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ABSTRACT 22 

 23 

The local topography has a significant effect on the characteristics of seismic ground motion. 24 

This paper investigates the influence of topographic effects on the seismic response of a train-25 

bridge system. A 3-D finite element model with local absorbing boundary conditions is 26 

established for the local site. The time histories of seismic ground motion are converted into 27 

equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The 28 

analysis of the train-bridge system subjected to multi-support seismic excitations is performed, 29 

by applying the displacement time histories of the seismic ground motion to the bridge supports. 30 

In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response 31 

of the train-bridge system is analyzed. The results show that the local topography and the 32 

incident angle of seismic waves have a significant effect on the seismic response of the train-33 

bridge system. Leaving these effects out of consideration may lead to unsafe analysis results. 34 

 35 

INTRODUCTION 36 

 In recent years, high-speed railway (HSR) networks are developing all over the world. 37 

These high speed lines contain a lot of multi-span elevated bridges. Since some of these bridges 38 

are located in seismic areas, the dynamic response of the train-bridge coupled system during 39 

earthquakes needs to be studied.    40 

 Since 1980s, many researchers have investigated this problem. Yang and Wu (2002) 41 

studied the dynamic stability of trains moving over bridges shaken by earthquakes with four 42 

typical earthquake records as excitations and found that the vertical component of ground 43 
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motions could significantly influence the stability of the train-bridge coupled system. Zhang et al. 44 

(2010a) computed the non-stationary random responses of three-dimensional train-bridge 45 

systems subjected to lateral horizontal earthquakes by combining the pseudo-excitation method 46 

and the precise integration method. Zeng and Dimitrakopoulos (2016) studied the seismic 47 

response of train vehicles crossing a horizontally curved railway bridge during frequent 48 

earthquakes and simulated the 3-D dynamics of a vehicle traveling on a curved path by using a 49 

moving trajectory system. In the aseismic design of long-span or long-extended bridges, it is 50 

important to take into account the variability of ground motion, which is due to wave traveling, 51 

incoherence and local site effects (Kiureghian and Neuenhofer 1992). In this regard, Xia et al. 52 

(2006) proposed an analysis model for train-bridge system subjected to seismic ground motion 53 

including the wave traveling effect. Yau and Frýba (2007) investigated the vibration of a 54 

suspension bridge due to moving loads and shaken by vertical support motions, in which the 55 

influence of seismic wave propagation effect was analyzed. Zhu et al. (2014) analyzed the 56 

dynamic behavior of a cable-stayed bridge simultaneously subjected to a moving train and 57 

seismic action, considering the influence of seismic wave propagation velocity. Du et al. (2012) 58 

proposed a framework for dynamic analysis of train-bridge system under non-uniform seismic 59 

ground motion, and studied the effect of wave traveling and spatial coherence on the dynamic 60 

responses of the train and the bridge. Although the local topography has an important effect on 61 

the features of seismic ground motion, its influence on the seismic response of train-bridge 62 

system has rarely been studied up to date. 63 

 In China, a lot of railway bridges are in operation or under construction, and many of 64 

them are located in the southwestern region with mountainous site topographies and potential 65 
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earthquakes. The most notorious one was the 2008 Wenchuan Earthquake with a magnitude 8, 66 

which caused damage to a large number of railway bridges (Wang 2008). Therefore, it is of great 67 

significance to study the seismic response of bridges located in these regions. In seismic analysis, 68 

it has long been recognized that the local topography has a non-negligible effect on the 69 

characteristics of seismic ground motion (Geli et al. 1988). Celebi (1987) found that in the Chile 70 

earthquake on 3 March 1985, structures located at ridges suffered more intensive damage than 71 

those at other places. Athanasopoulos et al. (1999) studied the non-uniform damage of the Greek 72 

town Egion during the 1995 Egion earthquake in terms of surface topography, and concluded 73 

that the surface topography influenced the intensity of base motion. Bi et al. (2010) studied the 74 

seismic response of a bridge frame located on a canyon site and found that local site conditions 75 

significantly affect spatial surface ground motions and hence the structural responses. Jia et al. 76 

(2015) investigated the characteristics and spatial distribution of structural damage based on the 77 

reconnaissance of buildings in Dujiangyan City during 2008 Wenchuan earthquake, and found 78 

that topography is one of the important factors leading to extraordinary spatial distribution of 79 

building damage. Since the local topography has a significant effect on the features of ground 80 

motion, seismic response of bridges located in such regions will be inevitably influenced. With 81 

regard to this aspect, there are also many studies (Rassem et al. 1996, Wang et al. 2008, Zhou et 82 

al. 2010, Jia et al. 2018). All these publications indicate the necessity of considering the 83 

topographic effect in seismic design, but few of them study this effect on the seismic response of 84 

train-bridge system. Since the characteristics of the train-bridge system differ from those of the 85 

empty bridge, findings from studies of bridges may not hold for the coupled system. This 86 

necessitates an extra study of the local topography on the seismic response of the train-bridge 87 
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coupled system. 88 

 This paper presents a method for dynamic analysis of a train-bridge system subjected to 89 

earthquake action considering the local topography. The train-bridge system consists of the 90 

bridge submodel and the train submodel, established by the modal decomposition method and 91 

the rigid-body dynamics method, respectively, and linear wheel-track interaction (Zhang et al. 92 

2010b) is adopted to connect the two submodels. The Newmark-β method (Newmark 1959) is 93 

used to solve the motion equations. To take into account the topographic effect, a 3-D model is 94 

established for the local site represented by a viscous-spring artificial boundary and a finite 95 

element model. By transforming the seismic time histories into equivalent loads acting on the 96 

artificial boundary, the input at each support of the bridge considering topographic effect can be 97 

obtained after calculation. Then the dynamic analysis of a train-bridge system subjected to multi-98 

point seismic excitation can be done, in which the displacement time histories of the seismic 99 

ground motion obtained by the above method are applied to the bridge supports. A train passing 100 

over a 466 m bridge located in a valley is taken as a case study, and the seismic response of the 101 

train-bridge system is analyzed considering local topography. 102 

 103 

DESCRIPTION OF THE BRIDGE 104 

The southwestern region in China is a seismic zone susceptible to earthquakes. A railway 105 

bridge located in a V-shape valley in that region is considered, as shown in Fig.1. The bridge 106 

with a total length of 466 m consists of a (88+168+88) m prestressed concrete (PC) continuous 107 

rigid frame system and a (33+56+33) m continuous PC box-girder.   108 

The heights of the bridge piers from #1 to #5 are respectively 77 m, 103 m, 56 m, 46 m 109 
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and 20 m, and the end abutments are marked as A and B, as shown in Fig.1. The connections 110 

between the piers and the girder are sliding bearings except for the three marked in the figure. 111 

In the following, the effect of the local topography on dynamic response of the train-112 

bridge system during an earthquake is studied. The analysis procedure can be summarized as 113 

follows: first, the seismic excitation at each support of the bridge considering the topographic 114 

effects is obtained; then the analysis model of the train-bridge system subjected to seismic load is 115 

established, using the seismic excitation obtained in the previous step. 116 

 117 

GROUND MOTION CONSIDERING LOCAL TOPOGRAPHY 118 

FE modeling of local site  119 

The finite element method has been used by many researchers to study seismic wave 120 

propagation and local site effects (Smith 1975, Assimaki and Gazetas 2004, Assimaki and Jeong 121 

2013, Duzgun and Budak 2015, Zhao et al. 2017). However, it is necessary to extract a finite 122 

domain from the unbounded soil medium. In order to accurately model the originally continuous 123 

medium after extraction, the propagation characteristics of the soil should be kept unchanged, 124 

which necessitates an artificial boundary capable of absorbing the energy of the scattering waves. 125 

Both the viscous boundary (Lysmer and Kuhlemeyer 1969) and the viscous-spring artificial 126 

boundary (Du et al. 2006, Liu et al. 2006) are considered herein. Du and Zhao (2010) did 127 

analysis on the two-dimensional plane-strain Lamb problem to compare the two artificial 128 

boundaries and the results show that the viscous-spring artificial boundary has an acceptable 129 

accuracy while the viscous boundary leads to rigid-body displacement due to no stiffness 130 

constraint provided. Therefore, the modified viscous-spring artificial boundary proposed by Du 131 
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et al. (2006) is adopted here to establish the local site model. A three-dimensional sketch of the 132 

artificial boundary is shown in Fig.2.  133 

The parameters of the springs and dashpots constituting the artificial boundary can be 134 

obtained by the following equations (Du et al. 2006): 135 

N
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   T

1

1
K

r




 


   T sC c  (2) 

where the subscript N denotes the normal direction and T the tangential direction; λ and μ are the 136 

Lamé constants; ρ is the mass density; r is the distance between the point load and the boundary, 137 

which takes the approximate value of the perpendicular distance from the center of the structure 138 

to the nodes of the boundary (Zhang et al. 2010c); cp and cs are the velocity of P-wave and S-139 

wave, respectively, which are related to μ, λ and ρ; α and β are tuning coefficients, which can be 140 

obtained by numerical experiments. The recommended empirical values are α=0.8 and β=1.1. 141 

The ANSYS software is used for establishing the model, in which the soil medium is 142 

modeled with Solid45 elements, and the springs and dampers of the artificial boundary are 143 

simulated by Combin14 elements with one end fixed. 144 

Model of the incident seismic wave  145 

The source of the incident wave lies outside the soil domain considered and far from the 146 

artificial boundary. According to Zhang et al. (2010c), the input motion can be converted into 147 

equivalent loads acting on the artificial boundary, to simulate the seismic wave input. Since the 148 

viscous-spring artificial boundary is responsible for absorbing the energy of scattering wave, the 149 

equivalent loads for simulating the free field consist of two components: one for balancing the 150 
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force from springs and dashpots on the boundary, and another one for the stress field induced by 151 

free field wave motion. The equivalent loads in the normal and tangential directions can be 152 

expressed as: 153 

     N N N N N 0, , , , , , , , ,F A C u x y z t K u x y z t x y z t       (3) 

     T T T T T 0, , , , , , , , ,F A C u x y z t K u x y z t x y z t       (4) 

where uN(x, y, z, t) and uT(x, y, z, t) are the normal and tangential displacements of the incident 154 

wave, respectively; σ0(x, y, z, t) and τ0(x, y, z, t) are the normal and tangential stresses, 155 

respectively; x, y and z are the node coordinates of the artificial boundary; A is the representative 156 

area of the node on the artificial boundary;  KN, KT, CN and CT are the spring coefficients and 157 

damping coefficients in the normal and tangential directions, respectively. In a three-dimensional 158 

model, there are two tangential directions, which should be dealt with separately.  159 

Calculation of equivalent loads  160 

The propagating direction of incoming seismic waves can be described by the angle of 161 

incidence and the azimuth (which can be defined as the angle between the x axis and plane 162 

determined by incident wave and reflection wave) on the horizontal plane (Assimaki and Gazetas 163 

2004). In existing studies, the angle of incidence has been studied more frequently because most 164 

of the local site models are two-dimensional (Wang et al. 2008, Zhou et al. 2010), in which the 165 

azimuth can only be zero. Assuming the P-wave propagates with incident angle θ1 and azimuth α, 166 

as shown in Fig.3, the equivalent loads on the nodes of the artificial boundary can be obtained by 167 

Eqs. (3) and (4). The related items can be calculated by the following equations (Zhou 2009). 168 

(1) Determination of the displacements 169 

Taking the travel times of the waves into account, the displacement time histories at the 170 
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left artificial boundary can be expressed as: 171 
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those at the bottom artificial boundary expressed as: 172 
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and those at the rear artificial boundary expressed as: 173 
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where θ2 represents the reflection angle of S-wave; A2/A1 and B2/A1 are the reflection coefficients 174 

of reflected P-wave and S-wave, respectively, expressed as  175 
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Δt1 to Δt3 are the time lags of incident P-wave, reflected P-wave and reflected S-wave at the left 176 

boundary, respectively, expressed as 177 
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Δt7 is the time lag of incident P-wave at the bottom boundary 178 
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and Δt10 to Δt12 are the time lags of incident P-wave, reflected P-wave and reflected S-wave at 179 

the rear boundary, respectively, expressed as 180 
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where x, y, z are the coordinates of the nodes on each boundary; H represents the distance 181 

between the lower boundary and the ground surface. 182 
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When α=0, the displacement time histories at the front artificial boundary are the same as 183 

those at the rear boundary. 184 

(2) Determination of the stresses 185 

The stresses on the artificial boundaries are obtained from the governing elastodynamic 186 

equations (Timoshenko and Goodier 1970). For the left boundary, 187 
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for the bottom boundary, 188 
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and for the rear boundary, 189 
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where the subscripts x, y, z denote the directions of stresses; υ is the Poisson ratio of the soil; the 190 

meaning of other symbols is the same as previously mentioned. When α=0, the stresses on the 191 

front artificial boundary have the same values but of opposite sign compared to those on the rear 192 

boundary. 193 

By substituting Eqs. (5) to (31) into Eqs. (3) and (4), the equivalent loads acting on the 194 

artificial boundary can be obtained. Then the process of seismic wave propagating in the soil can 195 

be realized by applying these loads on the boundary. 196 

VERIFICATION OF THE INPUT METHOD 197 

By a self-developed MATLAB program, the 3-D input procedure of P wave is 198 

implemented into the commercial software ANSYS. In this section, two numerical examples are 199 

presented to verify the input method. 200 

Numerical example 1  201 

Propagation process of P waves in a semi-infinite ground is first simulated using a 202 
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truncated cube domain. The overall size of the region is 2000 m×2000 m ×2000 m and the 203 

incident angle considered is 30
°
. 204 

It is assumed that the medium has a mass density of 2630 kg/m
3
, an elastic modulus of 205 

32.5 GPa and a Poisson’s ratio of 0.22. The element size is set as 50m (Lysmer and Kuhlemeyer 206 

1969). An impulse (as plotted in Fig.4) is adopted as the incident plane P wave and the time 207 

history of the impulse is defined as 208 
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where H(t) is the Heaviside function; the peak value of the impulse is 1 m; and the acting time of 209 

the impulse T0=0.5s. 210 

Fig. 5 shows the contours of displacement at time t=0.78 s during the propagation process 211 

of the adopted P wave. It can be seen that the input method adopted in the paper can effectively 212 

simulate the propagation of P waves.  213 

Numerical example 2 214 

In this section, a simple cuboid model with an overall size of 624 m×160 m ×120 m is 215 

taken as the second numerical example. The soil medium is assumed to be homogenous and 216 

isotropic, the parameters of which are shown in Table 1. Based on this model, a series of 217 

numerical tests are done to verify the application and accuracy of the input method. 218 

First, a seismic wave, the characteristics of which are shown in Fig.6, is assumed to be a 219 

plane P-wave traveling perpendicularly to the ground surface. It can be seen from Fig.6 (b) that 220 

the maximum frequency of the seismic wave is approximately 10 Hz, according to which the 221 
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element size of the model is set as 4m (Lysmer and Kuhlemeyer 1969). The calculated motions 222 

of the ground surface are compared with those obtained by EDT (Schevenels et al. 2009), a 223 

MATLAB toolbox for elastodynamic wave propagation in horizontally layered media based on 224 

the direct stiffness method and the thin layer method, as shown in Fig.7. To reduce the 225 

calculation time, only part of the seismic wave is calculated. 226 

It can be seen from Fig.7 that when the wave travels perpendicularly to the ground 227 

surface, the results obtained by the input method agree well with those obtained by EDT. Even 228 

though there is some error which occurs probably due to the relatively large element size, 229 

considering the huge computation cost, the results are sufficiently accurate for seismic analysis 230 

of bridge structures. 231 

Then a sinusoidal wave with its frequency equal to 2 Hz is assumed to travel with 232 

different incident angles to the ground surface. Table 2 shows the amplification factors (AF) 233 

defined as the ratio of the vertical motion at the surface to the amplitude of the incident 234 

sinusoidal wave, which are obtained by the input method and EDT respectively. 235 

It can be seen that when different incident angles are considered, accurate results can still 236 

be obtained by the input method. 237 

Finally, through the above two numerical examples, the application and accuracy of the 238 

input method adopted in the paper have been verified. 239 

 240 

ANALYSIS MODEL OF TRAIN-BRIDGE SYSTEM DURING EARTHQUAKES 241 

The train-bridge system subjected to earthquake excitation is shown in Fig.8, which is 242 

composed of the train submodel, the bridge submodel, and the earthquake input. 243 
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The seismic load only acts on the bridge submodel, whose influence on the train 244 

submodel is realized by the wheel-track interacting forces. In establishing the motion equations 245 

of these two submodels considering non-uniform seismic input, several assumptions are made: 246 

(1) The train submodel consists of several independent vehicles; 247 

(2) Each vehicle element consists of a car-body, two bogies and four wheel-sets, which 248 

are connected by spring-and-dashpot suspension systems (Xia 2011), as shown in Fig.9. A 249 

multiple-degree-of-freedom system is employed to represent each vehicle (Du et al. 2012); 250 

(3) The train passes through the bridge with a constant speed. 251 

In absolute coordinates, the dynamic motion equations of the train and bridge submodels 252 

can be expressed by Eqs. (34) and (35), respectively. 253 

V V V V V V V,B  M u C u K u F  (34) 
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M M u C C u K K u F

M M u C C u K K u
 (35) 

where M, C, K are the mass, damping and stiffness matrices, respectively; the subscripts B and V 254 

denote the bridge submodel and the train submodel; u, u and ü represent the displacement, 255 

velocity and acceleration vectors, respectively; the displacement vector of the bridge uB is 256 

decomposed into us and ub, which denote the displacements of the superstructure and base of the 257 

bridge, respectively. FV,B and FB,V are the interaction forces between the bridge submodel and 258 

the train submodel, which are determined by the analysis model of wheel-rail contact 259 

relationship. 260 

When combining the train submodel and the bridge submodel based on certain wheel-rail 261 

contact relationship, the rail irregularity is an important factor. It reflects the relative 262 
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displacement between the wheel and rail and can cause additional velocity and acceleration, 263 

which can be expressed in a differential form (Zhang et al. 2010b): 264 

0 0 0
= lim lim lim

/t t t

E E E E
E V V

t X V X X     

   
    

   
 (36) 

2
2

20 0 0
lim lim lim

/t t t

E E E E
E V V

t X V X X     

   
     

   
 (37) 

where E is the relative displacement between the wheel and rail and V is the train speed. 265 

In this paper, to determine FV,B and FB,V, the wheel-rail “corresponding assumption” and 266 

the simplified Kalker creep theory (Zhang et al. 2010b) are chosen to define the vertical and 267 

lateral interactions respectively, which mean: 268 

(1) For the vertical interaction between the wheel and rail, the wheel-set motion is the 269 

sum of the bridge deck motion and additional motion caused by irregularity; 270 

(2) In the lateral direction, the wheel-rail interacted forces are defined by the Kalker 271 

creep theory, but to maintain the linear relationship between the relative motion and interacting 272 

force, the following assumptions are adopted: 273 

(a) The wheel is a cone surface at the contact point. 274 

(b) The rail is a cylindrical surface with 300 mm radius. 275 

(c) The wheel-rail normal interacting force is regarded as the static wheel weight. 276 

(d) The coupling of Y and RZ motion of the wheel-set is neglected, as shown in Fig.9.  277 

Comprehensive derivation procedure and specific expressions of FV,B and FB,V can be 278 

found in Zhang et al. (2010b), which are not given here for lack of space. 279 

On the other hand, the first equation in Eq. (35) is for the bridge superstructure, which 280 
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can be written with respect to the absolute displacement at the base as 281 

ss s ss s ss s sb b sb b sb b B,V      M u C u K u K u C u M u F  (38) 

The third item on the right side of Eq. (38) becomes zero if a lumped mass matrix is used 282 

for the bridge, so Eq. (38) can be rewritten as: 283 

ss s ss s ss s sb b sb b B,V     M u C u K u K u C u F  (39) 

The second item on the right side of the equation stands for the damping loading due to 284 

ground motion, which can be neglected (Wilson 2002). Then by applying the modal 285 

decomposition method, Eq. (39) is converted in a set of independent modal equations (Tsai 286 

1998), namely, 287 

2 2

ss b B,V2 ( )T T

i i i i i i i i iq q q     M R u F  ( 1,2,... )i n  (40) 

where φi and qi are the ith normalized mode shape and generalized coordinate, ωi is the ith 288 

circular frequency; n is the number of the modes concerned; R is the so-called displacement 289 

influence matrix, expressed as 290 

-1

ss sb R K K  (41) 

Eqs. (34) and (40) are the basic motion equations for the train-bridge system subjected to 291 

seismic ground motion, which are connected by a wheel-track interaction relationship. The 292 

motion equations are solved by the time integration method. 293 

  294 

CASE STUDY 295 

Bridge and train   296 
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 The railway bridge mentioned in Section 2 is taken as the case study. A 3-D FE model of 297 

the bridge is established, using beam elements to model the frame, the girder and the piers, as 298 

shown in Fig.10. Four dominant natural frequencies and the corresponding mode shapes are 299 

shown in Fig.11. The concrete parameters of the beam are as follows: the elastic modulus is 36 300 

GPa and the density is 2650 kg/m
3
.  301 

The first 80 modes covering the frequency interval 0.8 Hz to 23 Hz are used for analysis 302 

of the bridge, and the adopted damping ratio is 0.025 according to previous measurement results 303 

(Xia et al. 2005). 304 

A high-speed train with 8 cars (the fourth and the eighth are trailers and the others are 305 

motors) is taken as the train model and its major parameters are shown in Table 3. The motion 306 

equation of the train model is assembled according to Xia et al. (2011).   307 

The track irregularities are taken into account by using measured data, of which the 308 

vertical component is shown in Fig. 12.  309 

The local topography and seismic input   310 

 The bridge is located in a V-shaped valley, which finite element model is established in 311 

ANSYS, as shown in Fig.13. 312 

The soil medium is assumed to be homogenous and isotropic, the parameters of which 313 

are shown in Table 1. The overall size of the model is 624 m ×160 m ×120 m and the element 314 

size is 4 m, as illustrated in the numerical example 2 in Section 4. The Solid 45 element (a 3-D 315 

structural solid element with 8 nodes) is used to model the soil medium, and the Combin 14 316 

element (a spring-damper element) for the viscous-spring artificial boundary. 317 

In the analysis, the seismic ground motion record shown in Fig.6 is used as the seismic 318 
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excitation. With the assumption that the incident seismic wave is a plane P-wave, the 319 

corresponding equivalent loads acting on the artificial boundary can be obtained by Eq. (3) to 320 

(31). By applying the equivalent loads on the artificial boundary, the propagating seismic waves 321 

are simulated, resulting in the non-uniform seismic excitations at all supports for the seismic 322 

analysis of the train-bridge system. 323 

Simulation results  324 

 The dynamic response of the train-bridge system is studied for different cases, 325 

without/with seismic excitation and considering/neglecting the topographic effects, respectively, 326 

to analyze the influence of the local topography on the seismic response of train-bridge system. 327 

In the case where the local topography is not considered, the free horizontal surface is taken as 328 

the upper surface of the model (Wang 2008). 329 

The influence of the incident angle and the azimuth on the dynamic response of the 330 

bridge and the running safety of the train is studied, considering values of 0
°
, 30

°
, 45

°
, 60

°
 and 0

°
, 331 

30
°
, 45

°
, 90

°
 for the incident angle and the azimuth, respectively. 332 

Since only an incident P-wave is considered in the following, the vertical response 333 

components will generally be larger than the horizontal ones. 334 

Comparison between considering and neglecting topographic effects 335 

 Firstly, a finite element model of the local topography without the bridge has been 336 

established and the incident P wave is assumed to travel perpendicularly to the ground surface. 337 

Table 4 shows the peak values of vertical ground motion where the bridge supports are located. 338 

Corresponding peak values without the local topography being considered are also given for 339 

comparison. It can be seen that the amplitudes increase up to 22% when the local topography is 340 
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taken into account. 341 

With the assumption that the earthquake occurs when the train enters the bridge, 342 

displayed in Fig.14 are the displacement time histories at the mid of the second span (the longest 343 

span) of the bridge with and without earthquake action, and with and without consideration of 344 

the local topography. The incident seismic wave is assumed to be the plane P-wave travelling 345 

perpendicularly to the ground surface, and the train speed is 250 km/h. 346 

It can be seen from the figure that under the earthquake excitation the dynamic response 347 

of the bridge highly increases. In addition, it is observed that the topography has an important 348 

effect on the seismic response of the train-bridge system. Accounting for the topographic effects 349 

leads to a larger vertical displacement of the bridge which is 3.16 times larger than in case these 350 

effects are disregarded. The topography also affects the time at which the peak value of the 351 

displacement is obtained, as the local topography changes the arrival time of the seismic wave to 352 

the ground surface. The topography has an even more pronounced effect on the lateral 353 

displacement which is considerably larger than in the case where it is not considered. 354 

Fig.15 shows the vertical and lateral acceleration time histories of the 1
st
 car-body under 355 

the same conditions. It can be seen from the figure that when the topographic effect is considered, 356 

the maximum vertical and lateral car-body accelerations are 1.38 m/s
2
 and 0.14 m/s

2
. So they 357 

respectively increased by 3.77 and 1.54 times. 358 

Figs.16 and 17 show how the maximum value of the displacement of the second mid-359 

span and the acceleration of the 1
st
 car-body, respectively, change with the train speed. It can be 360 

seen from these figures that when the local topography is considered, the maximum responses of 361 

all the items increased. 362 
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Influence of time of occurrence of earthquake 363 

An earthquake may happen at any time when a train crosses a long-span bridge, and the 364 

time of occurrence may significantly affect the seismic response of train-bridge system. In order 365 

to study this influence, four typical cases are selected for comparison, as illustrated in Fig.18. 366 

In Case 1, the earthquake occurs when the train enters onto the bridge. In Case 2, the 367 

earthquake occurs when the train arrives at the mid-span of the first span of the bridge. In Case 3, 368 

the earthquake occurs when the first vehicle enters the longest span. In Case 4, the earthquake 369 

occurs when the whole train is just on the bridge. 370 

With the assumption that the train speed is 250 km/h, the results for all the above four 371 

cases are shown in Table 5. The running safety is determined by the offload factor and the 372 

derailment factor. The offload factor foff and the derailment factor fder are defined following Xia 373 

et al. (2011) as: 374 

foff =△P/Pstatic (42) 

fder =Q/P (43) 

where Pstatic is the average static wheel load; P is the dynamic wheel load; △P is the offloaded 375 

wheel load, which can be defined as the difference between Pstatic and P; Q is the lateral force 376 

acting on the wheel. 377 

It can be seen that for the four cases, the dynamic response of the train-bridge system 378 

during earthquakes is different, which demonstrates that the occurrence time of earthquake has 379 

an influence on the seismic response of train-bridge system. However, the results in Table 5 also 380 

indicate that there are no obvious patterns among these responses. Since the running safety is the 381 

most significant concern in train-bridge dynamic analysis, the situation in Case 1 with the largest 382 
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offload and derailment factor among the four cases, is adopted for the following analysis.  383 

Influence of incident angle and azimuth 384 

(1) Influence of incident angle 385 

Shown in Figs. 19 and 20 are the vertical displacement time histories of the second span 386 

of the bridge and the vertical acceleration time histories of the 1
st
 car-body, which are calculated 387 

at the train speed of 250 km/h, under the conditions of zero azimuth but different incident angles 388 

for the earthquake excitation. It can be seen that with the increase of incident angle, both the 389 

bridge displacement and the car-body acceleration are decreasing. This is because at a given 390 

azimuth, the vertical component of ground motion becomes smaller for the larger incident angle. 391 

It can also be found from the figures that the variation of incident angle also leads to the time 392 

delay of the dynamic responses, due to the change of arrival time of seismic wave at the ground 393 

surface. 394 

Shown in Figs.21 and 22 are the distributions of maximum vertical displacements of the 395 

second mid-span of the bridge and the vertical accelerations of the 1
st
 car-body under several 396 

incident angles, as a function of train speed, and in Figs.23 and 24 are the distributions of 397 

maximum offload factors and derailment factors taken from all the wheel/rail forces of the train 398 

vehicles, all under zero azimuth condition. 399 

It can be seen that the four quantities show a different dependence on the train speed and 400 

generally decrease with an increasing angle of incidence. 401 

(2) Influence of azimuth 402 

The influence of the azimuth is studied, considering values of 0°, 30°, 45° and 90° while 403 

keeping the angle of incidence equal to 30°. Shown in Figs.25 and 26 are the maximum vertical 404 
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bridge displacement and the vertical car-body acceleration, as a function of train speed, and in 405 

Figs.27 and 28 are the maximum offload factors and the derailment factors of the train under 406 

different train speeds. 407 

It can be seen that compared to the incident angle, the influence of the azimuth is more 408 

complex. In general, for an incident angle=30°, the azimuths equal to 0 and 90° lead to larger 409 

seismic responses of the train-bridge system. Since a 2D model, often considered in practice, is 410 

only able to consider the condition with zero azimuth, such a model may yield unsafe results. 411 

(3) Combined influence of incident angle and azimuth 412 

Shown in Table 6 are the maximum dynamic responses of train-bridge system with 413 

respect to different incident angles and azimuths, when the train speed is 200 km/h, 250 km/h, 414 

300 km/h, respectively. 415 

From Table 6 (a), it can be seen that, for all azimuth angles, the maximum vertical bridge 416 

displacement and 1
st
 car body acceleration decrease with an increasing incident angle, and so do 417 

most of the maximum offload factors in Table 6 (b). This is because the vertical component of 418 

ground motion becomes smaller for larger incident angles and the offload factor is mainly 419 

determined by the vertical wheel-rail force according to Eq. (42). 420 

By contrast, however, there is no clear trend showing how the dynamic responses of a 421 

train-bridge system change with the azimuth for a given incident angle. The values in bold are 422 

the maxima under certain incident angle and train speed. It can be seen that dynamic responses 423 

of the train-bridge system obtained under other azimuths can be larger than those with zero 424 

azimuth in most cases, thus a 3-D model is required to analyze the effects of local topography on 425 

the seismic response of train-bridge system. 426 
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CONCLUSIONS 427 

In this paper, the influence of local topography is studied for the response of a train-428 

bridge system subjected to an incident P-wave. The results of a case study considering different 429 

values of the incident angles and azimuths of seismic P-waves allow drawing the following 430 

conclusions: 431 

 Seismic excitation can considerably increase the dynamic response of train-bridge system, 432 

thus it is important to study its dynamic behavior during earthquakes. 433 

Local topography has a non-negligible effect on the seismic response of train-bridge 434 

system, and when disregarded, this may lead to underestimation of the dynamic response of the 435 

system during earthquakes. 436 

Both the incident angle and the azimuth affect the seismic response of the train-bridge 437 

system and for this reason, the case study demonstrates that a 3-D model is required to analyze 438 

the effects of local topography on the seismic response of the coupled system. 439 

It should be pointed that in this analysis, for lack of space, only the influence of the 440 

incident P wave is analyzed, while the input method used in the paper is also suitable for the S 441 

wave, and related studies will be given in the future. Moreover, the soil in the case study is 442 

assumed to be homogenous and isotropic. It is hoped that in the future further research on 443 

heterogeneous soil can be performed.  444 

In the next stage of study, the authors will also try  to find a more representative rule to 445 

determine the critical incident angle and azimuth, which is important for considering the 446 

influence of local topography on the seismic response of the train-bridge system. 447 

 448 

 449 



25  

Literature Cited 450 

Assimaki, D., Gazetas, G. (2004), “Soil and topographic amplification on canyon banks and the 451 

1999 Athens earthquake”, J. Earthq. Eng., 8(1), 1-43. 452 

Assimaki, D., Jeong, S. (2013), “Ground-motion observations at Hotel Montana during the M 7.0 453 

2010 Haiti Earthquake: Topography or soil amplification?”, B. the Seismol. Soc. Am., 103(5), 454 

2577-2590. 455 

Athanasopoulos, G.A., Pelekis, P.C., Leonodou, E.A. (1999), “Effects of surface topography on 456 

seismic ground response in the Egion (Greece) 15 June 1995 earthquake”, Soil Dyn. Earthq. 457 

Eng., 18(2), 135-149. 458 

Bi, K.,M., Hao, H., Ren, W.X. (2010), “Response of a frame structure on a canyon site to 459 

spatially varying ground motions”, Struct. Eng. Mech., 36(1), 111-127. 460 

Celibi, M. (1987), “Topographical and geological amplifications determined from strong-motion 461 

and aftershock records of the 3 March 1985 Chile earthquake”, B. Seismol. Soc. Am., 88(4), 462 

1147-1167. 463 

Du, X.L., Zhao, M. (2010), “A local time-domain transmitting boundary for simulating 464 

cylindrical elastic wave propagation in infinite media”, Soil Dyn. Earthq. Eng., 30(10), 937-465 

946. 466 

Du, X.L., Zhao, M., Wang, J.T. (2006), “A stress artificial boundary in FEA for near-field wave 467 

problem”, Chinese J. Theor. Appl. Mech., 38(1), 49-56. (in Chinese) 468 

Du, X.T., Xu, Y.L., Xia, H. (2012), “Dynamic interaction of bridge-train system under non-469 

uniform seismic ground motion”, Earthq. Eng. Struct. D., 41(1), 139-157. 470 

Duzgun, O.A., Budak, A. (2015) “Effects of surface shapes and geotechnical conditions on the 471 



26  

ground motion”, KSCE J. Civ. Eng., 19(5), 1336-1346. 472 

Geli, L., Bard, P.Y., Jullien, B. (1988), “The effect of topography on earthquake ground motion: 473 

a review and new results”, B. the Seismol. Soc. Am., 78(1), 42-63. 474 

Jia, H.Y., Zhao, J.G., Li, X., Li, L.P., Zheng, S.X. (2018), “Probabilistic pounding analysis of 475 

high-pier continuous rigid frame bridge with actual site conditions”, Earthq. Struct., 15(2): 476 

193-202. 477 

Jia, J.F., Song, N.H., Xu, Z.G., He, Z.Z., Bai, Y.L. (2015), “Structural damage distribution 478 

induced by Wenchuan Earthquake on 12th May, 2008”, Earthq. Struct., 9(1), 93-109. 479 

Kiureghian, A.D., Neuenhofer, A. (1992), “Response spectrum method for multi-support seismic 480 

excitations”, Earthq. Eng. Struct. D., 21(8), 713-740. 481 

Liu, J.B., Du, Y.X., Du, X.L., Wang Z. Y., Wu J. (2006), “3D viscous-spring artificial boundary 482 

in time domain”, Earthq. Eng. Eng. Vib., 5(1), 93-102. 483 

Lysmer, J., Kuhlemeyer, R.L. (1969), “Finite Dynamic model for infinite media”, J. Eng. Mech. 484 

ASCE, 95(EM4), 759-877. 485 

Newmark, N.M.(1959), “A method of computation for structural dynamics”, J. Eng. Mech. 486 

ASCE, 85(EM3), 67-94. 487 

Rassem, M., Ghobarah, A., Heidebrecht, A.C. (1996), “Site effects on the seismic response of a 488 

suspension bridge”, Eng. Struct., 18(5), 363-370. 489 

Schevenels, M., Francois, S., Degrande, G. (2009), “EDT: An elastodynamics toolbox for 490 

matlab”, Comput. Geosci., 35(8), 1752-1754. 491 

Smith, W.D. (1975) “The application of finite element analysis to body wave propagation 492 

problems”, Geophys. J. Int., 42(2), 747-768. 493 



27  

Timoshenko, S.P., Goodier, J.N. (1970), Theory of Elasticity, (Third Edition), McGraw-Hill, 494 

New York, USA. 495 

Tsai, H.C. (1998), “Modal superposition method for dynamic analysis of structures excited by 496 

prescribed support displacements”, Comput. Struct., 66(5), 675-683. 497 

Wang, L., Zhao, C.G., Qu, T.J. (2008), “Topographic effects on seismic response of long-span 498 

rigid-frame bridge under SV seismic wave”, Earthq. Sci., 21(3), 311-318. 499 

Wang, Z. (2008), “A preliminary report on the great Wenchuan earthquake”, Earthq. Eng. Eng. 500 

Vib., 7(2), 225-234. 501 

Wilson, E.L. (2002), Three-dimensional static and dynamic analysis of structures: A physical 502 

approach with emphasis on earthquake engineering, Computer and Structures Inc., California, 503 

USA. 504 

Xia, H., De Roeck, G., Goicolea, J.M. (2011), Bridge Vibration and Controls: New Research, 505 

Nova Science Publishers Inc.: New York, USA. 506 

Xia, H., Han, Y., Zhang, N., Guo, W.W. (2006), “Dynamic analysis of train-bridge system 507 

subjected to non-uniform seismic excitations”, Earthq. Eng. Struct. D., 35(12), 1563-1579. 508 

Xia, H., Zhang, N., Gao, R. (2005), “Experimental analysis of railway bridge under high-speed 509 

trains”, J. Sound. Vib., 282(1-2), 517-528. 510 

Yang Y.B., Wu Y.S. (2002), “Dynamic stability of trains moving over bridges shaken by 511 

earthquakes”, J. Sound Vib., 258(1), 65-94. 512 

Yau, J.D., Frýba, L. (2007), “Response of suspended beams due to moving loads and vertical 513 

seismic ground excitations”, Eng. Struct., 29(12), 3255-3262. 514 

Zeng, Q., Dimitrakopoulos, E.G. (2016), “Seismic response analysis of an interacting curved 515 



28  

bridge-train system under frequent earthquakes”, Earthq. Eng. Struct. D., 45(7), 1129-1148. 516 

Zhang, Z.C., Lin, J.H., Zhang, Y.H., Howson, W.P., Williams, F. W. (2010a), “Non-stationary 517 

random vibration analysis for train-bridge systems subjected to horizontal earthquakes”, Eng. 518 

Struct., 32(11), 3571-3582. 519 

Zhang, N., Xia, H., Guo, W.W., De Roeck, G. (2010b), “A vehicle-bridge linear interaction 520 

model and its validation”, Int. J. Struct. Stab. Dy., 10(2), 335-361. 521 

Zhang, C.H., Pan, J.W., Wang, J.T. (2010c), “Influence of seismic input mechanisms and 522 

radiation damping on arch dam response”, Soil Dyn. Earthq. Eng., 29(9), 1282-1293. 523 

Zhao, J.G., Huang, X.X., Liu, W.F., Zhao W.J., Song, J.Y., Xiong, B., Wang, S.X. (2017), “2.5-524 

D frequency-domain viscoelastic wave modelling using finite-element method”, Geophys. J. 525 

Int., 211(1), 164-187. 526 

Zhou, C.G. (2009), “Research on the mechanism of seismic wave input about high rockfill dam”, 527 

Master thesis, Dalian University of Technology, Dalian. (in Chinese) 528 

Zhou, G.L., Li, X.J., Qi, X.J. (2010), “Seismic response analysis of continuous rigid frame 529 

bridge considering canyon topography effects under incident SV waves”, Earthq. Sci., 23(1), 530 

53-61. 531 

Zhu, D.Y., Zhang, Y.H., Kennedy, D., Williams, F.W. (2014), “Stochastic vibration of the 532 

vehicle-bridge system subjected to non-uniform ground motions”, Vehicle Syst. Dyn., 52(3), 533 

410-428. 534 

 535 

 536 

 537 



29  

FIGURES AND TABLES 538 
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Fig.1 Schematic view of the bridge (unit: m) 541 
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Fig.2 Three-dimensional sketch of the adopted artificial boundary 547 
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Fig.3 Three-dimensional diagram of P-wave oblique incidence 
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Fig.4 Displacement time history of the incident P wave 
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Fig.5 Displacement contours of semi-infinite space under incident P wave at t=0.78 s 
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Fig. 6 Characteristics of seismic ground motion 
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Fig. 7 Comparison between results obtained by ANSYS and EDT 
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Fig. 8 Train-bridge system subjected to earthquake action 
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Fig. 9 The vehicle element model 
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Fig. 10 Finite element model of the bridge 
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Fig. 11 Natural frequencies and mode shapes of the bridge 
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Fig. 12 The vertical irregularity curve 
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Fig. 13 Finite element model of the local topography 
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Fig. 14 Displacement time histories of the bridge under various conditions  
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Fig. 15 Acceleration time histories of 1st car-body under various conditions 
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Fig. 16 Comparison of maximum bridge displacements with/without considering topography 
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Fig. 17 Comparison of maximum car-body  accelerations with/without considering topography 
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Case 1: Earthquake occurs when the train enters the bridge 

 
Case 2: Earthquake occurs when the train arrives at the mid-span of the first span of the bridge 

 
Case 3: Earthquake occurs when the first vehicle enters the  

longest span 

 
Case 4: Earthquake occurs when the whole train arrives on  

the bridge 

Fig. 18 Cases of different occurrence time of earthquake 
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Fig. 19 Vertical displacement time histories of the bridge under different incident angles 
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Fig. 20 Vertical acceleration time histories of 1st car-body under different incident angles 
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Fig. 21 Maximum vertical bridge displacement as a function of the train speed for different 

incident angles 
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Fig. 22 Maximum vertical car-body acceleration as a function of the train speed for different 

incident angles 
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Fig.23 Maximum offload factors of train as a function of the train speed for different incident 

angles 
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Fig. 24 Maximum derailment factors of train as a function of the train speed for different incident 

angles 
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Fig. 25 Maximum vertical bridge displacement as a function of the train speed for different 

azimuths 
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Fig. 26 Maximum vertical car-body acceleration as a function of the train speed for different 

azimuths 
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Fig.27 Maximum offload factors of train as a function of the train speed for different azimuths 
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Fig. 28 Maximum derailment factors of train as a function of the train speed for different 

azimuths 
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Table 1 Parameters of the soil 596 

Item Parameters 

Mass density 2610 kg/m
3
 

Poisson's ratio 0.26 

Elasticity modulus 5 GPa 

Shear modulus 1.98 GPa 

Velocity of P wave 1530 m/s 

Velocity of S wave 871m/s 

 597 

 598 

Table 2 Amplification factors obtained by the method adopted and EDT 599 

Incident angle AF by the input method AF by EDT Relative error 

0° 2.008 2 0.4% 

30° 1.702 1.697 0.3% 

45° 1.378 1.374 0.3% 

60° 1.019 1.017 0.2% 

 600 

 601 
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 605 

 606 

 607 

 608 

Table 3 Main parameters of the train submodel 

Item Unit Motor car Trailer car 

Mass of car-body kg 4.8×10
4
 4.4×10

4
 

Mass of bogie kg 3.2×10
3
 2.4×10

3
 

Mass of wheel set kg 2.4×10
3
 2.4×10

3
 

Rolling inertia moment of car-body kg·m
2
 1.15×10

5
 1.0×10

5
 

Pitching inertia moment of car-body kg·m
2
 2.7×10

6
 2.7×10

6
 

Yawing inertia moment of car-body kg·m
2
 2.7×10

6
 2.7×10

6
 

Rolling inertia moment of bogie kg·m
2
 3.2×10

3
 1.8×10

3
 

Pitching inertia moment of bogie kg·m
2
 7.2×10

3
 2.2×10

3
 

Yawing inertia moment of bogie kg·m
2
 6.8×10

3
 2.2×10

3
 

Rolling inertia moment of wheel-set kg·m
2
 1.2×10

3
 1.1×10

3
 

Yawing inertia moment of wheel-set kg·m
2
 1.2×10

3
 1.1×10

3
 

    

Vertical stiffness of primary suspension N/m 1.04×10
6
 0.7×10

6
 

Vertical damping of primary suspension N·s/m 4×10
4
 4×10

4
 

Lateral stiffness of primary suspension N/m 3×10
6
 5×10

6
 

Lateral damping of primary suspension N·s/m 0 0 

Vertical stiffness of secondary suspension N/m 4×10
5
 3×10

5
 

Vertical damping of secondary suspension N·s/m 5×10
4
 5×10

4
 

Lateral stiffness of secondary suspension N/m 2.4×10
5
 2.8×10

5
 

Lateral damping of secondary suspension N·s/m 3×10
4
 2.5×10

4
 

    

Full length of vehicle m 24.775 24.775 

Distance between two bogies in a vehicle m 17.375 17.375 

Distance between axles on a bogie m 2.5 2.5 
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Table 4 Peak values of vertical ground motion where the bridge supports are located (Unit: m) 609 

 Topography considered Topography neglected increment 

A 0.040 0.036 +11% 

#1 0.034 0.036 -6% 

#2 0.044 0.036 +22% 

#3 0.039 0.036 +8% 

#4 0.038 0.036 +6% 

#5 0.040 0.036 +11% 

B 0.041 0.036 +14% 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

Table 5. Maximum dynamic response of train-bridge system for the 4 cases with different time of 

occurrence of earthquake 

Occurrence time 

Displacement of the second 

mid-span of the bridge 

(mm) 

Acceleration of the 1
st
 car-body (cm/s

2
) Offload factors of 

all vehicles 

Derailment 

factors of all 

vehicles 
Vertical Lateral Vertical Lateral 

Case 1 103.25 2.37 138.03 13.54 0.78 0.60 

Case 2 109.78 2.36 123.98 12.85 0.65 0.36 

Case 3 114.18 2.35 124.17 13.44 0.65 0.38 

Case 4 99.70 2.36 144.20 12.07 0.68 0.50 
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Table 6. Maximum dynamic responses of train-bridge system under different incident angles and azimuths 

(a) Vertical displacements of the second mid-span of the bridge and accelerations of the 1st car-body 

V=200km/h 

 

Vertical displacement of the second mid-span of 

the bridge (mm) 

Vertical acceleration of the 1
st
 car-body 

(cm/s
2
) 

α=0 α=30° α=60° α=90° α=0 α=30° α=60° α=90° 

θ1=30° 56.44 33.87 40.83 48.40 82.54 58.66 59.14 64.52 

θ1=45° 40.91 24.68 29.06 39.12 69.89 45.29 56.04 53.68 

θ1=60° 27.20 11.37 19.76 28.84 55.22 23.13 43.90 42.32 

V=250km/h 

 

Vertical displacement of the second mid-span of 

the bridge (mm) 

Vertical acceleration of the 1
st
 car-body 

(cm/s
2
) 

α=0 α=30° α=60° α=90° α=0 α=30° α=60° α=90° 

θ1=30° 60.24 35.89 45.24 54.18 81.09 55.89 72.51 74.97 

θ1=45° 40.50 23.24 32.00 43.76 74.05 39.42 61.62 63.69 

θ1=60° 27.37 12.60 21.65 32.26 45.78 22.33 42.16 52.89 

V=300km/h 

 

Vertical displacement of the second mid-span of 

the bridge (mm) 

Vertical acceleration of the 1
st
 car-body 

(cm/s
2
) 

α=0 α=30° α=60° α=90° α=0 α=30° α=60° α=90° 

θ1=30° 63.85 37.88 48.29 58.57 93.54 63.22 58.39 73.55 

θ1=45° 42.88 24.44 33.95 47.34 73.93 61.04 54.73 64.81 

θ1=60° 28.92 13.37 22.88 34.87 49.67 27.57 45.61 51.30 

(b)  Offload factors and derailment factors 

V=200km/h 

 
Offload factor Derailment factor 

α=0 α=30° α=60° α=90° α=0 α=30° α=60° α=90° 

θ1=30° 0.4616 0.3242 0.3764 0.4700 0.3250 0.2743 0.2852 0.3095 

θ1=45° 0.3818 0.2878 0.3182 0.4050 0.2874 0.2643 0.2670 0.3138 

θ1=60° 0.3220 0.2463 0.2735 0.3409 0.2577 0.2611 0.2700 0.3139 

V=250km/h 

 
Offload factor Derailment factor 

α=0 α=30° α=60° α=90° α=0 α=30° α=60° α=90° 

θ1=30° 0.4729 0.3690 0.4415 0.4300 0.3011 0.2647 0.2753 0.2771 

θ1=45° 0.3682 0.3058 0.3704 0.3743 0.2447 0.2519 0.2972 0.2676 

θ1=60° 0.3111 0.2492 0.2865 0.3052 0.2478 0.2473 0.2988 0.2686 

V=300km/h 

 
Offload factor Derailment factor 

α=0 α=30° α=60° α=90° α=0 α=30° α=60° α=90° 

θ1=30° 0.4892 0.4149 0.3746 0.4046 0.2789 0.2826 0.2848 0.2883 

θ1=45° 0.4081 0.3327 0.3932 0.3720 0.2898 0.2899 0.3048 0.2978 

θ1=60° 0.3182 0.2879 0.3502 0.3464 0.2677 0.2695 0.3058 0.3044 
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