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Abstract—In a Massive MIMO communication system, a
large number of antennas increases the spectral efficiency;
however, if this number is fixed, then the number and selection
of users influence the performance of the system. In this work,
an ultra-dense massive MIMO channel database is obtained for
different antenna geometries, centralised and distributed sce-
narios, and propagation conditions. The greedy search selection
of multiple users to form a group is analysed under capacity
and simplified heuristic approximations. Experimental results
show that the grouping strategy has a significant impact on the
nLoS scenario only when a small number of users is served
(multiplexing regime). However, in LoS cases, the distribution
of the base station antennas has a higher impact on the system
performance than the selection of the users.

I. INTRODUCTION

One of the key technologies for future wireless communi-
cation networks is massive MIMO. In such systems, a large
number of antennas M is deployed in a base station, serving
coherently multiple users K at the same time and frequency.
This allows to achieve impressive spectral efficiency (SE)
records not only in theory [1], but also experimentally [2].

In a massive MIMO system, the cell spectral efficiency
increases along with the number of users. This increase is
steady when there is a small number of K users to be served,
due to the multiplexing gain, also known as multiplexing
regime. However, if K grows, the inter-user-interference (IUI)
and pilot overhead impact the sum SE until it reaches a
saturation point, this period is called the saturation regime.
Afterwards, during the scheduling regime, any additional user
does not contribute to the sum SE [3].

One solution to serve more users is to increase the number
of antennas at the base station. Theoretically, in a massive
MIMO system, the number of antennas can increase in-
finitely; however, in real scenarios M is a constraint due to
hardware complexity, cost and power consumption [4]. The
relation between the number of antennas and users M/K has
been studied thoroughly in simulated scenarios in [5], [6].
The authors conclude that there is not a fixed optimal ratio, as
this relation depends on the channel estimation process, pilot
overhead and the combining vector or beamforming schemes.

In [7], the impact of the distribution of antennas on user
scheduling is studied as an additional variable. The authors
show an increment of the sum SE when the antennas are
homogeneously distributed as two URAs (Uniform Rectan-
gular Array). To the best of our knowledge, there is not
an experimental study that considers different antenna array

geometries, its distribution and the impact that it causes
during user scheduling.

A. Contribution

In this work, a massive MIMO single-cell experiment is
carried out, under different antenna array geometries and
distributions, for two scenarios with and without Line-of-
Sight (LoS). The collection of the channel data is carried
out for 120 users; thus, the base station must choose a
subset of users from this pool using different greedy search
user grouping techniques. The greedy search follows local
performance criteria, where one is the optimal capacity
metric, and two heuristic techniques based on channel gain
and user distance. Given the fact that our base station has
64 antennas, we assume that a maximum of 64 users can
be served simultaneously. The spectral efficiency and user
fairness are the metrics used to analyse the performance.

The following notations are used throughout this paper:
x ∈ CM is a M×1 complex vector, X ∈ CM×N is an M×N
complex matrix. xH and xT are a transpose and conjugate-
transpose of vector x. ||x|| is the Euclidean norm of x.

II. SYSTEM MODEL

In the following section, a description of the system and the
wireless channel is presented, followed by a brief explanation
of the channel estimation procedure. To finalise, a definition
of the Zero-Forcing (ZF) combining vector and the uplink
spectral efficiency is detailed.

A. System Model and Wireless Channel

In this study, we consider a single-cell massive MIMO
Time Division Duplex (TDD) system. This cell has a base
station with M antennas, which are deployed in a centralised
or distributed manner, and K single-antenna users each trans-
mitting with power p.

The wireless channel vector between user k and all the
base station antennas is denoted by hk ∈ CM. Therefore, the
path gain per antenna is given by:

βk(m) = E
{
||hk(m)||2

}
. (1)

The individual channel correlation matrix for user k is
expressed as:

Rk = E
{

hkhk
H
}

. (2)



B. Channel Estimation

The channel estimation process is carried out in every
coherence time block, using an uplink training signal. This
training signal contains individual sequences of orthogonal
pilots (φp ∈ Cτp ) that are sent simultaneously by each
user through its channel. Once this training signal reaches
the base station, it enables the estimation of the channel
for each user with their conjugate pilot. The estimated
channel matrix Ĥ contains the estimated channels of all K
users, Ĥ = [ĥ1...ĥk...ĥK]. Similar to (2), we can obtain the
estimation error channel matrix as follows:

Ck = E
{(

hk – h̃k
) (

hk – h̃k
)H
}

. (3)

The main errors that can be contained in Ck are due
to noise and pilot contamination; this occurs when pilot
tones φp are re-used by multiple users. In this paper, pilot
contamination is not study, and only error due to noise will
be considered.

C. Uplink Transmission and ZF Combining Vector

During uplink data transmission, all users send individual
signals (s) over their channel, which are coherently combined.
Thus, the received uplink signal at the base station is:

yj =
√

pĥksk +
K∑

k=1
k 6=j

√
pĥjsj + n + ζ. (4)

If we consider sk as the desired signal to be estimated in
(4), one can relate the second term as the interference from
all the other users. The third term in this equation is the noise
n ∼ CN (0, σ2I), where σ is the noise variance. The last term
is a variable that contains the channels estimation errors. To
decorrelate the required signal from all the undesired ones in
(4), the base station requires a combining vector.

In the proposed case study described in Section III-A, we
assume a high Signal-to-Noise-Ratio (SNR) for all users. Ac-
cordingly, Zero-Forcing (ZF) is a suitable combining vector
(v) [3]. Due to its orthogonality to the inter-cell interfering
channels, ZF suppresses these undesired channels as follows:(

ĤH
)

V = IK . (5)

Where V = [v1...vK] is the ZF combining matrix. The
identity matrix IK contains only the desired signals of all
users when there is perfect channel estimation, otherwise, IK
will contain additional interferencing signals. To achieve (5)
the ZF combining matrix is given by:

V = Ĥ
(

ĤHĤ
)–1

. (6)

ZF is only possible when the matrix HHH has full rank,
which only occurs when K ≤M.

D. Spectral Efficiency

To quantify the successfully received uplink data, we
consider the uplink ergodic channel capacity of user k, that
is lower bounded by SEk:

SEk = τE
{

log2

(
1 + γk

)}
[bits/s/Hz]. (7)

τ is the fraction of the frame used for uplink data, where
the remainder of the frame is used for pilot information. And
γk is the signal-to-interference-plus-noise ratio (SINR) of k
user. If MMSE channel estimation is used, then:

γk =
p|vH

k ĥk|2

K∑
j=1
k 6=j

p|vH
k ĥj|2 + vH

k

(
K∑

j=1
pCj + σ2IM

)
vk

. (8)

Where vk is the combining vector required to obtain the
desired signal sk from (4).

III. CASE STUDY AND EXPERIMENTAL SCENARIO

This section describes an indoor ultra-dense scenario that
is used as a case study, followed by a massive MIMO
experiment adjusted to the mentioned scenario.

A. Case Study

This work is an application to the proposed showcase
2: Low Latency Industrial Communication, as part of the
“Orchestration and Reconfiguration Control Architecture”
(ORCA) project [8]. This showcase describes a futuristic
industrial scenario, where the transportation of multiples
products could be automated, with the aid of robots.

A central cloud system will be able to make well-balanced
traffic decisions based on information gathered by a large
number of ambient sensors. Those stationary sensors could
be deployed on the ground on strategic locations to monitor
the presence of robots. The main goal of this closed-loop
control application is to offer higher performance in real-time
for indoor mobility.

B. Massive MIMO Experiment

A massive MIMO experiment is carried out to emulate
an indoor industrial scenario where traffic sensors (or users)
will be deployed on the ground in a grid distribution with
a separation of 25 and 30 cm. To create this scenario, we
use four XY positioners which hold a dipole antenna each,
one universal software radio peripherals (USRPs) controls a
pair of antennas as independent users data streams. In Fig.
1, USRP1 controls the antennas placed on XY positioners 1
and 3; and USRP2 the dipole antennas of XY positioners 2
and 4.

The positioners moved synchronously to 30 different po-
sitions every 30 seconds, with simultaneous and continuous
signal transmission. The received uplink signal, generated by
the USRPs, was collected and processed by a 64-antenna
massive MIMO base station for each of the 120 positions,



(a) Los and nLoS scenario deployment for
a URA antenna array.

(b) LoS scenario deployment for a ULA
antenna array.

(c) LoS scenario deployment for 8 distributed
ULA (D-ULA) antenna array

Fig. 1. Antenna deployment for the massive MIMO experiment.

then the channel for each position is saved to be process
offline. During the experiment, the base station is controlled
in real-time by the LabVIEW Communications MIMO Ap-
plication Framework 1.1.

One of the main characteristics of the 64 patch antennas at
the base station is their modularity. During this experiment,
we were able to deploy three types of antenna topologies:
• Uniform Rectangular Array (URA): The 64 antennas

were placed in an array of 8×8 antennas, Fig. 1(a). This
centralised array was deployed at a one-meter distance
of XY positioners 1 and 2, for the Light-of-Sight (LoS)
scenario. While for the non-LoS (nLoS) scenario, a
metal plane was deployed in front of the array.

• Uniform Linear Array (ULA): The 64 antennas were
placed next to each other to form a 1 × 64 array of
4.48 m. Fig. II-D. This array was deployed at a distance
of 1 meter from XY positioners 1 and 2. Only the LoS
scenario is consider for this topology.

• Distributed ULA (D-ULA): In this distributed scenario
we deployed homogeneously 8 different arrays of 1× 8
antennas around the outskirts of the XY postioners, as
shown in Fig. II-D. The distance between each array
and the closest side of the positioners is 1 meter. This
topology is analysed for the LoS case.

The wireless data collection for the 120 locations was
carried out for each of the antenna distribution mentioned
above. It is worth mentioning that the same transmit power
was set during all the experiments.

IV. USER GROUPING STRATEGIES

Let S , {1, ..., S} represent the set of all the users from
the previous experiment. To satisfy the necessary condition
given by the ZF combining vector and to achieve a canonical
Massive MIMO network (M/K ≥ 1) [3], we propose three
greedy search user grouping strategies to select K users out
of the total S users, as κ , {1, ..., K}, κ ∈ S.

A. Capacity-based User Grouping

To compare the performance of the proposed ranking
heuristics, we contrast the SE achieved when selecting the
next user in the group using the capacity achieved when
adding that user. While this method is not optimal, as it can
still result in a local optimum, the capacity metric is the

best greedy search metric when optimizing SE. Under the
ZF combining vector, it is given as:

argmax
k∈κ

K∑
k

SEk. (9)

This greedy selection technique requires a huge computa-
tional complexity as capacity needs to be computed for all to
be grouped users in each iteration. Below are shown empirical
methods that do not require a demanding computational cost.

B. Distance User Grouping

Using this heuristic user grouping technique, the users will
be ranked based on their distance to their closest antenna.
The K users with the smallest distance are then selected. It
is worth mentioning that for the described experiment, it is
feasible to obtain the exact location of the users with the aid
of the XY positioners, however, to generalise this technique
we need to apply a precise method to estimate the position of
each user. Multiple techniques to localise users based on the
estimated channel have been studied broadly. For example,
in [9], the location of the users is calculated with very high
accuracy and is applied to similar scenarios.

C. Channel Gain User Grouping

This sub-optimal strategy ranks the users according to their
channel gain β. Then the κ group is formed with the K
first users (users with the highest β). Two approaches are
considered in this strategy: the maximum channel path gain
per antenna and the mean channel path gain.

1) βmax: In this case the metric relies on the selection
of the K users with the highest beta to any m base station
antenna:

argmax
k∈κ

βk(m). (10)

2) βmean: This selection algorithm selects the K users with
the highest mean channel gain between to the M antennas at
the base station.

argmax
k∈κ

M∑
m

βk(m)
M

. (11)
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Fig. 2. Sum SE comparison for different users grouping techniques in
function of the number of selected users K, for the nLoS URA scenario
(nURA).

V. RESULTS

In this section, the previous user grouping algorithms
are applied to the measurement database, where 120 users
are located in a relatively small area, for multiple antenna
topologies and LoS versus nLoS conditions. On the one
hand, the impact of the sum SE is analysed over the multiple
antenna configurations and the number of selected users. On
the other hand, the spectral efficiency per user is analysed
during the multiplexing, saturation and scheduling regime.

A. Sum Spectral Efficiency

1) nLoS Scenario: In the case of the nLOS scenario with
a URA antenna distribution, we see in Fig. 2 that both
β-techniques tend to perform well during the multiplexing
regime (K ≤ 10). Meanwhile, in the same regime, the method
based on distance provides similar behaviour as the random
selection method. This can be understood, as in a nLoS
scenario, geometric distance is not a good prediction of the
channel quality. During the saturation regime, (10 ≤ K ≤ 35)
all presented techniques offer a higher SE than the random
selection. However, none of the β neither distance techniques
are close to the optimal case. Finally, during the scheduling
regime (35 ≤ K), we can see that none of the proposed
methods significantly improve the sum SE in comparison
with a random user selection. In this figure, the saturation
points are the red triangles for each grouping technique.

2) LoS Scenarios: For the case of the LoS scenarios,
the saturation point (Λ) is an interesting reference mark to
analyse the performance of the different grouping techniques
as function of the antenna distribution. The saturation point
represents the maximum number of users that can be served
to achieve the highest sum SE. Table I shows that the URA
case reaches Λ with the least number of K selected users,
regardless of the user grouping technique. On the other hand,
D-ULA supports more users until Λ is reached. Furthermore,
using the optimal user grouping technique, it is possible to
serve almost 1/3 more of the users in comparison with the
URA case, due to the reduction of inter-user-interference
(IUI), as was described in [7].

TABLE I
NUMBER OF USERS K NEEDED TO ACHIEVE THE SATURATION POINT (Λ)

IN THE LOS SCENARIOS

User Grouping Method URA ULA D-ULA
Optimal 25 38 43
βmax 25 35 35
βmean 25 32 33
Distance 17 35 41
Random 27 33 37

The analysis of the sum SE as function of the number of
selected users is presented in Fig. 3 for the different LOS
scenarios, all saturation points and their sum SE values are
presented as the red triangles on each user grouping. Here
it is evident that on the saturation point of D-ULA has the
highest SE (with the optimal user grouping technique) in
comparison with the other antenna topologies.

The same figure also reveals that during the multiplexing
period (K<< Λ) the sum SE increases steadily with the
number of selected users K. There is a slight difference,
however, between the various antenna distributions. On the
one hand, for the URA case, as shown by Fig.3(a), the β-
based user grouping methods improve the SE slightly in
comparison with the random selection method. On the other
hand, during the same scheduling regime, when considering
the ULA and D-ULA antenna distributions, Fig. 3(b) and
3(c) show that different user grouping techniques do not
contribute to a difference in the sum SE.

During the saturation regime (K = ±Λ), none of the
heuristics user grouping techniques impact the performance
of the sum SE significantly and are close to sum SE values
given by a random user selection. In the ULA scenario,
only the distance grouping technique has a marginally better
performance than a random selection, due to the symmetry
of the scenario. Finally, in the scheduling regime (K >> Λ),
Fig. 3(a) and 3(b) show that a random user grouping provides
a higher SE than the proposed methods. That is not the case
for the D-ULA antenna distribution; here, the user grouping
based on distance is a better choice than the random selection.

B. Per User Spectral Efficiency

The Inter-Quartile-Range (IQR) measures the variability
of the user SE; therefore, when the inter-quartile-distance
becomes more significant, the user fairness is lower. The
IQR metric and its values are presented in Fig. 4. The
figure compares the different user grouping techniques using
different antennas distribution in different regimes, for the
nLoS case (nURA) and all the LoS antenna topologies.

During the multiplexing regime (K = 9) in Fig. 4(a), it
is noticeable that URA provides the highest mean user SE
(red line inside each boxplot) regardless of the user grouping
technique. Nevertheless, the same antenna geometry shows a
large variation of the user SE values. In the case of the D-
ULA, all the grouping techniques show better user fairness,
except for the distance user grouping technique.
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(a) 8× 8 URA antenna.
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(b) 1× 64 ULA antenna.
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(c) 8 distributed antenna arrays of 1 × 8, D-
ULA.

Fig. 3. Sum SE comparison for different users grouping techniques, the number of selected K users, and antenna topology for LoS scenarios.
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(a) Mutiplexing Regime K = 9.
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(b) Saturation Regime K = 35.
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(c) Scheduling Regime K = 55.

Fig. 4. IQR of user SE for the different antenna distribution, K users and user grouping techniques: 1. Optimal, 2. Distance, 3. βmax, 4. βmin, 5. Random.

During the saturation regime (K = 35), as shown in Fig.
4(b), the URA case shows the worst user fairness again for all
user scheduling techniques (except random grouping). The D-
ULA case shows to have the highest mean user SE for all the
user grouping techniques, except the optimal user grouping
technique in ULA. The same behaviour is also noticed during
the scheduling regime (K = 55), as shown in Fig. 4(c).

VI. CONCLUSIONS

In this work, three multiple user grouping techniques
were proposed and analysed using a dense channel database
obtained from an indoor 64-antenna system, but for different
array distributions, and under a different number of served
users. On the one hand, the proposed user grouping tech-
niques impact the performance in a nLoS URA scenario but
only in the multiplexing and part of the saturation regime.
On the other hand, in LoS scenarios, the presented user
scheduling techniques do not impact the performance of
the system significantly. However, the array geometry and
distribution do have a significant influence on the peak sum
SE of the system. For this experiment, the D-ULA is capable
of serving 1/3 more users than the URA antenna geometry,
confirming that in a distributed antenna array scenario, the
IUI impact is reduced. Therefore, a higher sum SE can be
achieved, in comparison to the centralised ULA and URA.
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