all
examples. The formula complexity (k, h) specifies a maximum
number of clauses k and unique linear inequalities h.

The learning step itself is encoded as an SMT problem and
solved with an SMT solver; see [12] for the details. The run-
time of this procedure depends on the size of the encoding
(among other factors), which is proportional to the number
of training examples. Thus, rather than encoding the entire
data-set, INCAL employs an efficient incremental learning
procedure whereby a formula is gradually adapted to larger
and larger subsets of the data. This strategy solves a sequence
of smaller problems and often finds a valid formula by only
looking a small subset of the data. Importantly, INCAL is exact:
it always finds a formula consistent with all the examples,
provided that one exists.

INCAL also implements a non-parametric search loop that
gradually increases the target complexity (k, h), starting from
(1, 1), and attempts to induce a formula at each step. The pro-
cedure terminates as soon as a suitable formula can be learned,
thus directly minimizing the complexity of the formula. This
procedure exploits the fact that too-small complexity parame-
ters can be identified and discarded quickly.

C. Learning constraints with MILPCS

The MILPCS algorithm [2] uses an analogous strategy for
learning linear programs, but it relies on a MILP optimization
formulation rather than SMT. The objective function aims



at synthesizing sparse models where the coefficients are ei-
ther zero or (close to) one, for improved generalization and
interpretability. In addition to linear programs, MILPCS can
also learn non-linear programs by mapping the configurations
to higher dimensional feature space via a fixed set of basis
functions, e.g., polynomials or sinusoids. (Notice that the same
feature transform could be applied to INCAL and INCALP too.)

The SMT encoding of INCAL is suitable for learning SMT
models, which often are very combinatorial, while the en-
coding of MILPCS is often more efficient for learning “more
continuous” problems such as LPs. Further, it can naturally
uncover sparse models, which occur often in practical appli-
cations. The major difference, however, is that MILPCS does
not include an incremental learning strategy, and therefore it
has more trouble scaling to larger data-sets.

IV. LEARNING LINEAR PROGRAMS

We consider a fully supervised setting where the goal is
to recover, either exactly or approximately, an unknown linear
program P∗ (with parameters c∗, A∗, and b∗) from data. More
formally, our learning problem is as follows: Given a set of
instances {xk ∈ Rn}sk=1 labelled by whether they are feasible
(yk = 1) or not (yk = 0) with respect to an unknown LP P∗,
find an LP P that well approximates P∗.

This task involves acquiring both the objective function and
the linear constraints of P∗. These two steps can be tackled
independently. We discuss them in turn.

A. Learning the objective function

Estimating the parameters of an unknown linear objective
function is a common task in machine learning. For instance,
in settings like portfolio optimization, the feasible configura-
tions xi may be annotated by their objective value c∗ · xi, in
which case c∗ can be readily estimated via linear regression. In
applications such as preference learning [27], the supervision
consists of rankings among alternative configurations, which
implicitly reveal information about the gradient the objective
function. In this case, c∗ can be reconstructed via learning-
to-rank. Given the large range of approaches, we focus exclu-
sively on the more challenging problem of learning the linear
constraints themselves.

B. Learning the linear constraints

Given a data-set of positive and negative examples D =
{(xk, yk)}sk=1, learning linear constraints amounts to finding
a polytope X (P), defined by parameters A ∈ Rm×n and b ∈
Rm, such that all the feasible examples are inside X (P) and
none of the infeasible ones is. Recall that, by definition, an
instance x lies inside of X (P) if and only if it satisfies all the
constraints aj · x ≤ bj , j = 1, . . . ,m.

INCALP encodes the learning task using a simplified version
of the MILP encoding used by MILPCS1. Recall that the index
i = 1, . . . , n runs over the variables, j = 1, . . . ,m over the

1The differences being that INCALP: a) only considers linear basis func-
tions and b) does not include a term encouraging the coefficients to be close
to 1; the latter had no effect in our experiments and so it was dropped.

constraints, and k = 1, . . . , s over the examples, and let xki
be the value assigned by xk to the ith variable, M be a large
enough real scalar, and ε be a small enough one. Then, the
INCALP learning problem can be written as:

minA,b

∑
i,j z

a
j,i +

∑
j z

b
j (3)

s.t. aj · xk ≤ bj ∀j, k : yk = 1 (4)∑
j vk,j ≥ 1 ∀k : yk = 0 (5)

aj · xk ≥Mvk,j −M + bj + ε ∀j, k : yk = 0 (6)∑
i z

a
j,i ≥ zbj ∀j (7)

− amaxz
a
j,i ≤ aj,i ≤ amaxz

a
j,i ∀i, j (8)

− bmaxz
b
j ≤ bj ≤ bmaxz

b
j ∀j (9)

Let us look at the encoding in detail. The output are m linear
constraints represented by the decision variables A and b. Here
m ∈ N, amax ∈ R≥0 and bmax ∈ R≥0 are user-provided
hyperparameters that limit the complexity of the polytope and
bound its coefficients. Eq. 4 ensures that the polytope covers
all feasible examples. The auxiliary variables vk,j ∈ {0, 1}
force the kth example to violate the jth linear constraint:
Eq. 5–6 ensure that every infeasible example (yk = 0) violates
at least one of the learned linear constraints. A second set
of auxiliary variables zaj,i ∈ {0, 1} and zbj ∈ {0, 1} indicate
whether the corresponding parameters aj,i and bj are actively
used in the learned polytope and allowed to be non-zero, as
per Equations 8 and 9. Eq. 7 ensures that zaj,i and zbj are
compatible, i.e., that if bj non-zero then at least one coefficient
of aj is allowed to be non-zero. Finally, the cost function
in Eq. 3 minimizes the total number of non-zero parameters
used by the learned constraints. From a machine learning
perspective, this acts as an `1 regularizer and encourages
finding sparser models [28]. Of course, this component can
be optionally turned off if the target LP is known to be dense.

Like INCAL and MILPCS, we assume the labels to be
noiseless. This makes sense since for business processes,
feasible (working) and infeasible (non-working) configurations
are often easily distinguishable and well documented. Under
this assumption, a suitable polytope is always found, provided
that m, amax and bmax are large enough.

C. The INCALP algorithm

Learning LPs by naively encoding the whole training set,
like MILPCS does, may produce a very large and difficult to
solve MILP encoding. In order to avoid this issue, INCALP
employs and improves the incremental learning strategy of
INCAL [12], as follows.

Instead of encoding all examples at once, INCALP itera-
tively adds examples in steps to control the complexity of
the encoding, see Algorithm 1. For a set number of allowed
half-spaces m, an initial (active) set of examples (20 in our
experiments) is chosen (line 3) and encoded (line 6). The
encoding (see Eq. 3–9) is solved using a MILP solver and the
obtained polytope Ai, bi is tested against the not yet encoded
examples. If no examples are violated, INCALP managed
to find a polytope that is consistent with all examples and



Algorithm 1 The INCALP algorithm: m is the number of
constraints, D are the examples, and θ is the decision tree.

1: procedure LEARNINCREMENTAL(m,D, θ)
2: i← 1
3: Di ← SELECTDT(D, θ, 20)
4: Vi ← all misclassified examples in D \ Di

5: while Vi is not empty do
6: Ai, bi ← SOLVE(ENCODE(m,Di)) . Eq. 3–9
7: if could not find Ai, bi consistent with Di then
8: return infeasible
9: Vi ← all misclassified examples in D \ Di

10: Di+1 ← Di ∪ SELECTDT(Vi, θ, 1)
11: i← i+ 1

12: return Ai, bi

returns the acquired constraints. Otherwise, one of the violated
examples is added to the active set and the loop repeats.

The selection of initial examples and which violated exam-
ples to add at each iteration can be done in different ways.
INCAL chooses a random point from the set of all violating
examples Vi. In contrast, INCALP prioritizes informative
violating examples that lie close to the boundary between fea-
sible and infeasible regions. Since the boundary is unknown,
we introduce a novel data-driven heuristic SELECTDT that
approximates the real decision surface with a decision tree
θ learned on all examples D in an offline pre-processing
step. Given a set of violating examples Vi to select from,
SELECTDT choose one of the examples closest to the decision
surface of θ. It does so by choosing two points x ∈ D′ and
x′ are chosen so that they are as close as possible and such
that θ assigns them to opposite classes. So long as the target
distance is the L0, L1, or L∞, this problem can be solved
efficiently using MILP. In our experiments, we opt for the L1

distance. Notice that this technique amounts to summarizing
the data-set with a surrogate model, and is different from, and
more efficient than, interactive learning techniques like active
learning.

The above incremental procedure requires the user to pro-
vide an appropriate number of half-spaces m, which requires
problem knowledge. Here, we borrow from the parameter-free
setting of INCAL and implement a bottom up search strategy
(similar to iterative deepening) on top of the incremental
learning procedure that initializes m = 1, runs the learning
algorithm, and increases m by 1 as long as no program can
be found, see Algorithm 2. This ensures that a valid model is
found with the smallest number of constraints, leading to more
compact models. Domain knowledge about the approximate
value of m can still be used to bootstrap the procedure.

D. Discussion

Just like MILPCS, INCALP can in principle be be used
together with a non-linear (e.g. quadratic or higher-order)
feature map for learning non-linear constraints. INCALP can
also straightforwardly learn mixed-integer linear programs, the
main difference being that some of the variables xi are forced

Algorithm 2 The non-parametric INCALP algorithm: D are
the examples.

1: procedure LEARNNOPARAMS(D)
2: m← 1
3: θ ← LearnDT(D)
4: while true do
5: Ai, bi ← LEARNINCREMENTAL(m,D, θ)
6: if could not find Ai, bi then
7: m← m+ 1
8: else
9: return Ai, bi

to be integral. However, in this paper we consider learning
LPs only, because they are by far the most widespread class
of models in mathematical optimization. Another interesting
research direction involves learning from feasible-only exam-
ples, for applications where infeasible examples are hard to
obtain. This can be easily achieved by adapting the techniques
of [29]. We postpone such extensions to future work.

V. EMPIRICAL ANALYSIS

We empirically study the following research questions:
(Q1) Are the LPs learned by INCALP accurate and use-
ful? (Q2) Is INCALP more efficient than the competitors?
(Q3) Does the SELECTDT heuristic improve the run-time of
incremental learning? (Q4) How does INCALP scale w.r.t the
number of constraints, variables and examples? To do so, we
use INCALP to recover a known LP P∗ from random feasible
and infeasible solutions thereof, and compare it against the
two state-of-the-art methods it is derived from: MILPCS and a
variant of INCAL. We also compare it against a specialization
of INCALP to LPs, dubbed INCALP(SMT). This variant
uses the following simplified SMT encoding of the learning
problem tuned for LPs (i.e., allowing only one literal per clause
and removing redundant variables):

ENCODE(m,D) def
=

∧
k

yk ⇐⇒ m∧
j=1

(aj · xk ≤ bj)


This variant also uses the SELECTDT heuristic. Experiments
were run on an 8-thread, 3.40 GHz Intel CPU.

A. Benchmark problems

Our comparisons are carried out on three groups of LP
instances, which we describe in turn.
Simplexn and Cuben are simple LP polytopes used for

benchmarking LP learning in [2], [18], [30]. Simplexn is
the n-dimensional simplex, and includes n(n − 1) linear
constraints with two variables each, plus one constraint over all
variables. Cuben is the n-dimensional cube defined by 2n lin-
ear constraints of one variable each. We consider n = 2, . . . , 4.

We also look at police and pollution, two problems from a
textbook on Linear Programming [31]. Police is a scheduling
problem where the goal is to minimize the total cost spent
on police agents over a day. Each day is divided into 10



consecutive time periods. For each time period the minimum
number of active agents is given. There are 5 different shifts
an agent can begin work, and every agent should not work
longer than 4 consecutive periods. In addition, we impose
an upper bound of 200 agents per shift. The LP consists of
10 sparse constraints (three of which are redundant) over 5
variables that represent the number of agents assigned to one
of the 5 shifts. Pollution aims to reduce pollution output by
two production processes while minimizing the cost. Three
different methods can be used to lower the pollution. This
amounts to six decision variables indicating the fraction of
the abatement capacity between reduction method and process.
Each process has an output of three different pollutants, which
are reduced by different amounts by different choices. A
certain minimum reduction of all three pollutants has to be
archived. The formulations are not reported for lack of space.

To study the effect of increasing the number of variables
n and constraints m, we synthetically generate LP problems
with m constraints over n variables as follows: Given d
uniformly points sampled from the unit bounding box [0, 1]n,
we 1) compute their convex hull, 2) reject if the convex hull
has less than m constraints, 3) randomly drop all but m of the
constraints defining the convex hull, and 4) reject if the ratio
of positive-to-negative examples is below 0.3 or above 0.7.

B. Performance measures

Aside from the computation time, we want to measure how
accurately the constraints of P∗ were recovered. To this end
we estimate the true positive rate and true negative rate using
a test set of 106 points that are uniformly drawn from the
hypercube defined by the bounds of the problem variables.
The true negative rate is the probability that a feasible point of
P∗ lays in the feasible region of the learned program P , while
the true negative rate is the probability that an infeasible point
of P∗ lays in the infeasible region of P . Given an objective
function, we also compare the difference between between the
optimum value of P∗ and the optimum value of P .

To measure the performance of Cuben and Simplexn, as
well as the textbook problems, we uniformly draw d positive
and d negative examples and obtain learned programs P by
feeding the examples to the various learning algorithms. We
vary the number d of examples to measure its effect on the
computation time and performance. On these problems, we
always average computation time and perfomance over 10
independent runs. For the synthetic problems, we use a data-
set of d uniformly samples points and generate 10 different
problems per choice of (n,m). INCALP used Gurobi [25] with
ε = 1, M = 106 and amax, bmax = 1000. INCALP(SMT) on
the other hand used the Z3 solver [32]. Timeouts are 5400s
for benchmark and textbook problems, 200s for synthetic ones.
Timed-out approaches are set to the time-out value in average
run-times.

C. Are the LPs learned by INCALP accurate and useful?

Our analysis of the TPR and TNR shows that INCALP
accurately recovers the constraints on both the benchmark

(Figure 3) and textbook problems (Figure 4). The MILP en-
coding allows INCALP to perform better than INCALP(SMT)
on problems with sparse constraints (e.g., police). This is also
confirmed by the analysis of the optimal values for the learned
and the true models (Figure 2). A qualitative analysis shows
that for the police problem, INCALP accurately captures the
sparsity and the pattern of uni- and multi-variate constraints.

D. Is INCALP more efficient than the competitors?

Across the example problems we tested, we found that
INCALP significantly outperforms MILPCS, especially when
given larger numbers of examples and higher dimensional
problems (Figures 3 and 4). This speed-up occurs largely
because only a fraction of the available examples is ever
encoded by the incremental algorithms (illustrated in Figure 2
bottom-left). INCALP(SMT) also profits from the incremental
scheme, however, it struggles to exploit sparsity in problems
(e.g., Cuben, police). Note that Gurobi, unlike Z3, can exploit
multiple cores.

E. Does the SELECTDT heuristic improve run-time?

We compared the SELECTDT heuristic to random selection
as employed by INCAL [12] on the textbook problems. The
decision tree heuristic substantially improves the run-time by
selecting more informative violated examples, while obtaining
similar TPR and TNR (Figure 6).

F. How does INCALP scale?

Our synthetic experiments show that INCALP can scale
up to considerable numbers of constraints but suffers from
the curse of the dimensionality, as more dimensions impact
the run-times considerably. Due to its incremental scheme,
INCALP also scales well w.r.t. the number of examples to
learn from (Figure 5).

4.1x1 ≥ 1
2.1x1 + 3.1x2 ≥ 1

3.2x2 + 2.9x3 ≥ 1
2.3x3 + 2.3x4 ≥ 1

4.6x4 ≥ 1
13.1x5 ≥ 1

Fig. 1. LP learned for the police problem.

VI. CONCLUSION

We presented INCALP, a novel non-greedy algorithm for
learning LPs from examples of feasible and infeasible so-
lutions. INCALP extends and combines the efficient MILP
encoding of MILPCS and the fast incremental learning strategy
of INCAL. The algorithm optimizes for both compactness
and sparsity of the learned LP, with the aim of enhancing
generalization and interpretability. In addition, INCALP ex-
ploits a new decision tree-based example selection heuristic,
further speeding up the learning process without affecting its
correctness. Our experiments show that INCALP can quickly
and effectively retrieve realistic and synthetic instances from
examples.



Fig. 2. Optimizing the models learned by INCALP and MILPCS achieves values close to the true optimal value (top). INCALP and INCALP(SMT) are able
to learn constraints faster because they only add few examples to the encoding before finding a solution (bottom-left). Analyzing their run-time more closely
reveals that when increasing m, the total run-time is dominated by the last m values.

REFERENCES

[1] G. Dantzig, Linear programming and extensions. Princeton university
press, 2016.

[2] T. P. Pawlak and K. Krawiec, “Automatic synthesis of constraints from
examples using mixed integer linear programming,” European Journal
of Operational Research, vol. 261, no. 3, pp. 1141–1157, 2017.

[3] L. De Raedt, A. Passerini, and S. Teso, “Learning constraints from
examples,” in Proceedings of AAAI’18, 2018.

[4] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in ACM SIGPLAN Notices, vol. 46, no. 1. ACM,
2011, pp. 317–330.

[5] C. Bessiere et al., “New approaches to constraint acquisition,” in Data
mining and constraint programming. Springer, 2016, pp. 51–76.

[6] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-
guided synthesis,” in 2013 Formal Methods in Computer-Aided Design.
IEEE, 2013, pp. 1–8.

[7] N. Manwani and P. Sastry, “Polyceptron: A polyhedral learning algo-
rithm,” arXiv preprint arXiv:1107.1564, 2011.

[8] A. Kantchelian, M. C. Tschantz, L. Huang, P. L. Bartlett, A. D. Joseph,
and J. D. Tygar, “Large-margin convex polytope machine,” in Advances
in Neural Information Processing Systems, 2014, pp. 3248–3256.

[9] M. Norouzi, M. Collins, M. A. Johnson, D. J. Fleet, and P. Kohli,
“Efficient non-greedy optimization of decision trees,” in Advances in
Neural Information Processing Systems, 2015, pp. 1729–1737.

[10] A. Bärmann, S. Pokutta, and O. Schneider, “Emulating the expert:
inverse optimization through online learning,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 400–410.

[11] C. Dong, Y. Chen, and B. Zeng, “Generalized inverse optimization
through online learning,” in Advances in Neural Information Processing
Systems, 2018, pp. 86–95.

[12] S. Kolb, S. Teso, A. Passerini, and L. De Raedt, “Learning SMT(LRA)
constraints using SMT solvers,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, vol. 104, 2018,
pp. 2067–2073.

[13] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” Handbook of satisfiability, vol. 185, pp. 825–885,
2009.

[14] N. Beldiceanu and H. Simonis, “A model seeker: Extracting global
constraint models from positive examples,” in International Conference
on Principles and Practice of Constraint Programming. Springer, 2012,
pp. 141–157.

[15] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” Journal of artificial intelligence research, vol. 2,
pp. 1–32, 1994.

[16] N. Manwani and P. Sastry, “A geometric algorithm for learning oblique
decision trees,” in International Conference on Pattern Recognition and
Machine Intelligence. Springer, 2009, pp. 25–31.

[17] D. Bertsimas and J. Dunn, “Optimal classification trees,” Machine
Learning, vol. 106, no. 7, pp. 1039–1082, 2017.

[18] T. P. Pawlak and K. Krawiec, “Synthesis of constraints for mathematical
programming with one-class genetic programming,” IEEE Transactions
on Evolutionary Computation, vol. 23, no. 1, pp. 117–129, 2019.

[19] R. K. Ahuja and J. B. Orlin, “Inverse optimization,” Operations Re-
search, vol. 49, no. 5, pp. 771–783, 2001.

[20] L. Wang, “Cutting plane algorithms for the inverse mixed integer linear
programming problem,” Operations Research Letters, vol. 37, no. 2, pp.
114–116, 2009.

[21] S. Jabbari, R. M. Rogers, A. Roth, and S. Z. Wu, “Learning from rational
behavior: Predicting solutions to unknown linear programs,” in Advances
in Neural Information Processing Systems, 2016, pp. 1570–1578.

[22] M. D. Troutt, S. K. Tadisina, C. Sohn, and A. A. Brandyberry, “Linear
programming system identification,” European journal of operational
research, vol. 161, no. 3, pp. 663–672, 2005.

[23] M. D. Troutt, A. A. Brandyberry, C. Sohn, and S. K. Tadisina, “Linear
programming system identification: The general nonnegative parameters
case,” European Journal of Operational Research, vol. 185, no. 1, pp.
63–75, 2008.

[24] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on
Theory of computing. ACM, 1984, pp. 302–311.

[25] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2018. [Online]. Available: http://www.gurobi.com

[26] IBM, “CPLEX Home Page,” 2018. [Online]. Available:
https://www.ibm.com/analytics/cplex-optimizer

[27] G. Pigozzi, A. Tsoukias, and P. Viappiani, “Preferences in artificial
intelligence,” Annals of Mathematics and Artificial Intelligence, vol. 77,
no. 3-4, pp. 361–401, 2016.

[28] T. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society. Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[29] P. Kudła and T. P. Pawlak, “One-class synthesis of constraints for mixed-
integer linear programming with c4. 5 decision trees,” Applied Soft
Computing, vol. 68, pp. 1–12, 2018.

[30] T. P. Pawlak and K. Krawiec, “Synthesis of mathematical programming
constraints with genetic programming,” in European Conference on
Genetic Programming. Springer, 2017, pp. 178–193.

[31] G. J. Lieberman and F. Hillier, Introduction to mathematical program-
ming. McGraw-Hill, 1995.

[32] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.



Fig. 3. Our results show that INCALP achieves good accuracy while being significantly faster than MILPCS and outperforming INCALP(SMT) on the Cuben
(top 3 rows) and Simplexn (bottom 3 rows). The plots show run-time, TPR and TNR (rows) for different n (columns). For Cube4, INCALP(SMT) timed
out on 1 run (300 samples) and 1 run (500 samples), MILPCS on 1 run (300 samples) and 7 runs (500 samples).



Fig. 4. INCALP is also able to outperform competing approaches on textbook problems, obtaining state-of-the-art TPR and TNR in significantly less time
than MILPCS for pollution and both MILPCS and INCALP(SMT) for the sparser police problem. For police, 500 samples, INCALP(SMT) timed out on 1
run, MILPCS on 3.

Fig. 5. Results for the synthetic instances: INCALP scales with the number of constraints m, variables n, and examples s. The timeout is 200s.

Fig. 6. Results for the SELECTDT heuristic: it achieves faster learning while obtaining high quality constraints for both police (top) and pollution (bottom).


