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Abstract—Many problems in operations research require that
constraints be specified in the model. Determining right con-
straints is a hard and laborsome task. We propose an approach
to automate this process using artificial intelligence and machine
learning principles. We focus on personnel rostering and schedul-
ing problems in which there are often past schedules available and
show that it is possible to automatically learn constraints from
such examples. To realize this, we adapted some techniques from
the constraint programming community and extended them in
order to cope with multidimensional examples. The method uses
a tensor representation of the example, which helps in capturing
the dimensionality as well as the structure of the example, and
applies tensor operations to find the constraints that are satisfied
by the example. The algorithm also identifies inherent clusters
in the data and uses it as background knowledge to learn more
detailed constraints. To evaluate the proposed algorithm, we used
constraints from the Nurse Rostering Competition and generated
solutions that satisfy these constraints; these solutions were then
used as examples to learn constraints. Experiments demonstrate
that the proposed algorithm is capable of producing human
readable constraints that capture the underlying characteristics
of the examples.

Index Terms—Artificial Intelligence, Personnel Rostering, Con-
straint Learning, Inductive Learning, Machine Learning, Tensors

I. INTRODUCTION

Constraints are pervasive in Operations Research (OR)

applications such as scheduling and planning. Consider for

instance the case of nurse rostering [1]. Hospitals usually

generate a weekly schedule for their nurses based on con-

straints like “a nurse can work at most 5 days every week”.

As the number of nurses and the complexity of the constraints

increases, generating the schedule manually becomes imprac-

tical. Hospitals can use optimization solvers (e.g. Gurobi)

to produce the schedules automatically, but these solvers

require modeling the constraints into an OR model which

itself is a complicated task. Hiring a domain and modeling

expert to manually design a model can be expensive and time

consuming [2]. A tempting alternative is to employ constraint

learning [3] to automatically induce the model from examples

of past schedules. The learned model can then be used as-is to

produce solutions in line with the constraints extracted from

This work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No [694980] SYNTH: Synthesising Inductive
Data Models)”. The authors are grateful to Samuel Kolb for interesting
discussions related to constraint learning.

Day1 Day2 Day3
S1 S2 S3 S1 S2 S3 S1 S2 S3

Nurse1 1 0 0 0 1 0 0 1 0
Nurse2 0 1 0 1 0 0 0 0 1
Nurse3 0 0 1 0 0 0 1 0 0
Nurse4 0 0 1 0 0 1 1 0 0

TABLE I: Example nurse schedule with three dimensions: four
nurses, three days, and three shifts per day. Cells identified by
the sub-tensor X[Day1] have been highlighted by yellow and
X[Nurse1,Day3] is highlighted by green. Best viewed in color.

the example schedules, or serve as a first step to design the

final model.

There are a number of exisiting approaches that learn

constraints from examples of known feasible (and infeasible)

assignments of values to variables [3]. However, most of them

require examples of negative (i.e., infeasible) configurations,

which are often unavailable in real world applications. Further-

more, most of them are not designed to handle structured (e.g.

multi-dimensional) variables and numerical quantities which

are the norms in rostering problems [4]–[6]. To see what we

mean, consider the nurse schedule shown in Table I. For each

combination of nurse, day and shift, the value 1 indicates that

a particular nurse worked in that particular shift of that day,

while a 0 means the nurse did not work. It is easy to see

that nurses, days, and shifts are independent of each other and

behave like different dimensions, and the quantities of interest

like the number of working days are numerical. While many

recent constraint learning methods can deal with numerical

data (e.g., [7]), most approaches are not designed to handle

high-dimensional problems. We discuss these issues further in

Section II.

To amend this situation, we propose learning COnstraint
UsiNg TensORs (COUNT-OR), a novel constraint learning ap-

proach that uses tensors—that is, n-dimensional matrices [8]—

for capturing the structure and dimensionality of the schedules.

COUNT-OR can easily deal with numerical information and

most importantly relies only on feasible solutions. Given a set

of past schedules, the goal of COUNT-OR is to extract con-

straints like “the minimum number of employees working each

day is at least 3”. In order to learn the constraints, COUNT-

OR enumerates and extracts all meaningful slices (that is,

parts) of the input schedules, aggregates them through tensor

operations, and then computes bounds for the aggregates to

generate candidate constraints. Some simple filtering strategies
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are then applied to prune irrelevant and trivially satisfied

candidates.

Our key contributions are:

1) A tensor representation of rostering models that allows

us to reason over real-world personnel rostering in-

stances and constraints.

2) A novel constraint learning algorithm, COUNT-OR,

which uses tensor extraction and aggregation operations

to acquire constraints from example schedules.

3) An extension of COUNT-OR to learn additional back-

ground knowledge (e.g., nurse skill levels) and use it to

learn more detailed constraints (e.g., Minimum number

of high skilled nurses required in a shift).

4) An empirical evaluation of COUNT-OR on real-world

nurse rostering models taken from Nurse Rostering

Competition1 (INRC-II [9]), showing that our approach

can recover models that behave correctly in a handful

of seconds.

The paper is structured as follows. In the next section we

briefly overview existing approaches to constraint learning. We

present our learning method in Section III and evaluate it em-

pirically on real-world nurse rostering problems in Section IV.

We conclude with some final remarks and hints at promising

extensions.

II. RELATED WORK

COUNT-OR is a unique approach to learn constraints, in the

sense that it handles numerical data, utilizes the structure and

dimensionality of the data, and needs only feasible solutions

to discover local constraints in the form of inequalities.

The most basic form of constraints are propositional logic

formulae, or concepts. Learning concepts from examples has a

long history in AI [10]. In the simplest case, concept learning

assumes that there exists a hidden, target concept belonging to

some pre-specified class (for instance the class of conjunctive

formulae with clauses of some predefined length). Given a set

of examples, that is, assignments of values to variables labeled

as feasible or unfeasible with respect to the target concept,

the goal is to retrieve the hidden concept from the observed

examples. This framework has been extended to first-order

formulae under the name of inductive logic programming [11],

[12]. While relevant, these classical approaches are designed

to deal with Boolean variables only; it is unclear how to

extend these approaches to learn OR models, since these

often include numerical variables and constraints on them.

More recent approaches can learn constraint programs with

numerical terms. For instance, the works of Bessiere and

colleagues [13] follow the same setup as concept learning, but

is designed to learn arbitrary constraint satisfaction models.

These can include both numerical variables and constraints

on them (for example x ≤ y or x �= y, where x and y
are integer variables). These approaches maintain a candidate

model and iteratively refine it to account for the examples

that are inconsistent with it. These approaches, however, are

1http://mobiz.vives.be/inrc2/

not designed for tensor data and do not take advantage of

the multi-dimensional structure imposed by it. In particular,

they do not natively support complex tensor operations like

slicing and continguous one/zero checks. Further, it does not

support acquisition of background knowledge like nurse skill.

COUNT-OR, on the other hand, is specifically meant for tensor

data and does automatically acquire background knowledge if

needed, as detailed later on.

There exists a class of learning approaches that can po-

tentially deal with high-dimensional numerical domains [14],

[15]. The advantage of these works is that they can learn soft
constraints, i.e., constraints that can be violated, and whose

“degree of satisfaction” is taken into account by the objective

function. However these approaches require to invoke a satis-

faction (or optimization) oracle, and thus do not scale to larger

learning settings. TaCLe [7] can also deal with numerical

variables, but is designed specifically for tabular data.

Other recent work include ESOCCS [16] which is a heuris-

tic approach based on evolutionary optimization. It starts

from positive examples only but uses density estimation to

sample negatives, thus converting the positive-only setting to

binary classification [15]. In addition, it can learn weighted

constraints. (Their strategy could be adapted to learn IP

objective functions, but we leave this to future work.) Contrary

to COUNT-OR, ESOCCS expects the terms to be enumerated

upfront, which is impractical in IP, because the number of

terms can be huge. Furthermore, it does not exploit structure

on the set of variables.

To the best of our knowledge, the only other constraint

learning approaches that uses a tensor representation are

ModelSeeker [17] and ARNOLD [18]. ModelSeeker aims at

learning global constraints from examples. In order to do

so, it takes a vector of integer values as input and looks

for patterns holding in different rearrangements of the vector

in the form of matrices (i.e. bi-dimensional tensors). While

apparently similar, COUNT-OR focuses on discovering local
constraints, which are much more common in OR problems.

It is of course conceivable to combine the two approaches

if global constraints do appear in the particular application

domain. ARNOLD learns integer programs with polynomial

inequalities using a tensor representations of the variables and

constants, but differs from COUNT-OR in two ways. First,

ARNOLD assumes all the constants (including the bounds) to

be given as an input. COUNT-OR on the other hand learns the

bounds from the schedules. Second, ARNOLD cannot extract

slices from tensors, so this must be done manually if needed,

while COUNT-OR enumerates all relevant slices automatically.

III. LEARNING CONSTRAINTS WITH COUNT-OR

The aim of COUNT-OR is to simplify the modeling process

by inducing a working model that can be either used as-is to

produce new schedules or further improved. More formally,

the problem we address can be stated as follows: given a set

of past schedules, find a rostering model ML satisfied by all

of them.
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First, we assume the examples to represent desirable sched-

ules, i.e., schedules that were observed to work well enough

in practice. This is reasonable, because the example schedules

are likely the result of trial-and-error where only the best

schedules were kept. For the same reason, we also expect

the examples to not be optimal in any sense of the word.

Of course, the learned model mimics the example schedules,

and so the higher the desirability of the provided examples,

the better the schedules generated by the learned model.

Since the example schedules likely reflect contractual obli-

gations (and other regulations) that are always known in

advance, it may seem pointless to learn a rostering model from

examples. This is not the case. Indeed, even though in principle

all employees should know and understand the contract, they

may be unable to encode it into a working model. COUNT-

OR takes care of this automatically. In addition, the examples

will often reflect constraints not appearing in the contract: for

instance, the hospital may only need two physiotherapists at

any time, because there are only a limited number of facilities

for them. Modelling this fact avoids generating infeasible

and costly schedules. Most importantly, real-world schedules

may not respect the contractual obligations. Such “imperfect”

examples capture real trends occurring in the working place

and, by including contractual obligations into the learned

model, allow to build models that blends regulations with

known-working practices.

While soft constraints appear frequently in OR models,

it is true that hard constraints reflect practical limitations,

regulations and contractual obligations, which lie at the core

of most applications. For this reason, COUNT-OR focuses on

learning hard (feasibility) constraints only.

A. High-level overview

At a high-level, COUNT-OR consists of four steps:

Tensorization: Each input schedule is converted to a ten-

sor whose elements represent, in the simplest case, which

employees worked in which days and shifts, as detailed in

Section III-B.

Aggregation: The algorithm enumerates all sub-tensors and

summarizes them by applying one or more aggregation oper-

ations. This way, it obtains several quantities of interest, e.g.,

the number of employees each day or the number of working

days for each employee. See Section III-C.

Bound computation: Numerical bounds for these quantities

are then computed by taking the minimum and maximum

across all sub-tensors, producing a number of candidate con-

straints of the form “the minimum number of employees each

day is 4”. See Section III-E.

Filtering: Trivially satisfied candidates are filtered out to

produce a set of consistent constraints. These can readily

be fed to any constraint solver to generate new schedules

consistent with the examples. See Section III-F.

While introducing the algorithm, we will assume to be given

a single example schedule and no background knowledge,

for clarity, and lift these restrictions later on. In particular,

Section III-G discusses the simple modifications required to

0 1 0

0 0 1

1 0 0

1 0 0

0 1 0

1 0 0

0 0 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 1

N
u
rs

es

Shifts

Days

TABLE II: Tensor representation of the schedule in Table I

handle multiple examples, while Sections III-I and III-J detail

how to incorporate background knowledge into the learning

process and acquiring the background knowledge from data,

respectively.

Before proceeding, we define some common terms to avoid

ambiguities due to differences between OR and AI termi-

nologies. The term problem refers to the inference problem

of producing feasible schedules for a particular rostering

instance, while model indicates the model used for obtaining

said schedules. This paper is about the learning problem of

inducing a model from a set of past schedules, referred to as

input schedules or examples.

B. Mapping Schedules to Tensors

Consider the nurse schedule in Table I. Formally, let D =
{D1, D2, . . . , Dn} be the dimensions and Di the set of distinct

values for the ith dimension. In our example schedule there

are 3 dimensions, namely D = {Nurses,Days,Shifts},
where Nurses = {Nurse1, . . . ,Nurse4} and similarly for

Days and Shifts.

A schedule in this format can be readily represented by

a rank-n tensor, denoted X, where n = |D| is the number of

dimensions in the schedule. The shape of the tensor reflects the

number of distinct values for each dimension. In our example,

the schedule has 3 dimensions, so it can be represented by a

tensor of rank 3 with shape [4, 3, 3] (as shown in Table II). The

elements of the tensor are identified by a particular (nurse, day,

shift) combination. For instance, X[Nurse2,Day1,Shift3]
shows whether Nurse2 worked on Day1 in Shift3.

Before proceeding, we introduce some required notation.

We write X[di] to indicate the sub-tensor obtained by fixing

the ith dimension of X to di ∈ Di. For example, X[Day1]
extracts the working schedule of all nurses for the three shifts

on Day1 (highlighted by yellow in Table I). Fixing multiple

dimensions is allowed. For instance, X[Nurse1,Day1] ex-

tracts the sub-tensor [1, 0, 0], where the elements refer to the

different shifts for Nurse1 on Day1 (cf. Table I, Green). We

will make extensive use of the Cartesian product, defined as

D1⊗D2 = {(d1, d2) | d1 ∈ D1, d2 ∈ D2}. For any choice of

dimensions D′ ⊆ D, we use the shorthand
⊗

(D′) to indicate

the Cartesian product of the dimensions in D′.

C. Enumeration and Aggregation

We are now ready to introduce the first two aggregation

functions, Nonzero and Sum, which play a central role in our
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algorithm. Given an input tensor X, Nonzero(X, D′) reduces

it to an aggregate tensor Y indexed by e ∈ ⊗
(D′), by

checking for each e whether there exists at least one non-

zero element in the sub-tensor X[e]. More formally, letting

I(c) be the indicator function, the output of Nonzero satisfies

Y[e] = I(X[e] �= 0) for every e ∈ ⊗
(D′). The Sum(X, D′)

function is defined analogously, except that Y is obtained

by summing up all the elements of X[e]. These functions

allow us to capture many quantities of interest. For instance,

checking whether Nursei works in any shift of Dayj can

be accomplished by applying the Nonzero function with

D′ = {Nurses,Days}, so that Y is:

Y[Nursei,Dayj ] = I(X[Nursei,Dayj ] �= 0)

Similarly, the number of shifts worked by Nursei on Dayj

can be retrieved by applying the Sum function with D′ =
{Nurses,Days}, so that Y is:

Y[Nursei,Dayj ] = sum of values in X[Nursei,Dayj ]

By varying D′, these functions produce other relevant quanti-

ties, such as the number of working employees for each day,

the number of working days for each employee, etc.

We introduce one more function, Count, which combines

Nonzero and Sum to express even more quantities of interest.

Let M and S be two disjoint, non-empty subsets of D. Count

is defined as:

Count(X,M, S) = Sum(Nonzero(X,M ∪ S) , S) (1)

For instance, if M = {Nurses} and S = {Days},
Nonzero(X,M ∪ S) returns a rank 2 tensor Y of shape [4,

3] over the 4 nurses and the 3 days, where Y[Nursei,Dayj ]
encodes whether the ith nurse worked in any shift on the jth

day. Count then applies Sum to this tensor to obtain a 1-d

tensor, Z = Sum(Y, S), of shape [3] over the three days,

where Z[Dayi] encodes the total number of nurses working

on the ith day. The end result is a tensor indexed by the values

in S, showing the total number of distinct employees working

on different days: Z = [4 3 4].

D. Dealing with other constraints

By definition, the Sum and Nonzero ignore the order in

which zeros and ones appear in the input tensor. Order,

however, is essential for capturing quantities like “the min-

imum (or maximum) number of consecutive working days (or

shifts) for an employee”. To deal with these, we introduce

four more aggregation functions: MinConsZero, MinConsOne,

MaxConsZero, and MaxConsOne, described next.

Given an input tensor X and a subset of dimensions D′,
MaxConsOne(X, D′) outputs a tensor Y of rank |D′| by taking

the maximum number of consecutive ones in X[e], where

e ∈⊗
(D′). Similarly, MinConsOne computes the minimum

number of consecutive ones. These two functions produce an

upper and lower bound, respectively. The two other functions,

MaxConsZero and MinConsZero work analogously, but for

consecutive zeros.

M,S Count(X,M, S)

{Days} , {Nurses} # of working days per Nurse

{Days, Shifts} , {Nurses} # of working shifts per Nurse

{Nurses} , {Days} # of distinct employees per day

{Shifts} , {Days} # of shifts for each day with

at least one nurse working

{Shifts} , {Nurses, Days} # of working shifts per day

per nurse

{Days} , {Nurses, Shifts} # of working days for a

shift per nurse

{Nurses} , {Days, Shifts} # of nurses per shift each day

TABLE III: A selection of quantities of interest representable by the
Count function for different choices of M and S.

To see how these work, consider the case M = {Days}
and S = {Nurses}: replacing Sum with MaxConsOne in

Eq. 1 allows us to compute number of maximum consecutive

working days for each nurse.

Note that when X[e] is a tensor of rank ≥ 1 (i.e., when it is

not a vector), talking about consecutive ones does not make

much sense. So for these four functions we only consider the

cases where X[e] is a 1-d tensor, i.e., |D \D′| = 1.

E. Computing the bounds

After enumerating all the quantities of interest, COUNT-

OR computes their minima and maxima to produce candidate

constraints capturing their variation. So for each combination

of M and S, first it calculates Count(X,M, S), and from there

it computes the empirical lower and upper bounds as:

⊥Count
M,S = min

e
(Count(X,M, S))[e] (2)


Count
M,S = max

e
(Count(X,M, S))[e] (3)

Here the index e iterates over all elements of the result of

Count, that is, e ∈ ⊗
S. When applied to our example

schedule, our algorithm would produce the lower and upper

bounds ⊥Count
M,S ,
Count

M,S for each quantity of interest listed in

Table III (among others).

Once the upper and lower bound of some quantity (e.g.

Count(X,M, S)) are known, we can immediately turn them

into a constraint regulating the feasible values of that quantity.

The resulting constraint is:

⊥Count
M,S ≤ Count(V,M, S) ≤ 
Count

M,S

Note that in equations 2 and 3 X is the tensor constant
representing the input schedule. In contrast, in this equation

V is a tensor variable whose value is being constrained.

F. Dealing with irrelevant constraints

COUNT-OR considers all possible combinations of M and

S, which might lead to some trivially satisfied or meaningless

constraints. For example, learning that “the minimum number
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of working days for a nurse is 0” does not give any infor-

mation: the number of working days is always non-negative,

hence the learned constraint is trivially satisfied.

Depending on the application domain, some combinations

of M and S might also lead to syntactically sound, but

meaningless, constraints. For example, if M = {Shifts}
and S = {Days}, the count we get represents “the number

of shifts for each day where there was at least one nurse

working”, which does not make much sense. COUNT-OR

can be instructed not to enumerate sub-tensors for known

meaningless choices of M and S. This can be partially

automated by observing some common patterns followed by

such constraints. Specifically, for constraints learned using the

ordered aggregation functions (MinConsZero, MinConsOne,

etc.). For instance, ordering of Nurses is not important, as

all the nurses are identical in the example above, so finding

consecutive values of ones or zeros across Nurses does not

make any sense. More formally, for a constraint, if Di ∈ M
such that ordering of values in Di is not important, then

we neglect the constraint learned using ordered aggregation

functions.

Second, we filter out trivially satisfied candidate constraints

as follows. For the upper bound, if it holds that 
Count
M,S =

|⊗(S)| then we discard this upper bound because |⊗(S)|
is the maximum possible value Count(X,M, S) can take, so

this bound is trivial. For example, when M = {Nurses} and

S = {Days,Shifts}, if we learn that 
Count
M,S = |⊗(S)| =

21, it translates to maximum number of working shifts being

21 in a week, which is an obvious bound, so we drop this

constraint. Similarly, for the lower bound, if ⊥Count
M,S = 0 we

drop the constraint as it is trivial. These same two rules hold

when using the ordered aggregation functions instead of Sum.

These simple filtering rules are surprisingly effective in

practice. In our experiments with real-world scheduling prob-

lems, we noticed that they get rid of most of the irrelevant

constraints without having to tell explicitly the algorithm

which constraints to ignore (we have reported the numbers

in Section IV). This is because the hidden, target problem

does not constraint all possible combinations of dimensions

and aggregation operations, and therefore the learned bounds

match the “trivial”, unconstrained minima and maxima of

the quantities of interest. Our filtering stage detects these

occurrences and gets rid of the superfluous constraints learned

in these cases.

G. Handling multiple input schedules

If we have multiple input schedules, we can use them to

learn more precise bounds for the constraints as follows. For

each given input schedule, we first learn the bounds for all the

possible combinations of M and S and aggregation operators

using our algorithm. Then we aggregate the bounds themselves

by taking a minimum over the lower bounds and a maximum

over the upper bounds. For example, if we learn that “the

number of working days ≥ 3” for one input schedule and

“the number of working days ≥ 2” in the other schedule,

our final constraint would be “the number of working days

Algorithm 1 The COUNT-OR algorithm. X is the input

schedule in tensor form, D is the set of dimensions of X,

and O is the set of dimensions of X for which ordering does

matter.
1: procedure FINDCONSTRAINTS(X, D, O)

2: ML ← ∅
3: for M,S ∈ ENUMERATESPLITS(D) do
4: B ← ∅
5: C← Count(X,M, S)
6: B ← B ∪ {Count(V,M, S) ≥ mine C[e]}
7: B ← B ∪ {Count(V,M, S) ≤ maxe C[e]}
8: if |M | = 1 and M ∩O �= ∅ then
9: C← MinConsZeroCount(X,M, S)

10: B ← B ∪ {MinConsZeroCount(V,M, S) ≥
mine C[e]}

11: C← MaxConsZeroCount(X,M, S)
12: B ← B ∪ {MaxConsZeroCount(V,M, S) ≤

maxe C[e]}
13: C← MinConsOneCount(X,M, S)
14: B ← B ∪ {MinConsOneCount(V,M, S) ≥

mine C[e]}
15: C← MaxConsOneCount(X,M, S)
16: B ← B ∪ {MaxConsOneCount(V,M, S) ≤

maxe C[e]}
17: ML ←ML ∪ FILTER(B, 0, |⊗S|)
18: return ML

≥ 2” because it is more general and satisfies both the input

schedules. Then based on the filtering rules defined in the

previous section we discard some of learned constraints.

H. The algorithm

Now we have everything together to formally define our

learning algorithm. The pseudo-code is listed in Algorithm 1.

Inputs given to the algorithm are X (data tensor), D (set of

dimensions for X) and optionally O (a subset of D for which

ordering matters). In line 2, the learned model is initialized

to an empty set. Then all possible combinations of M and

S is enumerated by calling ENUMERATESPLITS. For each

M and S, the maximum and minimum of Count(X,M, S)
is calculated and converted into constraints, and added to

the learned model (lines 5–7). As discussed in Section III-F,

COUNT-OR checks whether it makes sense to call the ordered

aggregation operators in line 8. If conditions are satisfied, it

computes the ordered counts MaxConsOneCount, MinCon-

sOneCount, MaxConsZeroCount, and MinConsZeroCount by

replacing Sum in Eq. 1 by the ordered aggregation functions

MaxConsOne, MinConsOne, MaxConsZero, and MinCon-

sZero respectively, then it compute their bounds, and updates

the learned model (lines 9–16). At line 17 it computes the

minimum and maximum possible values that the bound can

take (0 and |⊗S|, respectively) and pass it to the FILTER

procedure, implemented as per Section III-F, to discard all

constraints that are trivially satisfied. Finally, it returns the

filtered learned model at line 18.
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I. Exploiting background knowledge

So far we have assumed that the learner has only access to

the input schedules. In order to learn more fine-grained con-

straints, now we consider additional background knowledge

in the form of partitions of entities. For instance, COUNT-OR

may be given a partition of days into work days / holidays, or

of nurses based on their competences. The idea is that different

categories might follow different constraints, as is the case

with constraints like “the maximum number of highly skilled

nurses in each shift is at most 2”.

To learn such constraints, we encode the background knowl-

edge into a set of rank 2 tensors. For instance, given a

categorization of nurses as high / low skilled, we create two

rank 2 tensors, one for high skilled nurses and one for low

skilled ones. These tensors are constructed in such a way

that multiplying them with the input tensor X filters out the

data unrelated to the value that the tensor represents. For

example, multiplying X with the tensor corresponding to the

High Skilled Nurses would filter out the data related to the

Low Skilled Nurses. Once we get the data, we can apply our

constraint learner defined in Section III-H to learn the specific

constraints related to the specific value of the dimension.

We explain the construction of these dimension’s value spe-

cific 2-d tensors through an example. Consider the data given

in Table I alongside the following background knowledge:

Nurse1 and Nurse4 are high skilled, while the other two

nurses are low skilled. Let, H = {Nurse1,Nurse4}, be the

list of High Skilled Nurses and L = {Nurse2,Nurse3}, be

the list of Low Skilled Nurses. If |Nurses| = n and |H| = m
then the shape of the tensor corresponding to High Skill will

be m × n, where for the ith row, all values will be zero

except at the jth column such that Hi = Nursej . Using this

construction we transform the given background knowledge

into two tensors shown in Figure 1. Then the concept of tensor

[
1 0 0 0

0 0 0 1

]

High Skilled Nurses

[
0 1 0 0

0 0 1 0

]

Low Skilled Nurses

Fig. 1: Converting background knowledge to a tensor.

multiplication is applied to get the filtered data that can give us

more detailed constraints. For example, multiplying the tensor

corresponding to high skilled nurses in Figure 1 with a small

part of data gives the following result:

[
1 0 0 0

0 0 0 1

]
×

Mon

S1 S2 S3

Nurse1 1 0 0

Nurse2 0 1 0

Nurse3 0 0 1

Nurse4 0 0 1

⇒
Mon

S1 S2 S3

Nurse1 1 0 0

Nurse4 0 0 1

Now applying COUNT-OR on this data will generate con-

straints specific to High Skilled Nurses. We can do this for

each category of nurses to learn specific constraints.

In the case where we have access to categorization of mul-

tiple dimensions, we can learn even more specific constraints.

For example, if days are also categorized into weekdays

and weekends, we can use the concepts discussed above

recursively to learn constraints like “maximum number of high

skilled nurses working on a weekday”.

J. Learning Background Knowledge

In the previous section we explained how to exploit given

categorization of variables. In this section we present a method

to learn these categorization automatically. In Section III-C,

we generate quantities of interest across each dimension,

COUNT-OR uses these quantities as features for identifying

clusters in the data. For example when M = {Nurses}, it

considers all possible values for S and finds the quantities of

interest for each nurse, such as, “number of working days in

a week”, “number of working shifts in a day”, etc., These

features are then used to calculate Hopkin’s statistic [19]

which quantifies the possibility of a cluster, if the value comes

out to be higher than a certain threshold a clustering algorithm

is applied to find the categorization in the data.

IV. EMPIRICAL ANALYSIS

We addressed the following research questions: Q1) Can

COUNT-OR acquire the target model? Q2) How many in-

put examples are needed to achieve a good accuracy? Q3)

Is COUNT-OR efficient in practice? Q4) How COUNT-OR

performs in the presence of background knowledge? Q5) Can

COUNT-OR automatically identify the background knowl-

edge? To answer these questions, COUNT-OR was used to

recover several target scheduling models taken from the Sec-

ond International Nurse Rostering Competition [9].

We run two sets of experiments in increasingly more com-

plex settings. For each experiment, we first pick a target model

MT (that is, the set of constraints to be recovered) from the

INRC-II benchmark instances and generate multiple solutions

using it. These are then used as input schedules for COUNT-

OR, which returns a learned model ML. Finally, the target

and learned model are compared to check whether the latter

captures the essential features of the former.

We have divided the experiments at different levels. First we

have two target models, one with no background knowledge,

representing the examples of a single table with just the

schedule, then there is another target model with the added

background knowledge about nurses, categorizing them either

as full time or part time employee. We further divide the

experiments in two different scenarios. First, where MT only

includes constraints that can be represented using the tensor

operations we defined. Second, where we add a few hard

constraints which can not be represented using our definitions.

Going further we evaluate COUNT-OR on three different

scenarios for each constraint set discussed above by changing

the number of nurses and bounds for the constraints, these

variations are meant to simulate hospitals of different sizes:

a small hospital (10 nurses, 28 days, 4 shifts), a medium

sized hospital (31, 28, 4), and a large hospital (49, 28, 4). To
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Fig. 2: Results for representable hard constraints with no background knowledge (top) and nurse skill information (bottom). From left to
rigth: recall, runtime, number of constraints filtered.

Fig. 3: Evaluation with added non-representable hard constraints. Top: No Background Knowledge, Bottom: With Background Knowledge.
From left to rigth: precision, recall, runtime.

design these models, we used “sprint”, “medium” and “large”

example instances from the Nurse rostering competition [20],

which represent models of realistic sizes.

For each model MT , we used Gurobi to generate 10,000

solutions, then we split the dataset into five folds and fed

COUNT-OR with n ∈ {1, 2, 10, 25} random examples from

one fold as training set, while using the union of the other

four folds for performance evaluation. For each learned model

ML, we measured its recall and precision with respect to the

hidden model MT : Pr = |Sol(MT ) ∩ Sol(ML)|/|Sol(ML)|
and Rc = |Sol(MT ) ∩ Sol(ML)|/|Sol(MT )|. Here Sol(M)
is simply the set of solutions of model M . Computing these

quantities is not trivial, so we estimate them using sampling:

for the recall, we generate 10,000 examples using MT , and

check how many of these examples satisfy ML. The precision

is computed analogously. The dependency of COUNT-OR

on Gurobi restricted the experiments that we could do. For

the models with background knowledge and simulating large

hospital instance, Gurobi couldn’t generate 10000 solutions in

real time with the available resources. So we have removed

just this instance from our experiments.

a) Evaluation for target model with only representable
hard constraints: In this setting, all the constraints in the

target model are representable by our constraint language. As
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a consequence, COUNT-OR achieves 100% precision for all

target models in this setting. The recall, reported in Figure 2

(top), however is not 100%. The x-axis is the number of

input examples provided to COUNT-OR, while the y-axis

is the average recall. We can see that when learning from

just 1 example the recall is quite low, but as we increase

the number of examples to 25 we achieve ∼ 95% recall in

both the cases: data with background knowledge and data

without background knowledge. The time taken to learn the

constraints, see Figure 2 (middle), increases linearly with

the number of examples, and for 50 examples in the single

table case, when the recall is ∼ 95%, the time taken on

average is around 3 seconds while for the multiple table it

takes on average 5 seconds to learn from 50 examples. A

100% precision in both the cases ensures that the solution

generated by ML will always satisfy all the constraints in

MT . In Figure 2 (right) we have reported the performance

of our filtering algorithm, y-axis representing the percentage

of irrelevant constraints filtered using filtering rules defined in

section III-F. On an average we are able to filter around ∼60%
of the irrelevant and trivially satisfied constraints.

b) Evaluation for target model with some added non-
representable hard constraints: For the next set of experiment

we added 20% constraints which can’t be represented using

the operations that we defined, so we expect the precision to

drop in this case. In Figure 3 we can see that precision is still

more than ∼80% on average. Recall is more or less same as

the previous case, reaching a level of ∼95% when number of

input examples is greater than 25. For the experiments with

background knowledge we see a slight drop in recall compared

to the previous case, still the average recall is ∼85%. When

using 50 examples to learn the constraints, average time taken

in this case is around 4 seconds for data without background

knowledge and around 5 seconds for data with background

knowledge. Adding non-representable hard constraints in the

data doesn’t make any visible changes to the performance of

the filtering algorithm. We observe a similar graph as in the

previous case with a filtering rate of around ∼60%.

c) Learning Background Knowledge: We used the setting

with background knowledge, i.e, categorization of nurses as

high or low skilled. We used a cutoff of 75% for Hopkin’s

Statistic to identify dimensions which might have clusters.

COUNT-OR was able to identify the dimensions which might

have cluster with 100% accuracy in all the cases. Further it

was able to correctly cluster the identified dimensions with

100% accuracy for the small and medium case and 90% for

the large case.

V. CONCLUSION

We introduced COUNT-OR, a novel constraint learning

method tailored for nurse rostering problems. Given a set of

example schedule, COUNT-OR computes many quantities of

interest (e.g. the number of employees needed each day) by

applying aggregation operators to a tensor representation of the

schedules. COUNT-OR also supports background knowledge

if available, and can acquire it automatically otherwise. Our

empirical evaluation on benchmark rostering instances shows

that COUNT-OR can easily and quickly recover the constraints

appearing in real-world nurse rostering problems. Future work

includes support for soft constraints, which can encode pref-

erences among alternative feasible schedules, and extending

the palette of aggregation operators in order to uncover more

general quantities of interest.
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