
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Technology

Energy-efficient and secure
implementations for the IoT

Winderickx Jori

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Technology (PhD)

March 2020

Supervisors:
prof. dr. ir. Nele Mentens
dr. ir. Dave Singelée

Energy-efficient and secure implementations for the
IoT

Winderickx JORI

Examination committee:
prof. dr. ir. David Moens, chair
prof. dr. ir. Nele Mentens, supervisor
dr. ir. Dave Singelée, supervisor
prof. dr. Vincent Naessens
prof. dr. Jean-Marie Aerts
dr. Ludo Cuypers
(COMmeto, Belgium)

prof. dr. An Braeken
(Vrije Universiteit Brussel, Belgium)

prof. dr. Lejla Batina
(Radboud University, The Netherlands)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Technology (PhD)

March 2020

© 2020 KU Leuven – Faculty of Engineering Technology
Uitgegeven in eigen beheer, Winderickx Jori, Wetenschapspark 27, B-3590 Diepenbeek (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

Right after I graduated, I was given the opportunity by prof. dr. ir. Nele Mentens
to start a PhD at the research group of Embedded Systems and Security (ES&S).
I like to think it was because of my satisfactory work during my visit in Finland
for my master thesis. It was about developing a security architecture for a
Internet of Things platform of the open source initiative Ell-i. At that time,
my interest in IoT systems and security was ignited. The topic of this thesis
was, therefore, right up my alley.

I continued developing and analysing security architectures for the IoT during
my PhD studies. We focused primarily on the impact of security algorithms
and protocols on the performance and energy consumption of these constrained
devices. Thus, you will find practical solutions and analyses of existing challenges
in this thesis. Consequently, I think researchers, practitioners, and students
interested in the implementation of security architectures for low-power and
interconnected devices can benefit from reading my thesis.

This work would not have been possible without the projects that I worked
on at ES&S and which were funded by IWT Flanders, FWO and Interreg
V-A Euregio Meuse-Rhine. Furthermore, I would like to thank my supervisor
prof. dr. ir. Nele Mentens and co-supervisor dr. ir. Dave Singelée, without
whom my research contributions would be non-existent. Next, I have had the
pleasure to work with numerous bright coauthors and colleagues, which enabled
our work to reach higher levels. However, I do not dare to enumerate them all.
Finally, special thanks to the people most close to me, like my parents, friends,
and my sweetheart Eline, who have supported me emotionally throughout the
many ups and downs while pursuing a PhD.

i

Abstract

The IoT or Internet of Things is defined by, for example, the Internet Engineering
Task Force (IETF) as the network of physical objects or “things” embedded with
electronics, software, sensors, and connectivity to enable objects to exchange
data with the manufacturer, operator and/or other connected devices. Since
the creation of the concept in 1999, the IoT has gained a lot of popularity, and,
it is still increasingly used in various environments. This is also the reason for
the numerous challenges that characterise the IoT.

This dissertation focuses on three important challenges to provide IoT security:
heterogeneity, performance, and foremost energy-efficiency. The IoT is a
heterogeneous environment due to the variety of devices, network architectures
and wireless communication technologies that are used. Furthermore, these
IoT devices typically have to adhere to performance requirements while they
have limited storage and computation capabilities due to the fact that they are
battery-powered.

The contribution of this dissertation is four-fold. The first contribution consists
of providing end-to-end security in a heterogeneous environment. For this
purpose, the use of object security is analysed and applied in a proof-of-concept
system. The second contribution is the analysis and optimisation of using
coupons in constrained devices. This technique reduces the computation cost of
generating digital signatures. The third contribution is the in-depth analysis of
the energy consumption of security algorithms in terms of both computation and
communication cost. This energy-security analysis is used to define an approach
on how to optimise the duration of security sessions to reduce the energy
impact of a session-based security protocol. Finally, the fourth contribution is a
healthcare use case, providing end-to-end security using a public-key approach
on the one hand and a symmetric-key approach on the other hand.

In summary, this dissertation describes the research outcomes of the in-depth
and practical study of the aforementioned security techniques to provide

iii

iv ABSTRACT

energy-efficient, performance-aware end-to-end security in a heterogeneous
IoT environment.

Beknopte samenvatting

Het IoT of Internet der Dingen wordt door bijvoorbeeld de Internet Engineering
Task Force (IETF) gedefinieerd als het netwerk van fysieke objecten of “dingen”
die ingebed zijn in elektronica, software, sensoren en connectiviteit om objecten
in staat te stellen gegevens uit te wisselen met de fabrikant, operator en/of
andere aangesloten apparaten. Sinds de creatie van het concept in 1999 heeft
het IoT veel aan populariteit gewonnen en wordt het nog steeds in toenemende
mate gebruikt in verschillende omgevingen. Dit is ook de reden voor de
vele uitdagingen die het IoT kenmerken. Dit proefschrift richt zich op drie
belangrijke uitdagingen omtrent de beveiliging van het IoT: heterogeniteit,
performantie en vooral energie-efficiëntie. Het IoT is een heterogene omgeving
door de verscheidenheid aan apparaten, netwerkarchitecturen en draadloze
communicatietechnologieën die worden gebruikt. Bovendien moeten deze IoT-
apparaten doorgaans voldoen aan performantie-eisen, terwijl ze slechts beperkte
opslag- en rekenmogelijkheden hebben vanwege het feit dat ze typisch op
batterijen werken.

De bijdrage van dit proefschrift is viervoudig. De eerste bijdrage bestaat uit
het leveren van end-to-end beveiliging in een heterogene omgeving. Hiervoor
wordt het gebruik van object security geanalyseerd en toegepast in een proof-
of-concept systeem. De tweede bijdrage is de analyse en optimalisatie van het
gebruik van coupons in apparaten met beperkte rekenkracht. Deze techniek
verlaagt de berekeningskosten voor het genereren van digitale handtekeningen.
De derde bijdrage is de diepgaande analyse van het energieverbruik van
beveiligingsalgoritmen in termen van zowel berekenings- als communicatiekosten.
Deze energie-beveiligings-analyse wordt gebruikt om een aanpak te definiëren
voor het optimaliseren van de duur van veiligheidssessies om de energie-impact
van een sessie-gebaseerd veiligheidsprotocol te verminderen. Ten slotte is de
vierde bijdrage een use case in de gezondheidszorg, die end-to-end beveiliging
voorziet door middel van een asymmetrische-sleutel benadering enerzijds en een
symmetrische-sleutel benadering anderzijds.

v

vi BEKNOPTE SAMENVATTING

Samengevat beschrijft dit proefschrift de onderzoeksresultaten van de diepgaande
en praktische studie van de bovengenoemde beveiligingstechnieken om energie-
efficiënte en performantiebewuste end-to-end beveiliging te voorzien in een
heterogene IoT-omgeving.

List of Abbreviations

6LoWPAN IPv6 over Low-Power Wireless Personal Area
Networks

ABP Activated By Personalisation
ADC Analog-to-Digital Converter
AEAD Authenticated Encryption with Associated Data
AKE Authenticated Key Establishment
AppSKey Applicaiton Session Key

BioZ bio impedance
BLE Bluetooth Low Energy

CBC Cipher Block Chaining
CBOR Concise Binary Object Representation
CCM Couter with CBC-MAC
CoAP Constrained Application Protocol
COSE CBOR Object Signing and Encryption Protocol
CTR Counter

DH Diffie-Hellman key exchange
DoS Denial-of-Serice
DTLS Datagram Transport Layer Security

E Energy
EC Elliptic Curve
ECB Electronic Codebook
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECG electrocardiogram
EMR Electronic Medical Record

vii

viii List of Abbreviations

FPort Port Field

GCM Galois/Counter Mode

HTTP Hypertext Transfer Protocol

I Electric current
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things

KDF Key Derivation Function

LoRa Long Range modulation technique
LoRaWAN Low Power, Wide Area networking protocol
LPWAN Low-Power Wide-Area Network

MAC Message Authentication Code
MCU microcontroller unit
MIC Message Integrity Code
MITM man-in-the-middle

NwkSKey Network Session Key

OOB Out-Of-Band
OSCOAP Object Security of CoAP
OSCORE Object Security for Constrained RESTful

Environments
OTAA Over-The-Air Activated

P Electric power
PIN Personal Identification Number
PPG photoplethysmogram
PRNG Pseudo-Random Number Generator
PSK Pre-Shared Key

R Electric resistance

SI International System of Units

TCP Transmission Control Protocol

LIST OF ABBREVIATIONS ix

TLS Transport Layer Security
TRNG True Random Number Generator
TTP Trusted Third Party

U Electric potential difference
UDP User Datagram Protocol

WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network

List of Symbols

Ω The unit of electrical resistance

A The SI unit of electrical current

Ah A unit of electric charge

C The SI unit of electric charge

J The SI unit of energy

s The SI unit of time

V The SI unit of electric potential difference

W The SI unit of power

xi

Contents

Abstract iii

Beknopte samenvatting v

List of Abbreviations ix

List of Symbols xi

Contents xiii

List of Figures xix

List of Tables xxiii

1 Introduction 1

1.1 Challenges in IoT . 1

1.2 Outline . 6

1.3 Publications . 7

2 Background 11

2.1 Wireless networks . 11

2.1.1 Wi-Fi . 12

xiii

xiv CONTENTS

2.1.2 BLE . 13

2.1.3 6LoWPAN . 15

2.1.4 LoRaWAN . 16

2.2 IoT platforms . 17

2.3 Cryptography . 19

2.3.1 Unkeyed primitives . 20

2.3.2 Symmetric-key primitives 21

2.3.3 Public-key primitives . 22

2.3.4 Random number generators 27

2.3.5 Key derivation functions 27

2.4 Data communication . 28

2.4.1 OSI model . 28

2.4.2 Security . 29

2.5 Measuring energy consumption 30

2.5.1 Via physical measurements 31

2.5.2 Via performance measurements 32

3 End-to-end secured communication for heterogeneous IoT net-
works via fog computing 33

3.1 Introduction . 34

3.2 Background on fog computing 34

3.3 Related work . 35

3.4 HeCommm architecture . 36

3.4.1 End-to-end secured communication 37

3.4.2 HeComm protocol . 39

3.5 Proof-of-concept system . 41

3.5.1 LoRaWAN . 42

3.5.2 6LoWPAN . 42

CONTENTS xv

3.6 Implementation . 43

3.7 Evaluation . 45

3.7.1 Security evaluation . 45

3.7.2 Implementation overhead 47

3.8 Conclusion . 48

4 Trade-offs between storage and computation for embedded digital
signatures and signcryption schemes 49

4.1 Introduction . 49

4.2 Related work . 50

4.3 Storage and computation methods 51

4.3.1 Coupon encoding . 51

4.3.2 Memory encryption (e) 52

4.3.3 Point compression (c) 52

4.3.4 Index compression (i) 54

4.3.5 Coupon addition . 54

4.3.6 Comb method . 55

4.4 Implementation . 55

4.4.1 Coupon implementation 56

4.4.2 Window implementation 57

4.5 Results . 58

4.5.1 Storage results . 59

4.5.2 Performance results . 62

4.5.3 Memory results . 65

4.5.4 Energy results . 67

4.6 Discussion . 68

4.7 Conclusion . 69

xvi CONTENTS

5 In-depth energy analysis of secure IoT computation and commu-
nication 71

5.1 Introduction . 72

5.2 Related Work . 73

5.3 Our approach . 74

5.3.1 Evaluation platforms . 75

5.3.2 Wireless networks . 76

5.3.3 Computation . 77

5.3.4 Communication . 78

5.4 Energy Results for the Basic Operations 79

5.5 Energy Results for End-to-end Security 80

5.5.1 Session setup . 82

5.5.2 Session runtime . 85

5.6 Energy Results for Digital Signatures 87

5.7 Derivation of the Minimal Session Period 87

5.8 Conclusion . 91

6 Use cases on end-to-end security for wearable medical devices 93

6.1 End-to-end security via public-key cryptography 94

6.1.1 Introduction . 94

6.1.2 Related work . 95

6.1.3 System model . 96

6.1.4 Wireless communication trade-offs 98

6.1.5 Security trade-offs . 101

6.1.6 Proof-of-concept implementation + measurement results 105

6.1.7 Conclusion . 110

6.2 End-to-end security via symmetric-key cryptography 111

6.2.1 Introduction . 111

CONTENTS xvii

6.2.2 Related work . 112

6.2.3 System assumptions, threat model and security requirements113

6.2.4 Proposed Solution . 115

6.2.5 Security analysis . 120

6.2.6 Implementation results 129

6.2.7 Conclusion . 131

6.3 Comparison of the two solutions 132

6.4 Conclusion . 133

7 Conclusion 135

7.1 Conclusions . 135

7.2 Future work . 137

A Workflow of medical sensor system in a hospital 139

Bibliography 143

List of publications 157

List of Figures

1.1 Libelium Smart World Infographic – Sensors for Smart Cities,
Internet of Things and beyond [62]. 2

1.2 Global market size and growth forecast of IoT as analysed by
GrowthEnabler in 2017 [38]. 2

1.3 Graphical representation of the challenges tackled in this thesis (1:
heterogeneity of devices and networks, 2: digital signatures for
constrained IoT devices, 3: energy consumption of security, and
4: security architectures for an IoT system). 4

2.1 Indication of the expected range of the considered wireless
network types. 12

2.2 The LoRaWAN architecture as envisioned by the LoRa Alliance [64]. 16

2.3 Schematic representation of an IoT platform and its essential
components (PHY: physical interface, MCU: microcontroller unit,
S: sensors, Power: power management unit, and RF: wireless
interface). 18

2.4 Algorithm to calculate the bit-string representation of k [42]. . 26

2.5 Algorithm to calculate the point multiplication of kP using the
comb method optimisation [42]. 26

2.6 The interconnection between layers in the OSI model of a simple
network. 29

2.7 Example scenario of a hop-to-hop and a end-to-end secured
communication channel. 30

xix

xx LIST OF FIGURES

2.8 Example of an AA and AAA battery with a supply voltage of
1.2 V . The AA and AAA battery have respectively a capacity of
about 750 mAh and 1900 mAh. 31

2.9 Schematic representation of the placement of a shunt resistor. . . 31

2.10 Example time characteristics of an electronic chip. 32

3.1 Representation of a fog network. 35

3.2 Simplified representation of the general network topology of the
HeComm architecture. 37

3.3 6LoWPAN and LoRaWAN networks mapped onto the OSI model. 38

3.4 The data flow of the HeComm protocol and in IoT network
messages. All participants of the HeComm protocol (NwkServers
and fog node) have a certificate signed by a trusted party, the
fog’s CA in this case. 41

3.5 Network topology of the proof-of-concept implementation. . . . 43

3.6 Diagram of the implementation of the fog node. 44

4.1 Simple representation of the Coupon implementation using a
UML class diagram. 57

4.2 Simple representation of the Window implementation using a
UML class diagram. 58

4.3 Performance results of the Schnorr coupon initialisation of the
Coupon implementation using the different storage methods
without coupon addition. 62

4.4 Performance results of the signcryption coupon initialisation of
the Coupon implementation using the different storage methods
without coupon addition. 63

4.5 Performance results of Schnorr and signcryption coupon initiali-
sation as a function of the amount of coupon additions. 64

4.6 Performance results of the Schnorr implementation using the
comb method. 65

4.7 Performance results of Schnorr and signcryption signature
generation using their respective initialised coupon. 66

LIST OF FIGURES xxi

4.8 Memory usage of the Schnorr and signcryption scheme using
the different optimisations (e: memory encryption, c: point
compression, i: index compression, a: coupon addition, w:
window width). 66

4.9 Energy usage of the Schnorr and signcryption scheme using
the different optimisations (e: memory encryption, c: point
compression, i: index compression, a: coupon addition). A
signature generation with one coupon addition is used to represent
the addition optimisation. 67

5.1 Energy cost of elliptic curve arithmetic on the three considered
platforms (PA: point addition, PD: point doubling, PM: point
multiplication, PMG: fixed-Point multiplication). 79

5.2 Energy cost per byte of the SHA256 and SHA3-256 hash functions
on the three considered platforms. 80

5.3 Energy cost per byte of AES with modes of operation on the
three considered platforms. 81

5.4 Schematic representation of an end-to-end secured connection. . 81

5.5 Energy consumption of the three configurations for the wireless
networks and MCUs separately. 84

5.6 The energy efficiency of the Schnorr signature scheme and
signcryption scheme as a function of the message size for each
MCU and wireless network combination. The energy efficiency
of AES-GCM is also added as a reference value. 88

5.7 Average power consumption as a function of the session’s time
period for the healthcare scenario, where the minimal time period
based on the 5% rule is plotted using a black dot. 90

5.8 Average power consumption as a function of the session’s time
period for the weather station scenario, where the minimal session
period based on the 5% rule is plotted using a black dot. 91

6.1 Overall system architecture (1: one entity; *: multiple entities). 97

6.2 Selected protocols for the communication channel. 105

xxii LIST OF FIGURES

6.3 Performance evaluation for each of the handshake configurations,
where PSK, ECDHE_PSK, ECDHE_RSA and DHE_RSA stand
for the handshake protocols in the first, the second, the third
and the fourth cipher suite introduced in this section. The first
and the second approach are implemented on the MCU, while
the third and the fourth approach are implemented using the
secure socket feature of the network processor. 108

6.4 Estimated energy requirements for the each of the handshake
configurations, where MCU, NWK, TX and RX stand for the
energy consumption of the MCU, the energy consumption of the
network processor and the energy consumption for transmitting
and receiving data, respectively. A distinction is made between
the energy consumption when the component is idle and when
the component is active. 109

6.5 System architecture and communication actions used in the
proposed scheme, where S denotes the sensor nodes, RC is the
remote center, and P is the patient’s smartphone. 114

6.6 Offline installation of sensor nodes by RC. 117

6.7 Patient registration with RC. 118

6.8 RC links patient to a group of sensor nodes. 119

6.9 Key agreement between Sensor and Patient. 121

6.10 Procedure to update the PIN of a patient. 122

6.11 Performance box plot of Action 4 based on 75 runs. 131

A.1 The workflow of the wearable health system visualised in a flow
diagram. 140

List of Tables

3.1 Implementation results, RAM and ROM usage, of the IoT nodes. 48

4.1 Format of Schnorr and signcryption coupons. 53

4.2 An example situation for combining coupons based on a counter
value. In this example the counter has a value of 50, thus, coupons
2, 5, and 6 are added to each other. 55

4.3 The parameters of Equation (4.3) and Equation (4.4) compiled for
the six combinations (e: memory encryption, c: point compression,
i: index compression). 59

4.4 Static size (in kB) of the implementation without coupons. . . 60

4.5 The amount of coupons that can be used for consecutive
generation of signatures. It is calculated by subtracting the
available space by the respective implementation size and using
the remaining free space for coupon storage. 61

5.1 Technical specifications of the considered evaluation platforms. 75

5.2 Technical specifications of the considered wireless protocols. . . 77

5.3 The computation cost of the considered algorithms divided into
basic operations (H: hash function on a Message (M), PMG:
fixed-Point multiplication, PM: point multiplication, and PA:
point addition). 83

5.4 The computation cost of the considered session setup methods
(R: Hash DRBG, KDF: HKDF, DHE: ECDHE, and DSA: ECDSA). 83

xxiii

xxiv LIST OF TABLES

5.5 The communication cost of the considered session setup methods
(C: certificate, R: random value, Y: elliptic curve point, and S:
signature). 84

5.6 The total energy consumption and the relative share of the
computation and communication energy cost for the three
considered session setup methods and the three MCU and
platform combinations. 85

5.7 The total energy consumption and the relative share of the
computation and communication energy cost for the considered
session runtime algorithms and MCU and platform combinations.
(LoRa: SF7, BLE: v4.1) . 86

5.8 The computation cost of the considered public-key based
algorithms divided into basic operations (H: Hash function
on a Message (M), Y: elliptic curve point, PMG: Fixed-Point
Multiplication, PM: Point Multiplication, PA: Point Addition,
E: Encryption, and D: Decryption). 87

6.1 Comparison of wireless communication protocols suitable for
indoor application. 100

6.2 Implementation overhead required for security protocols on the
MCU. 108

6.3 Comparison of average power and lifetime estimation of the
platforms referred to in Section 6.1.2, with the following vital
parameters: the pulse oximetry (PO), the electrocardiogram
(ECG), the photoplethysmogram in three wavelengths (PPG),
the bio impedance (BioZ), the 3-axes accelerometers (ACC) and
the temperature (T). 110

6.4 Description of the symbols used throughout the section. 116

6.5 Comparison of the available security features. The security
features R.1-R.5 are described in Section 6.2.5 (R.1: Anonymity
and unlinkability, R.2: Mutual authentication, R.3: Perfect
forward secrecy, R.4: Protection against general attacks, and R.5:
Distributed authentication). 129

6.6 Comparison of the computation impact of the key agreement
scheme with other relevant state-of-the-art schemes (Th: hash,
Te: symmetric encryption, Td: symmetric decryption, and Tfe:
fuzzy extraction). 130

LIST OF TABLES xxv

6.7 Comparison of the communication impact of the key agreement
scheme with other relevant state-of-the-art schemes (*: estimated
values). 130

Chapter 1

Introduction

The term Internet of things (IoT) was likely introduced by Kevin Ashton that
used the term in a presentation he gave at Procter & Gamble in 1999 [6]. Up
till now, a globally accepted definition has not been established [23]. However,
standardisation agencies like Internet Engineering Task Force (IETF), Institute
of Electrical and Electronics Engineers (IEEE), and Internet of Things Global
Standards Initiative (IoT-GSI) have made an effort to define the Internet of
Things. In this thesis, we consider the following definition of IoT as defined by
the IETF:

The Internet of Things is the network of physical objects or “things”
embedded with electronics, software, sensors, and connectivity to
enable objects to exchange data with the manufacturer, operator
and/or other connected devices. – IETF

The Internet of Things has since its adoption only seen more and more
application domains like smart cities, Industry 4.0, and Internet of Medical
Things [7, 23, 39, 129, 131, 132, 133]. An example of the range of possible
application domains is imagined by Libelium in Figure 1.1.

1.1 Challenges in IoT

Billions of IoT devices have been and are being created and connected to the
internet as analysed by GrowthEnabler [38], resulting in a billion-dollar market
as shown in Figure 1.2. Note that the deployment of a vast number of devices

1

2 INTRODUCTION

Figure 1.1: Libelium Smart World Infographic – Sensors for Smart Cities,
Internet of Things and beyond [62].

would not be possible without affordable hardware, which is typically constrained
in size, performance, etc. Furthermore, all these devices are operated without
human intervention and are generating a large amount of information that is
stored and processed in the cloud or used by other IoT devices.

Figure 1.2: Global market size and growth forecast of IoT as analysed by
GrowthEnabler in 2017 [38].

All these devices face the same and even more challenges than traditional and
more powerful connected devices like personal computers or cloud servers. For
example, vulnerabilities/applications have to be patched, certificates need to

CHALLENGES IN IOT 3

be updated, encryption keys need to be established, and/or data need to be
communicated in real-time. The difference between an IoT device and a personal
computer is that a human handler can address the issues of a personal computer
locally when they arise, while an IoT device needs to address security issues
autonomously or with limited human interaction, as it is typically deployed in
a remote location. Thus, the management of billions of IoT devices requires
strong authentication and authorisation protocols, since, it is done remotely via
e.g. a cloud interface or a local IoT gateway.

Another challenging aspect of IoT systems is the amount of data that is generated
by IoT devices. These data are usually generated in a remote location and may
contain personal information related to e.g. industry processes or health metrics.
Therefore, providing cryptographic properties like confidentiality and integrity
protection is important. This is traditionally done using a public-key based
key agreement protocol to establish an encryption key and a symmetric-key
algorithm to encrypt the data. While these security protocols already exist
for several years, many of them cannot be applied to the IoT. The foremost
reasons are the large scale of IoT networks and the constraints on the hardware.
For example, the protocols used in a certificate-based public-key infrastructure,
which can provide strong authentication and key agreement, often require lots
of performance, storage, and memory. An alternative to public-key based key
agreement protocols is the use of pre-shared symmetric keys between an IoT
node and a delegation server. Moreover, the node offloads the authentication
and authorisation procedure to the delegation server. The downside of this
method is that the shared keys have to be updated more frequently, because,
they have a higher risk of compromise.

In summary, the development of a security architecture for IoT systems is a
difficult challenge, considering lots of different requirements need to be taken
into account, e.g. throughput, latency, security, and/or energy consumption.
For this reason, further research is needed in the evaluation of how to apply
security in IoT systems and in identifying the most optimal solutions.

The following challenges are considered in this thesis: (1) securing heterogeneous
devices and networks, (2) enabling digital signatures on constrained IoT devices,
(3) analysing the energy consumption of security protocols, and (4) providing
security solutions for mobile health systems. These challenges are presented in
Figure 1.3 and are described in more detail in the following four paragraphs.

An important challenge of the IoT is the heterogeneity of the connectivity
and devices that are used to enable the plethora of applications that can be
envisioned. For example, the 6LoWPAN network [69] is regularly used for
smart homes, while, the LoRaWAN network [104] is designed for long-range and
low-power applications like smart agriculture. Furthermore, networks can be

4 INTRODUCTION

Fog

Cloud

4

1

2
3

Figure 1.3: Graphical representation of the challenges tackled in this thesis (1:
heterogeneity of devices and networks, 2: digital signatures for constrained IoT
devices, 3: energy consumption of security, and 4: security architectures for an
IoT system).

hosted by multiple parties which may render similar networks not interoperable.
We propose to solve this issue by introducing an intermediate node that can
communicate with both networks, without renouncing end-to-end security. The
intermediate node is assumed to be more powerful than the end nodes and is
typically referred to as the "fog". We refer to the proposed security architecture
as "HeComm: Heterogeneous Communication". A prototype implementation
of HeComm in a heterogeneous network consisting of 6LoWPAN nodes and
LoRaWAN nodes is built on top of the Constrained Application Protocol
(CoAP). The security properties and the memory utilisation of the constrained
nodes are evaluated.

Another challenge of the IoT is to provide strong security properties to IoT
systems, since, IoT nodes are typically constraint in one or more of the
following features: storage (non-volatile memory), memory (volatile memory),
energy/power, and/or performance. One solution that provides strong security
properties like mutual authentication, confidentiality, and integrity protection is

CHALLENGES IN IOT 5

end-to-end security using the pre-shared key technique. It has a low impact on
the previously mentioned constraining features, which has been demonstrated
by a multitude of authors [46, 70, 85]. On the other hand, using public-key
based cryptography can provide stronger cryptographic properties, but, is often
avoided in IoT networks as it is much more computationally expensive. Lots of
research has already been done to increase the efficiency of public-key based
algorithms [41, 42, 63], though, some methods remained unexplored in an IoT
setting [120, 123]. In this thesis, we explore the efficient implementation of
public-key digital signatures and signcryption schemes in low-end embedded
devices, focusing on the trade-off between computation and storage.

IoT nodes are typically battery-powered, as they are usually remotely positioned.
This limits the energy budget of the application. Consequently, the impact of the
security mechanisms on the node’s lifetime should be reduced to a minimum as
the application has the highest priority. Many studies have already analysed the
energy consumption of security protocols [28, 46, 58, 99], however, a thorough
analysis of the overall energy consumption, taking into account not only the
computation energy, but also the wireless communication energy, is missing.
The third focus of this thesis is to provide an in-depth analysis of the complete
energy cost of security protocols deployed over a wireless communication link.

An example of a popular IoT application domain is mobile health, as discussed
by the KU Leuven metaforum [22]. According to Claes et al., mobile health,
which stands for the measuring of human activity, behaviour, etc. using mobile
devices, “can potentially drag medicine from the clinic to the consumer, where
users are able to read, monitor and manage their health information” [22].
Mobile health implies low-power systems, thus, a long lifetime of the mobile
devices is important to facilitate their use. Furthermore, the data generated
by these systems require strong cryptographic properties, since, they handle
sensitive data. In this thesis, we evaluate two security architectures to provide
energy-efficient and strong security to a wearable health sensor system.

Throughout the whole thesis, the focus is on the optimisation of cryptographic
protocols and implementations that provide end-to-end security. An attack
vector that we do not consider, is side-channel analysis. Side-channel
analysis attacks aim at extracting secret information from a computing device
through side channels such as the power consumption [53], the electromagnetic
radiation [36] and the timing behaviour [54].

Privacy consists of different aspects, as discussed by Pfitzmann et al. [80],
who proposed terminology for privacy measures like anonymity, unlinkability,
unobservability, and pseudonymity. For example, the anonymity of a subject
means that the subject is not identifiable within a set of subjects, while, the
unobservability of an item of interest requires that an item cannot sufficiently be

6 INTRODUCTION

distinguished whether it exists or not. To prevent, for example, the identification
of RFID devices by and adversary, a lot of research has gone into the design
of privacy-preserving RFID authentication protocols [44, 61, 79]. However, a
distinction can be made in terms of the adversary, as proposed by Peeters et
al. [79], between a weak attacker who can eavesdrop on the communication
channel, and a strong attacker who can e.g. read the memory of an RFID
tag. In terms of solutions, researchers like Hermans et al. [44] showed that
public-key cryptography is required to protect against a strong attacker by
modelling privacy for RFID systems.

Privacy measures can be provided through various techniques. For example,
privacy could be one of the design goals of an authentication protocol, such as
the privacy-preserving RFID authentication protocols discussed in the previous
paragraphs. But it can also be realised using other methods, such as the use
of pseudonyms or mix networks. Pseudonyms are custom identifiers that are
not linked to the devices’ identifiers, while, mix networks is a technique that
provides hard-to-trace communication channels within the network, among
other by applying the technique of onion routing. To systematically identify and
mitigate privacy threats of a system, the LINDDUN privacy threat modelling
methodology [128] can be used. Our work does not systematically take into
account privacy, since, we focus on providing end-to-end communication security.
Thus, we do not focus on securing the system, i.e. to provide aspects like privacy
and authorisation.

In the proposed solutions in this thesis, we will focus on a 128-bit security level.
The sizes of the cryptographic keys are chosen to meet this requirement. They
should provide sufficient security until 2028, as proposed by the Cryptographic
Key Length Recommendation [37], Smart et al. [74], and ECRYPT-CSA [103].
Most use cases in an IoT environment like the applications considered in this
thesis, only have a limited lifespan, i.e. a couple of years. If applications have a
longer lifespan, a higher security level should be considered.

1.2 Outline

The thesis starts by introducing the necessary background concepts in Chapter 2.
Then, the challenge of providing a security architecture in a heterogeneous
environment is discussed and the HeComm architecture is proposed in Chapter 3.
This is followed by the study to provide digital signatures and signcryption
schemes in IoT systems, where we analyse the trade-offs between storage and
computation requirements in Chapter 4. Next, an in-depth energy analysis
of security protocols and algorithms in secure IoT systems is discussed in

PUBLICATIONS 7

Chapter 5. Then, in Chapter 6, two different security architectures are proposed
for a wearable medical system, designed to monitor patients in a hospital. Finally,
in Chapter 7, a conclusion is given which summarises the overall contributions
and potential future work.

1.3 Publications

International journal submissions

2019 Winderickx, J., Bellier, P., Coppieters, D., Duflot, P., and
Mentens, N. Communication and security trade-offs for battery-
powered devices: a case study on wearable medical sensor systems. ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS) (2019), 17 pages. [submitted]

(Contributes to Chapter 6)

2019 Winderickx, J., Braeken, A., Singelée, D., and Mentens, N.
In-depth energy analysis of security algorithms and protocols for the
Internet of Things. ACM Transactions on Internet of Things (TIOT)
(2019), 18 pages. [submitted]

(Contributes to Chapter 5)

2019 Winderickx, J., Braeken, A., and Mentens, N. Enhanced end-to-
end security through symmetric-key cryptography in wearable medical
sensor networks. ACM Transactions on Computing for Healthcare
(HEALTH) (2019), 17 pages. [submitted]

(Contributes to Chapter 6)

International journal papers

2019 Rabbani, M. M., Vliegen, J., Winderickx, J., Conti, M., and
Mentens, N. SHeLA: Scalable Heterogeneous Layered Attestation.
IEEE Internet of Things Journal (2019), 12 pages

(Not included in this dissertation)

8 INTRODUCTION

International conference papers

2016 Winderickx, J., Daemen, J., and Mentens, N. Exploring the use of
shift register lookup tables for Keccak implementations on Xilinx FPGAs.
In 2016 26th International Conference on Field Programmable Logic and
Applications (FPL) (Lausanne, Switzerland, 2016), J. Anderson and
P. Brisk, Eds., IEEE, pp. 454–457

(Not included in this dissertation)

2016 Winderickx, J., Daemen, J., and Mentens, N. On the paralleliza-
tion of slice-based Keccak implementations on Xilinx FPGAs. In 6th
Conference on Trustworthy Manufacturing and Utilization of Secure
Devices (TRUDEVICE 2016) (Barcelona, Spain, 2016), G. D. Natale
and I. Polian, Eds., pp. 103–107

(Not included in this dissertation)

2017 Picek, S., Yang, B., Rozic, V., Vliegen, J., Winderickx, J.,
De Cnudde, T., and Mentens, N. Prngs for masking applications
and their mapping to evolvable hardware. In International Confer-
ence on Smart Card Research and Advanced Applications (CARDIS)
(Cannes, France, 2017), K. Lemke-Rust and M. Tunstall, Eds., Springer
International Publishing, pp. 209–227

(Not included in this dissertation)

2018 Winderickx, J., Singelée, D., and Mentens, N. HeComm: End-to-
end secured communication in a heterogeneous IoT environment via fog
computing. In 2018 15th IEEE Annual Consumer Communications &
Networking Conference (CCNC) (Las Vegas, Nevada, USA, 2018), B. Lee
and J. Kang, Eds., IEEE, pp. 1–6

(Contributes to Chapter 3)

2018 Winderickx, J., Braeken, A., Singelée, D., Peeters, R.,
Vandenryt, T., Thoelen, R., and Mentens, N. Digital signatures
and signcryption schemes on embedded devices. In Proceedings of the
15th ACM International Conference on Computing Frontiers - CF ’18
(Ischia, Italy, 2018), M. Moretó and J. Weidendorfer, Eds., ACM Press,
pp. 342–347

(Contributes to Chapter 4)

2018 Winderickx, J., Braeken, A., and Mentens, N. Storage and
computation optimization of public-key schemes on embedded devices.

PUBLICATIONS 9

In 2018 4th International Conference on Cloud Computing Technologies
and Applications (Cloudtech) (Brussels, Belgium, 2018), IEEE, pp. 1–8

(Contributes to Chapter 4)

2019 Winderickx, J., Bellier, P., Duflot, P., Coppieters, D., and
Mentens, N. Work-in-Progress: Communication and security trade-
offs for wearable medical sensor systems in hospitals. In Proceedings
of the International Conference on Embedded Software Companion -
EMSOFT ’19 (New York, New York, USA, 2019), S. Sankaranarayanan
and T. Bourke, Eds., ACM Press, pp. 1–2

(Contributes to Chapter 6)

Chapter 2

Background

In this chapter, necessary background concepts are introduced. First, an
overview of the most common wireless networks and their security architectures
is given in Section 2.1. Then, we continue with an introduction on IoT platforms
and the development of IoT applications in Section 2.2. Section 2.3 provides the
reader with some background knowledge on cryptography. Next, a high-level
overview of the protocols that are required to provide secure communication
between two entities is given in Section 2.4. Finally, two methods on how to
measure the energy consumption are discussed in Section 2.5.

2.1 Wireless networks

In an IoT environment many different kind of applications are possible e.g.
wearable sensors, and remote weather stations. Typically, the IoT involves
wireless communication and battery-powered devices. Different types of wireless
networks have been and are being devised to accommodate the needs of
these applications. In this thesis, three types are considered: Wireless Local
Area Network (WLAN), Wireless Personal Area Network (WPAN), and Low-
Power Wide-Area Network (LPWAN). They can be distinguished by multiple
parameters like range, throughput, energy consumption, and security. For
example, the expected range of these types of networks is presented in Figure 2.1.
In this thesis, we will focus primarily on the security and the energy consumption
aspect. The firmware cost in terms of storage and memory can be calculated in
advance in most cases, while, the amount of operations or interactions during

11

12 BACKGROUND

operation are harder to predict as they depend on the availability, popularity of
the service, etc.

LPWAN

WLAN

WPAN

R
an
ge

m
et
er
s

ki
lo
m
et
er
s

Figure 2.1: Indication of the expected range of the considered wireless network
types.

WPANs are typically used in the personal area of a person or entity, e.g. a
home or a factory. An example application is smart lighting. In this setting, the
lights of a room or building can be controlled via a smartphone. Networks that
classify as WPAN are ZigBee, 6LoWPAN, and Bluetooth Low Energy (BLE).

Another example of an application is patient surveillance. The health of a
patient can wirelessly be measured and monitored in real-time by the medical
staff. It can be used to avoid the clutter of cable management when e.g. a
patient enters the hospital to be monitored. While, WPAN networks could also
be used to implement this system, WLAN networks like Wi-Fi may be more
suitable. They support higher data throughput, and, the Wi-Fi infrastructure
is typically already available.

Internet of Things applications are not limited to indoor applications, e.g. smart
cities and smart agriculture. The battery-powered devices in these types of
applications are typically put in remote locations with lifetime requirements of
multiple years. For this purpose, the Low-Power Wide-Area Network (LPWAN)
classification exists. In this thesis, the LoRaWAN standard is considered in this
category.

2.1.1 Wi-Fi

Wi-Fi is a wireless network protocol based on the IEEE 802.11 standard [1],
introduced by the Wi-Fi Alliance in the year 2000 [117]. The IEEE 802.11

WIRELESS NETWORKS 13

standard was introduced by the Institute of Electrical and Electronics Engineers
(IEEE) in 1997 and has received since its conception multiple revisions and
amendments. This thesis will focus on the most prevalent version of Wi-
Fi at this moment, namely 802.11n. It is based on the IEEE 802.11n-2009
amendment, and, it is secured via the WPA2 protocol. WPA2 is described in
the IEEE 802.11i-2004 amendment.

The 802.11n standard specifies a physical (PHY) and a Medium Access
Control (MAC) layer. The PHY layer deals with the physical world, i.e. it
uses telecommunication techniques like direct-sequence spread spectrum (DSSS)
and Orthogonal Frequency Division Multiplexing (OFDM) to communicate
messages. The MAC layer provides reliable data transfer between entities, e.g.
channel access and link addresses. Moreover, it consists of a set of management
functions, and, it defines the structure of the message.

The WPA2 protocol provides secure data transfer between links. Its name
is the trademark used by the Wi-Fi Alliance to describe the IEEE 802.11i-
2004 amendment. It superseded the WEP and WPA protocol after serious
security weaknesses were found by researchers [45]. Furthermore, a newer
version WPA3 has also been devised. However, it has not seen widespread
adoption yet. Generally, two configurations of the WPA2 protocol are used
for the authentication of entities and the key distribution: WPA-Personal and
WPA-Enterprise. WPA-Personal defines the use of a Pre-Shared Key (PSK), i.e.
both entities share the same password. WPA-Enterprise identifies the use of
the IEEE 802.1X standard. This standard uses the Extensible Authentication
Protocol (EAP) and its many configurations to provide a range of security
levels. This configuration is often only used in strictly managed environments
like factories, as it requires an authorisation server, which controls the access of
entities to the wireless network.

2.1.2 BLE

Bluetooth is an open standard maintained by the Bluetooth SIG community [10].
It can be used to create a wireless personal area network. Since its creation,
multiple versions of Bluetooth have been devised. The most notable are the
following: Basic Rate (BR), Enhanced Data Rate (EDR), and Low Energy (LE).
BR and EDR are designed for continuous data streaming and support a point-
to-point and a piconet network topology. A piconet topology consists of one
master device that serves multiple slave devices. For BR/EDR networks, a
piconet can have up to 7 active and 255 inactive slave nodes. Additionally,
each slave could potentially create its own piconet to make a topology called
scatternet. BR/EDR networks are typically used in applications like audio

14 BACKGROUND

streaming. They were initially designed for low power scenarios, but, LE uses
short burst data transmission to reduce the power consumption even further.
In terms of network configurations, it supports besides the point-to-point and
piconet topology, also, a mesh and a broadcast topology. Note that a piconet
in Bluetooth Low Energy can have an unlimited amount of slaves.

In this section, we continue with a brief introduction on the security architecture
of Bluetooth. For more information, please refer to the core specification of
Bluetooth or the Guide to Bluetooth by NIST [77]. The Bluetooth standard
specifies five basic security services: authentication to verify the identity,
confidentiality to protect data compromise, authorisation to control resource
access, message integrity to protect the transmitted data, and Pairing/Bonding
to create shared secret keys [77]. In terms of security, the BR and EDR
specification specify four security modes. Mode 1 uses no security. Mode 2 and
4 are service level procedures meaning that a link is established before initiating
security services. Mode 3 is a link level procedure, i.e. security services are
initiated before a link is established. Mode 2 uses a local security manager that
controls access to specific application services. In mode 4, Bluetooth services
need to specify their security requirements using one of five levels, which range
from (level 0) no security to (level 4) Authenticated link key using Secure
Connections required. NIST recommends the use of mode 4 and optionally
mode 3 if mode 4 is not supported. Bluetooth Low Energy security modes’
names are similar to BR/EDR modes since Bluetooth version 4.1, but, they
differ slightly. For example, LE specifies that each service request can have its
own security requirements.

The Pairing service provides the generation of a secret symmetric key. It is
called the Link Key in Bluetooth BR and EDR and the Long Term Key in
Bluetooth Low Energy. In Bluetooth BR and EDR, security modes 2 and 3 can
perform the pairing service via either the Personal Identification Number (PIN)
Pairing or Secure Simple Pairing (SSP) protocol, and, security mode 4 can
only use SSP. SSP uses the Elliptic Curve Diffie-Hellman (ECDH) algorithm to
establish a shared key. Furthermore, it has the four following association models
to generate an initial Temporary Key (TK): Numeric Comparison, Passkey
Entry, Just Works, and Out-Of-Band (OOB). Numeric Comparison can be used
if a six-digit number can be displayed on both devices, and, if the user can verify
the number on both devices. Passkey Entry requires at least one device that
supports a keyboard interface so that the user can input a provided/generated
secret into the device(s). If an OOB channel, i.e. a communication channel
besides Bluetooth, is present then the key can be transported from one device
to the other. Finally, if none of the other methods are available, Just Works is
used. In this mode, the TK is set to all zeros. Since Bluetooth version 4.2, LE
has the Secure Connection Key Generation which uses also the ECDH protocol

WIRELESS NETWORKS 15

to generate the long term key.

The generated key is used to provide the confidentiality and integrity service.
In Bluetooth LE the AES-CCM algorithm is used, while, Bluetooth BR/EDR
can use either the E0 stream cipher or the AES-CCM algorithm. However, the
use of E0 is not recommended by NIST, as it is not a FIPS-approved algorithm.
To authenticate the devices and the used keys, a challenge-response scheme is
used. Note that the knowledge of the long term key is implied through its use in
Bluetooth LE. In BR and EDR, the authentication service uses either the Legacy
Authentication scheme or Secure Authentication scheme. The legacy scheme
is based on the E1 algorithm, while, the secure scheme uses the HMAC-SHA
algorithm. HMAC-SHA can generate a Message Authentication Code (MAC)
on a message using the hash algorithm called SHA. The authorisation service
is implemented using different levels of trust and customisable policies regarding
service security.

2.1.3 6LoWPAN

6LoWPAN [69] is a specification to enable IPv6 communication over Low-Rate
WPANs (LR-WPAN), specially IEEE 802.15.4 [43], as initially conceptualised
by Mulligan [71]. It defines encapsulation and header compression techniques
to reduce the size of an IPv6 packet. Since its use, 6LoWPAN is typically used
on top of IEEE 802.15.4, which is a wireless network standard that specifies the
physical and the mac layer on the OSI model. This wireless network defines two
types of connected nodes: Full Function Devices (FFD) and Reduced Function
Devices (RFD). It can operate in either a peer-to-peer/mesh or a star topology,
and, it is controlled by a network coordinator which is a FFD that is generally
mains powered. The RFD is a node that cannot act as a coordinator, i.e. a low
power sensor node. In terms of security, IEEE 802.15.4 provides the following
security services, depending on the chosen security level: data confidentiality,
data authenticity, and replay protection. The security level ranges from (level 0)
no security to (level 7) 128-bit AES-CCM data confidentiality and integrity
protection using a 16 byte Message Integrity Code (MIC). In the header of a
IEEE 802.15.4 packet, a field is provided to identify the used encryption key.

The 6LoWPAN specification does not provide the establishment and the
maintenance of the encryption key. However, it is provided by other wireless
network standards like Zigbee IP, which have been built on top of the
IEEE 802.15.4 and the 6LoWPAN specification.

16 BACKGROUND

2.1.4 LoRaWAN

Low Power, Wide Area networking protocol (LoRaWAN) is the specification
maintained by the LoRA Alliance [104] for a Low-Power Wide-Area Network.
It is designed for wirelessly connected objects and tries to answer the following
challenges of the IoT: bi-directional communication, end-to-end security,
mobility, and localisation services. It uses a star-of-stars topology, as shown in
Figure 2.2. Devices or IoT nodes connect wirelessly to gateways which convert
LoRa packets to IP packets and vice versa. The gateway sends and receives data
to and from the Network server that manages the LoRaWAN network. The
Network server in its turn relays the data packets to and from the respective
application server.

AppSKey

NwkSKey

Join Server

Application
Security

Network
Security

Device
Manufacturers

Devices Gateways Application
Servers

LoRaWAN™
Network Server

Figure 2.2: The LoRaWAN architecture as envisioned by the LoRa Alliance [64].

The data flow in a LoRaWAN network is protected by a set of two keys, i.e.
AppSKey and NwkSKey. The payload/data of a packet is encrypted using the
AES algorithm in CTR mode to provide confidentiality protection from the IoT
node until the Application server. Next, a Message Integrity Code (MIC) is
computed on the encrypted message via the network session key (NwkSKey)
using the AES-CMAC algorithm [48] to protect the authenticity and integrity
of the message. However, the MIC is already verified or computed at the

IOT PLATFORMS 17

Network server. Thus, it does not provide end-to-end authenticity and integrity
protection between the IoT node and the Application server. All keys that are
used in the LoRaWAN network have a length of 128 bits.

The two following methods can be used to initialise the set of session keys:
Activated By Personalisation (ABP), or Over-The-Air Activated (OTAA). In
ABP mode, the session keys are preconfigured on the device. In OTAA mode,
they are generated during the join procedure in OTAA mode. At the device
manufacturers, each device is provisioned with a Application key (AppKey) and
a globally unique identifier (DevEUI). Likewise, LoRaWAN networks have a
24-bit unique identifier assigned by the LoRa Alliance. The AppKey is only
used in OTAA mode, as it is used to generate the session keys. They are
computed via the AES-ECB encryption of nonces and identifiers transmitted
and received during the join procedure, as shown in Equation (2.1). The join
procedure consists of two messages: join request, and join accept. The IoT
node sends a join request, which contains the Application identifier (AppID),
DevUID, and a nonce (DevNonce), and, it is protected using a MIC generated
using the AppKey. The Join Server will reply with a join accept if the request
is successfully validated. This reply message contains a nonce (AppNonce),
network identifier (NetID), etc. The join accept is protected using the MIC,
and, it is encrypted using AES-ECB in decryption mode. Note that the join
procedure is designed so that an IoT node only requires the AES encryption
mode. The generated session keys are then distributed by the Join server to
the respective Network and Application server. See the specification of the
LoRaWAN network [104] for more information.

NwkSKey = AESencrypt(AppKey, 0x01|AppNonce|NetID|DevNonce|pad16)

AppSKey = AESencrypt(AppKey, 0x02|AppNonce|NetID|DevNonce|pad16)
(2.1)

2.2 IoT platforms

IoT platforms mostly consist of the following five major components on a Printed
Circuit Board (PCB): a physical interface (PHY), a microcontroller unit (MCU),
sensors (S), a power management unit (Power), and a wireless interface (RF).
They are wired to each other to provide power and communication, as shown
in Figure 2.3. The most vital parts of a platform are the power management
and the MCU component. The power management provides the correct voltage
to all other components and manages the battery (charge and discharge) if it is
present on the platform. The MCU, on the other hand, controls all components

18 BACKGROUND

on the board to e.g. configure or readout a component. At the very least, it
features a processor (to run the program), memory (to store volatile data),
storage (to store non-volatile data), and physical interfaces (to communicate
with other components). The PHY enables external wired communication to
the board, e.g. USB, JTAG, and SWD. Similarly, the RF provides external
wireless communication. The difference is that the PHY is mostly used for
debugging or configuration, while, the RF is often used as the primary source
of communication. The final component is the sensor that provides the digital
representation of a physical property. For example, the Analog-to-Digital
Converter (ADC), which is typically provided in the MCU, can be used to
measure the voltage on an analog pin.

MCU
Power

RF

SS

PHY

Figure 2.3: Schematic representation of an IoT platform and its essential
components (PHY: physical interface, MCU: microcontroller unit, S: sensors,
Power: power management unit, and RF: wireless interface).

An application is defined by the program that is stored in binary format on the
MCU. It contains the instructions and data content that provide the functionality
of the program for the respective MCU’s architecture. The architecture of the
MCU determines which instructions are available to the program. To improve
the readability of the program in binary format, it could be represented using
the Assembly language, e.g. ARMv7-M Architecture [3]. However, writing
a program using the Assembly language, i.e. per instruction, is very tedious.
Therefore, the C or C++ programming language is typically used. It uses a
compiler to convert the written C/C++ code to the required binary format.
For example, the GNU Arm Embedded Toolchain [5] contains tools to compile
and analyse the binary code.

The C/C++ compiler and its configuration greatly influences the performance
and size of a program. For example, the GNU compiler has an option to control
the optimisation level of the compilation process. Using the command line
interface, the -O option can be passed with a range of additional specifications

CRYPTOGRAPHY 19

to specify the optimisation level. For example, -O1...3 determines the overall
level of optimisation and -Os tries to reduce the size of the program as much as
possible.

Software libraries and Operating Systems (OS) can be used to facilitate the code
writing process. Writing code without an OS is called bare-metal programming,
since, no high-level abstractions are used. This means that everything has to
be written or included manually, e.g. system component drivers or process
parallelization support. An OS, on the other hand, typically contains some level
of support for IoT platforms, i.e. drivers and etc, to facilitate the programming
process. Examples of operating systems that can be used for the types of
embedded systems we use are the following: Mbed OS, RIOT-OS, Contiki-OS,
and FreeRTOS. However, an OS might also provide too much overhead in terms
of performance or required resources in some situations.

2.3 Cryptography

Cryptography is a means of providing information security. The following
definition of cryptography is given in the handbook of applied cryptography
by Menezes et al. [67]: “Cryptography is the study of mathematical techniques
related to aspects of information security such as confidentiality, data integrity,
entity authentication, and data origin authentication.” These listed aspects are
also referred to as cryptographic goals or properties. The following four basic
properties are often used:

Confidentiality or privacy protects information from illegitimate access to
data. Only those who have been authorised should be able to gain access
to the data.

Data integrity detects unauthorised manipulation of data, e.g. insertion,
deletion, and substitution of bits.

Authentication provides identification of the information or entities. To
illustrate, two communicating parties should be able to identify each other
and the origin of the communicated data.

Non-repudiation prevents an entity from denying previous commitments or
actions.

The goal of cryptography is to address one or more of these four properties
to some extent in both theory and practice. On which level we focus on
each property depends on the application and the resources available. In our

20 BACKGROUND

scenarios, we have to limit the performance and the amount of resources to
provide security, since, we only consider constrained battery-powered devices.
Furthermore, each application has a different setting and, therefore, different
requirements in terms of security level. The security level is generally quantified
as the amount of work required by an adversary to defeat an objective, e.g. to
compromise the encryption key. To define the security requirements, one often
uses the technique called threat modelling.

Threat modelling is a technique where we analyse the system to identify the
goals and methods of an adversary. It is typically a thought experiment that
should be done as early as possible in the design phase of an application to
reduce the risk of major changes. A structural approach to threat modelling
is the STRIDE technique. For more information on how to use the STRIDE
technique or threat modelling, we refer to the book written by Adam Shostack
called “Threat Modeling” [101]. STRIDE is an acronym that stands for
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,
and Elevation of Privilege. It focuses on identifying the threats on the systems,
i.e. enumerating the things that might go wrong. By identifying the threats,
mitigations can be devised and designed into the application. For example, data
transmitted via a wireless communication channel is at risk of exposure, thus,
confidentiality protection is required.

Cryptographic primitives or tools are used to provide the required security
properties of an application. Many primitives have already been devised in the
literature, but, we will focus only on the primitives used in this thesis. The
following five cryptographic tools are described: unkeyed primitives, symmetric-
key primitives, random number generators, and key derivation functions.

2.3.1 Unkeyed primitives

Unkeyed primitives require only one input parameter (a message), e.g.
cryptographic hash functions. They take a massage of arbitrary length
and output a fixed-length message, i.e. a compact representation of the
input (message digest). While collisions (multiple input that are mapped
to the same output) are unavoidable, the output is typically sufficiently large
that it is improbable to find such collisions. Hash functions are often used to
provide data integrity. In this thesis, we will focus on the following two hash
functions: SHA256 and SHA3-256. The suffix of these functions describe the
length of the message digest, 256 bit in this case.

SHA256 is a hash function that belongs to the SHA-2 family of hash algorithms
published by NIST in FIPS180-4 [27]. It has two stages: pre-processing and
hash computation. First, the input message is parsed and padded into block-size

CRYPTOGRAPHY 21

blocks of data. SHA256 has a block size of 512 bit. Secondly, a message schedule
is generated from the padded message. This schedule consists of functions,
constants, and word operations that are used to generate series of hash values.
The final hash value determines the message digest. In total, six logical functions
and 64 predefined 32-bit words are used to compute the hash.

The SHA-2 family was designed behind closed doors at NSA and published
in 2001. SHA-3, on the other hand, was the result of an open call of NIST
for novel hash function proposals, where every candidate algorithm provided a
description, design rationale and preliminary cryptanalysis [34]. The winning
algorithm was submitted by Bertoni et al. [9] as a hash function called Keccak.
It uses a sponge construction and internally the Keccak-f permutation. The
Keccak-f permutation was designed to use only transposition, bit-level addition,
and multiplication operations. Furthermore, these operations were arranged
specifically to allow efficient software implementations. The advantage of SHA-3
over SHA-2 is the strong security rationale behind it.

2.3.2 Symmetric-key primitives

Symmetric-key primitives require two input parameters: a key and a message.
For example, one key (secret key) is used by the symmetric-key algorithm
to encrypt and decrypt the data. Furthermore, these primitives can also be
used to create a Message Authentication Code (MAC), which provides data
authentication. Two classes of these primitives are generally used: block ciphers
and stream ciphers. Block ciphers break up the plaintext messages to fixed-size
blocks which are processed individually, while, stream ciphers can process one
symbol at a time, i.e. block length of one. The AES algorithm is a block cipher
and is often used as a symmetric-key primitive. It is a standard published
by NIST in FIPS 197 [75], and, it was originally designed by Daemen et al.
as the Rijndael algorithm [26]. The input, state, and output have a length
of 128 Bits. The key that is used can be 128, 192, or 256 Bits. Note that
the key size defines the number of rounds executed, respectively 10, 12, and
14 rounds. The AES algorithm uses a round function that has four different
byte-level operations: substitute using a substitution table (S-box), shift rows,
mix columns, and add round key. For more information, we refer to the AES
standard specification [75].

Block ciphers use certain block cipher modes to encrypt/decrypt data. The
following modes are often used: Electronic Codebook (ECB), Cipher Block
Chaining (CBC), Counter (CTR), Couter with CBC-MAC (CCM), and
Galois/Counter Mode (GCM). ECB, CBC, and CTR mode were part of
recommendations of NIST published in 2001 [32]. Any given plaintext block gets

22 BACKGROUND

encrypted to the same ciphertext block under a given key in ECB mode. It is,
therefore, rarely used. CBC and CTR, on the other hand, use an Initialisation
Vector (IV) to provide freshness that reduces the risk of reoccurring ciphertexts.

These modes can be used to either provide confidentiality or integrity. Integrity
is provided when a Message Authentication Code (MAC) is computed on
the message. To provide both confidentiality and integrity, Authenticated
Encryption with Associated Data (AEAD) block modes like CCM and GCM
were devised. CCM is described by Whiting et al. [116] in the standards proposal
RFC3610 of IETF. GCM is proposed in FIPS 800-38D published by NIST [33].

2.3.3 Public-key primitives

A set of two keys are used in public-key primitives: a private and a public
key. The keys can be used to provide digital signatures, signcryption, and key
agreement. In short, public-key cryptography is based on the intractability of a
mathematical problem. It means in practice that it should be infeasible for an
adversary to calculate the private key via the public key. Thus, the public key
may be known by all, and, the private key should remain a secret of an entity.
This concept was introduced by Diffie and Hellman [29]. They proposed the
Diffie-Hellman key exchange (DH) that establishes a shared secret between two
entities over an unsecured channel. DH uses the discrete logarithm problem as
the basis of its security. Basically, the public keys of both parties are shared to
each other, and, a shared secret can be computed using their own private key
and the public key of the other party. Without knowledge of one of the two
private keys, it is computationally infeasible for an adversary to calculate the
shared secret.

Another concept that uses public-key cryptography is digital signatures. It
provides security properties like non-repudiation and data origin authentication,
i.e. it is a means to bind information to an entity. Data origin authentication
ensures a data packet to be originating from the entity that created the signature.
Note that the digital signature concept does not provide confidentiality
guarantees. This property is additionally provided in signcryption schemes.
The use of these two types of schemes in an IoT setting are studied in Section 4.
Moreover, the coupon technique, which is a performance optimisation technique
for certain digital signature and signcryption schemes, is implemented and
discussed. Consequently, a detailed description is given below for the Schnorr
scheme and the signcryption scheme of Braeken et al. [14] that are respectively
used as digital signature and signcryption schemes. We start with a description
of the cryptographic operations used in the Schnorr and signcryption scheme.
Then, the Schnorr and signcryption algorithm are explained. Finally, the comb

CRYPTOGRAPHY 23

method, which is the reference performance optimisation technique used in
Section 4, is described.

Basic cryptographic operations

In order to execute the signature process and signcryption, operations based on
Elliptic Curve Cryptography (ECC) are used. ECC was introduced by Miller
and Koblitz in [68] and [52], respectively, and offers lightweight public-key
cryptographic solutions. The algebraic structure of an Elliptic Curve (EC)
over a finite field is exploited in ECC. An EC in the finite field Fp is defined
by the equation y2 = x3 + ax + b and denoted by Ep(a,b), with a and b two
constants in Fp and is required to be nonsingular which is defined by the
equation ∆ = 4a3 + 27b2 6= 0. We denote by P the base point generator of the
EC of prime order q. All points on Ep(a,b), together with the point at infinity
form an additive group G. The group operation is called EC point addition.
Cryptographic algorithms and protocols mainly use EC point multiplications,
which consist of consecutive point additions.

Besides EC operations, other basic cryptographic algorithms are used in the
digital signature and the signcryption schemes. In particular, there is the need
for a one-way cryptographic hash function H compressing the data to an output
in F ∗q . We will utilize the standard SHA-256. For symmetric key encryption,
the standard AES is used, where both ECB and CTR mode are considered
when applying the encryption for storage purposes. The AES-CCM mode is
used in the signcryption scheme in order to also guarantee the integrity. We
denote c = Ek(m) and m = Dk(c) as the encryption and decryption process
of the message and ciphertext, respectively, using the key k. Furthermore, the
concatenation of two messages M1 and M2 is denoted by M1‖M2.

Signature and signcryption scheme

We assume a setting in which a constrained IoT device signs messages through
the EC-based Schnorr scheme [96] or signs and encrypts messages through the
EC-based signcryption scheme described in [14]. Therefore, we refer to the IoT
device as the sender and to the remote party as the receiver. We assume that
the IoT device always communicates with the same remote party and that the
number of times it generates a signature or performs a signcryption can be
determined before deployment.

24 BACKGROUND

EC-based Schnorr The EC-based Schnorr Signature scheme (EC-Schnorr)
is chosen as it allows the sender to preprocess the most compute-intensive
operation, being the EC point multiplication. This preprocess is also called the
Coupon technique. We now briefly explain the coupon-based algorithm.

In the registration phase, sender and receiver agree upon an EC over F ∗p and
a corresponding generator P of order q. Next, the sender obtains a key pair
(dS , PS = dSP), consisting of private key and public key, respectively, e.g.
through the Elliptic Curve Qu Vanstone (ECQV) certificate mechanism [18].
The sender is now able to produce a signature on the message m as follows:

• First, a random value y ∈ F ∗q is chosen and Y = yP is computed. The
2-tuple (y and Y) is referred to as a coupon in this paper; a number of
Schnorr coupons are precomputed and stored on the sender’s device, as
proposed in [123].

• Next, the hash h = H(m‖Y) is generated.

• The parameter, d = y − hdS , is defined.

The 3-tuple (m, d, h) is sent to the receiver together with the identity and
certificate of the signer. The signature can be verified by the receiver through
the following steps:

• First, the public key of the sender PS must be obtained taking the identity
and certificate of the sender as input, e.g. by using the ECQV certificate
mechanism.

• Next, the receiver computes Y ′ = dP + hPS .

• Then, the hash h′ = H(m‖Y ′) is generated.

• Finally, the signature is accepted if the generated hash h′ equals the
received hash h.

EC-based signcryption In the EC-based signcryption scheme, encryption,
denoted by Ek(), is added to the EC-Schnorr signature process. When the
receiver is fixed, e.g. in the case when the sensor (sender) is always sending
data to the same cloud platform, the most compute-intensive operations can
again be preprocessed.

The registration phase is the same as in the EC-Schnorr scheme. Sender and
receiver agree upon an EC over F ∗p and generator P of order q. Both the
sender and the receiver obtain a key pair, (dS , PS) and (dR, PR), respectively.

CRYPTOGRAPHY 25

We assume that the public key of the receiver is stored at sender’s side. The
following steps are then executed by the sender.

• First, a random value y is chosen and the points Y = yP, k = yPR are
computed. The 3-tuple (y, Y , k) is referred to as a coupon throughout
the paper; a number of signcryption coupons are precomputed and stored
on the sender’s device, as proposed in [123].

• The ciphertext is defined as c = Ek(m).

• The hash h = H(m‖Y ‖IDS‖PS‖PR) is computed.

• The parameter, d = y − hdS , is defined.

• The output of the signcryption algorithm equals the 3-tuple (h, c, d),
together with the identity and certificate of the sender.

Upon arrival of the signcrypted message (h, c, d), the receiver will perform the
following steps to derive the original message m and to check the corresponding
signature.

• First, the public key of the sender PS is retrieved.

• Next, the receiver computes Y ′ = dP + hPS .

• Then, the key k′ = dRY
′ is derived and thus m′ = Ek′(c).

• In the verification of the signature, the hash H(m′‖Y ′‖IDS‖PS‖PR)
should be equal to the received h. If this statement is correct, m = m′, if
not, the output equals ⊥.

Comb method

The point multiplication kP using the comb method optimisation considers a
set of precomputed EC points representing an EC point (P) and a bit-string
representation of a scalar (k). We will use and discuss the comb method as
proposed by Hedabou et al. [42] in this thesis. The algorithm to represent
the scalar as a bit-string is given in Figure 2.4. In short, the scalar k of
length l is converted into d tuples, where d = d l

w e. Each tuple contains a
bit-string (Ki = [Kw−1

i , . . . ,K1
i ,K

0
i]) and a sign bit (si = ±1). Note that

k = Kw−1‖ . . . ‖K1‖K0 where each Kj is a bit-string of length d. And, Kj
i

denotes the ith bit of bit-string j.

26 BACKGROUND

Computation of the bit-string representation of k

Input: an odd positive integer k = (k0, k1, . . . , kl−1), and a window width w ≥ 2.

Output: the sequence of bit-strings (K0, s0), (K1, s1), . . . , (Kd−1, sd−1).

1 : d = d l
w
e

2 : For i = l to (wd− 1) do ki ← 0.

3 : (K0, s0)← ([Kw−1
0 , . . . ,K1

0 ,K
0
0], 1).

4 : For i = 1 to i = d− 1 do

5 : If [Kw−1
i , . . . ,K1

i ,K
0
i] 6= 0 then ci ← 1 else ci ← 0.

6 : b[0]← [Kw−1
i−1 , . . . ,K1

i−1,K
0
i−1], b[1]← [Kw−1

i , . . . ,K1
i ,K

0
i].

7 : s[0]← −1, s[1]← 1.

8 : (Ki, si)← (b[ci], 1, (Ki−1, si−1)← (b[0], s[ci]).

9 : Return (K0, s0), (K1, s1), . . . , (Kd−1, sd−1).

Figure 2.4: Algorithm to calculate the bit-string representation of k [42].

Computation of kP using the bit-string representation of k

Input: a scalar k and an elliptic curve point P .

Output: Q = kP .

1 : (Precomputation) Compute [bw−1, . . . , b1, b0]P for all (bw−1, . . . , b1, b0) ∈ Zw
2 .

2 : If k mod 2 = 0 then k′ ← k + 1 else k′ ← k + 2.

3 : Compute the sequence of bit-strings (K′0, s0), (K′1, s1), . . . , (K′d−1, sd−1) representing k′.

4 : Q← K′d−1P. //(each K′jP will be fetched from the precomputed table)

5 : for i = d− 2 down to 0 do
6 : Q1 ← 2Q

7 : Q← Q1 + siK′iP
8 : P ′ ← 2P.

9 : If k mod 2 = 0 then return Q− P else return Q− P ′.

Figure 2.5: Algorithm to calculate the point multiplication of kP using the
comb method optimisation [42].

The bit-string representation of the scalar is used in the point multiplication
algorithm presented in Figure 2.5. A set of EC points (Window) that represent
P are precomputed [bw−1, . . . , b1, b0]P for all (bw−1, . . . , b1, b0) ∈ Zw

2 . This
multiplication algorithm uses an uniform behaviour, by computing an adding
and doubling operation at each step, to protect against a Simple Power
Analysis (SPA) attack. An SPA attack is a type of physical attack where
the adversary can extract the secret key by examining the information leaked
by the device via e.g. time or power consumption.

CRYPTOGRAPHY 27

2.3.4 Random number generators

Many cryptographic primitives depend upon the generation of unpredictable/ran-
dom values. For example, the secret key for symmetric-key encryption, the
random value y in the Schnorr scheme, and the private key in public-key
primitives. The quantities that are generated must be of the required size and
have sufficient entropy, i.e. the adversary should not be able to predict the
upcoming values. To illustrate the importance of the required size, lets assume
the adversary wants to brute force an AES encryption key. If a key of 128 bit
is chosen, the adversary would on average have to test 2127 keys, since, there
are in total 2128 possibilities. On the other hand, if a base secret of 232 bits
would be established, and, be expanded to an 128 bit key via a publicly known
function, then the adversary can now guess the key on average in 231 tries.

A (true) random number generator (TRNG) is defined by Menezes et al. [67] as
“a device or algorithm which outputs a sequence of statistically independent
and unbiased binary digits” and a Pseudo-Random Number Generator (PRNG)
as “a deterministic algorithm which, given a truly random binary sequence
of length k, outputs a binary sequence of length l � k which ‘appears’ to be
random.” Note that the input to the PRNG is referred to as the seed. While
PRNGs are not as random as TRNGs, it can generate random quantities much
faster. Therefore, the output of a TRNG is often used as the seed of a PRNG.
A TRNG requires a naturally occurring source of randomness, e.g. electric or
acoustic noise.

In NIST publication 800-90A [8], recommendations regarding the selection of
PRNGs can be found. In this thesis, we will use the Hash-DRBG algorithm as
a source for random numbers. Furthermore, we use SHA256 as internal hash
function. For details regarding Hash-DRBG, we refer to the NIST publication.

2.3.5 Key derivation functions

The goal of a Key Derivation Function (KDF) is to derive one or more
cryptographically strong secret keys from an initial source of keying material.
This initial source of material can be e.g. a shared secret established via
a DH exchange and additional entity identifiers. On its own, these input
materials may not be distributed uniformly or an attacker may have insight on
or control of specific parts. Therefore, the simple Hashed Message Authentication
Code (HMAC)-based KDF (HKDF) [56], is used in this thesis to create strong
secret keys. In practice, it is used in the Transport Layer Security (TLS)
protocol version 1.3 [86]. Furthermore, it follows the extract-then-expand
paradigm. First, the extract stage maps the input to a short pseudorandom

28 BACKGROUND

key to concentrate the entropy of the input. Then, the expand stage maps the
shorter key to the desired amount and length of pseudorandom keys. Internally,
a hash function like SHA256 is used to compute the extract and expand stages.

2.4 Data communication

Secure data communication is required to protect the confidentiality, integrity,
etc. of data. However, it is important to know how data is communicated
between two entities. We start, therefore, with a high level overview of the
required protocols to provide data communication between two entities. Then,
an overview is given of the concepts used in this thesis to provide end-to-end
security.

2.4.1 OSI model

A range of protocols are required to provide communication between two entities,
as indicated by Figure 2.6. The figure represents the functions required to
communicate using the Open Systems Interconnection (OSI) model. The OSI
model is published by the International Organization for Standardisation (ISO)
in ISO/IEC 7498-1:1994 [106], and, it provides an abstract reference model for
communication networks. Each layer in this model serves the layer above it and
is served by the layer below, and vice versa. A brief explanation of all layers is
given in the following paragraph.

The Physical layer concerns the transmission and reception of data over a
physical medium. The Data link layer provides the flow control and reliability
of the communication over a physical medium. The two previous layers are
typically defined in one standard, e.g. IEEE 802.11 (Wi-Fi). Next, theNetwork
layer ensures the interconnection of different devices within a network. For
example, the IP protocol is used to create the Internet as we know it with
millions of connected devices. The route that a message takes is defined
by these three layers, thus, the message is also processed by each entity in
that route. The Transport layer provides the reliability of communication
within a network, since, a message in transit may get lost or discarded. For
example, the Transmission Control Protocol (TCP) ensures the reliability by,
first establishing a connection, and secondly using acknowledgements. If a
message is not acknowledged within a predefined time period by the remote
entity, the message will be send again. The communication channel that is
created using the previous layers is maintained by the Session layer. Using e.g.
sockets to control the communication channel. The Presentation layer deals

DATA COMMUNICATION 29

Physical

Data link

Network

Transport

Session

Presentation

Application

Device A

Physical

Data link

Network

Physical

Data link

Network

Transport

Session

Presentation

Application

Routing node

Device B

Physical connection
Layer interconnection/interface

Figure 2.6: The interconnection between layers in the OSI model of a simple
network.

with the representation of the information that is being transferred, i.e. the
binary format of data. Finally, the Application layer details the services that
are available and defines the required interactions between the communicating
entities. For example, the Hypertext Transfer Protocol (HTTP) is used to
retrieve websites.

2.4.2 Security

In almost all layers of the OSI model, security algorithms could be used to
protect the communication channel. However, as mentioned earlier, the physical,
data link, and network layer are typically processed by each entity that is used
to deliver a message from one to another device. Thus, security protocols
defined for one of these layers only provide hop-to-hop security, as shown in
Figure 2.7. To illustrate, the IoT device communicates via the 6LoWPAN
network and sends a message to a remote device on the internet, consequently,
an intermediate node (IoT gateway) needs to translate 6LoWPAN messages
to internet suitable messages (IPv4, ...). Thus, the security protocol would be
processed at all three entities in this example. Therefore, confidentiality and
etc. can not be ensured between the IoT device and the remote device.

30 BACKGROUND

End-to-end security provides the security guarantees between two communicat-
ing entities. It can be provided by protocols corresponding to the Transport layer
and higher, since, they are only processed by the communicating endpoints (IoT
device, Remote device). In this thesis, security at the transport and presentation
layer are considered. Security at the transport layer protects the communication
between two devices, for example via TLS. It secures all data that are generated
by protocols belonging to a higher layer in the OSI model. Furthermore, TLS is
the most reoccurring security protocol in practice. On the other hand, security
at the application layer can only protect the piece of information (object) that
is transmitted. This is denoted as Object Security.

IoT device IoT gateway Remote device

hop-to-hop
end-to-end

802.15.4 802.3

DTLS

LAN WAN

Figure 2.7: Example scenario of a hop-to-hop and a end-to-end secured
communication channel.

2.5 Measuring energy consumption

Joule (J) is the derived unit of energy according to the International System of
Units (SI) [111]. It is defined by SI as the energy required to move one object
one meter using a force of one newton. Another definition is the work required
to move 1 C through 1 V . However, the work required to produce 1 W over
1 s is a more suitable definition for an electrical environment.

In practice, the capacity of an electrical battery is typically expressed as Ampere-
hour, see Figure 2.8. Also, one Ampere-hour is equal to 3600 C, as one coulomb
is equal to one Ampere-second. The amount of energy in Joule (E) can be
calculated by multiplying the the electrical potential difference (U) with the
capacity defined in Ampere-hour (Ah), as shown in Equation (2.2). For example,
the smallest battery in Figure 2.8 has a capacity of 750 mAh, thus, it has a
capacity of 3240 J .

E = 3600 ∗Ah ∗ U (2.2)

MEASURING ENERGY CONSUMPTION 31

Figure 2.8: Example of an AA and AAA battery with a supply voltage of 1.2 V .
The AA and AAA battery have respectively a capacity of about 750 mAh and
1900 mAh.

Generally two methods are used to measure the energy required by an electronic
board: via continuous physical measurements or performance measurements.
These two methods will be described in more detail hereafter.

2.5.1 Via physical measurements

The most accurate method for measuring the required energy of an electronic
board or chip is via the continuous measurement of the electrical current that
is drawn by that board. This is typically done using a shunt resistor. This is a
low-resistance resistor that is either placed at the source or drain of the energy
source, see Figure 2.9.

Rshunt Rload

I

U

Rshunt

Ushunt Uload Ushunt

Figure 2.9: Schematic representation of the placement of a shunt resistor.

The total voltage that is supplied by the energy source is divided over the shunt
and the load resistor. To not influence the load, the resistance of the shunt
resistor should be much smaller than the load resistance. The voltage (U) needs
to be measured over the shunt resistor via e.g. an Analog-to-Digital Converter
(ADC). Then, the current (I) can be calculated using Ohm’s law, since, the

32 BACKGROUND

resistance value (R) of the shunt is known. Using the current and voltage value,
the power (P) drawn by the load can be calculated using Equation (2.3). Finally,
the energy consumed (E) by the load is the integral of the power over a specific
time period, see Equation (2.4).

P (t) = U ∗ I(t) (2.3)

E =
∫ t2

t1
P (t)dt (2.4)

2.5.2 Via performance measurements

The energy consumption of an electronic board or chip can also be estimated
via the reported electrical characteristics, which can be found in the chip’s
respective data sheet. Consequently, it is less accurate than the physical energy
measurement, but, it is typically easier to implement and use. Note that a
data sheet is a report made by the manufacturing company that describes the
electronic board or chip. It contains electrical characteristics like recommended
supply voltage, maximum output current and average power consumption (Pavg).
To estimate the energy consumption, first, performance measurements are done
to identify e.g. the time a chip spends in active mode. An example time
characteristics of an electronic chip is presented in Figure 2.10. Then, the
average power consumption that corresponds to that action is multiplied by
the measured time period (T) to calculate the energy consumption (E), see
Equation (2.5).

Average power
consumption (W)

Time (s)

PSleep

PActive

TSleep TActive

Figure 2.10: Example time characteristics of an electronic chip.

E = Pavg ∗ T (2.5)

Chapter 3

End-to-end secured
communication for
heterogeneous IoT networks
via fog computing

This chapter describes the HeComm (Heterogeneous Communication) archi-
tecture [126]. The HeComm architecture utilises fog computing and object
security to provide end-to-end secured communication between IoT nodes
residing in networks that operate over different communication protocols. The
chapter is organised as follows. After an introduction in Section 3.1, the
required background knowledge on fog computing is provided in Section 3.2. In
Section 3.3, related work on the interconnection of heterogeneous IoT nodes and
on object security is described. This is followed by a description of the HeComm
architecture in Section 3.4. In Section 3.5, we give a high-level description of
the communication flow in our proof-of-concept implementation. Section 3.6
provides more details on this implementation. The results are evaluated in
Section 3.7. Finally, the chapter is concluded in Section 3.8.

33

34 END-TO-END SECURED COMMUNICATION FOR HETEROGENEOUS IOT NETWORKS VIA FOG
COMPUTING

3.1 Introduction

The IoT introduces the challenge of connecting devices to each other and to
the cloud while also providing cryptographic protection to the vast amount
of data that are generated. The heterogeneity of the IoT poses an additional
challenge, since a lot of IoT networks utilise different communication protocols
and physical interfaces, depending on the features required by the application.
For example, networks based on LoRaWAN [104] can be used to provide
long-range communication, whereas 6LoWPAN [69] is suitable for IP-based
communication in personal area networks. These two types of networks are
not compatible because of the difference in physical interface, communication
protocols, etc. Furthermore, utilising the same protocols does not necessarily
mean enabling interconnection. For example, two 6LoWPAN networks hosted by
different entities cannot communicate with each other, because, the encryption
keys used in the link layer are managed separately.

The interconnection of heterogeneous networks has been done before through
various methods, e.g. IoT gateways, but are often lacking end-to-end security,
i.e. the gateway typically decrypts and re-encrypts the data packets when they
are transferred from one network to the other. With the HeComm architecture,
we provide a method to enable the interconnection of heterogeneous IoT nodes
while also providing an end-to-end security guarantee. Our solution uses object
security to secure the communication flow. This is introduced at the level of the
application layer, which is often not specified by the network’s communication
standard.

My contribution to the work presented in this chapter was the design and
implementation of the architecture as well as the practical evaluation.

3.2 Background on fog computing

The fog computing paradigm is rising in popularity but has not yet been globally
standardised. An effort is underway from the OpenFog Consortium [76] that
has the backing of major companies, e.g. CISCO, and universities. However,
a reference architecture is not yet available. We provide, therefore, our own
interpretation and usage of the fog.

The fog topology can be divided into the following two parts: the fog entities
and the fog server. The fog entities are located at the edge of the local network
and are in direct contact with the IoT networks, as shown in Figure 3.1. Thus,
the fog entities provide services to the IoT, e.g. data filtering. Overall, the

RELATED WORK 35

fog entities can communicate with the IoT networks, with each other, and
with the cloud. These devices are less powerful than cloud servers and less
constrained than IoT devices, e.g. routers. The fog server is a cloud server,
manages the fog entities, and acts as a certificate authority (CA). Each fog
entity is provided with a certificate signed by the fog server. Consequently,
the identity of each entity can be verified by the devices using the services of
the fog. The challenge that we tackle in this chapter is the end-to-end secured
communication of heterogeneous IoT services. The HeComm solution that we
propose utilises fog entities for this purpose.

Cloud

Fog

Fog server
Fog entity
IoT service

Figure 3.1: Representation of a fog network.

3.3 Related work

The work of Cirani et al. [21] proposes the use of a fog node as an IoT hub that
provides the abstraction and interconnection of the Constrained Application
Protocol (CoAP) services of the heterogeneous constrained devices. This IoT
hub can act as a gateway between IoT networks, provide service discovery,
etc. The idea of using the fog nodes to provide interconnection is similar to
that of ours and can provide many functionalities to assist in the IoT-IoT or
IoT-cloud communication. In addition, our HeComm architecture concentrates

36 END-TO-END SECURED COMMUNICATION FOR HETEROGENEOUS IOT NETWORKS VIA FOG
COMPUTING

on guaranteeing the security of the communication. It relies on the fog to
facilitate heterogeneous communication, but reduces the trust in the fog to
obtain end-to-end security between IoT nodes.

The architecture of Van Den Abeele et al. [115] does not utilise the fog but
proposes to access the power of the cloud to provide an IoT abstraction layer.
This enables easier connectivity, since the cloud is used to provide the abstraction.
The cloud, however, does not allow low-latency communication, while the fog
can provide it for IoT-IoT communication. Furthermore, by abstracting the
services through the cloud, the origin of the data cannot be authenticated. In
our architecture, we provide end-to-end secured communication between the
supplier and the user of the IoT service.

With regards to the use of object security in constrained devices, two publications
are worth mentioning. In the master’s thesis of Brorsson et al. [15], a comparison
was made between Datagram Transport Layer Security (DTLS) and Object
Security of CoAP (OSCOAP). The result was that OSCOAP is comparable
to DTLS in terms of performance, memory footprint, etc. Another example
is the work written by Navas et al. [72] that uses and extends the CBOR
Object Signing and Encryption Protocol (COSE) protocol. They propose an
authenticated key establishment protocol over OAuth 2.0 for the IoT. Our
work further analyses the use of object security in a security architecture for
constrained nodes, with a specific focus on heterogeneous networks.

3.4 HeCommm architecture

The HeComm architecture can be divided into two parts: the HeComm protocol
and the end-to-end secured communication. The HeComm protocol establishes
the bridge between the two networks and the secret key that will be used by
the IoT nodes for the end-to-end secured communication.

The general topology of the HeComm architecture comprises of a number of IoT
networks that operate over different communication protocols, each consisting
of a number of IoT nodes. A fog entity (fog node) takes care of the connection
between the networks. This is presented in Fig. 3.2, which, for simplicity, only
depicts two different IoT networks, with one IoT node in each network. By
using the proximity of the fog node to the IoT networks, the fog node can, if the
IoT network allows it, directly communicate with the nodes. The identity of a
fog entity can be verified via its certificate, which is provided by the fog server.

The setup of the secure communication, i.e. the HeComm protocol, is executed
by the network managers of the IoT networks (NwkServer in Fig. 3.2) and the

HECOMMM ARCHITECTURE 37

Fog node NwkServer

N

Wireless
Ethernet

LAN

Cloud

Fog

N

NwkServer

Fog server (CA)

TLSTLS

Figure 3.2: Simplified representation of the general network topology of the
HeComm architecture.

fog node. The network managers manage their respective IoT nodes and are
therefore also capable of providing cryptographic material for the managed IoT
nodes. An example can be found in the LoRaWAN specification, where a key
derivation scheme is used between the application server and the LoRa node to
create the AppSKey and NwkSKey. We refer to Chapter 2 for more background
information on LoRaWAN. Furthermore, IoT nodes have limited resources and
it is therefore beneficial to outsource the key establishment to devices with less
constraints that can utilise stronger algorithms like asymmetric cryptography.
During this establishment, the fog node will act on and relay parts of the
HeComm protocol because of its centrality in the entire communication scheme.
As a consequence, the HeComm protocol relies on the availability of the fog
node, but the fog node will not be able to decrypt the exchanged messages.

3.4.1 End-to-end secured communication

Two entities can only communicate if they use the same communication protocol.
In a heterogeneous environment, this is almost never the case. Therefore, we
use the fog as an IoT gateway that can understand both communicating parties.
The IoT gateway provides a bridge and will enable communication between the
two IoT networks by translating mismatching protocols.

Finding a common ground between two heterogeneous protocols facilitates the
communication. An example is given in Fig. 3.3, in which the communication
stack of 6LoWPAN and LoRaWAN are mapped onto the OSI model. Notice that,
for both IoT networks, the specified communication protocols only reach until
the Network layer. For 6LoWPAN, the highest layer specified is the Network

38 END-TO-END SECURED COMMUNICATION FOR HETEROGENEOUS IOT NETWORKS VIA FOG
COMPUTING

layer, where the 6LoWPAN header compression is used. In the LoRaWAN
network, the specifications can be matched until the Transport layer. The
LoRaWAN specification provides a UDP-like functionality with the FPort field.
The other layers, Session till Application layer, can be chosen by the developer.

Physical

Link

Network

Transport

Session

Presentation

Application

OSI layers

IEEE 802.15.4

IEEE 802.15.4

IPv6-6LoWPAN

UDP

CoAP

6LoWPAN

LoRa RF

LoRaWAN

LoRaWAN

CoAP

Hecomm

COSE

Figure 3.3: 6LoWPAN and LoRaWAN networks mapped onto the OSI model.

The common ground between these two IoT networks is the Session till
Application layer. An often used protocol for these layers, in constrained
networks, is the Constrained Application Protocol (CoAP) [100]. CoAP is an
application layer protocol that is designed as the counterpart of the HTTP
protocol but for constrained devices. The recommended security protocol for
CoAP is DTLS. However, DTLS is created with the intent of securing a UDP
connection, which does not match with our goal to use protocols belonging
to the Session till Application layer. Another method to secure CoAP is the
Object Security for Constrained RESTful Environments (OSCORE) standard
proposed by the IETF [97]. Initially it was called OSCOAP, but, it has evolved
to OSCORE. However, a stable implementation is not yet available. In our
work, the CBOR Object Signing and Encryption Protocol (COSE) [95] protocol
concept of the OSCORE standard is used in this architecture to provide end-
to-end object security. COSE is a proposed standard of the IETF, and, a
stable implementation is available (cose-c [25]). It can provide signatures,
cryptographic keys, message authentication and encryption using CBOR [12]
for (de)-serialisation. The IoT nodes in this architecture use CBOR for the
(de)-serialisation of the application data. It is designed to have a small code
size and small message size, suitable for IoT networks. For securing this data
format, COSE in combination with AES-CCM AEAD block cipher mode is
used to provide authentication and confidentiality. This is achieved by using
COSE objects as CoAP payload.

HECOMMM ARCHITECTURE 39

3.4.2 HeComm protocol

The HeComm protocol can be described as establishing a link contract between
two IoT nodes in a heterogeneous network. Fig. 3.4 shows the protocol for
the establishment of a link contract between two generalised IoT networks. It
provides two functionalities: service agreement and key agreement. The service
agreement ensures that all parties agree upon a link between two IoT nodes,
i.e. the nodes that will be communicating with each other. Secondly, a secret
key is generated via an Authenticated Key Establishment (AKE) protocol. The
resulting secret key will be used to secure the communication between the IoT
nodes.

The IoT networks have one network manager (NwkServer) and one IoT
node (Node A or Node B) in the generalised setting. The link contract will
be used by the fog entity to relay the communication of the respective IoT
nodes. Only the network managers of the IoT networks and the fog node will
participate in the HeComm protocol. Furthermore, these entities must have and
use a certificate signed by a trusted third party, e.g. the fog server’s CA. This
will be used in the secured TLS connection between the network managers and
the fog to verify each other. The communication between the network managers
and their respective IoT nodes are not defined by the HeComm protocol since
they depend on the communication protocol used by the IoT network. Note that
the networks managers only communicate with the fog node and not directly
with each other. It is, therefore, easier for the network managers to implement
and manage the HeComm architecture.

The communication during the HeComm protocol is JSON-based. The schema
of the top-level JSON object is comprised of two fields: the FPort and Data field.
The FPort field is used to indicate one of the following messages: DBCommand,
Link Request, Link State, Link Set or Response message. The DBCommand
message is used to provide configuration material to the fog node to enable
communication between the fog node and the corresponding IoT network. This
type of message is not used during the HeComm protocol. In the messages Link
Request and Link Set, a Link Contract in the form of a JSON object is encoded
into the Data field. The Contract contains four fields: InfType, ReqDevEUI,
ProvDevEUI and the Linked field. The InfType field of the Link Contract object
describes the type of information requested, but since this is a proof-of-concept
implementation, this field was not extensively defined and is indicated by a
number. This field should indicate the type of information ranging from a
more general data type, e.g. temperature, to the specification of a specific IoT
network and IoT node. The ReqDevEUI and ProvDevEUI field contain, at the
end of the protocol, the unique identifiers of the respective IoT node. The last
field, Linked, is used to indicate if both network managers have successfully

40 END-TO-END SECURED COMMUNICATION FOR HETEROGENEOUS IOT NETWORKS VIA FOG
COMPUTING

established a secret key. For the message of the type Link State, the data field
will contain the messages of the key agreement protocol. To acknowledge or
deny a request to form a Link Contract, the Response message is used. In the
Response message, the data field contains a Boolean value corresponding to the
intended response. All the general message types, except for the DBCommand,
are used during the protocol. The functionality of these messages will be clear
after the description of the data flow during the HeComm protocol.

The DBCommand is used by the network managers of the IoT networks to
notify the fog and configure it for the HeComm communication. It can be used
to provide configuration material for the fog to allow communication with the
IoT network. Furthermore, it must be used before the HeComm protocol to
provide the fog node with the details of the IoT nodes that will be using the
HeComm communication, e.g. providing the device’s unique identifier. This
enables the fog to communicate with the IoT network and correctly relay the
messages.

The initiator of the HeComm protocol, shown in Fig. 3.4, is the IoT network
manager of node A requesting some type of information, as of now called the
requester. This requester will send a Link Request message (LC(A,X)_req)
containing, at minimum, the InfType and ReqDevEUI field defined. The fog
node will act on this request by searching for a suitable provider node. In this
setting, the network manager of node B is the provider. The fog node will fill
in the provider node into the Link Contract ProvDevEUI field and relay the
Request message with the Link Contract to the provider (LC(A,X,B)_req). The
provider can then choose to accept or deny the Link contract, via a Response
message (Ack_resp). Now, the requester and provider use an AKE to agree
upon a master secret. During the execution of this protocol, only Link State
messages are sent and the fog will only relay these messages without altering
them. The established master secret will be used as the secret key (KOS) to
secure the communication between the IoT nodes. In the last phase of the
HeComm protocol, it is required for the requester to request the link to be set
in the fog node, using the Link Set message with a completely filled in Link
Contract (LC(A,X,B,Ok)_set). The fog node will then verify this Link Contract
with the provider and enable the link between the respective IoT nodes. Now
both parties can push the agreed upon secret key to their IoT node to enable
the communication (set(KOS)).

PROOF-OF-CONCEPT SYSTEM 41

Node A NwkServer Fog NwkServer Node B
IoT network 1 IoT network 2

req(type X) LC(A,X)_req LC(A,X,B)_req

Ack_respLC(A,X,B)_req

(AKE=KOS)_state

set(KOS)

KOS{Application Data}

LC(A,X,B,Ok)_set LC(A,X,B,Ok)_set

Ack_respAck_resp
set(KOS)

 CA: Fog server

Figure 3.4: The data flow of the HeComm protocol and in IoT network messages.
All participants of the HeComm protocol (NwkServers and fog node) have a
certificate signed by a trusted party, the fog’s CA in this case.

3.5 Proof-of-concept system

The HeComm architecture is validated using a proof-of-concept implementation
using the 6LoWPAN and the LoRaWAN network. In this section, we discuss
the communication interfaces that are required between the fog and the IoT
networks, namely LoRaWAN and 6LoWPAN. Similar specifications can be
provided for other types of networks. The most important requirement is that the
heterogeneity of the network should not have an impact on the communication
between the IoT nodes.

The fog nodes are devices that are located close to the IoT networks. To allow
IoT-fog communication, some specifications need to be set, depending on the
type of IoT network. We assume that the fog has an Ethernet interface for
communication with the cloud and network managers, but also an interface to
communicate directly with the IoT network, e.g. an IEEE 802.15.4 interface.

42 END-TO-END SECURED COMMUNICATION FOR HETEROGENEOUS IOT NETWORKS VIA FOG
COMPUTING

3.5.1 LoRaWAN

A basic topology of the LoRaWAN network consist of an Application server,
Network server, gateway (LoRa_gw), and the IoT nodes (LoRaWAN nodes).
The application server is the owner of the node and the network manager in
our HeComm protocol. The Network server is the backbone of the LoRaWAN
network and provides network related functionalities like routing. The gateway
provides the translation from wireless to wired communication. All the previous
entities are used by the LoRaWAN node to communicate with the Application
server to e.g. upload sensor data. We refer to Chapter 2 for more details on the
LoRaWAN network.

Communication between LoRaWAN based IoT nodes is not allowed. The IoT
nodes only communicate with the Network and Application server. To ensure
compatibility with existing IoT networks, the specification of the network should
not be altered to the benefit of the HeComm architecture. Therefore, direct
communication between the LoRaWAN node and the fog node is not possible.
Instead, the LoRaWAN interface leverages the centrality of the Network server
in the LoRaWAN network. By utilising the Network server, the communication
also benefits from the integrity protection the NwkSKey provides. In this
setup, the proposed future standardised application extension of the FPort field
in the Frame Header is used to enable the Network server to relay packets
to the fog node instead of the Application server. This way, the fog node
will act as an Application server in the LoRaWAN topology. The FPort field
with the value of 255 indicates communication coming from and to the fog
node (HeComm communication). Furthermore, the FPort value 254 is also
used. The Application server uses it to push the secret key of the HeComm
communication to the IoT node.

3.5.2 6LoWPAN

A 6LoWPAN network typically consist of a gateway (6LoWPAN_gw) and
the IoT nodes (6LoWPAN nodes) in a mesh network configuration. The
gateway provides all network management functionalities and acts as the network
manager in the HeComm protocol. For more information regarding 6LoWPAN,
we refer to Chapter 2.

The 6LoWPAN network does allow communication between IoT nodes. We
therefore have provisioned the fog node with a physical interface that can relay
6LoWPAN packets between the IoT network and the fog node. This interface
will act as a regular IoT node in the 6LoWPAN network. It will receive its own
IP address from the RPL root and can relay messages in the mesh network, if

IMPLEMENTATION 43

needed. For all the nodes using the HeComm service, the interface looks like a
regular node within the network. The nodes are, therefore, not aware of the
heterogeneous communication. The packets destined for the interface will be
relayed into the fog node and the fog can use this interface to send packets
to other 6LoWPAN nodes. The downside of the direct communication in the
IoT network is the need of the Network key. The Network key is used for the
security of the IEEE 802.15.4 link layer. This key needs to be provisioned to
the fog node using the DBCommand message. In our implementation, this key
is static and is hard-coded in all the devices.

3.6 Implementation

The network topology of our proof-of-concept implementation is presented in
Fig. 3.5. On the left side, a simple LoRaWAN network topology is provided and
on the right side a simple network topology of a 6LoWPAN network. In the
proof-of-concept, the TLS handshake using the ECDHE_RSA cipher suite is
used as AKE protocol. This ciphersuite uses the ephemeral version of Elliptic-
curve Diffie–Hellman (ECDH) with RSA-based certificates (X.509). The X.509
certificates are used by the requester and provider to verify each other’s identity.
Note that other AKE protocols or ciphersuites could be used. The pre-master
secret resulting from the TLS handshake is pushed to the IoT nodes as secret
key.

Network server

Application server

Fog node

6LoWPAN_gw

6N 6N

LoRa_gw

LN
LN

 802.15.4
LoRa

LoRaWAN

GRPC

GRPC

GRPC

6LoWPAN

TLS

TLS

LAN

Cloud

Fog

Figure 3.5: Network topology of the proof-of-concept implementation.

The fog node is implemented on a Commercial off-the-shelf (COTS) router,
Linksys WRT1200AC. This router runs the OpenWRT OS to enable third party
applications. Our fog node application, shown in Fig. 3.6, implements multiple

44 END-TO-END SECURED COMMUNICATION FOR HETEROGENEOUS IOT NETWORKS VIA FOG
COMPUTING

interfaces and is cross compiled for ARM. To facilitate the implementation,
the program is written using the Go programming language. The fog core is
the main thread which implements the HeComm protocol and uses a MySQL
database and the LoRaWAN and 6LoWPAN interface to relay the packets to
the right IoT nodes. It uses a TLS interface on the Ethernet connection to listen
for HeComm messages. The LoRaWAN interface is also concurrently listening
on the Ethernet connection for LoRaWAN packets coming from the LoRaWAN
Network server. The physical interface to connect with the 6LoWPAN network
is a Zolertia Z1 node [134], running Contiki [24], connected to the COTS router
via USB using the Serial Line Internet Protocol (SLIP). The Zolertia Z1 node
implements the 6LoWPAN and IEEE 802.15.4 protocol and communicates with
the COTS router using non-compressed IPv6 packets over the SLIP connection.

Interface

 LoRaWAN 6LoWPAN

Fog core

Slip radio
GRPC interface

TLS interface

Database

channelIoT1
channelIoT2

Figure 3.6: Diagram of the implementation of the fog node.

The 6LoWPAN network contains one IoT node and a network manager. The
network manager is a Dell Precision M4800 laptop with a USB-connected
Zolertia Z1. The connected Zolertia node runs Contiki and is based on the
rpl-border-router implementation, found in the online Contiki examples. This
node acts as a border router and provides IP addresses to the nodes in the
network. The laptop implements the HeComm protocol and uses the Zolertia
node to communicate with the IoT node in the 6LoWPAN network. This IoT
node is also a Zolertia Z1 node running Contiki. It implements the IoT node
functionality, requesting data from the network manager and sending CoAP
requests via the fog node. It uses the cose-c [25], cn-cbor [16] and er-coap [55]
library to implement the HeComm protocols. The AES-CCM cipher mode
used in the COSE protocol has been mapped onto the AES-CCM hardware
accelerator which is also used for link layer security. The Zolertia Z1 node has
92 kB of ROM and 8 kB of RAM.

The Application server, Network server and the gateway of the LoRaWAN
network are implemented on one Raspberry PI 3 MODEL B. This Raspberry
PI runs on Raspbian and uses the IMST iC880A LoRaWAN concentrator board
as physical interface to the LoRa network. The three applications running on
the Raspberry PI communicate with each other via the loopback interface. The

EVALUATION 45

loopback interface is a virtual interface that enables IP communication within
the device. The three applications are developed by the open source LoRa
server components (https://www.loraserver.io/). Only the Network server and
the Application server have been modified by us to implement the required
communication for HeComm. The IoT node in the LoRaWAN network uses the
mbed-os on a STM32 NUCLEO-L073RZ node with a LoRa Shield as physical
interface. It only acts as a provider HeComm node and will answer the CoAP
request originating from the 6LoWPAN node. This node uses the publicly
available cose-c, cn-cbor, mbed-coap and Mbed TLS libraries to implement the
HeComm communication and security protocols. The Mbed TLS library is used
to provide the AES-CCM algorithm and cipher mode. The STM32 NUCLEO
node has 192 kB of flash memory and 20 kB of RAM.

3.7 Evaluation

The results discussed in this section cover both the security evaluation and the
implementation results of the IoT nodes. We only focus on the IoT devices, since
the other devices in the proof-of-concept implementation are not necessarily
constrained. Next, only the impact on memory (RAM) and storage (ROM) are
considered. In a typical scenario where two nodes are communicating within the
network, the nodes will receive and use their encryption key to encrypt or decrypt
the communicated messages. In our HeComm architecture, the encryption key
is also pushed to the device. However, the messages are not send directly to
the respective recipient, as the fog is used to provide the interconnection of the
two IoT nodes. In both scenarios, the nodes receive and use the encryption key
to secure the communicated data using similar algorithms. Thus, adding the
HeComm architecture will primarily require additional firmware and memory on
the IoT nodes to implemented the required communication protocols. Though,
an in-depth study of the energy impact of the AES encryption algorithm in
terms of communication and computation is done in Chapter 5.

3.7.1 Security evaluation

The security of the communication is evaluated using an informal analysis. First,
the threat model and assumptions are given. Then, the HeComm protocol is
assessed. Finally, the data flow of the HeComm communication, which deals
with the communication between the IoT nodes, is examined.

In general, we consider two network managers, two IoT nodes, and the fog
node. In our proof-of-concept, we have to take into account the following seven

46 END-TO-END SECURED COMMUNICATION FOR HETEROGENEOUS IOT NETWORKS VIA FOG
COMPUTING

entities: LoRaWAN application server (network manager), LoRaWAN network
server, LoRa gateway, LoRaWAN node, fog node, 6LoWPAN gateway (network
manager), and 6LoWPAN node. Note that there may be multiple LoRaWAN
and 6LoWPAN nodes. The adversary is assumed to know the protocol and
may eavesdrop, modify, corrupt, delete, redirect, or replay all the messages that
are transmitted. Additionally, the fog node may act maliciously and try to
illegitimately obtain the data that is communicated. Furthermore, we assume
that the specifications of the IoT networks provide secured communication
within their network. The goal of the adversary can be to illegitimately obtain
the data that are communicated or to degrade the communication service.

All entities participate in the HeComm protocol. First the network managers
of the IoT networks and the fog node agree upon a link contract. This link
contract is ratified by the network managers through establishing a shared key
via the TLS protocol, where the fog node acts as a relay node. In this first
phase of the protocol, an attacker is unable to eavesdrop, modify, etc. the link
contract, because, the network managers and the fog node communicate over
a mutually authenticated TLS secured communication channel. The network
managers and the fog node can verify the identity of each other via the available
certificates. Entities that have become malicious should be revoked by the
certificate authority, which is the fog server in this proof-of-concept. If an
adversary is the malicious fog node that is participating in the protocol, it can
degrade the communication service by e.g. not relaying packets. In this case,
the network managers can report the malicious fog node, consequently, the fog
server can revoke this specific fog node. Next, the malicious fog node cannot
intercept the key established between the two network managers, as the TLS
protocol is secured against man-in-the-middle (MITM) attacks and provides
mutual authentication. Also, the chosen TLS ciphersuite uses the ephemeral
version of the ECDH protocol which provides perfect forward secrecy. This
ensures that a compromised key cannot compromise previously established keys.
In the final phase of the protocol, the network managers push the established key
to the respective IoT nodes via their respective relay devices. This transaction
is assumed to be secured via the security architecture of the IoT networks.

The COSE protocol is used to secure the HeComm communication. By
using the AES-CCM cipher mode, data authentication and confidentiality is
guaranteed for the payload communicated between the two IoT nodes. Thus, the
attacker cannot, without knowing the secret key, understand or alter the payload.
This is also the case for the fog node, which cannot alter or change the payload
of the messages. The attacks prevented are therefore eavesdropping attacks and
man-in-the-middle (MITM) attacks. However, using only COSE in the payload
does not guarantee protection against e.g. replay attacks, which OSCOAP would
protect against. One countermeasure is provided via the AES-CCM cipher

EVALUATION 47

mode, since a message with a reused IV should be dropped. Additionally, replay
protection is often guaranteed via the security architecture of the IoT networks.
An attack a malicious fog node could be more successful at than an outside
attacker is a Denial-of-Service attack. The message originating from the fog
node is always processed, since it bypasses the network security. This, however,
should be easily detectable and the fog node should in that case be revoked by
the fog server. In the proof-of-concept the LoRaWAN and 6LoWPAN network
are used as communicating networks. The network security is provided by the
IEEE 802.15.4 link layer security in the 6LoWPAN network and the integrity
protection of the NwkSKey in the LoRaWAN network. Moreover, the potential
impact of the LoRa gateway in this data flow is limited, as it only provides
the relay service between the wireless and the wired network. In summary, the
fog node is not able to illegitimately obtain the data that is communicated.
However, it could degrade the communication service, but not without the risk
of being detected.

3.7.2 Implementation overhead

In Table 3.1, the resource usage of both IoT nodes are presented in terms
of RAM and ROM usage (bytes). The results for 6LoWPAN are from the
analysis of the binary compiled for the Zolertia Z1 node, using the MSP430-size
command. The resource usage of the LoRaWAN node comes from the output
results after compilation using the mbed Command Line Interface (mbed-cli).
In the table, the distinction has been made between resources used for the
Object security (COSE + CBOR + AES-CCM), for the CoAP library and for
the HeComm-specific code. These values are the result of the difference between
the implementations, with and without the respective library. Lastly, the bare
implementation, without HeComm communication, and the full-implementation
resource usage are presented. The RAM usage of the separate libraries of the
mbed-os for the LoRaWAN node are particularly low. We expect the mbed-cli
does not take into account the RAM occupied by the libraries. Nevertheless,
since the implementation of 6LoWPAN uses the same objects from similar
libraries as the LoRaWAN implementation, we can expect around the same
RAM usage for the libraries in both implementations.

The full implementations of both networks report under 90 kB of ROM and
7 kB of RAM usage. We compare our results to the classification of constrained
nodes published by the IETF [11]. Class 0 nodes have lower than 100 kB of
ROM and 10 kB of RAM and Class 1 devices have around 100 kB of ROM
and 10 kB of RAM, according to the IETF classification. Therefore, the
results can be mapped to Class 1 devices, which are described as devices which
cannot easily directly communicate with the internet but can communicate

48 END-TO-END SECURED COMMUNICATION FOR HETEROGENEOUS IOT NETWORKS VIA FOG
COMPUTING

Table 3.1: Implementation results, RAM and ROM usage, of the IoT nodes.

Implementation 6LoWPAN LoRaWAN
ROM (B) RAM (B) ROM (B) RAM (B)

Object security 8310 582 22836 56
CoAP 12010 622 7048 204Hecomm 1654 204
Bare 45727 5176 57321 5168
Full 67701 6584 87205 5428

using protocols specifically designed for constrained nodes. In the case of
the 6LoWPAN node, the AES-CCM cipher mode is already supported in the
standard hardware/software implementation. In other IoT networks, the AES
algorithm is often used in CBC, CTR or even CCM mode. Re-using the already
available AES-CCM cipher mode leads to a smaller implementation of the object
security for the 6LoWPAN node than for the LoRaWAN node. The difference
is 14.5 kB of ROM usage.

3.8 Conclusion

In this chapter, we describe the HeComm architecture that provides secured
end-to-end communication between IoT nodes in heterogeneous networks. The
proof-of-concept implementation with the interconnection of the 6LoWPAN and
LoRaWAN network proves the feasibility of our solution. The overhead caused
by the HeComm-specified protocols is minimal, since a combination of popular
protocols and algorithms are used, that are usually already foreseen in secured
constrained devices. The IoT nodes supporting the HeComm architecture can
still be classified as Class 1 constrained nodes. The security evaluation of the
HeComm architecture shows that the COSE protocol can guarantee end-to-
end data security. The fog is used to provide the service of heterogeneous
interconnection, but the fog entities are not able to compromise the security of
the communication between the IoT nodes.

Chapter 4

Trade-offs between storage
and computation for
embedded digital signatures
and signcryption schemes

This chapter evaluates the coupon technique in an IoT setting, and, it is based
on [120, 123]. Four optimisations and memory encryption are considered to
analyse the trade-off between storage and computation. The coupon technique
is applied to two schemes: Schnorr [96] and signcryption [14]. The chapter
is organised as follows. Section 4.1 introduces the topic and highlights the
contributions. Section 4.2 gives an overview of related work. More details on
the applied storage and computation techniques and their implementation are
presented in Section 4.3 and Section 4.4, respectively. In Section 4.5, the results
are discussed, and Section 4.6 concludes the chapter.

4.1 Introduction

In this chapter, we apply the coupon technique, see Section 4.2 for more details,
to optimise the storage and computation requirements of the following two
cryptographic primitives: digital signatures on the one hand, and signcryption
schemes, which are a combination of digital signatures and encryption
schemes, on the other hand. More specifically, we concentrate on lightweight

49

50 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

cryptographic schemes based on elliptic curve cryptography (ECC). Digital
signatures are implemented using the EC-based Schnorr algorithm [96]. For the
signcryption scheme, encryption is added to the Schnorr signature scheme [14].
Both schemes are described in more detail in Section 2.3.3.

Our contributions are as follows:

• We apply four techniques that reduce the data storage requirements for
EC-based Schnorr and signcryption using the coupon technique: coupon
encoding, point compression, index compression and coupon addition.

• We compare these four storage reduction techniques to an implementation
that does not rely on the coupon technique but uses the comb method to
reduce the online computation requirements for EC-based Schnorr and
signcryption.

• We apply memory encryption to protect the stored (precomputed) values.

• We evaluate and compare the storage, performance, memory, and energy
requirements of all these techniques on a health sensor platform.

My contribution to the work presented in this chapter was the implementation
and evaluation of the different storage and computation techniques. The idea
to perform this evaluation was initiated and fine-tuned in collaboration with
my co-authors.

4.2 Related work

Our goal is to minimise the storage and the computation requirements of digital
signature and signcryption schemes on IoT devices. This section elaborates on
related work that also tries to achieve this goal.

In order to decrease the computation cost of cryptographic operations on
constrained devices, a common approach is to offload the compute-intensive
operations to more powerful nodes. This technique is applied by Saied et al.
in [93] to the Transport Layer Security (TLS) handshake and the Internet Key
Exchange (IKE) protocol, and in [92] to the Host Indentity Protocol - Base
Exchange (HIP-BEX) scheme.

Another approach is based on the precomputation of a number of intermediate
values in the cryptographic schemes that run on the IoT device; these values
are then e.g. stored on the device before deployment. This technique is also
referred to as the coupon technique. Lee et al. [60] apply this to the Schnorr

STORAGE AND COMPUTATION METHODS 51

signature scheme on a system consisting of a smart card and a terminal. This
technique was further evaluated for both the EC-based Schnorr and signcryption
scheme on an embedded device in [123] and [120].

In addition to the coupon technique, numerous methods have and are being
devised to reduce the computation time of ECC operations, as described by
Hankerson et al. [41]. For example, the comb method enhances the point
multiplication operation by precomputing a window containing EC points
related to a fixed base point. An modified version of this method was designed
by e.g. Hedabou et al. [42] and applied in the Mbed TLS library. The work
of Liu et al. [63] is another example that uses EC optimisation techniques to
implement an ECC cryptographic library.

Our work implements and evaluates four storage reduction techniques for the
coupon technique. Further, we compare the results of these techniques to an
implementation that uses the comb method. Additionally, the computational
overhead of memory encryption is evaluated.

4.3 Storage and computation methods

In total, six techniques are evaluated: four for storage optimisation when the
precomputation of coupons is used (coupon encoding, point compression, index
compression and coupon addition), one for computation optimisation when no
precomputation is used (comb method), and one for protecting precomputed
coupons (memory encryption).

4.3.1 Coupon encoding

An efficient way of representing EC points is SEC1 encoding [17]. We propose an
extended format of the SEC1 encoding, as shown in Table 4.1. A Schnorr coupon
consists of the B0 header, the random value, and the EC point coordinates (X1
and Y1). A signcryption coupon additionally requires the B1 header and the
second EC point coordinates (X2 and Y2). The B1 header uses the same fields
as the header of a SEC1 encoded EC point. The compressed and uncompressed
field indicate EC point compression. If EC point compression is used, the parity
of the Y coordinate is provided in the Parity field in the respective header and
the Y coordinate field (Y1 or Y2) is removed. This compression technique is
explained in Section 4.3.3. In contrast to the B1 header, three fields are added
to the B0 header: Type, Rnd, and Rnd compression. The Type field identifies
the scheme. The Rnd field is used to indicate the presence of the random value.

52 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

The Rnd compressed field indicates if the random value is compressed. This
technique is explained in Section 4.3.4. The coupon is encoded as follows. First,
the header B0 is added, which is then followed by, respectively, the first EC
point coordinates and a random value. Finally, only in the signcryption scenario,
the EC point coordinates that represent the encryption key are encoded using
the SEC1 encoding with corresponding header B1 and are then padded to the
random value.

Coupon encoding is always applied when storing a precomputed coupon, while
the other techniques, explained in the following paragraphs, are evaluated
separately or in combinations.

4.3.2 Memory encryption (e)

In the IoT device, the encoded coupons are stored in e.g. flash memory. They
are stored in our implementation as a C/C++ array of coupons, where the
index of each coupon is based on its relative position to the first coupon in
the array. In summary, the system only keeps track of the pointer to the first
coupon and the total amount of coupons.

Memory encryption ensures the secure storage of the coupons on the device.
It will not utilise AES in ECB block cipher mode, as proposed by Winderickx
et al. [123], but AES in CTR mode. Unlike ECB mode, which would require
padding with the extended SEC1 format, data alignment is not an issue in
CTR mode. Therefore, CTR mode is more efficient for storing the coupons.
However, CTR mode requires an initialisation vector (IV) of 16 bytes. For our
implementation, the IV is defined as follows: 12-byte coupon counter ‖ 4-byte
block counter. The coupon counter is initialised with a nonce of 12 bytes while
the block counter starts from zero. The IV of a specific coupon in the list of
stored coupons can be calculated by adding the index of the coupon to the
nonce. The block counter is incremented every time a new IV is generated. The
AES cipher in CTR mode will utilise this IV to generate the different cipher
text blocks to perform the decryption. Note that the decryption key should
be stored safely in the MCU, so that it is only accessible by this decryption
process.

4.3.3 Point compression (c)

Instead of storing and transmitting both the X and Y coordinates of a point,
the Y coordinate can be derived from the X coordinate, the definition of the

STORAGE AND COMPUTATION METHODS 53

Table 4.1: Format of Schnorr and signcryption coupons.

Coupon Field
Description

Bit
Size

B0 8 header of encoded coupon & first EC point
X1 256 x coordinate of the point

Y1 256 y coordinate of the point,
optional (present only for B0 = 0x04)

Rnd/Rnd compressed 256
/16 random value

B1 8 header of second EC point,
optional (present only for B0 = 0x40)

X2 256 x coordinate of second point,
optional (present only for B0 = 0x40)

Y2 256 y coordinate of second point,
optional (present only for B1 = 0x04)

Header Field
Description (B0)

Bit
Size

Type 2 type of coupon, 0 for Schnorr,
1 for signcryption

Rnd 1 presence of random value
Rnd compression 1 compression of random value
Unused 1 zero
Uncompressed 1 EC point uncompressed
Compressed 1 EC point compressed

Parity 1 parity of y coordinate,
used only if point is compressed

Header Field
Description (B1)

Bit
Size

Unused 5 zero
Uncompressed 1 EC point uncompressed
Compressed 1 EC point compressed

Parity 1 parity of y coordinate,
used only if point is compressed

chosen EC, y2 = x3 + ax+ b, and one additional sign bit. This is also described
in the SEC1 encoding guidelines [17].

The storage reduction that can be achieved through point compression is 32 bytes.
An EC point is compressed from 65 bytes (1-byte header and 64 bytes for the X

54 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

& Y coordinates) to 33 bytes (1-byte header and 32 bytes for the X coordinate).
Furthermore, two points are compressed for a signcryption scheme’s coupon,
since, two points are stored per coupon.

4.3.4 Index compression (i)

Index compression is used to compress the random value (denoted with y)
in the coupon. Generally, the random value is a value of 32 bytes. Using a
static master key (k) of 32 bytes and a counter value (ctr) of 2 bytes, the
decompression shown in Equation (4.1) can be applied. It goes as follows: the
counter value and the master key are concatenated and then hashed using the
SHA256 hash algorithm. The resulting output is the random value used in
the point multiplication. When index compression is used in the encoding of
the coupon, the random value is replaced by the counter value. Note that the
master key is only provisioned once on the device.

Rnd = H(ctr‖k) (4.1)

4.3.5 Coupon addition

Another proposed technique to reduce the storage requirements of the coupon
is coupon addition. A larger set of coupons can be generated via distinct
combinations of a smaller set of coupons. Moreover, two coupons can be added
to each other using the equations shown in Equation (4.2). First, the random
values are added via modular addition, which is the addition of the two values
modulo the order N of the used elliptic curve group. Finally, the stored EC
point(s), one for a Schnorr coupon and two for a signcryption coupon, are
combined using point addition.

y3 = y1 + y2 mod N

Y3 = Y1 + Y2

k3 = k1 + k2 (signcryption)

(4.2)

The combinations are chosen using a counter value, shown in Table 4.2. The bit
size of this counter value equals the length of the amount of coupons stored on
the device. Moreover, the index of each bit in the counter represents the coupon
of the stored set with the same index. The coupon is used if the respective bit

IMPLEMENTATION 55

in the counter value equals one. The counter value ranges from 1 to 2n where n
equals the amount of stored coupons. Using the example shown in Table 4.2,
assume that eight coupons are stored on the device and the counter has reached
the decimal value of 50. In this scenario, the second, fifth, and sixth bit of
the counter are active. Thus, these three respective coupons are used in the
combination. It requires two coupon additions. It follows that multiple or no
coupon additions can take place, depending on the amount of active bits (ones)
in the binary representation of the counter value.

Table 4.2: An example situation for combining coupons based on a counter
value. In this example the counter has a value of 50, thus, coupons 2, 5, and 6
are added to each other.

Coupons 8 7 6 5 4 3 2 1 DEC
Counter 0 0 1 1 0 0 1 0 BIN (big-endian)
Result = C2 + C5 + C6

4.3.6 Comb method

The comb method for speeding up EC point multiplication is described in the
Guide to Elliptic Curve Cryptography written by Hankerson et al. [41]. In
comparison to the basic double-and-add algorithm, subsets of the bit-string
representation of the random value is evaluated at once using the precomputed
multiples of the base point (window). This comb method was extended by by
Hedabou et al. in [42] to additionally provide countermeasures against side-
channel analysis attacks; it is used in our work to implement the comb method
through the Mbed TLS library. A more detailed description of the used comb
method is provided in Section 2.3.3.

The window size can be chosen from w = 2 up to w = 7 in the standard Mbed
TLS implementation. In our implementation, however, we extend this range
to w = 8. Furthermore, the ’MBEDTLS_ECP_FIXED_POINT_OPTIM’
macro of Mbed TLS is used to precompute the multiples of the base point.
Then, these precomputed base point multiples can be used for an unlimited
amount of point multiplications.

4.4 Implementation

Two separate implementations were created to evaluate the storage and
computation methods described in Section 4.3. The first implementation

56 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

evaluates the techniques based on pre-stored coupons (coupon encoding, memory
encryption, point compression, index compression, and coupon addition); we
refer to this as the Coupon implementation (Section 4.4.1). The second
implementation generates coupons at run-time using the comb method; we refer
to this as the Window implementation (Section 4.4.2).

Both implementations are programmed in C++ code and use Mbed OS as their
operating system (version 5.8.1). Furthermore, all code is cross-compiled using
the GNU Tools for Arm Embedded Processors (version 7-2017-q4-major). The
platform used to test the implementations is the Maxim MAXREFDES100#
health sensor platform [66]. It features a MAX32620 microcontroller, which
uses an ARM Cortex-M4 with FPU CPU running at 48 MHz, a Bluetooth Low
Energy (BLE) EM9301 communication chip, an additional 32 MB flash memory
chip and a range of sensors. Moreover, the microcontroller has 2 MB of Flash
Memory and 256 KB of SRAM.

The SECG secp256k1 Koblitz curve is used to produce the results for the
evaluation. It provides a security level of 128 bits, which should be sufficient
until 2028. Other elliptic curves could be used and might provide e.g. enhanced
performance and/or security, however, the focus of this section is on the relative
impact of the various storage and performance optimisation techniques, not on
the exploration of different curves.

4.4.1 Coupon implementation

The Coupon implementation is used to evaluate point compression, index
compression, coupon encoding, coupon addition, and memory encryption. To
evaluate the different methods, the implementation is configurable through
macros to only enable the required code for the respective configuration. The
C/C++ preprocessor will recognise and expand the enabled macros in the code
before it will pass the code onto the compiler.

The architecture of the Coupon implementation is presented in Figure 4.1. The
Main class implements the functionality of requesting a coupon and generating
a signature. In more detail, the following classes are implemented. A stored
coupon, which is always encoded using the coupon encoding, can be requested
via the Storage class. Furthermore, this class will also perform the decryption
of the stored coupon if memory encryption is enabled. Thus, the output of the
Storage class is the coupon in encoded format which can be decoded using the
Coupon class. This Coupon class, therefore, implements the coupon decoding
and all the decompression techniques, which are the index compression and EC
point compression. Furthermore, the Main class can also retrieve a coupon from
the Combinator class, which implements the coupon addition. The functional

IMPLEMENTATION 57

flow of the Combinator class is as follows: it retrieves the required coupon(s) for
the next combination from the Storage class, then decodes and decompresses the
coupon(s) via the Coupon class and finally adds the selected coupon(s) to each
other and returns the resulting coupon. The decoded and decompressed coupons
can be used by the Cipher class which implements the Schnorr or signcryption
scheme to generate a signature on a message. In this implementation, all
signatures are generated on the message “Hello World!”.

Main

Combinator

Storage Coupon

Cipher

Schnorr

Signcryption

Figure 4.1: Simple representation of the Coupon implementation using a UML
class diagram.

4.4.2 Window implementation

The Window implementation uses the Mbed TLS’s library for the point
multiplication of the base point by the random value in the Schnorr signature
scheme. The architecture of the implementation is presented in Figure 4.2. The
Main class enables the functionality of the program. It uses the Generator
class to create a coupon and the Schnorr Class to use this coupon to
generate a signature on the message "Hello World!". The initialisation of the
Generator consists of the precomputation of multiples of the base point (window
initialisation), which has a configurable size, that will be used during the point
multiplication based on the comb method. If the Main class requests a new
coupon, the Generator class first generates a random value using a hash-based
Random Number Generator (RNG), then it calculates the coupon using a point
multiplication based on the comb method. Finally, it returns the calculated
coupon.

The Window implementation only contains the Schnorr scheme, not the
signcryption scheme. Though, the storage results of the signcryption scheme’s
version of the Window implementation are estimated using the results of the
Coupon implementation. The primary difference between the Schnorr and

58 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

Main

Generator

Coupon

Schnorr

Figure 4.2: Simple representation of the Window implementation using a UML
class diagram.

signcryption version of the Window implementation is the code implementing
the signature schemes. Other differences are negligible in terms of storage size.
The storage size of the Window implementation using the signcryption scheme
requires an additional 5 kB of code and is estimated to be about 119 kB.

4.5 Results

The following results are evaluated for the Coupon implementation and the
Window implementation: non-volatile memory (storage), performance, volatile
memory (memory), and energy costs. To structure the tests, two different
sets of configurations are used for the Coupon implementation: with and
without coupon addition. These sets are called Addition and Basic, respectively.
Both configurations are tested with selected combinations of techniques. The
technique used in the combination is indicated by the following characters: ‘e’
for memory encryption, ‘c’ for point compression, ‘i’ for index compression, and
‘a’ for coupon addition.

The storage and static memory results are based on the analysis of the resulting
binaries. The dynamic memory usage is monitored during execution of a
signature generation by keeping track of the heap size. In Mbed OS, the
heap memory section only grows when dynamically allocating and freeing
memory. Consequently, the heap size at the end is the maximum amount of
allocated memory that is required throughout the program. The performance
results are measured using the available timer in Mbed OS. Next, the energy
results are based on these performance results, since, energy (E) equals power
consumption (P) times delay (t), E = P × t. The power consumption value
is obtained from the electrical characteristics section of the data sheet of the
MCU. Also, the tested coupon set size is 8 and 365 for the Addition and

RESULTS 59

Basic configurations, respectively. Storage results using different set sizes are
estimated from these fixed set sizes.

The Window implementation is evaluated with different window sizes: w = 0
and from w = 2 up to w = 8. A window size of w = 0 means that the
precomputation of multiples of the base point is disabled.

4.5.1 Storage results

This section starts with a theoretical analysis of the coupon set size for each of
the proposed combinations of techniques. Next, the storage requirement of the
implementations is examined. Finally, these results are combined to estimate
the amount of coupons that can be stored on a selection of storage sizes.

Theoretical computation of the storage size The impact of the proposed
techniques on the coupon set size are compiled in equations that calculate the
storage (s) required to have n coupons available for signatures. The Basic
configuration is expressed by Equation (4.3) and the Addition configuration by
Equation (4.4).

s = f × n+ g (4.3)

s = f × log2(n) + g (4.4)

The parameters in both equations are defined by the proposed combination of
techniques, displayed in Table 4.3. The first parameter f represents the size
of the coupon which depends on the compression technique that is used. The
second parameter g is the collection of static variables that are required for all
the stored coupons.

Table 4.3: The parameters of Equation (4.3) and Equation (4.4) compiled for
the six combinations (e: memory encryption, c: point compression, i: index
compression).

Schnorr Signcryption
f (kB) g (kB) f (kB) g (kB)

e 0.097 0.048 0.162 0.048
c 0.065 0 0.098 0
i 0.067 0.032 0.132 0.032
ei 0.067 0.08 0.132 0.08
ec 0.065 0.048 0.098 0.048
eic 0.035 0.08 0.068 0.08

60 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

The coupon has the largest size when only memory encryption (e) is used.
This is 97 and 162 bytes for Schnorr and signcryption, respectively. Point
compression (c) has a larger effect on the signcryption coupon than on the
Schnorr coupon, because the signcryption coupon stores two EC points. The
effect of index compression (i) is the same for the Schnorr and the signcryption
coupon. Furthermore, index compression and memory encryption require a
small portion of static variables, but these are negligible in comparison to the
storage size of the coupons and the static size of the implementation (without
coupons).

Static size The storage requirements of the different implementations without
coupons are shown in Table 4.4. As a reference, the size of the base
implementation is also given, i.e. the size of the implementation without
optimisation methods. Using these values, we have distilled the storage
requirements for each optimisation. Memory encryption (e) requires a static
size of about 3 kB in the Schnorr configuration, while in the signcryption
configuration, it requires only 1 kB. The reason is that the AES cipher is already
present for the signcryption scheme and does not need to be included again for
the memory encryption. Point compression (c) adds around 2 kB of code for both
the Schnorr and signcryption scheme. It requires the algorithms to calculate the
corresponding coordinate of the compressed point. Index compression (i) adds a
negligible amount of code because it uses the SHA256 hashing algorithm that is
already used for the signature generation in both the Schnorr and signcryption
scheme. Coupon addition (last column in Table 4.4) adds about 7 kB of code.

Table 4.4: Static size (in kB) of the implementation without coupons.

Schnorr Basic Addition
base 105.6 111.9
e 108.6 113.8
ec 110.3 115.9
ei 108.5 113.9
eic 111.2 116.0

Signcryption
base 110.9 117.6
e 111.9 117.6
ec 114.2 119.8
ei 111.8 117.7
eic 114.2 119.9

RESULTS 61

Coupon set size In this paragraph, the amount of signatures versus the coupon
set size is explored, which involves the calculation of the amount of coupons
that can be stored, shown in Table 4.5. The results from this table take into
account the static size of the implementation. Equations (4.3) and (4.4) are
used to calculate the amount of coupons that can be stored for a specific total
size of available storage. Thus, the resulting value is the amount of coupons
that can be used for the generation of consecutive signatures. The chosen
total sizes of available storage are the following: (1) the size of the Window
implementation (114 kB or 119 kB), which can generate an infinite amount of
coupons; (2) the size of commonly used flash storage (128 kB); (3) the maximum
storage available on the health sensor device’s MCU (2048 kB). Note that, for
the Addition configurations, the number of generated coupons is extremely high
and therefore only added to the table for storage capacity (1) and (2).

Table 4.5: The amount of coupons that can be used for consecutive generation of
signatures. It is calculated by subtracting the available space by the respective
implementation size and using the remaining free space for coupon storage.

Amount of usable coupons
Storage (kB) basic e ec ei eic
Schnorr

Basic
114 86 55 56 80 77
128 230 199 271 289 477
2048 20024 19993 29810 28946 55334

Addition
114 2.1E+06 1.0E+00 0 0 0
128 4.7E+49 4.5E+43 4.9E+55 8.2E+62 2.2E+102

Signcryption
Basic

119 49 43 48 53 69
128 105 99 140 122 201
2048 11957 11950 19732 14667 28437

Addition
119 2.6E+02 2.6E+02 0 5.1E+02 0
128 9.2E+18 9.2E+18 9.7E+24 1.5E+23 1.7E+35

The basic configurations express as expected a linear relationship between the
amount of coupons that can be stored and the available storage. On the other
hand, the amount of coupons for the addition configurations grow exponentially,
because, 2n coupons can be formed for n coupons. The compression techniques
display a similar behaviour. These techniques have an exponential impact on
the Addition configurations but only a linear impact on the Basic configurations.

62 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

4.5.2 Performance results

The performance measurements are split into four paragraphs. The first three
involve the coupon initialisation or generation using the proposed storage
methods, and the final paragraph concerns the timing results of the signature
generation assuming that a set of coupons are available.

Coupon initialisation for compression techniques without coupon addition
This paragraph discusses the results of the precomputation-based imple-
mentations that do not use coupon addition and are referred to as Basic
implementations up to now. First, the performance results of the Schnorr
coupon initialisation are discussed for each of the selected storage method
combinations and displayed in Figure 4.3. The results are split into two graphs
with different scales because of the large timing differences. Point compression (c)
is notably more compute-intensive than the other storage methods. It requires
about 29 ms to decompress one EC point. This is vastly more than the timing
results of the encrypted storage and index compression (i) methods. Memory
encryption (e) adds an overhead of about 0.5 ms and index compression around
0.1 ms.

0

0.2

0.4

0.6

0.8

1

schnorr e ei

T
im

e
 (

m
s

)

[0.13; 0.14]

[0.67; 0.68]

[0.77; 0.77]

29

29.2

29.4

29.6

29.8

30

ec eic

[29.35; 29.36]

[29.54; 29.54]

Figure 4.3: Performance results of the Schnorr coupon initialisation of the
Coupon implementation using the different storage methods without coupon
addition.

RESULTS 63

Secondly, the signcryption-based configurations are evaluated, as shown in
Figure 4.4. These results are similar to the Schnorr-based configurations
except for the point compression (c) method. The performance of the point
compression method is halved because two EC points instead of one need to
be decompressed. It requires about 57 ms to calculate two EC points for a
signcryption coupon. Memory encryption (e) and index compression (i) require
respectively around 0.6 ms and 0.1 ms. Furthermore, the decryption time is
slightly higher for Schnorr than for signcryption; this is probably due to the
fact that the signcryption coupon is larger than the Schnorr coupon.

0

0.5

1

1.5

2

signcryption e ei

T
im

e
 (

m
s

)

[0.14; 0.15]

[0.86; 0.87]

[0.97; 0.98]

57

57.5

58

58.5

59

ec eic

[57.90; 57.91]

[58.22; 58.22]

Figure 4.4: Performance results of the signcryption coupon initialisation of the
Coupon implementation using the different storage methods without coupon
addition.

Coupon initialisation for coupon addition This paragraph concerns the
performance implication of the coupon addition method; these implementations
are referred to as Addition configurations. The results largely depend on the
coupon combination that is chosen and are therefore expressed as such. The
amount of coupon additions performed in the coupon combination is determined
by the Hamming weight of the counter value in binary format. A coupon
addition must be performed for each additional coupon in the combination. The
graph in this paragraph is, therefore, expressed as a function of the Hamming
weight (amount of coupon additions) of the combinations, shown in Figure 4.5.

64 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7

Ti
m

e
(m

s)

Amount of coupon additions

schnorr

schnorr_e

schnorr_ec

schnorr_ei

schnorr_eic

signcryption

signcryption_e

signcryption_ec

signcryption_ei

signcryption_eic

Figure 4.5: Performance results of Schnorr and signcryption coupon initialisation
as a function of the amount of coupon additions.

The timing results of the signcryption-based configurations are nearly twice
as slow as the Schnorr-based configurations. This is because the signcryption
coupon requires two point additions instead of one. Furthermore, memory
encryption (e) and index compression (i) have a negligible effect on the
performance of the coupon additions. Point compression (c), on the other
hand, is more compute-intensive and almost doubles the timing results. The
amount of coupon additions expresses a similar linear behaviour, since, each
coupon addition requires a fixed amount of time.

Coupon generation using the comb method The results of the coupon
initialisation methods using the Window implementation based on the Schnorr
scheme are shown in Figure 4.6. Two sets of measurements were performed:
the window initialisation (Initialisation) and the Coupon initialisation (Point
multiplication). The initialisation of the window by the health sensor was added
to evaluate the potential performance impact. This window/multiples of the
base point, however, could also be stored in the device like it is done in the
Coupon implementation. The window size can be configured from a size of
w = 2 till w = 8. As seen in the graph, a larger size would not be beneficial
for the performance. In terms of timing results, the performance of the coupon
initialisation can be increased by increasing the window size. However, the
performance gain decreases proportional with the size of the window. Moreover,
in the Mbed TLS library, the window size is automatically configured to w = 5,

RESULTS 65

which could be considered an optimal point. In short, a point multiplication
requires at minimum 230 ms of computation. On the other hand, the time
required to initialise the window increases exponentially, and, it intersects with
the coupon initialisation line at about w = 3.

0 1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

Window size (w)

Ti
m

e
(m

s)

Initialisation Point multiplication

Figure 4.6: Performance results of the Schnorr implementation using the comb
method.

Signature generation The last timing results are compiled from the signature
generation step, displayed in Figure 4.7. These results are independent from
the storage methods, since, a fully initialised coupon is always used to generate
a signature. The Schnorr and signcryption signatures require about 2.6 and
3.5 ms, respectively. The signcryption results are slower because of the additional
encryption step.

4.5.3 Memory results

The memory results of all implementations are presented in Figure 4.8. The
memory results were compiled via the analysis of the static (stack) and
dynamic (heap) memory. The stack is represented by the amount of data
that is reserved for statically allocated data. The memory required by Mbed OS
has been subtracted. All implementations express a similar memory usage of
about 3 kB of heap and 270 B or 9 kB of stack, depending on if the AES algorithm
is used. The tables of the AES algorithm are stored in memory, however, the
Mbed TLS library can also be configured to store these tables in storage. In
comparison to the coupon implementation, the Window implementation requires

66 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

2

2.5

3

3.5

4

schnorr signcryption

T
im

e
 (

m
s

) [2.56; 2.58]

[3.45; 3.46]

Figure 4.7: Performance results of Schnorr and signcryption signature generation
using their respective initialised coupon.

more heap memory depending on the window size. It requires about 1.7 times
more heap memory if we consider a window size of w = 5.

0

2

4

6

8

10

12

14

16

M
em

o
ry

 (
kB

)

heap stack

Figure 4.8: Memory usage of the Schnorr and signcryption scheme using the
different optimisations (e: memory encryption, c: point compression, i: index
compression, a: coupon addition, w: window width).

RESULTS 67

4.5.4 Energy results

The computation and the communication energy consumption of the implemen-
tations are estimated using an analytical approach, shown in Figure 4.9. In
terms of communication, we consider only the size of the signature. The energy
results are calculated using the performance results and the power consumption
parameters available in the datasheets of the MAX3260 MCU and the EM9301
network interface chip.

0

0.05

0.1

0.15

0.2

0.25

En
er

gy
 (

m
J)

Communication

Computation

Total energy

Figure 4.9: Energy usage of the Schnorr and signcryption scheme using the
different optimisations (e: memory encryption, c: point compression, i: index
compression, a: coupon addition). A signature generation with one coupon
addition is used to represent the addition optimisation.

The results show that the energy cost of the communication and the computation
are similar when no optimisation techniques are used. They take up respectively
about 60% and 40% of the total energy. Furthermore, the memory encryption
and index compression do not have a large impact on the energy results, while,
the point compression and coupon addition require much more computation
power. They require respectively about 10 and 12 times more energy. However,
the generation of a coupon using the comb method (w = 5) requires around
0.9 mJ which is about 4 to 112 times more than the energy cost of a coupon
initialisation using the coupon optimisations.

68 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

4.6 Discussion

A challenge of the coupon based signature generation is the amount of
precomputed coupons that can be used. It is analysed using the storage
results. Using the measured results and the compiled equations, the amount
of usable coupons, i.e. the coupons that can be used to generate a signature,
were calculated. In this regard, the point compression and index compression
expressed a linear impact, while, the coupon addition showed a exponential
impact. In terms of static storage, index compression requires a negligible
overhead, and, point compression and coupon addition use respectively about
2 kB and 7 kB of code. The memory encryption technique requires respectively
about 3 kB and 1 kB of code for the Schnorr and signcryption scheme.

Two different sets of timing results are examined: coupon initialisation and
signature generation. For the coupon initialisation, three different sets of
configurations are analysed. The first is the Basic configuration, which does
not include the coupon addition technique. Memory encryption and index
compression have a relatively small impact, up to 1 ms, while point compression
requires a considerable amount of computation, 29 ms and 58 ms for Schnorr and
signcryption, respectively. The second configuration uses the coupon addition.
This method also requires a considerable amount of computation for each
addition, about 35 ms for the Schnorr coupon and 70 ms for the signcryption
coupon. The amount of additions depends on the combination of coupons chosen
via the active bits in the counter value. Thus, the total amount of time required
scales proportionally with the Hamming weight of the counter value. The
third configuration is about the comb method. The performance of the point
multiplication for generating a coupon can be enhanced up to a window size of
w = 7, resulting in around 230 ms for generating a coupon. In comparison to
the comb method, the proposed techniques have a lower performance impact on
the initialisation of the coupon, except for those with a higher number of coupon
additions. Nevertheless, this can be avoided by using only smaller combinations,
i.e. combinations with a limited amount of coupon additions. The last set of
timing results is provided for the signature generation process. The Schnorr-
and signcryption-based configurations take about 2.5 and 3.5 ms, respectively.
Only the impact of memory encryption and index compression are relatively
small in comparison to the signature generation process. Point compression
and coupon addition on the other hand require much more computation time.

The different proposed techniques do not have a large impact on the memory
results. About 3 kB of heap and 270 B or 9 kB of stack is required. If the
AES algorithm is used, the implementation requires an additional 8 kB of stack
memory to store its tables. In comparison to the Coupon implementation, the
Window implementation requires around 1.7 times more heap memory if a

CONCLUSION 69

window size of w = 5 is assumed.

The energy results are based on the performance results, and, both the
computation and communication energy cost are estimated. Note that the
optimisation techniques only have an impact on the computation, because, only
the signature size of the Schnorr and signcryption scheme have an influence
on the communication. The computation and communication energy cost
are similar and take up respectively about 60% and 40% of the total energy
if no optimisation techniques are used. The memory encryption and index
compression do not have a large impact on the computation energy consumption,
while, point compression and coupon addition require respectively around 10
and 12 times more energy. In comparison to the Window implementation, the
coupon optimisations require about 4 to 112 times less energy.

In summary, the results show that all proposed optimisations should be used
to maximise the available coupons. Though, the use of point compression in
low latency and energy-efficient applications is less useful. The reason is that
this technique shows a similar performance impact than the coupon addition
optimisation, while, it has a far lower impact on the available coupons. However,
the coupon addition optimisation does not scale well in larger combinations of
coupons in terms of performance and energy cost.

4.7 Conclusion

A total of six techniques to enhance the practical usage of Schnorr-based
signature and signcryption schemes are evaluated. The evaluation of these
methods is done on two different implementations, which we call the Coupon and
the Window implementation. The Coupon implementation uses the technique
described by Winderickx et al. [123] for the precomputation of coupons, and,
it implements both the Schnorr and signcryption scheme. Moreover, it can
be configured to a selection of the following five techniques: coupon encoding,
memory encryption, point compression, index compression, and coupon addition.
In this implementation, the coupon encoding technique is always used for storing
the coupons to facilitate the coupon processing. The other methods are evaluated
in predefined combinations. The combinations are divided in two configuration
sets: with (Addition) and without (Basic) coupon addition. The following five
technique combinations are used: (1) no optimisation, (2) memory encryption,
(3+4) memory encryption and either index compression or point compression,
and (5) all of them combined. The Window implementation on the other
hand is used to evaluate the comb method which enhances the performance of
EC point multiplication. Only the Schnorr-based scheme is tested using this

70 TRADE-OFFS BETWEEN STORAGE AND COMPUTATION FOR EMBEDDED DIGITAL
SIGNATURES AND SIGNCRYPTION SCHEMES

method. Nevertheless, the implementation size of the signcryption-based version
is estimated. All tests are performed on the MAXREFDES100# health sensor
device. For both implementations, four parameters are examined: storage,
performance, memory, and energy.

The results show that all proposed techniques enhance the practical usage of
the Schnorr and signcryption scheme. The most promising technique is coupon
addition, where combinations of coupons can be used to exponentially increase
the amount of usable coupons. Though, it does not scale well in terms of
performance. On the other hand, point compression has a similar impact in
terms of performance and energy as coupon addition, but, it only provides
a linear impact in terms of usable coupons that can be stored. Next, index
compression expresses a negligible overhead for all measured parameters. The
use of memory encryption technique should be mandatory as it secures the
coupons stored on the devices. Moreover, it had a small impact in terms of
performance and energy results. In terms of storage and memory, the memory
encryption adds up to 3 kB of code if an AES implementation is not already
present, and about 8 kB of memory usage if the AES tables are stored in
memory. Overall, the impact of all the proposed techniques have a smaller
impact in terms of storage, memory, performance, and energy in comparison to
the reference point multiplication optimisation (comb method).

Chapter 5

In-depth energy analysis of
secure IoT computation and
communication

This chapter provides an in-depth analysis of the complete energy cost, i.e. the
computation and communication aspect, of security protocols deployed over
a wireless communication link. The energy consumption was estimated using
a granular approach. Furthermore, an equation is given that calculates the
minimal time period of a secure communication session in order to minimise the
energy impact of the session’s setup phase and thus minimise the overall average
power consumption. First, the scientific contribution of this chapter is described
in Section 5.1. Next, related work is discussed in Section 5.2. In Section 5.3, the
granular approach to evaluate the energy cost of the security computation and
communication is described. Then, the results of the basic operations that are
required for the granular approach are presented in Section 5.4. The energy costs
of providing an end-to-end secure communication channel, on the one hand, and
digital signatures, on the other hand, are evaluated in respectively Section 5.5
and Section 5.6. Next, our approach to calculate the minimal session lifetime is
presented in Section 5.7. Finally, the chapter is concluded in Section 5.8.

71

72 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

5.1 Introduction

In order to quantify the impact of security provisions in IoT devices, this chapter
concentrates on the energy consumption of security algorithms and protocols for
end-to-end security and digital signatures. We divide the energy cost of a device
into three parts: communication, application and security. The communication
cost involves the transport of packets from the IoT device to the remote end
user and vice versa. The application cost involves the operation of sensors and
related data processing algorithms. Finally, the security cost consists of the
execution of security algorithms to provide confidentiality and authentication.
While the application cost is specific to the use case, the communication and
security cost can be generalised. A lot of research has, therefore, gone into the
evaluation of one of these two costs. However, security and communication costs
are tightly intertwined. Security is required to protect wireless communication,
but communication is required to enable security. In this chapter, we explore
both the communication and computation cost of providing and using an end-to-
end secured communication channel in an IoT setting using a granular approach.
It is not the intention of this chapter to provide accurate energy measurement
results. Rather, the focus is on estimating the relative impact of end-to-end
security on the total energy consumption of the application.

A security session typically contains a setup and a runtime phase. During
the setup, entities can be authenticated, and, shared cryptographic material
is established. This is used during the runtime phase to encrypt and/or
authenticate the data. However, the runtime phase has a finite lifetime. After
this period, a new session must be established. The longer a session is maintained,
the higher the risk of the security session getting compromised. The most basic
method to determine the maximum duration of a session is to calculate the
maximum amount of data that can be encrypted by an encryption key. Another
method is to estimate the risk of a successful side-channel attack in order to
define the maximum lifetime of a session based on the number of traces an
attacker can collect. The number of side-channel traces measured with the same
key is typically proportional to the chance of a successful attack. Hence, in
order prevent a successful attack, the lifetime of a session should be limited.
While these two methods put an upper bound on the session duration, in this
chapter, we introduce a lower bound on the session lifetime in order to minimise
the impact of the setup phase on the overall energy consumption. This way,
the lower and upper bound of the session duration is defined and a trade-off
between the average power consumption and the side-channel resistance can be
made.

We summarise the contributions of our work as follows:

RELATED WORK 73

• We are the first to perform an in-depth analysis of both the communication
and the computation energy cost to achieve end-to-end security and digital
signatures for a broad range of IoT platforms, security algorithms and
protocols, and wireless communication standards. Three different methods
for setting up an end-to-end secured channel and five different modes of
operation for the AES algorithm are evaluated.

• We introduce the calculation of a lower bound on the duration of the
runtime phase of a security session in order to minimise the overall average
power consumption of the session. We evaluate this metric for two different
application scenarios, one with a relatively high data rate and one with a
relatively low data rate.

My contribution to the work presented in this chapter was the in-depth imple-
mentation and analysis of the computation and communication requirements of
the considered algorithms and protocols. I also proposed to evaluate the impact
of the session duration on the energy consumption.

5.2 Related Work

Research on the implementation of cryptographic algorithms on MCUs is
primarily focused on performance, memory usage and/or energy consumption [28,
58]. For example, the paper published by Ledwaba et al. [58] analyses the cost
of cryptographic software in recent end-point devices. The authors look at the
performance of the AES-CTR, SHA256 and ECDSA algorithms. A comparison
is made between the different types of ARM Cortex-M devices.

A diverse set of wireless network protocols is analysed by Sen et al. [99]. The
authors evaluate the energy consumption of the network protocols and discuss
their security strength.

Although the aforementioned comparisons are useful for practitioners and
researchers in the field, they do not give a complete view on the energy require-
ments of cryptographic protocols providing end-to-end secure communication
and digital signatures. Our work performs an in-depth and complete analysis,
taking into account the energy for cryptographic computations as well as the
energy that is necessary to transmit messages between the IoT device and the end
user. Trappe et al. [113] perform a study that is similar to ours. The authors do
measurements on the MPS430g2553 16-bit MCU and the CC1150 Multichannel
RF Transmitter. However, their work is limited to an experiment that transmits
5 B of data, without taking into account the setup/handshake phase that needs
to be executed at the start of each communication session. In our work, we

74 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

evaluate the energy consumption of three different implementation platforms,
three different wireless communication standards, and several algorithms for
both the setup and the runtime phase of a secure communication session. In
addition, we analyse digital signatures. We use these results to determine a
lower bound on the session duration for two different application scenarios, one
in which 33 kB is transmitted every 10 seconds (wearable healthcare device)
and one in which 224 B is transmitted every half an hour (weather station).

5.3 Our approach

The computation and communication energy cost of algorithms and protocols
that are required to provide end-to-end security and digital signatures are
analysed using a granular approach. This means that basic operations will be
identified for each considered algorithm. The total energy cost of an algorithm
is, then, equal to the sum of the energy costs of the required basic operations.

The computation energy cost (Ecomp) of the basic operations is based on their
execution time (t), expressed in number of cycles, in accordance to Equation (5.1).
The power (Pcomp) characteristics are determined using the values available in
the data sheet of the device, which present the average power consumption per
cycle.

Ecomp(t) = Pcomp × t (5.1)

The communication energy cost (ET X/RX) of the cryptographic protocols is
based on the size of the basic messages that need to be communicated. Via the
throughput (Th) and power consumption (PT X/RX) of the wireless network,
the energy required to send these basic messages of size (M) can be determined
via Equation (5.2).

ET X/RX(M) =
PT X/RX

Th
×M (5.2)

Only considering the basic elements and the featured electrical parameters of the
computation and communication provides only a rough energy cost estimation.
Note that it should provide sufficient accuracy, as the goal is to estimate
the relative impact of end-to-end security in terms of communication and
computation. Though, other contributing factors like wireless interference and
etc. might negatively impact the energy cost of the communication. Thus, we
assume that more accurate estimations will have a small impact on the relative

OUR APPROACH 75

share between the computational and the communicational energy cost. Next,
The different computation platforms and communication standards are first
discussed separately, as a MCU should not be limited to a certain communication
standard. After the description, we only consider the combinations that are
available according to the used platforms in our results, so that the amount of
results are manageable.

5.3.1 Evaluation platforms

The performance of the basic operations is measured on three different
microcontroller platforms. These platforms are chosen to cover a range of
different sizes of flash program memory, data memory, and operating frequency.
They are described below and more detailed specifications are given in Table 5.1.
The table also indicates the Pcomp value for each platform, which is necessary
for the calculation of the computation energy cost according to Equation (5.1).

nuc The NUCLEO-L073RZ is a STM32 Nucleo-64 Development Board of
STMicroelectronics [105]. It features the STM32L073RZT6 32 MHz ARM
Cortex-M0+ microcontroller with 192 KB flash memory and 20 KB RAM.

msp The TI SimpleLink MSP-EXP432P401R LaunchPad development kit [110]
features the MSP432P401R 48 MHz ARM Cortex-M4F microcontroller
with 256 KB flash and 64 KB RAM.

max The MAXREFDES#100 health sensor platform [66] uses the MAX32620
96 MHz ARM Cortex-M4F microcontroller with 2 MB flash and 256 KB
RAM. It has a wide range of sensors, like a human body temperature
sensor and a heart rate sensor.

Table 5.1: Technical specifications of the considered evaluation platforms.

max msp nuc
MCU MAX32620 MSP432P401R STM32L073RZT6

Frequency (MHz) 96 48 32
Flash (KB) 2000 256 192
RAM (KB) 256 64 20
Voltage (V) 1.2 3 3

Current (mA) 9.79 7.70 6.65
Power (mW) - Pcomp 19.95 23.10 11.75

76 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

5.3.2 Wireless networks

IoT applications can require a wireless communication range of meters to
kilometres. To cover both short-range and long-range applications, we consider
the following three protocols:

• Bluetooth Low Energy (BLE),

• Wi-Fi,

• Long Range Wide Area Network (LoRaWAN).

The characteristics of LoRaWAN are provided for two configurations: slowest
mode (SF 12) and fastest mode (SF 7). The specifications for all protocols are
given in Table 5.2. All parameters except for the throughput of the BLE network
and the energy efficiency are collected from the data sheets of the RF chip that
is used to enable the respective communication protocol. Moreover, the values
used are primarily from the data sheets’ features section. To use the LoRaWAN
network, the nuc platform is expanded with a Semtech SX1272MB2xAS LoRa
extension board [98]. Wi-Fi is provided to the msp platform by using the
SimpleLink Wi-Fi CC3120 wireless network processor BoosterPack plug-in
module. Finally, a BLE compatible RF chip is already present on the max
platform. It uses the EM9301 BLE controller [35] that supports BLE version 4.1.

The speed at which a wireless network can communicate symbols is not the
same as the speed at which data can be sent. The difference is in the overhead
of the network protocols in the data link layer. In order to perform an accurate
analysis, the actual throughput may have to be calculated. Only the data sheet
of the BLE chip does not report on the throughput metric. The LoRa bit rate
could also be calculated using the Shannon-Hartley theorem [20]. Additionally,
the application needs to take the Fair Policy Access, which limits the amount
of data an application is allowed to send [112], into account in a practical
LoRa setting. The throughput of the BLE network is calculated using the
specifications of the Data link and Physical layer. In BLE version 4.1 [10],
a typical message has 14 B of headers and a maximum payload size of 27 B.
Furthermore, there is an inter-frame space of 150 µs, i.e. the required interval
between two consecutive packets. Taking this into account, the parameters that
are necessary to compute the communication energy cost in Equation (5.2) are
indicated in Table 5.2.

OUR APPROACH 77

Table 5.2: Technical specifications of the considered wireless protocols.

BLE Wi-Fi LoRA LoRA
(4.1) (SF 12) (SF 7)

Electrical characteristics
Evaluation platform max msp nuc nuc

RF chip EM9301 CC3120 SX1272 SX1272
Bandwidth (MHz) 1 20 0.125 0.25
Symbol rate (kbps) 1000 54000 0.366 13.7

Throughput (kbps) - Th 305 16000 0.293 10.94
Range (km) 0.1 0.25 14 2
Voltage (V) 2.5 3.6 3.3 3.3

TX
Current (mA) 12 59 28 28

Power (mW) - PT X 30 212.4 92.4 92.4
Energy efficiency (µJ/B) 0.79 0.11 2523 67.58- 8PT X/Th
RX

Current (mA) 13 229 11.2 11.2
Power (mW) - PRX 32.5 824 37.0 37.0

Energy efficiency (µJ/B) 0.852 0.412 1009.3 27.034- 8PRX/Th
Idle

Current (mA) 0.009 0.690 1.4 1.4
Power (mW) 0.023 2.484 4.62 4.62

5.3.3 Computation

In terms of public-key algorithms, only those based on Elliptic Curve
Cryptography (ECC) are considered. These algorithms can be divided into
the elliptic curve (EC) arithmetic operations that are used. The following four
operations are considered: point addition (PA), point doubling (PD), point
multiplication (PM), and fixed-point multiplication (PMG). A distinction is
made between a random point multiplication and a fixed-point multiplication,
because, the comb method optimisation can be used for the fixed-point
multiplication. This optimisation requires the pre-calculation of a set of EC
points to increase the performance of the multiplication process, but, it is only
efficient if a point is used multiple times. This is typically the case for the base
point (G) of the chosen elliptic curve.

Hash functions and symmetric-key ciphers typically have a much higher
performance than public-key based algorithms. For this reason, these algorithms

78 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

were not divided into basic operations but are considered basic operations
themselves. The following hash functions are considered: SHA256 and SHA3-
256. For the symmetric-key ciphers, AES is used in the following five modes
of operation: Electronic Codebook (ECB), Cipher Block Chaining (CBC),
Counter (CTR), Counter with CBC-MAC (CCM), and Galois/Counter
Mode (GCM). A key size of 128 bits is used for the AES algorithm.

The performance of all identified basic operations is measured on the three
platforms. 50 time measurements are done for each basic operation using the
platforms’ available timer. Moreover, the AES cipher operation is an encryption
on 256 Bytes of data. We have chosen a multiple of the AES block size, because,
longer time periods ensure less influence of potential timing inaccuracies like
an early start and late end. For the hash function, the maximum input size of
the respective algorithm for one round is chosen as follows: 55 B for SHA256
and 135 B for SHA3-256. The total available internal state size is not used for
SHA256 and SHA3-256, as we take into account the minimal padding or suffix
that is required for the last block of input data. Note that the most optimal
scenario, i.e. the maximum amount of input data to fill up the internal state
completely, is used for each of the operations. Bar charts with error bars and
the 95% percentile are used to represent the results and the spread. The energy
cost is calculated using Equation (5.1). Additionally, the energy results of the
AES ciphers and hash algorithms are divided by their message input size to
calculate the energy required per byte.

All basic operations are implemented using software libraries and cross-
compiled with the GNU Tools for ARM Embedded Processors version 6-2017-
q2-update. Furthermore, the compiler is configured to optimise for size (-Os).
The RELIC-toolkit library [2] is used to implement the EC arithmetic and
the SHA256 hash function. We use the SECG K-256 prime elliptic curve,
“BASIC;COMBA;COMBA;MONTY;MONTY;SLIDE” configuration for the
prime field arithmetic, and “PROJC;LWNAF;COMBS;INTER” configuration
for the prime elliptic curve arithmetic. For more information on how to configure
RELIC and other examples that use it, we refer to the wiki [2] and to an
example [47]. The AES ciphers are implemented using Mbed TLS [4] and SHA3
using wolfCrypt [127]. We use the SHA3-256 hash function as specified in FIPS
PUB 202 [34].

5.3.4 Communication

Public-key based algorithms typically need to communicate a selection of the
following four basic objects: an EC point, a signature, a random number, and/or
a certificate. The curve we use throughout the chapter is SECG K-256. For

ENERGY RESULTS FOR THE BASIC OPERATIONS 79

this curve, an uncompressed point can be compiled in 65 Bytes using the SEC1
encoding. The size of a signature depends on the algorithm used, e.g. the
ECDSA scheme produces a 64-Byte signature. A typical random number uses
32 Bytes. Finally, the size of a certificate depends on the type. For example,
a SECG K-256 based X.509 certificate requires 544 Bytes. This value was
measured by generating a basic certificate using the OpenSSL command line
interface.

5.4 Energy Results for the Basic Operations

The energy cost of the elliptic curve arithmetic is presented in Figure 5.1. The
use of the comb method for the fixed point multiplication explains the enhanced
performance in comparison to the general point multiplication. Furthermore, the
addition and doubling operations pale in comparison to the point multiplication.

PA PD PM PMG
0

2,000

4,000

6,000

8,000

10,000

12,000

En
er

gy
 (µ

J)

[33.7;34.0]
[137.7;138.6]

[266.7;268.0]
[34.1;34.4]

[139.8;140.8]
[273.2;274.7]

[840.3;847.6]

[3534.3;3561.6]

[12497.0;12601.2]

[465.3;471.6]

[1942.1;1967.4]

[7153.7;7251.1]

Energy usage of EC arithmetic on constrained platforms
max
msp
nuc

Figure 5.1: Energy cost of elliptic curve arithmetic on the three considered
platforms (PA: point addition, PD: point doubling, PM: point multiplication,
PMG: fixed-Point multiplication).

The results of the SHA256 and SHA3-256 hash function are presented in
Figure 5.2. Note the different scale on the vertical axis. In terms of energy
per byte, SHA256 is about 40% more energy efficient than SHA3. In terms of

80 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

performance, one round of SHA3 is much slower than one round of SHA256,
but, it can input more bytes per round. SHA256 can input 55 B while SHA3
can handle 135 B of data. On the max platform, one round takes around 108 µs
and 438 µs for respectively SHA256 and SHA3. The advantage of SHA3 is the
strong security rationale behind it. We refer to Chapter 2 for more information.

SHA256 SHA3
0

20

40

60

80

100

120

140

160

En
er

gy
 p

er
 b

yt
e

(n
J/B

)

[23.1;23.1]

[74.8;74.8]

[137.9;138.2]

[38.1;38.1]

[126.6;126.6]

[162.9;163.0]

Energy usage of Hash algorithms on constrained platforms
max
msp
nuc

Figure 5.2: Energy cost per byte of the SHA256 and SHA3-256 hash functions
on the three considered platforms.

The results of the AES cipher and operation modes are shown in Figure 5.3.
The simplest block cipher mode, ECB, is, as expected, the most efficient with
about 21 nJ/B and 77 nJ/B for respectively the max and nuc platform. The
CBC and CTR mode express similar but slightly higher energy costs. The
AEAD cipher modes, GCM and CCM, require about double the energy per byte
in comparison to the basic modes. This can be attributed to the authentication
operation that is additionally provided.

5.5 Energy Results for End-to-end Security

A secure communication channel is the channel used between two parties (client
and server) to provide end-to-end security guarantees as shown in Figure 5.4.
Throughout this section, the constrained device is used as the server and a

ENERGY RESULTS FOR END-TO-END SECURITY 81

AES ECB AES CBC AES CTR AES GCM AES CCM
0

50

100

150

200

En
er

gy
 p

er
 b

yt
e

(n
J/B

)

[20.8;20.8]

[42.0;42.0]

[77.1;77.1]

[22.2;22.2]

[47.8;47.8]

[88.6;88.7]

[22.5;22.5]

[49.6;49.6]

[95.6;95.7]

[50.0;50.1]

[142.3;142.3]

[197.9;198.0]

[53.9;54.0]

[130.7;130.7]

[214.4;214.5]

Energy usage of AES block cipher modes on constrained platforms
max
msp
nuc

Figure 5.3: Energy cost per byte of AES with modes of operation on the three
considered platforms.

remote party as a client. Two methods of providing security are considered in
this chapter: via encryption and via signatures. More details on encryption,
signatures, and end-to-end security can be found in Chapter 2.

NETWORK

Client

Gateway

Link

End-to-end

Server

Gateway

Link

Figure 5.4: Schematic representation of an end-to-end secured connection.

For applications that use encryption for end-to-end security, three methods of
establishing a shared key are analysed in this chapter: pre-shared key (PSK),
pre-shared public key (PSPK), and pre-shared trusted third party public

82 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

key (PSTTPPK). PSK implies that a shared encryption key is already present
on both communicating entities. This is typically done via an out-of-band
method. Authentication of the entities is, then, implicitly assumed through the
use of this shared key. PSPK means that the public key of the remote party
is pre-configured, which is also done via an out-of-band method. This ensures
that the authentication does not rely on a shared secret but on the use of the
public key and the corresponding private key. However, both the PSK and the
PSPK methods have one important drawback. The keys are pre-configured, and
therefore, the keys must be managed internally. An update may be required
due to, e.g., the shared key being compromised. The management of these keys
must be done manually or e.g. using a custom implementation on a local server.
For this reason, a Trusted Third Party (TTP) is typically used. When using
PSTTPPK, the TTP generates, for example, a certificate to link a public key
to an entity. Then, other entities can, via the public key of the TTP, verify the
certificate and thus the link between the public key and the entity. Thus, as
long as the TTP is not compromised, entities can verify the authenticity of one
another.

Securing a channel via encryption can typically be divided into two phases: a
setup phase (session setup), and a runtime phase (session runtime). For example,
the TLS protocol version 1.2 [87] uses a similar approach. During the session
setup phase, a session encryption key is generated and both communicating
parties are authenticated. This session key is, then, used by the symmetric-key
algorithm to encrypt the communication between the two entities.

5.5.1 Session setup

The PSK method uses two random values padded to the PSK as input to a key
derivation function (KDF) to generate a session encryption key. The PSK is not
used as a session key such that the system cannot be compromised by attacking
the session key. First, both the client and server generate and communicate
to each other their random value. The random value is generated using the
Hash-based Deterministic Random Bit Generator (Hash-DRBG). It is also a
source of randomness recommended by NIST [8]. Then, a session encryption key
is derived. The Hash-based Key Derivation Function (HKDF) is used as KDF.

While using public-key authentication, the session encryption key is often
generated using the Diffie-Hellman (DH) technique. It is a public-key scheme
that can create a shared secret over an unsecured channel. In the PSPK
method, the Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) is used in this
chapter. For this scheme, both entities generate a new set of public and private
keys (ephemeral keys) and send each other the public key. Via the DH scheme,

ENERGY RESULTS FOR END-TO-END SECURITY 83

a shared secret is generated. To ensure the entity authentication of both the
client and server, it is assumed that the ephemeral public keys are signed using
the entity’s respective public key. Both parties now have a shared secret, but,
it is not used as the session encryption key for the same reason as in the PSK
method. Thus, random numbers need to be generated and exchanged, and, a
session key is derived using the key derivation function. The Hash-DRBG and
HKDF algorithm are also used for this purpose in this method.

The PSTTPPK method is similar to the PSPK method with the exception
that the public keys of the communicating entities are exchanged to each other
and validated using the TTP’s public key. Thus, during the setup phase, both
entities send each other their certificate. This certificate is signed by the TTP.
In this chapter, the use of X.509 certificates is assumed. Then, each entity
validates the certificate by checking the signature. The remainder of the setup
phase is the same as the setup of the PSPK method.

The granular approach to estimate the computation energy cost of the previously
mentioned algorithms is presented in Table 5.3. Only the most computation-
intensive operations are considered, similar to the approach of Saeed et al. [91].
Furthermore, specific optimisations to these algorithms, like Shamir’s trick used
in ECDSA, are not factored in. Next, the computation energy cost of the three
session setup methods is presented in Table 5.4.

Table 5.3: The computation cost of the considered algorithms divided into basic
operations (H: hash function on a Message (M), PMG: fixed-Point multiplication,
PM: point multiplication, and PA: point addition).

Algorithm Computation cost
Hash DRBG (R) 4|H(M)|

HKDF (KDF) 8|H(M)|
ECDSA - sign |H(M)|+ |R|+ |PMG|

ECDSA - verify |H(M)|+ |PMG|+ |PM |+ |PA|
ECDHE |R|+ |PMG|+ |PM |+ |KDF |

Table 5.4: The computation cost of the considered session setup methods
(R: Hash DRBG, KDF: HKDF, DHE: ECDHE, and DSA: ECDSA).

Session setup Computation cost
PSK |R|+ |KDF|

PSPK |R|+ |DHE|+ |DSA-sign|+ |DSA-verify|+ |KDF|
PSTTPPK |R|+ |DHE|+ |DSA-sign|+ 2|DSA-verify|+ |KDF|

84 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

The communication energy cost is estimated for the three session setup methods
and the results are presented in Table 5.5. Only the communication of basic
objects is assumed. This is in contrast to the TLS protocol, where a lot of
overhead messages are required to first agree upon a cipher suite etc.

Table 5.5: The communication cost of the considered session setup methods
(C: certificate, R: random value, Y: elliptic curve point, and S: signature).

Communication
Session setup Input Output

PSK |R| |R|
PSPK |R|+ |Y |+ |S| |R|+ |Y |+ |S|

PSTTPPK |R|+ |C|+ |Y |+ |S| |R|+ |C|+ |Y |+ |S|

The total energy cost of the three session setup methods are calculated using the
granular approach. First, the communication and computation energy cost are
separately presented in Figure 5.5. Next, three combinations of the tested MCUs
and wireless networks are made: nuc + LoRa (SF7), msp + Wi-Fi, and max +
BLE (4.1). Only the best-case scenario for LoRa (SF7) is taken into account.
The total energy consumption and the relative share of the computation and
the communication are presented in Table 5.6.

0.10

1.00

10.00

100.00

1000.00

10000.00

E C D H _ E C D S A _ S H A 2 5 6 E C D H E _ E C D S A _ S H A 2 5 6 E C D S A _ S H A 2 5 6

En
er

gy
 (

m
J)

Session setup energy consumption

BLE (4.1) WiFi LoRa (SF 12) LoRa (SF 7) nuc msp max

Figure 5.5: Energy consumption of the three configurations for the wireless
networks and MCUs separately.

The PSK method requires the least amount of energy, and, the communication
energy cost outweighs the computation cost for the nuc and max platforms,
but not for the msp platform. The reason is that Wi-Fi has a higher energy
efficiency than BLE and LoRa. For the PSPK and PSTTPPK method, the

ENERGY RESULTS FOR END-TO-END SECURITY 85

computation energy cost has a much larger impact than the communication
energy cost. However, the LoRa network, which is more energy efficient, suffers
more from sending e.g. the certificate. For the PSTTPPK method on the nuc
platform, the energy cost is almost equally divided over the computation and
communication energy cost. Note that the results are a rough estimation and
they are probably lower than the actual energy consumption. We have only
taken into account the best case scenario e.g. perfect wireless conditions, no
header overhead, etc. However, these rough estimations are sufficient to show
trends and compare different approaches.

Table 5.6: The total energy consumption and the relative share of the
computation and communication energy cost for the three considered session
setup methods and the three MCU and platform combinations.

Configuration PSK PSPK PSTTPPK
nuc + LoRa (SF7)

Total (µJ) 3119 62345 133845
Comp (%) 2.9% 75.6% 50.2%
Comm (%) 97.1% 24.4% 49.8%

msp + WiFi
Total (µJ) 66 13257 19185
Comp (%) 74.8% 99.4% 98.1%
Comm (%) 25.2% 0.6% 1.9%

max + BLE (4.1)
Total (µJ) 68 3414 5654
Comp (%) 22.3% 92.3% 79.6%
Comm (%) 77.7% 7.7% 20.4%

5.5.2 Session runtime

The AES algorithm is used to provide the encryption of data. In terms of
computation cost, the AES block cipher modes are considered as basic operations.
In terms of communication cost, only the AEAD block ciphers require additional
data besides the message to be sent. Thus, an authentication tag of 12 B is taken
into account. The total energy consumption and the impact of the computation
and communication are presented in Table 5.7.

The communication requires significantly more energy than the computation.
For example, the computation only takes about 2% to 6% of the total energy
cost for the max platform. However, the total energy cost is almost spread
evenly for the msp platform. The computation uses about 9% to 32% of the
total energy cost for AES ECB, CTR and CBC, while it takes about 24% to

86 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

Table 5.7: The total energy consumption and the relative share of the
computation and communication energy cost for the considered session runtime
algorithms and MCU and platform combinations. (LoRa: SF7, BLE: v4.1)

Algorithm TX (AES)
ECB CBC CTR GCM CCM

nuc+LoRa
Total (µJ/B) 67.66 67.67 67.68 67.78 67.80

Comp (%) 0.1% 0.1% 0.1% 0.3% 0.3%
Comm (%) 99.9% 99.9% 99.9% 99.7% 99.7%

msp+WiFi
Total (µJ/B) 0.15 0.15 0.16 0.25 0.24

Comp (%) 28.4% 31.0% 31.8% 57.3% 55.2%
Comm (%) 71.6% 69.0% 68.2% 42.7% 44.8%

max+BLE
Total (µJ/B) 0.81 0.81 0.81 0.84 0.84

Comp (%) 2.6% 2.7% 2.8% 6.0% 6.4%
Comm (%) 97.4% 97.3% 97.2% 94.0% 93.6%

Algorithm RX (AES)
ECB CBC CTR GCM CCM

nuc+LoRa
Total (µJ/B) 27.11 27.12 27.13 27.23 27.25

Comp (%) 0.3% 0.3% 0.4% 0.7% 0.8%
Comm (%) 99.7% 99.7% 99.6% 99.3% 99.2%

msp+WiFi
Total (µJ/B) 0.45 0.46 0.46 0.56 0.54

Comp (%) 9.3% 10.4% 10.7% 25.7% 24.1%
Comm (%) 90.7% 89.6% 89.3% 74.3% 75.9%

max+BLE
Total (µJ/B) 0.87 0.88 0.88 0.90 0.91

Comp (%) 2.4% 2.5% 2.6% 5.5% 6.0%
Comm (%) 97.6% 97.5% 97.4% 94.5% 94.0%

57% for the AEAD ciphers. For the nuc platform that uses the LoRa network,
the computation cost is almost negligible. It requires around 0.1% to 0.8% of
the total energy cost. Note that the Wi-Fi wireless communication has the best
theoretical energy efficiency of the considered wireless communication standards,
as indicated in Table 5.2. Besides providing a rough and best case estimation,
Wi-Fi has a much higher theoretical data throughput.

ENERGY RESULTS FOR DIGITAL SIGNATURES 87

5.6 Energy Results for Digital Signatures

Another method of securing data is through the use of signatures. The
following two algorithms are considered: the Schnorr signature scheme and the
signcryption scheme. More details on the Schnorr and signcryption scheme can
be found in Chapter 2. It is assumed that AES-CTR is used in the signcryption
scheme.

The computation energy cost is again estimated using the granular approach.
The required basic operations are listed in Table 5.8. In terms of communication,
both schemes produce a signature of 64 B. Also, we assume that the public keys
of both parties are pre-configured and do not require additional communication
or verification.

Table 5.8: The computation cost of the considered public-key based algorithms
divided into basic operations (H: Hash function on a Message (M), Y: elliptic
curve point, PMG: Fixed-Point Multiplication, PM: Point Multiplication,
PA: Point Addition, E: Encryption, and D: Decryption).

Algorithm Computation cost
Schnorr - sign |R|+ |PMG|+ |H(M + Y)|

Schnorr - verify |PM |+ |PMG|+ |PA|+ |H(M + Y)|
Signcryption - sign |R|+ |PMG|+ |PM |+ |H(M + 3Y)|

+|E(M)|
Signcryption - verify 2|PM |+ |PMG|+ |PA|+ |H(M + 3Y)|

+|D(M)|

The energy efficiency in function of the data packet size is presented in
Figure 5.6. It decreases with increasing message size, because, the public-
key based operations only need to be performed once per message. As a
reference, the energy efficiency of AES-GCM is added to the graph. In terms of
efficiency, it requires a message size of about 5 kB to 50 kB to reach the efficiency
of AES-GCM. However, we do not take the key establishment requirement of
symmetric-key based end-to-end security into account. Furthermore, the coupon
technique could be used to omit the required public-key based operations of both
the Schnorr and signcryption scheme as explored by Winderickx et al. [120].

5.7 Derivation of the Minimal Session Period

Section 5.5.1 shows that the computation and communication energy impact
of the session setup phase is considerable. However, the energy consumption

88 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

101 102 103 104 105

Packet size (B)

10 1

100

101

102

103

104

Av
er

ag
e

en
er

gy
 p

er
 b

yt
e

(µ
J/B

)
End-to-end security using signatures

AES GCM_nuc_LoRa (SF 7)
Schnorr_nuc_LoRa (SF 7)
Signcryption_nuc_LoRa (SF 7)
AES GCM_msp_WiFi
Schnorr_msp_WiFi
Signcryption_msp_WiFi
AES GCM_max_BLE (4.1)
Schnorr_max_BLE (4.1)
Signcryption_max_BLE (4.1)

Figure 5.6: The energy efficiency of the Schnorr signature scheme and
signcryption scheme as a function of the message size for each MCU and
wireless network combination. The energy efficiency of AES-GCM is also added
as a reference value.

impact can be minimised by looking at the big picture of providing a secured
communication channel, i.e. taking into account that a session can be divided
into a setup phase and a runtime phase. The impact can be reduced by
controlling the frequency at which the session setup phase is executed. First,
an equation for the minimum time period of a session is derived. The equation
is then applied to two IoT applications: a wearable healthcare device and a
weather station.

The total average power consumption Ptotal of a session is defined by the
average power consumption of the session runtime Pruntime and the energy cost
of the session setup Esetup divided by the time period of the session T , see
Equation (5.3).

Ptotal(T) = Esetup

T
+ Pruntime (5.3)

DERIVATION OF THE MINIMAL SESSION PERIOD 89

The average runtime power consumption (Pruntime) can be estimated using
Equation (5.4). In a practical scenario, it can also be measured. In this
equation, the transmission rate of the message, the total amount of application
data in a message and the amount of additional data are denoted by, respectively,
Rapp, Napp and Nadd. The data additionally generated by the encryption, e.g.
the MAC, is counted as additional data. Note that it is assumed that the
application only transmits data, and that the platform’s and wireless network’s
idle energy consumption are negligible. In the equation, the amount of data is
multiplied by the message transmission rate and the respective energy cost per
byte for the communication (ET X) and the computation (EAES) aspect.

Pruntime = (Napp +Nadd)RappET X +NappRappEAES (5.4)

The energy cost of the session setup is estimated using the results of Section 5.5.
In a practical setting, a separate benchmark of the entire setup phase of e.g.
the TLS protocol could be done to produce more accurate results.

As an example, we could state that the average power consumption impact of
the session setup phase should be limited to 5% of the session runtime’s average
power consumption. This would then lead to Equation (5.5).

Psetup = 0.05Pruntime (5.5)

Since Psetup = Esetup/T , the equation to calculate the minimal time period of
the session can be derived, see Equation (5.6).

Tminimal = Esetup

0.05Pruntime
(5.6)

The total average power consumption as a function of the time period of a session
is plotted in Figures 5.7 and 5.8 for the healthcare and the weather station
scenario, respectively. The wearable healthcare device transmits 33000 kB of
data every 10 seconds [119]. The weather station transmits about 224 B of data
every half hour [89]. The following three configurations of the session setup and
runtime phase are considered: PSK + AES-GCM, PSPK + AES-GCM, and
PSTTPPK + AES-GCM. Additionally, the minimal time period based on the
5% rule that we introduced as an example is calculated for all configurations.

The healthcare scenario is plotted in Figure 5.7. The nuc and LoRa combination
clearly does not fit this setting, because it takes too much energy to transmit
the high amount of data. The best fit is the Wi-Fi network combined with the
msp platform for all configurations. Furthermore, the msp platform has better

90 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

results than the max platform, because, the Wi-Fi network chip features better
energy efficiency. The minimal session period based on the 5% rule ranges from
10.1 s to 330.2 s. It is very low, because the healthcare scenario requires a lot
of energy to send its application data. Furthermore, it should be noted that
this time period is a lower bound.

101 102 103

Session period (s)

103

104

105

Av
er

ag
e

po
we

r c
on

su
m

pt
io

n
(µ

W
)

[10.1]

[14.6]

[30.8]

[185.4]

[330.2]

Healthcare scenario

PSK_nuc(LoRa (SF 7))
PSK_msp(WiFi)
PSK_max(BLE (4.1))
PSPK_nuc(LoRa (SF 7))
PSPK_msp(WiFi)
PSPK_max(BLE (4.1))
PSTTPPK_nuc(LoRa (SF 7))
PSTTPPK_msp(WiFi)
PSTTPPK_max(BLE (4.1))

Figure 5.7: Average power consumption as a function of the session’s time
period for the healthcare scenario, where the minimal time period based on the
5% rule is plotted using a black dot.

The weather station scenario is shown in Figure 5.8. Depending on the position
and range requirements of the application, all combinations are possible. The
Wi-Fi network can provide the lowest average power consumption. The LoRa
network consumes the most energy, but, it has the advantage of range over the
BLE and Wi-Fi network. In this lower data throughput scenario, the minimal
session period based on the 5% rule is considerably higher than in the healthcare
scenario. It ranges from 1.9 hours to 99 days.

CONCLUSION 91

104 105 106 107

Session period (s)

10 2

10 1

100

101

102

Av
er

ag
e

po
we

r c
on

su
m

pt
io

n
(µ

W
)

[7020]

[12339]

[41560]

[92572]

[253505]

[368844]

[778289]

[4805934]

[8561530]

Weather station scenario

PSK_nuc(LoRa (SF 7))
PSK_msp(WiFi)
PSK_max(BLE (4.1))
PSPK_nuc(LoRa (SF 7))
PSPK_msp(WiFi)
PSPK_max(BLE (4.1))
PSTTPPK_nuc(LoRa (SF 7))
PSTTPPK_msp(WiFi)
PSTTPPK_max(BLE (4.1))

Figure 5.8: Average power consumption as a function of the session’s time
period for the weather station scenario, where the minimal session period based
on the 5% rule is plotted using a black dot.

5.8 Conclusion

A granular approach was used to estimate the computation and communication
energy cost of algorithms used to provide end-to-end security on the one hand
and digital signatures on the other hand. Measurements were done on three
platforms (nuc, msp and max) using three different wireless communication
protocols (BLE, Wi-Fi and LoRaWAN). First, basic operations of the considered
algorithms were identified and benchmarked. Then, the computation energy
cost of these basic operations were evaluated. To explore the impact of both
the computation and communication energy cost, two security techniques
were explored: end-to-end encryption and digital signatures. For end-to-end
encryption, both the session setup phase and the session runtime phase were
taken into account. For the session setup, the energy results showed that the
computation energy cost outweighed the communication cost in most evaluated
scenarios. For the session runtime phase, this was the other way around. The
results of the signature based security turned out to be not suitable for IoT

92 IN-DEPTH ENERGY ANALYSIS OF SECURE IOT COMPUTATION AND COMMUNICATION

applications without additional computation optimisation. The Schnorr and
signcryption scheme reached the energy efficiency level of AES-GCM at about
5 kB to 50 kB of processed and transmitted data.

We also introduced an equation to calculate a recommended lower bound on
the lifetime of a session to enable the developer to find a trade-off between
the average power consumption and the side-channel resistance. In terms of
security, the highest security level is achieved when the session is continuously
renewed. On the other hand, the lowest average power consumption is obtained
when the session is never renewed. In the equation, the developer can define
the relative share of the application’s total energy budget that may be used
for renewing the security session. In our examples, we have chosen to dedicate
5% of the total energy budget to the security sessions. The equation was
applied to the following two IoT scenarios: a healthcare and a weather station
application. The relative energy share of the session setup phase in the overall
energy consumption was almost negligible, i.e. lower than 5%, for minimal
time periods in the range of 30 to 330 s for the different IoT platforms in the
healthcare application. For the weather station application, the minimal time
period for making the session setup energy negligible ranged from about 1.9
hours to 99 days for the different IoT platforms.

In summary, this chapter gave an overview of the energy impact of different
security schemes for the IoT, taking into account both the computation and the
communication energy. It also used this information to determine the minimal
session period needed to make the session setup energy negligible. The chapter
serves as a guideline for practitioners and researchers selecting the appropriate
security algorithms and wireless communication protocols, and determining the
minimal session period in order to minimise the overall energy consumption.

Chapter 6

Use cases on end-to-end
security for wearable medical
devices

The General Data Protection Regulation (GDPR) [78], strengthened by national
law, enforces data protection and privacy for all individuals at the European
level. As a consequence, sensor data measured on hospitalised patients should
be protected against potential adversaries that retrieve or manipulate the data.
Two methods on providing security are analysed in this chapter. First a proof-
of-concept wearable medical system is secured via public-key cryptography in
Section 6.1. In this section, proven network and security protocols are combined,
efficiently implemented and evaluated. Secondly, a custom symmetric-key based
security protocol is designed for a wearable medical system in Section 6.2. The
same sensor node is used in the evaluation of both systems. The results of
the two methods are compared in Section 6.3. Finally, a conclusion is given in
Section 6.4.

93

94 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

6.1 End-to-end security via public-key cryptogra-
phy

6.1.1 Introduction

The system under consideration in this section, consists of a wireless waterproof
wearable device, communicating with a hospital server, developed in the
wearIT4health project [82]. The monitoring system’s features are determined
based on (1) co-creation sessions with future users - healthcare professionals
and potential patients, (2) market analysis and (3) the collaboration with
three hospitals. The wearable device continuously monitors heart rate, blood
pressure variation, breathing rate, oxygen saturation, skin temperature and
human activity (intensity and posture). Raw data used for the estimation of
these parameters are the electrocardiogram (ECG), the photoplethysmogram
in three wavelengths (PPG), bio impedance (BioZ), the temperature (T) and
the 3-axes accelerometers (ACC). These data are transmitted wirelessly from
the wearable device on the patient, hereafter named patch, to the local hospital
server. The patch is intended for use on nursing ward patients. It is designed
to allow mobility for adult patients (>=18 years old) to provide physiological
information. However, it is neither intended for use on critical care patients nor
for diagnosis. The local server will process the measured data and use it for
two applications: monitoring and reporting to the Electronic Medical Record
(EMR). The EMR refers to the comprehensive medical records of an individual
that are accessible in electronic form. Moreover, the local server can also notify
healthcare professionals when physiological data fall outside specified ranges of
selected parameters. The data measured by the wearable device are intended
for use by healthcare professionals as an aid to monitor patients.

Our contributions can be summarised as follows:

• We implement end-to-end security in a wearable health monitoring system,
intended for real-life use in a hospital, with a multitude of measured sensor
data.

• We explore the impact on the energy consumption of different security
schemes and implementations, as well as different wireless network
protocols. As such, our work serves as a guideline for researchers and
practitioners setting up a wearable medical sensor system or any battery-
powered sensor system that needs to communicate a relatively large
amount of data while providing end-to-end security.

• We present a proof-of-concept implementation of the resulting system and
the corresponding measurement results.

END-TO-END SECURITY VIA PUBLIC-KEY CRYPTOGRAPHY 95

First, related work is analysed in Section 6.1.2. Then, the system architecture
is described in Section 6.1.3. For the selection of the most suitable wireless
communication network for our system, low-power networks are compared in
Section 6.1.4. Next, to ensure the protection of the measured data, the security
requirements are analysed and used to create a security architecture, described
in Section 6.1.5. Then, after the theoretical analysis in Sections 6.1.4 and 6.1.5,
a practical exploration is presented in Section 6.1.6. It implements and compares
the different security solutions using the most suitable wireless communication
protocol. Finally, a conclusion is made in Section 6.1.7. My contribution to
the work presented in this section is the study, the implementation and the
evaluation of the considered protocols.

6.1.2 Related work

Two popular healthcare projects in research are CodeBlue [65] and MEDiSN [51],
but many more projects and platforms have been devised, as analysed by Javdani
et al. [49]. CodeBlue [65], proposed by Malan et al. in 2004, is an ad hoc sensor
network infrastructure for emergency medical care. The authors used MICA2
motes to monitor the pulse oximetry of patients. MEDiSN [51], created by
Ko et al. in 2010, provides medical emergency detection in sensor networks.
The authors used the Sentilla Tmote Mini platform for two use cases: ECG
monitoring, and pulse oximetry with LCD screen. However, in more recent
works, researchers also began looking into optimisations. For example, Samie
et al. [94] used data compression in a wearable ECG monitoring platform to
reduce the overall energy consumption and it resulted in a device that could
theoretically monitor the ECG of a patient for 10 days using a 400 mAh battery.

As stated, the number of healthcare platforms in research is increasing, as
interest in integrating portable devices continues to grow. Nevertheless, the
security issue is still a concern. In this work, we analyse the implementation
and integration of a wearable healthcare platform in a hospital while providing
true end-to-end security to protect the patient’s personal data.

End-to-end security is important to take into account when dealing with sensitive
data. Without end-to-end security, intermediate devices like gateways can
compromise the integrity and/or the confidentiality of the transmitted data.
This was already specified by the earliest works about patient monitoring. For
example, both the CodeBlue [65] and MEDiSN [51] projects expressed the
importance of security by referring to privacy issues and national regulations
like the 1996 Health Insurance Portability and Accountability Act (HIPAA),
but neither provided end-to-end security. In the first published paper of the
CodeBlue [65] project, security was put as future work and it was revisited by

96 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

Kambourakis et al.[50] in 2007. It was, however, to our knowledge, never fully
implemented with end-to-end security. In the MEDiSN [51] project, the authors
did implement secured communication between the entities in the network but
they did not provide end-to-end security.

Security in constrained environments has been a hot topic for many years.
For example, the concept of a delegation server or trusted third party to
offload the authentication and authorisation computations from constrained
devices has been researched extensively by, e.g., Hummen et al. [46], Raza
et al. [85], and Kerberos [73]. The main motivation for using a delegation
server is that the impact of the authentication and authorisation protocols
on the energy consumption of constrained devices is too large. Furthermore,
it is often assumed that the constrained device has a preconfigured secure
communication channel with the delegation server. The delegation server
can setup connections with remote parties and it can then pass along the
required session information to the constrained device. After this procedure, the
constrained device and remote server can securely communicate. By offloading
the authentication and authorisation, the constrained device does no longer
need to utilise the computationally expensive algorithms that are typically used
for these purposes like the asymmetric-key cryptography of RSA or Elliptic
Curve Cryptography (ECC). For example, the paper by Moosavi et al. [70]
showed that it is also possible to use the fog to provide a distributed set of
delegation servers to offload the authentication/authorisation. The advantage is
that a Denial-of-Serice (DoS) attack is less likely because the delegation server
is no longer centralised.

The issue with the delegation server is that it is a target for attackers to
compromise one or more constrained devices. In this work, we avoid the use of
a delegation server to narrow the range of targets available to the attacker. We
analyse and limit the impact on the constrained device by leveraging the newest
technologies and techniques with regards to communication security. This work
extends the work-in-progress results presented in [119].

6.1.3 System model

The system architecture, presented in Figure 6.1, consist of three entities: the
patch, the local server and the hospital infrastructure. In this section, first,
the patch is described. Then, the functionalities of the local server are given.
Finally, the workflow of the system, that describes how the patch is used, is
given in Appendix A.

The local server also interconnects with the hospital infrastructure for
monitoring, managing and reporting purposes. Clinical staff can access the

END-TO-END SECURITY VIA PUBLIC-KEY CRYPTOGRAPHY 97

Figure 6.1: Overall system architecture (1: one entity; *: multiple entities).

patient’s data through a web-based user interface (Web UI) or through the EMR
system. We do not elaborate further on the hospital infrastructure because
it depends on specific choices made by the IT department of the hospital.
Nevertheless, the system described in this section is validated on three different
hospital networks and can therefore be considered to be broadly usable.

Patch

The patch is composed of three different parts: (1) two textile electrodes,
attached to the housing via snap buttons, (2) an electronic board and (3) a
battery. Both the electronic board and the battery are contained in the housing.
The electrodes have to be changed for each patient as they could lead to cross
contamination if used on multiple patients. The electronic board contains
a microcontroller, a network interface and all the required on-board sensors,
namely ECG, PPG, BioZ, T and ACC, as introduced in Section 6.1.1. The
battery is easily expendable when the patient is wearing the patch in order to
facilitate its continuous use.

The on-board sensors produce about 3.3 kB of raw data every second. In order
to reduce the data overhead and to lower the number of times the device should
awake from sleep (wake-up overhead), 33 kB of data is sent to the server every
10 seconds. The raw data is not pre-processed on the patch, because, the
availability of the raw data was requested by the wearIT4health project for the

98 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

development of the algorithms on the Local server.

Local Server

The local server runs three applications: a message broker, a processing pipeline
and a web server. The message broker is used by the patch to publish its raw
data, by the processing pipeline to convert the raw data into vital parameters,
and by the web server to display these vital parameters. Furthermore, commands
to and from the patch and the web server are also communicated via the message
broker. Regarding the conversion of raw data to vital parameters, a 30-second
time window is used. At the start of each window, a copy of the raw data is saved
into short-term storage. It can later be used for analysis. Then, within each 30
seconds, raw data is first preprocessed to eliminate noise and then processed
to extract the vital parameters of the patient. Furthermore, the processing
pipeline is responsible for assessing the patient’s state. It estimates the early
warning score (EWS) for each patient and triggers notifications to the clinical
staff if abnormal conditions are detected in the patient’s vital parameters. The
EWS is estimated every 10 s. Depending on the instructions of the clinical staff,
the pipeline can also update the patient’s electronic medical record (EMR) with
specific data points.

6.1.4 Wireless communication trade-offs

The requirements of the patch can be summarised as follows. It should be
wirelessly connected to the local server and comfortable for the patient to wear.
That means that it is necessary to reduce the size and the weight of the patch,
which is directly related to the battery size. Therefore, the way of processing
and transmitting data should be power efficient. It should be possible to install
a patch on each patient in the hospital, thus, the network should be designed
to handle a large number of patches. As patients can move inside the hospital,
the network should cover the entire hospital. This sections makes a theoretical
comparison of different network topologies and wireless communication protocols
in order to select the most suitable solution for our application scenario.

Network topology

There are three main types of network topologies:

• Ad-hoc: one device can communicate directly with every other device
within its range. This topology is adapted to a relatively small number of

END-TO-END SECURITY VIA PUBLIC-KEY CRYPTOGRAPHY 99

devices. As the link is direct between two devices, the range is limited by
the protocol and the power of the signal transmission. The advantage is
that the implementation of this type of network is relatively simple as it
does not require protocols for e.g. routing.

• Mesh: the mesh topology is an extension of the ad-hoc topology. Some
devices can act as router and relay data between two nodes. These routers
extend the coverage at the expense of an increased power consumption
for transferring data. Furthermore, all devices share the same network,
thus, they can easily be integrated into the network.

• Star: a central access point communicates directly with all peripherals
in its range. There can be more than one access point linked together to
extend the coverage to the entire area. Generally, theses access points
are not power constrained because they are plugged into the electrical
grid. This kind of network can be seen as a mesh with only access points
as routing nodes. Thus, the peripherals in the network use less power
than in the mesh network, but, the network requires an extensive network
infrastructure to cover the entire area.

In the scenario that we consider in this section, there is only one local server
collecting all the data. Moreover, taking into account the typical size of a
hospital, an ad-hoc network topology cannot ensure connectivity for all patch
devices. The mesh topology is also less suitable because of its increased power
consumption and the fact that the coverage relies on the number of devices and
their distribution. Therefore, the star topology is the most convenient for our
application at the expense of the cost of fixed access points in the hospital.

Protocols

There are a lot of existing wireless communication protocols, e.g. Bluetooth
Low Energy (BLE), Wi-Fi, ZigBee, LoRaWAN and Sigfox. These protocols can
be divided into different types of networks as explained in Chapter 2: Wireless
Personal Area Networks (WPAN), Wireless Local Area Networks (WLAN)
and Low-Power Wide-Area Networks (LPWAN). An overview of the network
protocol specifications is given in Table 6.1.

The WPAN protocols like BLE and ZigBee have low throughput (250 kbps -
1 Mbps) and operate over short ranges indoor (10 - 100 m), but, they have
the advantage to be low-power. In contrast, a WLAN protocol like Wi-Fi is
well adapted to send large amounts of data (54 - 150 Mbps) over slightly larger
distances (100 - 250 m). LoRaWAN and Sigfox can transmit data over very
long ranges of a few kilometres. However, they are not optimised for indoor use

100 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

and feature typically very low throughput (300 bps - 50 kbps) and can handle
only a limited amount of data. Furthermore, some LPWAN networks like Sigfox
are hosted by an operator which results in a paid subscription.

LoRaWAN and SigFox are clearly not applicable for the application studied
in the chapter at hand. We selected the other three protocols, Bluetooth,
ZigBee and Wi-Fi, and made a theoretical comparison through a set of the most
recent chips available on the market: BL652-SA, RN4020, BT800 and LM931
as Bluetooth chips, JN5168, MGM11, Xbee ZB SMT and EM351 as ZigBee
chips, and LM821-0463, WGM160, CX53111 and CC3120 as Wi-Fi chips.

Table 6.1: Comparison of wireless communication protocols suitable for indoor
application.

Features BLE ZigBee Wi-Fi
IEEE specification 802.15.1 802.15.4 802.11b/g/n
Frequency band 2.4 GHz 868/915 MHz 2.4 GHz

2.4 GHz
Data rate (Mbps) 1-3 0.250 54-150
Nominal range (m) 10-100 10-75 100-250
Max active devices 8 65000 2007
Security AES-CCM AES-CCM WPA2
Power consumption

TX (µW/kb) 3.7-88.8 108.2-435.6 3.8-465
RX (µW/kb) 3.6-72.6 129.3-369.6 3.1-120.8

Idle current (µA) 2-200 0.7-2.5 690
Max payload (B) 339 102 1500
Max overhead (B) 158/8 31 58
Efficiency 94.46% 76.67% 96.28%

We made an estimate of the efficiency of the 3 protocols to send the amount of
data required by our system architecture (33 kbytes). The efficiency is defined
by the payload size (Ndata), the number of packets (Npackets) and the data
overhead per packet (Noverhead) [59], see Equation (6.1). The number of
packets is defined by the fragmentation of our data that is required in the
respective wireless communication protocol. Then, for each packet sent, the
header overhead needs to be added.

Efficiency = Ndata

Ndata+ (Npackets ∗Noverhead) (6.1)

As can be seen in the last line of Table 6.1, it turns out that ZigBee is less
efficient in our scenario, because, we need to send a large amount of data.

END-TO-END SECURITY VIA PUBLIC-KEY CRYPTOGRAPHY 101

It also takes more time to transmit our data via the ZigBee protocol, which
results in less time in low-power sleep mode and consequently in more energy
consumption. Regarding the network size, ZigBee is the one that can deal with
the largest number of nodes. However, bandwidth needs to be shared between
all patches which greatly reduces the number of nodes ZigBee can handle, since
each patch requires a high data rate.

On the other hand, the average power consumption per byte results of the
BLE and the Wi-Fi network overlap, but, Wi-Fi has a better coverage and can
deal with a larger number of devices per cell. Additionally, Wi-Fi has three
advantages over BLE for our setup: (1) less gateways need to be deployed
because the range is larger, (2) a Wi-Fi infrastructure is often already present
in hospitals, and (3) the patch could also easily be used for monitoring patients
at home, as Wi-Fi is already widespread in almost every house.

It should be mentioned that these protocols could be extended to more complex
structures that can improve the number of devices that can connect to the
network at the expense of more access points. Nevertheless, we conclude this
section by selecting Wi-Fi as the most suitable protocol for our application,
given that 33 kbytes of data need to be sent every 10 seconds, targeting a low
energy consumption and the ability to handle many patches.

6.1.5 Security trade-offs

The objective is to secure the entities and data flows as presented in Figure 6.1.
This section concentrates on two entities, the patch and the local server, and
the data flow between them. First, the security requirements are compiled
using the STRIDE threat modelling technique. Next, three techniques are
evaluated to provide an end-to-end secured communication channel. Finally, the
online and offline security requirements in terms of access control are discussed.
The theoretical analysis made in this section, will be brought to practice in
Section 6.1.6, which implements and compares the different security solutions.

Security requirements

At the start of developing the security architecture, the relevant threats to
the system must be identified. We use the STRIDE threat model [101] and
the STRIDE-per-interaction technique to find the threats. An abbreviated
compilation of the threats is given below, according to the six categories:
Spoofing, Tampering, Repudiation, Information disclosure, Denial-of-service
and Elevation of privilege:

102 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

• Spoofing refers to a scenario in which data are disguised as coming
from a known, trusted source, while they are coming from an unknown,
untrusted source. In our setting, the system can contain multiple patches
but only one local server. The patch measures sensitive data, which is
communicated to and analysed by the local server. In order to prevent
spoofing, mutual authentication is required between the patch and the
local server. This can be achieved through entity authentication and data
origin authentication in order to validate the entities and the dataflow,
respectively.

• Tampering is the act of altering or damaging data while being
communicated from one entity to the other. In our system, the data
collected by the local server is used for operations like monitoring and
assessing the health of a patient. It is, therefore, important to prevent
tampering by ensuring the data integrity of the communication flow.

• Repudiation is the rejection or the refusal of acknowledgement of a
previously made agreement. Preventing repudiation typically involves
the use of logging to prevent interactions to be denied. In our scenario,
repudiation protection can be enabled on the server by using logs of
interactions. It is, however, difficult to implement on the patch, since
the patch is a constrained device in which the storage is already filled
with application code and measured data. Nevertheless, the local server
is the central device that is involved in all interactions, which means that
logging on the local server prevents the repudiation of all interactions.

• Information disclosure refers to an attacker gaining unauthorised access
to valuable information. Since the measured vital sign parameters are
personal in the considered patient monitoring system, data confidentiality
is imposed by law [78]. Furthermore, the impact of the attack should
be limited if a device is compromised by e.g. side-channel attacks. A
compromised device should not affect previous or future patients. This
can be achieved by providing Perfect Forward Secrecy (PFS). PFS ensures
that the previous sessions are not compromised when the current session
is compromised. Confidentiality protection is, therefore, required for the
data transmitted and stored by the patch as well as the local server. For
example, 1 MB of storage could be used to facilitate about five minutes
of data (30 kbytes every 10 seconds).

• Denial-of-service attacks intend to make a network device unavailable
to its intended users by flooding it with traffic. The considered monitoring
system operates in the internal secured network of the hospitals where
Denial-of-service attacks are highly unlikely. However, disconnections

END-TO-END SECURITY VIA PUBLIC-KEY CRYPTOGRAPHY 103

or weak reception can render the patch unable to send its data. It is,
therefore, advised to reserve storage on the patch to store data temporarily.

• Elevation of privilege concerns the situation in which a lower-privilege
user accesses functionality or content reserved for higher-privilege users.
In order to protect the system from this threat, authorisation should be
implemented. This is important because only authorised devices should
be able to upload data for specific patients, and only authorised personnel
should have access to the data of specific patients.

In summary, based on the STRIDE approach, the five desired cryptographic
properties that are identified in our system are entity authentication, data origin
authentication, confidentiality, data integrity and authorisation.

End-to-end secured communication

In most end-to-end secured tunnels, two different types of protocols are used:
key establishment and secure communication. Key establishment is typically
a handshake which is based on either symmetric-key cryptography, public-
key cryptography or both. It can provide the required entity authentication.
During the handshake, the authenticity of both communicating identities is
confirmed while a session key is derived. The session key can then be used to
secure the actual communication. This is typically done using a symmetric-key
encryption algorithm like AES [26]. AES is a block cipher which can be used in
different modes of operation to achieve a specific set of security requirements.
For example, CTR (Counter) mode and CBC (Cipher Block Chaining) mode
provide confidentiality, and GCM (Galois/Counter Mode) and CCM (Counter
with CBC-MAC Mode) are authenticated modes of encryption that ensure both
confidentiality and authentication. In the following paragraphs, we discuss
three methods for key establishment that enable end-to-end security. In our
proof-of-concept implementation in Section 6.1.6, we compare different cipher
suites based on these three approaches.

Symmetric-key approach The Pre-Shared Key (PSK) technique is often used
in constrained environments for entity authentication and key establishment,
because, it is very efficient. PSK is based on symmetric-key cryptography, where
both communicating entities share a key, and this shared key is used to generate
a master key. The key is shared through an out-of-band communication channel,
e.g. through configuration in advance. The session keys that are used to encrypt
the data are derived from the master key. The authentication is based on the
implicit use of this master key. If an entity cannot derive a session key, it is

104 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

assumed that it does not know the master key, and thus, the entity is unable to
authenticate itself. In order to prevent attackers from performing a brute-force
attack, it is important to regularly update the key and to use key lengths that
are considered to be long enough for the envisioned protection level [74].

Public-key approach A technique based on public-key cryptography that is
often used during the handshake, is the combination of the Diffie-Hellman (DH)
protocol [29] for key exchange and the RSA [88] algorithm or the Elliptic Curve
Digital Signature Algorithm (ECDSA) for entity authentication. Public-key
cryptography uses two separate keys for each entity: a private and a public key.
For entity authentication, the private key is used to sign data and the public
key is used to verify the signature. If the verification succeeds, the data are
authenticated to be originating from the corresponding entity. Moreover, the
public key is often packed into a certificate which contains the public key, the
corresponding entity’s information, and a signature. This signature is generated
by a trusted third party such that it can be validated by all entities.

Combined approach In a more recently proposed technique, a combination of
PSK and Diffie-Hellman is devised [114]. It uses DH key exchange authenticated
with a PSK. This way, the authentication is more efficient than the approach
based on public-key cryptography only. By using DH, perfect forward secrecy
can be achieved.

Access control

Access control is important for the offline and online security of entities. We
denote offline security as the secure commissioning of the devices, and online
security as access authorisation.

Local server The IT department of the hospitals will be responsible for hosting
and managing the local server. It can be continuously monitored and no
unauthorised physical and network access should be possible. At minimum,
authorisation measures like login credentials should be used to limit access to
the local server.

Patch Access to the patch cannot be controlled by the IT department since it
is used on patients. Attackers, thus, may have physical access. Steps should
be taken to secure all available interfaces of the patch, e.g. using authenticated
firmware and password protection.

END-TO-END SECURITY VIA PUBLIC-KEY CRYPTOGRAPHY 105

6.1.6 Proof-of-concept implementation + measurement re-
sults

The protocols that are used in the proof-of-concept implementation are presented
and mapped to the OSI model in Figure 6.2. First, the Wi-Fi network was
chosen for its efficiency and to facilitate interoperability and integration in
hospitals. Secondly, we opted for using TCP to enable reliable communication
over the IP network. Next, MQTT was used to provide a lightweight and proven
messaging transport. It is also a standardised protocol of the International
Organisation for Standardization (ISO) [107]. Finally, the TLS protocol is used
to secure the MQTT communication. It is a protocol designed by the Internet
Engineering Task Force (IETF) [87].

Physical

Link

Network

Transport

Session

Presentation

Application

OSI

IEEE 802.11

IEEE 802.11

IP

TCP

MQTT

This work

TLS

Figure 6.2: Selected protocols for the communication channel.

The patch is implemented using a custom platform. This platform features the
MSP432P4011 [109] as application MCU, CC3120 [108] as network interface,
and the sensor ICs required to measure the vital parameters described earlier.
The MSP432P4011 is a SimpleLink Ultra-Low-Power 32-Bit Arm Cortex-M4F
MCU with Precision ADC, 2MB Flash and 256KB RAM. The CC3120 is a
SimpleLink Wi-Fi Network Processor. It features an ARM Cortex-M3 MCU that
can completely offload the Wi-Fi and Internet Protocols from the application
MCU.

The local server is Linux based. The software on the server uses the container
technology of Docker [30]. The server runs RabbitMQ [83] as message broker
and TimescaleDB as database. This combination has been validated to cope
with the amount of data generated by 500 monitored patients using a single
machine with 8GB of RAM and 4 CPU cores. The WebServer is implemented in

106 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

Java using the Spring framework. The WebServer serves an Angular application
to manage, monitor and inspect near real-time and historical data. Finally, the
streaming engine is a combination of Java code for the aggregation and routing
logic, and MATLAB/C++ code for the actual signal processing algorithms.

Security overhead

To achieve the five required cryptographic properties, identified in Section 6.1.5,
we selected four cipher suites for our analysis:

1. TLS_PSK_WITH_AES_128_GCM_SHA256

2. TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256

3. TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

4. TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

For secure communication, all cipher suites use AES, either in GCM or in CBC
mode, in combination with the SHA256 hash function. For key establishment,
three different cipher suite approaches are used as described in Section 6.1.5.
The first cipher suite uses only symmetric-key cryptography based on the PSK
approach. It does not provide Perfect Forward Secrecy (PFS); it is primarily
added for reference. The second cipher suite uses a combination of symmetric-
key and public-key cryptography for the key handshake. It is based on Elliptic
Curve Diffie-Hellman Exchange (ECDHE) in combination with PSK. The third
and fourth cipher suite correspond to the public-key approach. The third cipher
suite uses ECDHE in combination with RSA, while the fourth cipher suite uses
Diffie-Hellman Exchange (DHE) in combination with RSA. The second, third
and fourth cipher suite provide all the required properties of an end-to-end
secured channel including Perfect Forward Secrecy (PFS). The authorisation
aspect is implemented by using user/password login credentials in the MQTT
protocol. After successfully establishing the secured channel, the patch needs
to provide these credentials to gain access to the MQTT broker.

The selected key sizes are a 2048-bit RSA key pair, a 256-bit ECC key pair, a
128-bit session key and a 256-bit hash.

The TLS protocol is implemented in two ways. For the first and second
cipher suite, we have used the mbed TLS library (v2.11.0) [4]. Moreover, the
SECP256K1 curve was used for the ECDHE implementation of this library.
The third and fourth cipher suite, using public-key cryptography for both the
authentication and key establishment, are hard to implement on the MCU

END-TO-END SECURITY VIA PUBLIC-KEY CRYPTOGRAPHY 107

because of storage and memory constraints. For this reason, we opted for the
secure socket feature of our CC3120 network processor. It provides a public-key
based TLS protocol implementation. In this scenario, the TLS protocol is
offloaded from the MCU to the network processor. Moreover, the network
processor uses a hardware accelerator for the RSA and the AES algorithm. The
ECC curve used by the CC3120 chip is SECP256R1. Analysing the side-channel
resistance of the mbed TLS library and the network processor is not in the
scope of this chapter, though, they feature some countermeasures according to
the available documentation.

The performance of the key handshake depends on the used algorithms and
hardware, presented in Figure 6.3. The first cipher suite based on the PSK
approach takes the least amount of time, about 60 ms, to establish a session. The
other cipher suites involve public-key algorithms that are more computationally
expensive. The MCU is a low-power processor that is limited in performance.
This is notable in the execution of the ECDHE_PSK handshake. It takes about
2.6 seconds to establish a session. The secure socket feature of the network
processor is much faster than the MCU for these types of calculations since it
can perform the handshake under 0.5 seconds for ECDHE_RSA and DHE_RSA.
The elliptic curve discrete logarithm based version (ECDHE_RSA) is about
twice as fast as the discrete logarithm based version (DHE_RSA). This may
be because of the available accelerators. However, the exact details of the
implementation of the network processor is not known.

The estimated energy results of the handshake process are shown in Figure 6.4.
The energy results where generated using the performance results and the
specifications of the MCU and the network processor. The first cipher suite
(PSK) is the most lightweight solution, using about 1.5 mJ. The second cipher
suite (ECDHE_PSK), which is the slowest of the four cipher suites, does not
consume the most energy. It uses the low-power MCU for its calculations,
resulting in only 53 mJ. The third cipher suite (ECDHE_RSA), executed on
the network processor, is much faster, but consumes much more energy to do
the calculations. It takes around 147 mJ to perform a handshake. The fourth
cipher suite (DHE_RSA) is both fast and energy efficient in comparison to
the other public-key based handshakes. It uses about 32 mJ to establish a
connection.

The implementation overhead of the TLS protocol is given in Table 6.2. Results
were derived from the Memory Allocation report provided by Code Composer
Studio. The first and the second cipher suite require additional code on the
MCU because of the mbed TLS library. The first cipher suite (PSK) requires
about 40 kB of storage and 5 kB of memory (stack and heap). The second
cipher suite (ECDHE_PSK) uses an additional amount of around 17 kB of
storage and 1 kB of memory in comparison to the PSK cipher suite. If the TLS

108 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

0,0

0,5

1,0

1,5

2,0

2,5

3,0

PSK ECDHE_PSK ECDHE_RSA DHE_RSA

P
er

fo
rm

an
ce

 (
s)

Handshake performance

Figure 6.3: Performance evaluation for each of the handshake configurations,
where PSK, ECDHE_PSK, ECDHE_RSA and DHE_RSA stand for the
handshake protocols in the first, the second, the third and the fourth cipher suite
introduced in this section. The first and the second approach are implemented
on the MCU, while the third and the fourth approach are implemented using
the secure socket feature of the network processor.

protocol is offloaded to the network processor, the MCU only requires about 1
kB of additional storage. This is the case for the third and the fourth cipher
suite (ECDHE_RSA and DHE_RSA).

Table 6.2: Implementation overhead required for security protocols on the MCU.

Configuration Storage (kB) Stack (kB) Heap (kB)
PSK 39.6 1.0 4.1
ECDHE_PSK 56.6 1.1 5.0
(EC)DHE_RSA 1.1 0.0 0.0

Secure communication

In terms of implementation size, the firmware code related to the application
uses about 41 kB of storage and 142 kB of memory. In total of 2% of Flash
and 55% of RAM memory of the MCU is used. This leaves enough room for
the other TLS implementation configurations.

END-TO-END SECURITY VIA PUBLIC-KEY CRYPTOGRAPHY 109

0

20

40

60

80

100

120

140

160

En
er

gy
 (

m
J)

Energy consumption of one handshake

MCU - idle

MCU - active

NWK- idle

NWK- active

TX

RX

Figure 6.4: Estimated energy requirements for the each of the handshake
configurations, where MCU, NWK, TX and RX stand for the energy
consumption of the MCU, the energy consumption of the network processor
and the energy consumption for transmitting and receiving data, respectively.
A distinction is made between the energy consumption when the component is
idle and when the component is active.

On powering up the patch, it first establishes a secured connection with the
server. This connection is maintained for as long as the patch is used. The
handshake process of the TLS protocol is, therefore, only executed once. Next,
the patch requests its session parameters (e.g. the UID). Finally, the patch
starts measuring and periodically sends data to the local server. Every 10
seconds, the sensor data is compiled and pushed to the server using MQTT.
For the remaining time, the platform is measuring the vitals and listening for
commands from the local server.

The average power consumption and lifetime estimation of the patch is measured
and compared in Table 6.3 to related work introduced in Section 6.1.2. For our
work, we use the results of the fourth cipher suite (DHE_RSA). The lifetime
estimates are based on a 400 mAh battery. The results of related work were
compiled and estimated using the electrical parameters available in those papers.
Our result was measured using the Keithley 2000 Ammeter. Our platform
consumes about 20% to 33% less than the other platforms that measure only
the pulse oximetry (PO) parameter (CodeBlue and MEDiSN PO). However, it
consumes about 6 to 12 times more power than the platforms which measure

110 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

only the ECG parameter (MEDiSN ECG and the platform of Samie et al.).
Nevertheless, it is difficult to compare our platform to related work, because,
we have the disadvantage of measuring a larger range of parameters, and the
advantage of using newer and more energy-efficient hardware.

The energy required for the key handshake using the fourth cipher suite
(DHE_RSA) is only around 5% of the energy required for measuring and
reporting the vital parameters of one period. In one period where the patch
measures and reports the data, the patch uses about 698.2 mJ. The DHE_RSA
based handshake process requires only 32 mJ. Given that the handshake only
needs to be performed once in the lifetime of the patch, we can conclude that
the energy consumption for providing end-to-end security is negligible to the
energy spent during the entire lifetime of the patch.

Table 6.3: Comparison of average power and lifetime estimation of the platforms
referred to in Section 6.1.2, with the following vital parameters: the pulse
oximetry (PO), the electrocardiogram (ECG), the photoplethysmogram in three
wavelengths (PPG), the bio impedance (BioZ), the 3-axes accelerometers (ACC)
and the temperature (T).

Project Vitals Power Lifetime End-to-end
(mW) (days) security

CodeBlue [65]
PO 87.78 0.63 no

MEDiSN [51]
ECG 11.29 4.87 no
PO 105.30 0.52 no

Samie et al. [94]
ECG 5.87 9.36 no

This work
ECG, PPG, 69.82 0.79 yesBioZ, ACC, T

6.1.7 Conclusion

A wearable health monitoring system intended for real-life use in a hospital
with a multitude of measured sensor data is designed and implemented. Using
this system, six vital parameters are continuously being monitored: hearth rate,
blood pressure variation, breathing rate, oxygen saturation, skin temperature
and human activity (intensity and posture). Furthermore, an early warning
score is added to notify clinical staff if abnormal conditions are detected.
Additionally, clinical staff are able to use the system to report specific vitals to

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 111

the Electronic Medical Record. The system is validated using a proof-of-concept
implementation tested in three different hospitals. In comparison to related
work, our patch provides a more energy-efficient monitoring system, taking into
account that it supports a significantly higher amount of sensor data.

The system adds two custom entities to the hospital: the patch and the local
server. The patch is a wireless wearable battery-powered device, and the local
server is a Linux based device hosted by the hospital. The patch contains
a MSP432P4011 MCU, a CC3120 network processor and the required on-
board sensors. The impact of the wireless network protocol and the security
architecture on the energy consumption is explored, resulting in the choice for
Wi-Fi as the most efficient wireless communication protocol for our use case.
Furthermore, to provide the end-to-end security between the patch and local
server, adhering to the security requirements determined through the STRIDE
threat modelling approach, the TLS protocol is chosen. Four cipher suites of
the TLS protocol are analysed via two implementations: the mbed TLS library
on the MCU and the secure socket feature on the network processor. Offloading
the security to the network processor shows to be the most optimal solution.
Furthermore, by leveraging long session lifetimes, the energy consumption
overhead of establishing a true end-to-end secured channel is deemed negligible.

6.2 End-to-end security via symmetric-key cryptog-
raphy

6.2.1 Introduction

In a practical setting, a device carried by the patient, e.g. a smartphone, can be
used to collect data wirelessly from the wearable sensors. In the first place, it is
important to guarantee end-to-end security between the wearable sensor device
and the patient’s device. In addition, wirelessly associating a wearable sensor
device to a patient’s device, which is typically done by hospital staff, should
not violate the anonymity of the patient. With these security requirements
in mind, this section proposes a symmetric-key security protocol. Besides the
focus on end-to-end security and anonymous association, the protocol also
concentrates on the minimisation of the communication bandwidth and the
required computation power of the wearable device. The section explains the
different protocol steps for both anonymous association and end-to-end secured
communication. Further, a thorough security analysis and evaluation of the
required communication and computation cost are performed. A comparison to
previously proposed solutions is shown to be favourable for our protocol.

112 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

The outline of the section is as follows. Section 6.2.2 gives an overview of related
work in the field of security protocols for healthcare. Section 6.2.3 describes
the envisioned system and the security requirements. The different steps in our
proposed solution are elaborated in Section 6.2.4. An evaluation of the security
on the one hand, and the computation and communication requirements of
the protocol on the other hand, are given in Sections 6.2.5 and 6.2.6. Finally,
Section 6.2.7 concludes the section and points out to future work.

My contribution to the work presented in this chapter was the refinement of
the protocol, after it was originally proposed by Prof. An Braeken. Further, I
was responsible for the implementation and evaluation of the protocol.

6.2.2 Related work

A lot of key agreement schemes for healthcare systems or similar applications
have been described in literature. In this overview of related work, we focus
on the most recent schemes and explain the differences with respect to our
proposed scheme.

In a recent study of Kumar et al. [57], a symmetric-key based key agreement
scheme between smart sensor nodes and a home gateway in a Home Area
Network (HAN) is proposed. The scheme is designed to provide anonymity,
unlinkability, mutual authentication, integrity, perfect forward secrecy, and
resistance to general attacks like replay attacks, impersonation attacks and man-
in-the-middle attacks. Furthermore, the authors argue that a key agreement
scheme in a HAN network should be automatic without human intervention.
This leaves the gateway the most interesting attack target as it sits at the centre
of the communication model of a HAN. In our setting, the patient is hospitalised
and accesses the sensor nodes via a smartphone. The data are highly sensitive
and should, therefore, only be accessible via human intervention, e.g. via an
authentication step.

The communication model of Shuai et al. [102] is similar to ours as they provide
a key agreement scheme for remote patient monitoring. In this scheme, the
sensor nodes are connected in a Wireless Body Area Network (WBAN) to a
gateway which translates the packets to the remote user. All three entity types
(sensor node, gateway, and user) are involved in the key agreement scheme, thus,
end-to-end security is not provided. Via this approach, the gateway will be
an interesting attack vector, since, it could provide access to all data that are
sent from all sensor nodes connected to it. We argue that end-to-end security is
essential, because, the sensor nodes generate highly sensitive data.

Another approach to an authenticated key agreement scheme in WBANs is

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 113

presented by Gupta et al. [40]. The scheme assumes three entities: sensor nodes,
gateway/user mobile, and authentication server. The scheme requires five steps
to securely establish a shared key. However, the authentication server actively
participates in the process. This may cause a slow or a potentially impossible
connection setup due to the amount of messages and the remote authentication
server which may or may not be reachable. In our proposed scheme, we use a
distributed authentication approach to enable the patient/user and sensor node
to authenticate each other without the involvement of an authentication server.

The work of Chen et al. [19] proposes an anonymous mutual authenticated
key agreement scheme for wearable sensor nodes in WBANs. The authors first
highlight the shortcomings of another scheme which was proven to be susceptible
to the following attacks: offline identity guessing, sensor node impersonation
and hub node spoofing attack. Then, they propose an updated scheme that
addresses these problems. In their communication model, three entities are
considered: second level nodes/sensor nodes, first level nodes/user, and hub
nodes/data center. The sensor nodes use this scheme to establish connection
with both the user and the data center. However, their proposal is not complete
in how the devices are provisioned or updated.

6.2.3 System assumptions, threat model and security require-
ments

System assumptions

The system model is presented in Figure 6.5. The entities that are considered
are the following: Sensor nodes (S), Patient’s smartphone (P), and Remote
Center (RC). All entities can directly or indirectly communicate with each other,
e.g. via an access point or a gateway. The sensor nodes are constrained devices
with a wireless interface that are placed on or close to the patient, and, they
measure vitals like heart rate and blood pressure. These nodes are divided
into groups that represent the selection of sensor nodes required per patient.
Furthermore, the data generated by the sensor nodes in one group are collected
by the patient on his/her personal device such as a smartphone. The RC is an
authorisation server that can validate and authenticate the patient and is able
to manage and link the sensor nodes to a patient. Both the patient’s device
and RC are not considered to be constrained in terms of storage, computation,
and energy.

The proof-of-concept implementation that is used for the validation of our
proposed scheme consists of one wearable health sensor that is placed on the
chest of a patient and monitors vitals such as heart rate and blood pressure

114 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

P

RCS 1
3

4
3
2

5

Figure 6.5: System architecture and communication actions used in the proposed
scheme, where S denotes the sensor nodes, RC is the remote center, and P is
the patient’s smartphone.

variation, and communicates via a WiFi wireless interface. This sensor transfers
its data to the patient, which is emulated via a Python program on a laptop
that is connected to the network.

The consecutive actions between the entities, that will be explained in
Section 6.2.4, are indicated in Figure 6.5:

1. Offline installation of the sensor nodes by the remote center;

2. Patient registration with the remote center;

3. Linking of the patient to a group of sensors by the remote center;

4. Key agreement between the sensor nodes and the patient’s smartphone;

5. Update of the patient’s pin.

Threat model

We assume the Dolev-Yao threat model [31]. An attacker knows the protocol
used and may eavesdrop, modify, corrupt, delete, redirect, or replay all the
messages that are transmitted. Additionally, this attacker can capture a sensor
node and extract all stored parameters from its memory using side-channel
attacks. Even in this case, it should not be possible to derive the previously
constructed session keys and decrypt the already sent data. The patient’s

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 115

device and RC are assumed to be monitored closely by either the patient or
IT staff. The attacker should, therefore, not be able to capture these entities.
Furthermore, it is assumed that the RC can communicate securely using classic
techniques during the set-up and registration phase. The main focus of our
protocol is on providing end-to-end security between the sensor node and the
patient’s device. However, the goal of the attacker might be to illegitimately
obtain the data that are measured by the sensor node, to control the access to
the sensor node, or to perform service degradation.

Security requirements

The required cryptographic properties are in line with related work and can be
summarised as follows:

R.1 Anonymity and unlinkability: The identity of the patient for whom
the data is collected should not be accessible by an adversary. Also, an
adversary should not be able to link multiple sessions to each other that
are established between a sensor node and the patient’s smartphone.

R.2 Mutual authentication: Both the sensor node and the patient’s
smartphone should be able to authenticate each other’s identity.

R.3 Perfect forward secrecy: Previously established sessions keys should not
be computable if an adversary acquires the long-term keys of both the
sensor node and the patient’s smartphone.

R.4 Protection against general attacks: We consider replay, man-in-the-
middle, impersonation, synchronisation, and password guessing attacks
as potential attacks.

R.5 Distributed authentication: The sensor node and patient’s smartphone
should be able to establish session keys without the intervention of the
remote center.

6.2.4 Proposed Solution

Our proposed scheme exists of the following five actions: (1) the remote
center (RC) installs the sensor nodes (S) offline, (2) the patient (P) is registered
with the RC, (3) the RC links P to S, (4) S and P agree on a key, and (5) P
updates the PIN. The overall flow of these actions is presented in Figure 6.5,
while more details are provided in Figs. 6.6, 6.7, 6.8, and 6.9. Table 6.4
presents the symbols and their descriptions used throughout the section. First
a brief description of the five actions will be given, after which a more detailed
explanation is presented.

116 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

Table 6.4: Description of the symbols used throughout the section.

Symbol Description
RC Remote Center
Ss Sensor s
IDi Identifier of entity i
As Sensor’s secret identity
Bs Sensor’s public identity
xg, yg, zg Secret master keys
PINp Patient’s PIN
RPWp Patient’s password
N Hash key counter
Ti Current timestamp
Ri, b Random value
Mi Message value
∆T Maximum delay
HREG Patient’s link
hk Hash key
sk Secret key
H Cryptographic hash function
⊕ XOR operation
‖ Concatenation operation

• Setup phase: Action 1 consists of the initialisation of the sensor nodes and
the RC. This action is done, for example, by the IT staff in a controlled
and secure environment.

• Registration phase: At first, the patient needs to register himself/herself
to the RC (Action 2). Then, the RC authenticates the patient, remotely
configures the sensor nodes, and sends the key that links the patient to
the sensor nodes to the patient’s smartphone (Action 3).

• Run-time phase: When the sensor nodes are enabled, for example
by a nurse that puts the sensor nodes on the patient, they will
initiate the key agreement protocol between the sensor node and the
smartphone (Action 4).

• Update phase: During the run-time phase, the patient can also choose to
update its PIN number using Action 5.

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 117

Action 1: Offline installation of Sensor nodes by RC

In Action 1 (shown in Figure 6.6), let xg, yg, zg be three secret master keys
chosen by the RC for a group of sensor nodes. Denote IDs, IDg the identifiers
of respectively a sensor node and a group. The RC computes for each sensor
node their secret identity As = H(IDs‖IDg‖xg), public identity Bs = As ⊕
H(yg) and hash key hks = H(As‖yg). Then, the RC shares the parameters
Bs,H(As),H(zg), hks with each sensor node in the group via a controlled and
secure environment, e.g. a physical channel. Note that the parameter H(zg) is
the encryption key shared by all sensor nodes in a specific group.

Action 1: Offline installation of sensor nodes by RC

RC Sensor(Ss)

Generates secret master

keys: xg , yg , zg for a

certain group of sensor nodes.

Computes for each sensor:

As = H(IDs‖IDg‖xg)

Bs = As ⊕ H(yg)

hks = H(As‖yg)
H(As)

H(zg)

〈Bs,H(As),H(zg), hks〉

physical channel

Stores Bs

Stores H(As)

Stores H(zg)

Stores hks

Figure 6.6: Offline installation of sensor nodes by RC.

Action 2: Patient registration with RC

In Action 2 (shown in Figure 6.7), the patient registers himself/herself using
a smartphone via an interface of RC. Let b be a random number chosen by
the smartphone. The patient enters/scans his/her identifier IDp and chooses a
personal PIN number PINp. The smartphone, then, computes the patient’s
password RPWp = H(PINp ⊕ b) and key y∗g = H(RPWp‖IDp). Finally, the
smartphone shares IDp, y

∗
g with RC. The RC uses the identifier to validate

118 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

and authenticate the patient. Upon positive authentication, the RC stores the
tuple

〈
IDp, y

∗
g

〉
.

Action 2: Patient registration with RC

Patient RC

Smartphone generates

random value b

Patient enters IDp

and PINp

RPWp = H(PINp ⊕ b)

y∗g = H(RPWp‖IDp) 〈
IDp, y∗g

〉
physical channel

Validates IDp and

stores
〈
IDp, y

∗
g

〉
Figure 6.7: Patient registration with RC.

Action 3: Sensor - Patient grouping

Before Action 3 (shown in Figure 6.8), the RC decides which group of sensor
nodes will be linked to the patient. Then, the RC computes the hash of
the patients identifier H(IDp) and the key modifier H∗yg = H(yg) ⊕ y∗g . For
each sensor, the RC also computes the respective hash key modifier HKs =
H(As‖yg) ⊕ H(As‖y∗g). Next, the RC shares H(IDp),H∗yg, HKs securely by
encrypting the data with the encryption key H(zg). Using these values, the
sensor updates its public identity Bs with B∗s = Bs ⊕ H∗yg and hash key hks

with hk∗s = hks ⊕HKs, and computes and stores the key that links the sensor
node group to the patient HREG = H(H(IDp)‖H(zg)). Furthermore, a counter
Ns is created that represents the amount of times the hash key is hashed. After
configuring the sensor nodes, the RC also calculates the key HREG and shares
it with the patient’s smartphone using a secured communication channel.

Action 4: Key agreement between Sensor and Patient

The run-time phase is defined by Action 4. Let R1, T1 be a random value and
a timestamp generated by the sensor node. Three message parameters are
computed: M1 = R1 ⊕ H(As), M2 = H(HREG‖H(As)‖R1‖T1‖Ns), and M3 =

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 119

Action 3: RC links the patient to a group of sensor nodes

RC Sensor(Ss)

Stores xg , yg , zg , IDg , Stores IDs, Bs,

[IDs], IDp, y
∗
g H(As),H(zg), hks

H(IDp)

H∗yg = H(yg)⊕ y∗g

For each sensor:

As = H(IDs‖IDg‖xg)

HKs = H(As‖yg)⊕ H(As‖y∗g)

Enc{H(zg)}(H(IDp),H
∗
yg , HKs)

B∗s = Bs ⊕ H∗yg

Updates Bs with B∗s

HREG = H(H(IDp)‖H(zg))
hk∗s = hks ⊕HKs

Updates hks with hk∗s

Creates counter Ns = 0

Stores HREG,H(IDp)

Patient

Stores b

HREG = H(H(IDp)‖H(zg))
Replaces yg with y∗g

Ency∗
g
{HREG}

Stores HREG

Figure 6.8: RC links patient to a group of sensor nodes.

Bs⊕H(HREG‖T1). The sensor sharesM1,M2,M3, T1, Ns with the smartphone.
Next, the smartphone verifies that T1 lies within a maximum delay interval
(|T2 − T1| < ∆T) by generating its own timestamp T2. Using M3 and key
HREG, the public identity of the sensor Bs can be determined. To calculate the
secret identity of the sensor node, the smartphone requests the identifier IDp and
PIN PINp of the patient. Using these values, the key y∗g = H(H(PINp⊕b)‖IDp)
and the secret identity As = Bs ⊕ y∗g can be calculated. Via the secret identity
and parameterM1, the smartphone can compute random value R1 = M1⊕H(As).

120 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

Then, the correctness of As, R1, T1, Ns is validated using parameterM2
!= M∗2 =

H(HREG‖H(As)‖R1‖T1‖Ns). As a response, the patient’s smartphone executes
the following actions. If the hash key of this sensor is not yet known by the
patient, it can calculate the current hash key using hks = HNs(H(As‖y∗g)). Now,
with a randomly chosen parameter R2, the secret encryption key that is to be
used for securing the communication between the sensor node and smartphone
can be computed via sk = H(R1‖R2‖T1‖T2‖Bs‖H(IDp)‖hks). After the key is
generated, the smartphone updates the hash key hks = H(hks) and generates
message parameters M4 = R2 ⊕ H(As) and M5 = H(sk‖HREG‖T1‖T2). Then,
the smartphone shares T2,M4,M5 with the sensor. The timestamp T2 can be
verified using Timestamp T1 by comparing it to the maximum delay interval
(|T2 − T1| < ∆T). Random value R2 can be computed via R2 = M4 ⊕ H(As).
Next, the sensor can also compute the secret key sk. The correctness of the
secret key sk and timestamp T2 are verified via message parameter M5

!= M∗5 =
H(sk‖HREG‖T1‖T2). Finally, the sensor updates the hash key hks = H(hks)
and increments counter Ns.

Action 5: Patient’s PIN update

The patient can also choose to update the PIN during the run-time phase
using Action 5, see Figure 6.10. The action’s procedure is as follows. Via the
smartphone, the patient first enters the old PINp and the new PIN∗p . Then,
the smartphone calculates a new value b∗ = PIN∗p ⊕PINp⊕ b and replaces the
old value with the new value b = b∗.

6.2.5 Security analysis

This section provides the detailed security analysis of our proposed scheme
according to the security requirements defined in Section 6.2.3. First, the
RUBIN formal analysis technique is used to prove that a secure session key
is established between the patient’s smartphone and a sensor node. We have
chosen RUBIN, as it is specifically designed for these types of non-monotonic
protocols. Secondly, an informal analysis is given of different popular attacks.
Finally, this section compares the offered security features to those of related
work.

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 121

Action 4: Key agreement between Sensor and Patient

Sensor(Ss) Patient

Stores IDs, Bs,H(As),H(zg) Stores b,HREG

HREG,H(IDp), hks, Ns

Generates random R1

and timestamp T1

M1 = R1 ⊕ H(As)

M2 = H(HREG‖H(As)‖R1‖T1‖Ns)

M3 = Bs ⊕ H(HREG‖T1)

〈M1,M2,M3, T1, Ns〉

Generates timestamp T2

Checks |T2 − T1| < ∆T

Bs = M3 ⊕ H(HREG‖T1)

Patient enters IDp and PINp

y∗g = H(H(PINp ⊕ b)‖IDp)

As = Bs ⊕ y∗g

R1 = M1 ⊕ H(As)

M∗
2 = H(HREG‖H(As)‖R1‖T1‖Ns)

Checks M∗
2

!
= M2

Generates random R2

If hks is not known:

Stores hks = HNs (H(As‖y∗g))

sk = H(R1‖R2‖T1‖T2‖Bs‖H(IDp)‖hks)

Replaces hks with H(hks)

M4 = R2 ⊕ H(As)

M5 = H(sk‖HREG‖T1‖T2)

〈T2,M4,M5〉

Checks |T2 − T1| < ∆T

R2 = M4 ⊕ H(As)

sk = H(R1‖R2‖T1‖T2‖Bs‖H(IDp)‖hks)

M∗
5 = H(sk‖HREG‖T1‖T2)

Checks M∗
5

!
= M5

Replaces hks with H(hks)

Increments Ns

Figure 6.9: Key agreement between Sensor and Patient.

122 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

Action 5: Patient’s PIN update

Patient(P)

Stores b,HREG, (sk, hks, Ns)

Patient enters PINp and PIN∗
p

b∗ = PIN∗
p ⊕ PINp ⊕ b

Updates b with b∗

Figure 6.10: Procedure to update the PIN of a patient.

Formal verification

Our scheme is verified by using the RUBIN technique that can provide a non-
monotonic logic-based verification proof. With RUBIN we can analyse the
protocol using a specification that is close to the implementation. Furthermore,
we build on the non-monotonic aspect of RUBIN, which means that our protocol
can rely on the fact that an entity may no longer possess data it previously
knew. Its specification and other examples can be found in [13, 90, 130].

Specification Our scheme assumes that both the patient’s smartphone (P)
and all sensor nodes (S) trust the Remote Center (RC). Therefore, we focus
the proof on the key agreement phase (Action 4). In terms of global sets, the
principal set is PS = {RC,P, S} where S is the list of sensor nodes Ss in a
group. Without loss of generality, we will provide the proof with one of the
sensor nodes Ss in the group. The rule set contains the inference rules as defined
by Rubin et al. [90]. The secret set is SS = {IDp, PINp, zg, xg, yg, HREG,
HKs} at the start of Action 4. The observer set is as follows:

• Observer(IDp) : {RC,P}
• Observer(H(IDp)) : {RC,S, P}
• Observer(PINp) : {P}
• Observer(zg) : {RC}
• Observer(H(zg)) : {RC,P}
• Observer(xg) : {RC}
• Observer(yg) : {RC}
• Observer(y∗g) : {RC,P}
• Observer(HREG) : {RC,S, P}
• Observer(As) : {RC}

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 123

• Observer(H(As)) : {RC,S}
• Observer(Bs) : {RC,S}

Now we define the local set for each entity, starting with Ss. Note that the local
set of an entity P exists of the Possession Set POSS(P), Belief Set BEL(P),
and Behaviour list BL(P).

Principal Ss

POSS(Ss) = IDs, Bs,H(As),H(zg),H(IDp), HREG, hks, Ns

BEL(Ss) = #(HREG),#(hks),#(H(As)),#(H(zg)),#(H(IDp)),#(Bs)
BL(Ss) =

SA1 Generate-timestamp(T1)
SA2 Generate-secret(R1)
SA3 M1 ← R1 ⊕ H(As)
SA4 M2 ← SHA256(Concat(HREG,H(As), R1, T1, Ns))
SA5 M3 ← Bs ⊕ SHA256(Concat(HREG,T1))
SA6 Concat(M1,M2,M3, T1, Ns)
SA7 Send(P , {M1 ·M2 ·M3 · T1 ·Ns})
SA8 Update({M1 ·M2 ·M3 · T1 ·Ns}, W)
SA9 Forget(M1,M2,M3)
SA10 Receive(P , {T2 ·M4 ·M5})
SA11 Split({T2 ·M4 ·M5})
SA12 Check-freshness(T2)
SA13 R2 ←M4 ⊕ H(As)
SA14 sk← SHA256(Concat(R1, R2, T1, T2, Bs,H(IDp), hks))
SA15 M∗5 ← SHA256(Concat(sk, HREG, T1, T2))
SA16 Check(M5,M

∗
5)

SA17 hks ← SHA256(hks)
SA18 Forget-secret(R1, R2)
SA19 Forget(T1, T2,M4,M5)

Principal P
POSS(P) = b,HREG
BEL(P) = #(HREG)
BL(P) =

PA1 Receive(Ss, {M1 ·M2 ·M3 · T1 ·Ns})

124 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

PA2 Split({M1 ·M2 ·M3 · T1 ·Ns})
PA3 Check-freshness(T1)
PA4 Bs ← SHA256(Concat(HREG,T1))
PA5 Input(IDp, P INp)
PA6 y∗g ← SHA256(Concat(SHA256(PINp ⊕ b), IDp))
PA7 As ← Bs ⊕ y∗g
PA8 H(As)← SHA256(As)
PA9 R1 ←M1 ⊕ H(As)
PA10 M∗2 ← SHA256(Concat(HREG,H(As), R1, T1, Ns))
PA11 Check(M2, M∗2)
PA12 Forget(M1,M2,M3)
PA13 Generate-secret(R2)
PA14 Generate-timestamp(T2)
PA15 If hks /∈ POSS(P) then hks ← SHA256Ns(SHA256(Concat(As, y

∗
g)))

PA16 sk← SHA256(Concat(R1, R2, T1, T2, Bs,H(IDp), hks))
PA17 hks ← SHA256(hks)
PA18 M4 ← R2 ⊕ H(As)
PA19 M5 ← SHA256(Concat(sk, HREG, T1, T2))
PA20 Concat(T2,M4,M5)
PA21 Send(Ss, {T2 ·M4 ·M5})
PA22 Update({T2 ·M4 ·M5}, W)
PA23 Forget-secret(R1, R2, IDp, P INp, As,H(As))
PA24 Forget(T1, T2,M4,M5, Bs)

Analysis The scheme starts with the execution of the SA1-SA9 RUBIN actions
of BL(Ss), resulting in the updated local set of principal Ss described below.
Also, the Update action results in Observers(M1, M2, M3, T1, Ns) = W.
Principal Ss generates message parameters M1−3 that are believed to be fresh
because of the freshness believes of terms R1, T1, and HREG. After sending
the message, principal Ss discards M1,M2,M3 in SA9, since, they are no longer
needed.

POSS(Ss) = IDs, Bs,H(As),H(zg), HREG,H(IDp), hks, Ns, T1, R1,M1,M2,
M3
BEL(Ss) = #(HREG),#(hks),#(H(As)),#(T1),#(R1),#(M1),#(M2),

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 125

#(M3)
BL(Ss) = SA1, ..., SA8

The next four RUBIN actions to be executed are those of principal P , because,
the terms {M1 ·M2 ·M3 ·T1 ·Ns} are sent to it. The new local set described below
is the result of this. The terms M1−3, Ns are not believed to be fresh, because,
they cannot directly be verified. The freshness of timestamp T1, however, is
ensured using the Check-freshness action.

POSS(P) = b,HREG,Ns, T1,M1,M2,M3, Bs

BEL(P) = #(HREG),#(T1), {{Ss, P,RC} ⊆ Observer(HREG)}
BL(P) = PA1, . . . , PA4

The next RUBIN action collects the input IDp and PINp of the patient, but,
it can not be verified to be fresh. Then, the following six RUBIN actions
of principal P are executed. They results in the new local set described
below. By checking M2

!= M∗2 , Observer(H(As), R1)={Ss, P} is proven, since,
{S, P,RC} ⊆ Observer(HREG) and Observer(H(As)) = {RC,Ss, P}.

POSS(P) = b,HREG,Ns, T1,M1,M2,M3, Bs, y
∗
g , As,H(As), R1, IDp, P INp

BEL(P) = #(HREG),#(T1), #(As), #(R1)
BL(P) = PA1, . . . , PA11

The PA12-PA22 RUBIN actions of principal P are performed if the verification
of M2 is successful. The local set described below is the result. The secret and
hash key are generated and are believed to be fresh via respectively #(As) and
#(R1, R2, T1, T2, hks). Then, principal P calculates message parameters M4
and M5.

POSS(P) = b, HREG, (hks, Ns), T1, Bs, y
∗
g , As, H(As), R1, IDp, P INp, R2,

T2, M4, M5, sk
BEL(P) = #(HREG), #(T1), #(As), #(R1), #(R2), #(T2), #(sk), #(hks),
#(M4), #(M5)
BL(P) = PA1, . . . , PA22

The last RUBIN action of P is to forget all terms computed or generated in
this process except for (hks, Ns) and sk via RUBIN actions PA23 and PA24.

Principal P sends {T2 ·M4 ·M5} to principal Ss which enables the sensor node
to continue executing RUBIN actions SA10-SA17. The resulting local set is as
provided below. After splitting the received terms, the freshness of timestamp
T2 is verified. Via Check(M5,M

∗
5), Ss can believe Observer(sk) = {Ss, P}.

Furthermore, the freshness of sk is ensured via the random values and the time
stamps. Next, the hash key hki

s is updated with hki+1
s , thus, POSS(Ss) :=

POSS(Ss) - hki
s + hki+1

s .

126 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

POSS(Ss) = IDs, Bs, H(As), H(zg), HREG, H(IDp), hks, Ns, T1, R1, T2, R2,
M4, M5, sk
BEL(Ss) = #(HREG),#(hks),#(H(As)),#(T1),#(R1),#(T2),#(sk)
BL(Ss) = SA1, . . . , SA17

Finally, principal Ss forgets all terms computed or generated in this process
except for (hks, Ns) and sk via RUBIN actions SA18 and SA19. The observer
set is as follows at the end of Action 4:

• Observer(IDp) : {RC,P}
• Observer(H(IDp)) : {RC,S, P}
• Observer(PINp) : {P}
• Observer(zg) : {RC}
• Observer(H(zg)) : {RC,P}
• Observer(xg) : {RC}
• Observer(yg) : {RC}
• Observer(y∗g) : {RC,P}
• Observer(HREG) : {RC,S, P}
• Observer(As) : {RC}
• Observer(H(As)) : {RC,S}
• Observer(Bs) : {RC,S}
• Observer(sk) : {S, P}
• Observer(hk) : {S, P}

This analysis implies that:

• R1, T1, R2, T2 are fresh for each session and are known by the legitimate
Ss and P . This ensures resilience against replay attacks and linkability.

• Ss and P are mutually authenticated, protecting against man-in-the-
middle and impersonation attacks.

• IDp and As are only possessed by P and RC, providing anonymous
communication.

• The secret key sk is only known to Ss and P and is an independent key for
each session as it is computed over random values and the hash key hks.
Note that all consecutive hash keys can only be known at any time by
P and RC, thus, the scheme achieves perfect forward secrecy if a sensor
node is compromised.

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 127

• The random value b and a scan based IDp, which is a random identifier
generated by the hospital, are used to protect against password guessing
attacks.

Informal verification

The security verification is continued in this subsection with an informal
discussion of the provided security properties and the protection against
potential security attacks. Note that we assume the threat model described in
Section 6.2.3.

Patient impersonation attack: Suppose an attacker A tries to create valid
input credentials. The attacker needs to enter an identifier and PIN
code (IDa

p , P IN
a
p) on the patient’s smartphone, assuming that A can get access

to the smartphone. A cannot determine the correct values via eavesdropping
the communication, because, they are not shared in plain text nor over an
insecure channel. Furthermore, IDp cannot be computed from H(IDp) or
HREG = H(H(IDp)‖H(zg)), which are stored on the sensor nodes, since, we
consider the hash function a one-way function.

Sensor node impersonation attack: An attacker A intercepts the first
transmission 〈M1,M2,M3, T1, Ns〉 of sensor node Ss and tries to generate a valid
message 〈Ma

1 ,M
a
2 ,M

a
3 , T

a
1 , N

a
s 〉 by impersonating this node. A can generate a

random value Ra
1 , timestamp T a

1 , and hash key counter Na
s . However, A cannot

generate valid message parameters M1, M2, or M3, because, this require the
knowledge of secret values H(As) and HREG. Moreover, these secret values
cannot be guessed in polynomial time. Message parameter M1 protects H(As)
via the one-time pad technique, and, message parameters M2 and M3 protect
HREG via the one-way hash function.

Replay attack: Assume an attacker A has eavesdropped on the messages that
are sent during the key establishment procedure (Action 4) and tries to replay
these messages to either the patient’s smartphone or sensor node. The freshness
of both messages are easily verifiable via the timestamps T1 and T2, also, the
integrity of the timestamp is guaranteed via M2 and M5.

Eavesdropping attack: Messages sent over an insecure channel can be
eavesdropped by an attacker A, thus, messages 〈M1,M2,M3, T1, Ns〉 and
〈T2,M4,M5〉 are seen by A. The secret key sk is generated via sk =

128 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

H(R1‖R2‖T1‖T2‖Bs‖H(IDp)‖hks). A cannot derive R1, R2, Bs, H(IDp), and
hks, since, these values are protected via either the one-time pad technique or
the one-way hash function.

Privileged insider attack: Assume an adversary A who may be a privileged
sensor node that is connected to patient Pi and that tries to establish a
connection with another patient’s smartphone Pj . A cannot compute the sensor
node-patient link HREGj , thus, he cannot create a valid message parameter
M2. Upon validation, the patient’s smartphone will abort the key establishment
procedure. However, A can determine the other sensor nodes that are linked to
Pi by eavesdropping on the communication. Using the value HREGi and the
eavesdropped message parameter T1, the identity Bs of all linked sensor nodes
can be computed via Bs = M3 ⊕ H(HREGi‖T a

1).

Offline password guessing attack: In our threat model, an attacker A can
retrieve the stored secrets of a sensor node via side-channel attacks. Within
the time frame of the envisioned sessions of a patient in a hospital, A should
not be able to guess the identifier IDp or PINp via the values H(IDp) and Bs

where Bs = As ⊕ H(yg) and yg = H(H(PINp ⊕ b)‖IDp).

Anonymity and unlinkability: The identity of the patient IDp is masked in
our scheme via the one-way hash function. For an attacker A, it should be
computationally infeasible to compute it. Furthermore, unlinkability is also
provided via the freshness of random values and timestamps. Suppose A can
intercept messages from the sensor node and the patient’s smartphone. Using
only an eavesdropping attack, the attacker should not be able to compute
Bs, H(IDp), H(As), or HREG from one of the message parameters within
polynomial time.

Perfect forward secrecy: Assume an attacker A compromises the session
key sk, the sensor node’s secret and public identity H(As), Bs and the
current hash key hki

s, and the patient’s link HREG . These keys do
not reveal any previous session keys as session keys are calculated as
sk = H(R1‖R2‖T1‖T2‖Bs‖H(IDp)‖hki

s). The previous hash key hki−1
s is not

computable, since, during each session establishment the hash key is updated
via hki

s = H(hki−1
s). Moreover, the freshness of the session keys is ensured

through the use of the timestamps, and the random values.

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 129

Comparison to related work

An overview of the security features that our work and the considered related
work provide is presented in Table 6.5. Only our scheme covers all the required
security features. Gupta et al. [40] and Shuai et al. [102] do not provide
distributed key agreement, and, Gupta et al. [40], Kumar et al. [57], and
Chen et al. [19] do not provide sufficient perfect forward secrecy protection.
Furthermore, if we take the requirement to input an identifier and a password
into account, our scheme and that of Gupta et al. and Shuai et al. [102] would
only be eligible, because, the schemes of Kumar et al. [57] and Chen et al. [19]
do not provide this feature.

Table 6.5: Comparison of the available security features. The security features
R.1-R.5 are described in Section 6.2.5 (R.1: Anonymity and unlinkability, R.2:
Mutual authentication, R.3: Perfect forward secrecy, R.4: Protection against
general attacks, and R.5: Distributed authentication).

Security features R.1 R.2 R.3 R.4 R.5
Kumar2017 [57] Y Y N Y Y
Gupta2019 [40] Y Y N Y N
Chen2018 [19] Y Y N Y Y
Shuai2019 [102] Y Y Y Y N

Ours Y Y Y Y Y

6.2.6 Implementation results

The implementation results are generated using a generic and an empirical
study. The computationally expensive operations are identified and generalised
for each entity of our scheme and related key agreement protocols. Furthermore,
the communication impact is compared using the amount of messages and bits
that are exchanged. Next, the impact of the proposed scheme is validated
empirically through a proof-of-concept implementation.

The computation impact of the key agreement protocol is compared to related
work in Table 6.6 in terms of the number of hash functions (Th), the number
of symmetric-key encryptions (Te), the number of symmetric-key decryptions
(Td), and the number of fuzzy key extractions (Tfe). Our scheme requires five
and nine hash operations for respectively the sensor node and the patient. Also,
our scheme does not require input of the RC during key agreement. In total,
our scheme ranks third in terms of performance. Only Chen et al. [19] and
Kumar et al. [57] feature less operations.

130 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

Table 6.6: Comparison of the computation impact of the key agreement
scheme with other relevant state-of-the-art schemes (Th: hash, Te: symmetric
encryption, Td: symmetric decryption, and Tfe: fuzzy extraction).

Protocol Sensor User RC Total

Kumar2017 [57] 2Th + 2Th + - 4Th +
1Te + 1Td 1Td + 2Te 3Te + 2Td

Gupta2019 [40] 4Th 7Th 5Th 16Th
Chen2018 [19] 5Th 8Th - 13Th

Shuai2019 [102] 7Th Tfe + 11Th 12Th Tfe + 30Th
Ours 5Th 9Th - 14Th

The communication impact compared to related work is given in Table 6.7. We
have chosen for the following message parameter sizes: 24-byte ID, 32-byte hash
digest (SHA256), 32-byte random, 4-byte timestamp (Unix epoch), and 4-byte
counter. The results of Kumar et al. [57] and Chen et al. [19] were estimated
because the original value was either not available or inconsistent. Our scheme
features the lowest amount of bits exchanged. Furthermore, only two messages
rounds are required, which is equal for the protocol of Kumar et al. [57] and
Chen et al. [19].

Table 6.7: Comparison of the communication impact of the key agreement
scheme with other relevant state-of-the-art schemes (*: estimated values).

Protocol Rounds Total size (bits)
Kumar2017 [57] 2 1568*
Gupta2019 [40] 5 3808
Chen2018 [19] 2 2080*

Shuai2019 [102] 5 1824
Ours 2 1376

An empirical study of our proposed scheme is done using a proof-of-concept
implementation on a custom-designed board featuring a TI MSP432P4011
MCU [109] and a TI CC3120 network processor [108]. The MCU is a 32-Bit
Arm Cortex-M4F running at 48 Mhz with 2 MB of Flash and 256 KB of RAM.
The code is compiled using the GNU GCC compiler tools version 7.2.1 with
the -O3 optimisation setting. Note that this board is the same as the one used
in the evaluation of Section 6.1. The performance of Action 4 is measured
on this health sensor node using the available 24-bit system timer, and, 75
iterations were performed. The health sensor node communicates wirelessly
with a Patient that is emulated using python code running on a Dell XPS 15
9570 laptop. The results are presented using a box plot and a 96% confidence

END-TO-END SECURITY VIA SYMMETRIC-KEY CRYPTOGRAPHY 131

interval in Figure 6.11. On average, Action 4 takes about 26.5 ms. Using the
power consumption of the microcontroller and the network interface, the energy
usage is estimated to be about 507 µJ . The energy consumption of the key
establishment of our proposed scheme is negligible in comparison to the energy
required to perform the measurements and communication of sensor data in
one 10 s period, which is estimated to be around 698.2 mJ .

Key agreement
10

20

30

40

50

60

Pe
rfo

rm
an

ce
 (m

s)

[24.05;28.92]

Figure 6.11: Performance box plot of Action 4 based on 75 runs.

6.2.7 Conclusion

This work proposes the design and implementation of a symmetric-key security
protocol for wearable healthcare devices. Both the association phase, in which
the wearable device is anonymously linked to the patient, and the communication
phase, in which end-to-end secured data exchange takes place, are described
in detail. An analysis of the security features and the communication and
computation cost of the protocol shows that our solution outperforms previously
proposed protocols. In terms of future work, one additional security feature is
worth considering, namely the protection against privileged insider attacks, in
which the adversary can determine the identity of the sensor nodes that are
linked to a patient.

132 USE CASES ON END-TO-END SECURITY FOR WEARABLE MEDICAL DEVICES

6.3 Comparison of the two solutions

First, end-to-end security is provided for a mobile health system using public-key
cryptography. The system is evaluated using a proof-of-concept implementation
that can be used in a hospital scenario. The TLS protocol using the
DHE_RSA_AES_GCM cipher suite is chosen, providing a broad range of
security guarantees. Also, it can be offloaded to the network processor on the
mobile health system, leading to a lower energy consumption. The results show
that a security session can be established using about 32 mJ , while, it uses a
negligible amount of storage and memory. Though, it requires about 230 ms
to establish a session and around 4567 B of data to be communicated. The
amount of data that TLS requires to establish a connection is measured by
analysing the traffic between the sensor node and the local server during session
establishment.

Secondly, a security protocol is designed that is based on symmetric keys
and provides a similar security level. It is evaluated through a proof-of-
concept implementation. In comparison to the system secured using public-key
cryptography, it additionally needs a authorisation server, and, the patient’s
smartphone will receive the sensor data instead of a local server. The resulting
protocol requires only around 507 µJ , 26 ms and 172 B of data to establish a
security session. Though, additional firmware is required to implement it.

We compare the results of both approaches in this paragraph. The advantage
of the symmetric-key cryptography based protocol is its efficiency in terms
of energy cost, performance, and data communication. Its disadvantage is
the need of an authorisation server to configure each sensor node for each
patient. Additionally, the authorisation server needs to maintain the shared
keys of each sensor node. In contrast, in the public-key based protocol, the
authentication of entities is enabled through the use of certificates. If two
entities hold a valid certificate and key pair, they can securely communicate
with each other. Authorisation is achieved via login credentials. Furthermore,
a hardware accelerator is used to offload the security protocol. It results in a
negligible overhead in terms of storage and memory. However, it requires much
more energy, time and data communication to establish a security session using
the public-key cryptography based protocol in comparison to the symmetric-key
solution.

CONCLUSION 133

6.4 Conclusion

We propose two security protocols and proof-of-concept implementations, to
be used in energy-constrained mobile health systems. The first solution is
based on public-key cryptography and makes use of existing cipher suites. Our
contribution consists of an evaluation of the energy consumption of both the
computations in the cipher suites and the wireless communication protocols.
Moreover, we implement the proposed solution on a real-life medical prototype
measuring five different vital sign parameters. The second solution proposed
in this chapter, relies on symmetric-key cryptography and proposes a novel
protocol for end-to-end security in the specific setting where the smartphone
of the patient collects all sensor data. Both a formal and an informal proof of
the security properties is given. Finally, a comparison is made between the two
schemes, based on the energy consumption, the system setup and the security
features.

Chapter 7

Conclusion

In this thesis, the following four challenges are considered: (1) securing
heterogeneous devices and networks, (2) enabling digital signatures on
constrained IoT devices, (3) analysing the energy consumption of security
protocols, and (4) providing security solutions for mobile health systems. First,
conclusions for each challenge are presented. Then, potential future work is
discussed.

7.1 Conclusions

The HeComm architecture was proposed to tackle the end-to-end security
challenge in a heterogeneous IoT environment in Chapter 3. Via the analysis
of the proof-of-concept that interconnected a 6LoWPAN and a LoRaWAN
network, object security and fog computing proved to be optimal concepts for
this purpose. Object security reduced the compatibility concerns of different IoT
networks while providing the required security guarantees. Furthermore, fog
nodes provided the interconnection of IoT networks, and could not compromise
the security of the communication between the IoT nodes in the HeComm
architecture.

The storage optimisations for the coupon technique, which were discussed
in Chapter 4, proved to be ideal to enable digital signatures for constrained
IoT devices. Also, the proposed encoding and storage encryption ensured the
usability of the coupon technique. Overall, the coupon technique along with
the proposed storage optimisations reduced the impact of digital signature

135

136 CONCLUSION

generation in terms of performance and energy consumption. However, the
storage requirement of this technique remains a challenge. This was partially
solved by using the coupon addition technique where coupons were added
to each other to create new coupons. To clarify, combinations of coupons
were used to enlarge the usable set of coupons while only storing a few. The
performance impact of a coupon addition is considerable in comparison to a
signature encryption using the coupon technique, but, it is about six times
more efficient than a signature encryption without the coupon technique. The
downside of coupon addition is that it does not scale well, since, a combination
of n coupons requires n− 1 coupon additions. Consequently, a limited number
of coupons should be used in a combination to limit the performance impact.

Our analysis of the energy consumption of security protocols in Chapter 5 can
serve as a guideline for practitioners and researchers selecting the appropriate
security algorithms and wireless communication protocols. Additionally, an
equation to calculate the minimal time period of a security/communication
session was introduced that can limit the impact of the session setup procedure
of security protocols on the overall energy consumption. In summary, we used
a granular approach to estimate the energy consumption of security algorithms
and protocols. The granular approach provided a rough estimation, nevertheless,
more experiments are required to validate the accuracy of it.

In chapter 6, we analysed two different solutions to provide end-to-end security
for mobile health systems: via public-key cryptography and via symmetric-key
cryptography. The public-key approach provided strong security guarantees but
expressed a considerable impact in terms of performance and energy. However,
the impact was limited through the use of hardware accelerators, and by limiting
the refresh rate of the security session. The solution based on symmetric-key
cryptography, on the other hand, was designed to provide strong and efficient key
establishment. Its impact in terms of performance and energy consumption was
considerably lower than the public-key based solution, while, providing similar
security guarantees. Note that the symmetric-key solution was specifically
designed to fit the requirements of the mobile health system, whereas, the
public-key solution focused on the use of known and proven protocols. In
small to medium scale applications like the hospital scenario addressed in this
thesis, the symmetric-key solution might be the best fit, because of its efficiency.
Though, public-key based solutions using a public key infrastructure may be
more suitable for large scale applications, where e.g. thousands of devices are
used, as it does not require the upkeep of the shared secrets for each device.

FUTURE WORK 137

7.2 Future work

This thesis focuses on the in-depth and practical study of the aforementioned
security challenges to provide energy-efficient and performance-aware end-to-end
security in a heterogeneous IoT environment. While, the identified techniques,
analyses, and proposed architectures can be enhanced further upon, the focus
should be on the adoption of the identified techniques, as they can serve as a
foundation to build industry-ready solutions.

The COSE standard that is used in the HeComm architecture should be
updated, in the future, with the OSCORE standard. OSCORE also uses the
COSE specification, but, it additionally provides authentication guarantees
to some header fields of the CoAP protocol. Secondly, more fog interfaces
should be devised to support other IoT networks as well. For the heterogeneous
challenge (1) in general, the difficulty lies in the interoperability of legacy and
newly-developed systems. New systems can be designed with interoperability in
mind, i.e. using standardised protocols to communicate. Legacy systems, on the
other hand, are typically never updated. Future work could look, for example,
at how to provide end-to-end security to legacy systems in a heterogeneous
environment with minimal adaptations.

We proposed the coupon technique to enable digital signatures on constrained
IoT devices (2). The storage requirements of this technique were optimised,
though, the impact in terms of storage and computation is still considerable.
Also, the lifetime of these devices should not be limited to the number of
signatures the device can compute. Consequently, we could derive the following
research question. How to keep the IoT device running while using a limited
supply of coupons? Future research could look at e.g. updating the coupons
on-the-fly or devising a flexible security architecture to handle this.

In this thesis an analysis is given on the energy consumption of security
protocols (3) which can serve as a guideline. It is done by identifying the
required cryptographic operations and estimating the energy consumption using
a granular approach. Our process consisted of analysing the specifications and
source code and combining all the results. Since it is a reasonably tedious
process, it has only been applied to a select number of protocols. Furthermore,
this process requires a cryptographic background. In the future, research could
focus on creating development tools that estimate the energy consumption of
security architectures using the provided source code/diagram.

Finally, two end-to-end security solutions were devised for mobile health
systems (4). However, the implementation of the key infrastructure was not
considered. The discussed systems were small to medium-scale systems, thus,
the devices can easily be provisioned and maintained by e.g. the local IT

138 CONCLUSION

department. In large-scale systems, on the other hand, the bootstrapping
phase, i.e. management of the keys and configuration, should be taken into
account. This raises the following research question. How to manage the
key infrastructure of security architectures semi-automatically with a limited
amount of user interaction in large-scale and low-power IoT systems?

Overall, future research should focus on optimising existing or inventing new
standards to enhance the adoption of energy-efficient security architectures in
IoT systems.

Appendix A

Workflow of medical sensor
system in a hospital

The workflow describes how the patch is used within the involved hospitals,
as depicted in Figure A.1. At first, every patch needs to be configured. This
includes setting up the network configuration and security parameters for the
connection to the hospital network, and registering the device into the system
database. The patch configuration as well as future updates are done by the
IT department of the hospital using a programmer with a wired connection to
a PC.

After configuration, the patch is delivered to the clinical staff. Note that any
user that wants access to the system first needs to go through an authentication
step. This influences which actions he/she can perform with the system and
how the data are filtered on the display.

During the association step, a given patch is associated with a patient. Each
time a patch is assigned to a patient, the nurse scans the patient’s EMR
identifier on the patient’s wristband and the patch serial number on the patch’s
label using an off-the-shell barcode reader. Based on these two identifiers, a
unique association identifier (UID) is generated by the local server. This UID
is wirelessly sent from the local server to the patch each time it boots up for
the duration of the association. The patch will append the UID to each packet
it will subsequently emit. This design has two main advantages:

• It does not expose the patient’s EMR identifier inside the message broker.

139

140 WORKFLOW OF MEDICAL SENSOR SYSTEM IN A HOSPITAL

1.
Authentication

2. Association

3. Installation

4. Calibration

5. Notification

6. Real Time
Display

7. Data
Reporting

8. Shift Review

9. Recharge

10. End of the
Monitoring

11. Device
Storage

0. Configuration/Update

Figure A.1: The workflow of the wearable health system visualised in a flow
diagram.

• It avoids any session mismatch in the data processing pipe-lines and allows
the pipelines to cache UIDs and related metadata for efficiency.

The nurse will now install the patch on the patient’s chest. First, he/she
checks the battery level of the patch, second, he/she attaches the patch with an
adhesive on the left chest at the level of the heart, and third, he/she attaches
both electrodes to the patch via snap buttons and to the chest using the adhesive
part of the electrodes. All vital parameters of the patient except the blood
pressure are now displayed continuously on the user interface.

It is then required to calibrate the patch for the blood pressure measurement.
A reference blood pressure measurement is taken by the nurse and sent to the

WORKFLOW OF MEDICAL SENSOR SYSTEM IN A HOSPITAL 141

blood pressure measurement algorithm via the user interface.

All vital parameters of the patient are now monitored in (near) real time and the
patient’s early warning score (EWS) is continuously evaluated. The real-time
display can be accessed on any web browser or mobile device on the hospital’s
network.

If a deviation is detected in the vital parameters, a notification is sent to
the clinical staff. The clinical staff can comment and/or acknowledge this
notification. Furthermore, all actions are tracked by the local server. This offers
an audit log and a communication channel between clinical staff. With the right
permissions, a user can adjust the thresholds of the notification detection for a
specific patient.

The clinical staff can report specific data points to the EMR. The data reporting
mimics the work they were already doing with discrete measuring devices.
However, compared to the discrete measurement approach, the process is faster
via our interface, and, it is more detailed because the clinical staff is able to
select more data points.

At the end of a staff member’s shift, he/she can review the notifications and
the evolution of vital parameters. He/she can also review and export a PDF
report to the EMR of any ECG sample.

For the entire duration of the session, the battery charge level will be visible on
the user interface. If the battery is almost empty, the clinical staff has to replace
the battery. The system will notify the clinical staff whenever the battery level
drops below 20 and 5 percent, such that a timely recharge can be done.

When the patient no longer needs to be monitored, the adhesive is thrown away
and the patch is put back in the stock after cleaning. This refers to the end
of monitoring and the device storage steps in Figure A.1. The clinical staff
instructs the system that the patch is now available to be used for another
patient. Note that this will happen automatically if no data are received for a
long period of time.

Bibliography

[1] 802.11 Working Group of the LAN/MAN Standards Committee
of the IEEE Computer Society. IEEE Standard for Information
technology —Telecommunications and information exchange between
systems Local and metropolitan area networks — Specific requirements.
Tech. rep., IEEE, New York, NY, USA, 2016.

[2] Aranha, D. F., and Gouvêa, C. P. L. RELIC is an Efficient LIbrary for
Cryptography. https://github.com/relic-toolkit/relic. [Online;
accessed November-2019].

[3] Arm Limited. ARM v7-M Architecture Reference Manual. https:
//static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf,
2014.

[4] Arm Limited. Arm Mbed TLS. https://tls.mbed.org/, 2019. [Online;
accessed June-2019].

[5] Arm Limited. GNU Arm Embedded Toolchain. https://developer.
arm.com/tools-and-software/open-source-software/developer-
tools/gnu-toolchain/gnu-rm, 2019. [Online; accessed October-2019].

[6] Ashton, K. That ‘internet of things’ thing. RFID journal 22, 7 (2009),
97–114.

[7] Atzori, L., Iera, A., and Morabito, G. The Internet of Things: A
survey. Computer Networks 54, 15 (Oct. 2010), 2787–2805.

[8] Barker, E. B., and Kelsey, J. M. Recommendation for Random
Number Generation Using Deterministic Random Bit Generators. Tech.
rep., National Institute of Standards and Technology, Gaithersburg, MD,
June 2015.

143

https://github.com/relic-toolkit/relic
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
https://tls.mbed.org/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm

144 BIBLIOGRAPHY

[9] Bertoni, G., Daemen, J., Peeters, M., and Assche, G. V. The
Keccak reference. Tech. rep., STMicroelectronics, NXP Semiconductors,
2011.

[10] Bluetooth, SIG. Core system package [low energy controller volume].
Specification of the Bluetooth System v4.1 6 (2013), 2467–2640.

[11] Bormann, C., Ersue, M., and Keränen, A. Terminology for
Constrained-Node Networks. RFC 7228, 2014.

[12] Bormann, C., and Hoffman, P. RFC 7049: Concise Binary Object
Representation (CBOR). Tech. rep., Internet Engineering Task Force
(IETF), Oct. 2013.

[13] Braeken, A., Liyanage, M., Kumar, P., and Murphy, J. Novel 5G
Authentication Protocol to Improve the Resistance Against Active Attacks
and Malicious Serving Networks. IEEE Access 7 (2019), 64040–64052.

[14] Braeken, A., Shabisha, P., Touhafi, A., and Steenhaut,
K. Pairing free and implicit certificate based signcryption scheme
with proxy re-encryption for secure cloud data storage. In 2017
3rd International Conference of Cloud Computing Technologies and
Applications (CloudTech) (2017), IEEE, pp. 1–7.

[15] Brorsson, J., and Gunnarsson, M. Compact object security for the
internet of things, 2016. Student Paper.

[16] Cabo. cn-cbor: A constrained node implementation of CBOR in C.
https://github.com/cabo/cn-cbor, 2013. [Online; accessed November-
2019].

[17] Certicom Research. SEC 1: Elliptic curve cryptography. Standards
for efficient cryptography 2 (2009).

[18] Certicom Research. SEC 4: Elliptic curve qu-vanstone implicit
certificate scheme (ECQV). Standards for efficient cryptography 1 (2013).

[19] Chen, C.-M., Xiang, B., Wu, T.-Y., and Wang, K.-H. An
Anonymous Mutual Authenticated Key Agreement Scheme for Wearable
Sensors in Wireless Body Area Networks. Applied Sciences 8, 7 (jul 2018),
1074.

[20] Cheong, P. S., Bergs, J., Hawinkel, C., and Famaey, J.
Comparison of LoRaWAN classes and their power consumption. In
2017 IEEE Symposium on Communications and Vehicular Technology
(SCVT) (Nov. 2017), vol. 2017-Decem, IEEE, pp. 1–6.

https://github.com/cabo/cn-cbor

BIBLIOGRAPHY 145

[21] Cirani, S., Ferrari, G., Iotti, N., and Picone, M. The IoT hub:
A fog node for seamless management of heterogeneous connected smart
objects. In 2015 12th Annu. IEEE Int. Conf. Sensing, Commun. Netw. -
Work. SECON Work. 2015 (2015), pp. 43–48.

[22] Claes, S., Berckmans, D., Geris, L., Myin-Germeys, I.,
Audenhove, C. V., Diest, I. V., Hoof, C. V., Hoyweghen, I. V.,
Huffel, S. V., and Vrieze, E. Mobile Health Revolution in Healthcare:
Are We Ready? Tech. rep., Metaforum KU Leuven, Leuven, 2019.

[23] Čolaković, A., and Hadžialić, M. Internet of Things (IoT): A review
of enabling technologies, challenges, and open research issues. Computer
Networks 144 (Oct. 2018), 17–39.

[24] Contiki. Contiki: The Open Source OS for the Internet of Things.
www.contiki-os.org. [Online; accessed 2017].

[25] Cose-wg. Implementation of COSE in C using cn-cbor and openssl.
https://github.com/cose-wg/COSE-C, 2017.

[26] Daemen, J., and Rijmen, V. The block cipher rijndael. In International
Conference on Smart Card Research and Advanced Applications (1998),
Springer, pp. 277–284.

[27] Dang, Q. H. Secure Hash Standard. Tech. rep., National Institute of
Standards and Technology, Gaithersburg, MD, July 2015.

[28] de Clercq, R., Uhsadel, L., Van Herrewege, A., and
Verbauwhede, I. Ultra Low-Power implementation of ECC on the ARM
Cortex-M0+. In Proceedings of the The 51st Annual Design Automation
Conference on Design Automation Conference - DAC ’14 (New York, New
York, USA, 2014), ACM Press, pp. 1–6.

[29] Diffie, W., and Hellman, M. New directions in cryptography. IEEE
transactions on Information Theory 22, 6 (1976), 644–654.

[30] Docker Incorporated. Docker enterprise is the industry-leading
container platform. https://www.docker.com/products/docker-
enterprise, 2019. [Online; accessed March-2019].

[31] Dolev, D., and Yao, A. On the security of public key protocols. IEEE
Transactions on Information Theory 29, 2 (mar 1983), 198–208.

[32] Dworkin, M. J. Recommendation for block cipher modes of operation.
Tech. rep., National Institute of Standards and Technology, Gaithersburg,
MD, 2001.

www.contiki-os.org
https://github.com/cose-wg/COSE-C
https://www.docker.com/products/docker-enterprise
https://www.docker.com/products/docker-enterprise

146 BIBLIOGRAPHY

[33] Dworkin, M. J. Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. Tech. rep., National Institute
of Standards and Technology, Gaithersburg, MD, 2007.

[34] Dworkin, M. J. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Tech. rep., National Institute of Standards
and Technology, Gaithersburg, MD, July 2015.

[35] em microelectronics. EM9301 - Single-Cell Battery Bluetooth Low
Energy Controller. https://www.emmicroelectronic.com/product/
standard-protocols/em9301, 2018. [Online; accessed June-2019].

[36] Gandolfi, K., Mourtel, C., and Olivier, F. Electromagnetic
analysis: Concrete results. In International Workshop on Cryptographic
Hardware and Embedded Systems (CHES) (2001), C. K. Koc, D. Naccache,
and C. Paar, Eds., no. 2162 in Lecture Notes in Computer Science,
Springer-Verlag, p. 255–265.

[37] Giry, D. Cryptographic Key Length Recommendation. https://www.
keylength.com/en/, 2018. [Online; accessed April-2019].

[38] GrowthEnabler. Market pulse report, Internet of Things (IoT). Tech.
rep., GrowthEnabler, 2017. [Online; accessed October-2019].

[39] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. Internet
of Things (IoT): A vision, architectural elements, and future directions.
Future Generation Computer Systems 29, 7 (Sept. 2013), 1645–1660.

[40] Gupta, A., Tripathi, M., Shaikh, T. J., and Sharma, A. A
lightweight anonymous user authentication and key establishment scheme
for wearable devices. Computer Networks 149 (feb 2019), 29–42.

[41] Hankerson, D., Vanstone, S., and Menezes, A. Guide to Elliptic
Curve Cryptography. Springer Professional Computing. Springer-Verlag
New York, 2004.

[42] Hedabou, M., Pinel, P., and Bénéteau, L. A comb method to
render ECC resistant against Side Channel Attacks. IACR Cryptology
ePrint Archive (2004), 1–11.

[43] Heile, R. F., et al. Ieee standard for low-rate wireless networks. Tech.
rep., Institute of Electrical and Electronics Engineers (IEEE), Apr. 2016.

[44] Hermans, J., Peeters, R., and Preneel, B. Proper rfid privacy:
model and protocols. IEEE Transactions on Mobile Computing 13, 12
(2014), 2888–2902.

https://www.emmicroelectronic.com/product/standard-protocols/em9301
https://www.emmicroelectronic.com/product/standard-protocols/em9301
https://www.keylength.com/en/
https://www.keylength.com/en/

BIBLIOGRAPHY 147

[45] Huang, J., Seberry, J., Susilo, W., and Bunder, M. Security
analysis of michael: The ieee 802.11i message integrity code. In Embedded
and Ubiquitous Computing – EUC 2005 Workshops (Berlin, Heidelberg,
2005), T. Enokido, L. Yan, B. Xiao, D. Kim, Y. Dai, and L. T. Yang,
Eds., Springer Berlin Heidelberg, pp. 423–432.

[46] Hummen, R., Shafagh, H., Raza, S., Voig, T., and Wehrle,
K. Delegation-based authentication and authorization for the IP-
based Internet of Things. In 2014 Eleventh Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON) (June
2014), IEEE, pp. 284–292.

[47] Hummen, R., Ziegeldorf, J. H., Shafagh, H., Raza, S., and
Wehrle, K. Towards viable certificate-based authentication for the
internet of things. In Proceedings of the 2nd ACM workshop on Hot topics
on wireless network security and privacy - HotWiSec ’13 (New York, New
York, USA, 2013), ACM Press, pp. 37–42.

[48] Iwata, T., Song, J., Lee, J., and Poovendran, R. The AES-CMAC
Algorithm. RFC 4493, June 2006.

[49] Javdani, H., and Kashanian, H. Internet of things in medical
applications with a service-oriented and security approach: a survey.
Health and Technology 8, 1-2 (2018), 39–50.

[50] Kambourakis, G., Klaoudatou, E., and Gritzalis, S. Securing
Medical Sensor Environments: The CodeBlue Framework Case. In The
Second International Conference on Availability, Reliability and Security
(ARES’07) (Apr. 2007), IEEE, pp. 637–643.

[51] Ko, J., Dutton, R. P., Lim, J. H., Chen, Y., Musvaloiu-E, R.,
Terzis, A., Masson, G. M., Gao, T., Destler, W., and Selavo,
L. MEDiSN: Medical Emergency Detection in Sensor Networks. ACM
Transactions on Embedded Computing Systems 10, 1 (Aug. 2010), 1–29.

[52] Koblitz, N. Elliptic curve cryptosystems. Mathematics of computation
48, 177 (1987), 203–209.

[53] Kocher, P., Jaffe, J., and Jun, B. Differential power analysis. In
Annual International Cryptology Conference (1999), Springer, pp. 388–397.

[54] Kocher, P. C. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Annual International Cryptology Conference
(1996), Springer, pp. 104–113.

148 BIBLIOGRAPHY

[55] Kovatsch, M., Duquennoy, S., and Dunkels, A. Erbium (Er)
REST Engine and CoAP Implementation for Contiki. http://people.
inf.ethz.ch/mkovatsc/erbium.php, 2012. [Online; accessed 2017].

[56] Krawczyk, D. H., and Eronen, P. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF). RFC 5869, May 2010.

[57] Kumar, P., Braeken, A., Gurtov, A., Iinatti, J., and Ha, P. H.
Anonymous Secure Framework in Connected Smart Home Environments.
IEEE Transactions on Information Forensics and Security 12, 4 (apr
2017), 968–979.

[58] Ledwaba, L. P. I., Hancke, G. P., Venter, H. S., and Isaac, S. J.
Performance Costs of Software Cryptography in Securing New-Generation
Internet of Energy Endpoint Devices. IEEE Access 6 (2018), 9303–9323.

[59] Lee, J.-S., Su, Y.-W., and Shen, C.-C. A Comparative Study of
Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In IECON
2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society
(2007), IEEE, pp. 46–51.

[60] Lee, P. J., Lee, E. J., and Kim, Y. D. How to Implement Cost-Effective
and Secure Public Key Cryptosystems. In Cryptographic Hardware and
Embedded Systems (CHES) (Berlin, Heidelberg, 1999), Ç. K. Koç and
C. Paar, Eds., Springer Berlin Heidelberg, pp. 73–79.

[61] Lee, Y. K., Batina, L., Singelée, D., and Verbauwhede, I. Low-
cost untraceable authentication protocols for rfid. In Proceedings of the
Third ACM Conference on Wireless Network Security (New York, NY,
USA, 2010), WiSec ’10, Association for Computing Machinery, p. 55–64.

[62] Libelium. Libelium Smart World Infographic – Sensors for Smart Cities,
Internet of Things and beyond. http://www.libelium.com/libelium-
smart-world-infographic-smart-cities-internet-of-things/,
2013. [Online; accessed November-2019].

[63] Liu, A., and Ning, P. TinyECC: A Configurable Library for Elliptic
Curve Cryptography in Wireless Sensor Networks. In 2008 International
Conference on Information Processing in Sensor Networks (ipsn 2008)
(St. Louis, MO, USA, Apr. 2008), IEEE, pp. 245–256.

[64] LoRa Alliance. Full end-to-end encryption for iot application providers.
A white paper prepared for the LoRa Alliance (2017).

[65] Malan, D., Fulford-Jones, T., Welsh, M., and Moulton, S.
CodeBlue : An Ad Hoc Sensor Network Infrastructure for Emergency

http://people.inf.ethz.ch/mkovatsc/erbium.php
http://people.inf.ethz.ch/mkovatsc/erbium.php
http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-of-things/
http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-of-things/

BIBLIOGRAPHY 149

Medical Care. In International Workshop on Wearable and Implantable
Body Sensor Networks (2004), WIBSN’04, pp. 12–14.

[66] maxim integrated. MAXREFDES100#: Health Sensor Plat-
form. https://www.maximintegrated.com/en/design/reference-
design-center/system-board/6312.html, 2019. [Online; accessed
June-2019].

[67] Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A.
Handbook of Applied Cryptography, vol. 5. CRC Press, 2001.

[68] Miller, V. S. Use of elliptic curves in cryptography. In Conference on
the theory and application of cryptographic techniques (1985), Springer,
pp. 417–426.

[69] Montenegro, G., Schumacher, C., and Kushalnagar, N. IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPANs): Overview,
Assumptions, Problem Statement, and Goals. RFC 4919, 2007.

[70] Moosavi, S. R., Gia, T. N., Nigussie, E., Rahmani, A. M.,
Virtanen, S., Tenhunen, H., and Isoaho, J. End-to-end security
scheme for mobility enabled healthcare Internet of Things. Future
Generation Computer Systems 64 (2016), 108–124.

[71] Mulligan, G. The 6LoWPAN architecture. In Proceedings of the 4th
workshop on Embedded networked sensors - EmNets ’07 (New York, New
York, USA, 2007), ACM Press, pp. 1–78.

[72] Navas, R. E., Lagos, M., Toutain, L., and Vijayasankar, K.
Nonce-based authenticated key establishment over OAuth 2.0 IoT proof-
of-possession architecture. In 2016 IEEE 3rd World Forum Internet
Things (Dec. 2016), IEEE, pp. 317–322.

[73] Neuman, D. C., Hartman, S., Raeburn, K., and Yu, T. The
Kerberos Network Authentication Service (V5). RFC 4120, July 2005.

[74] Nigel P. Smart. Algorithms, Key Size and Protocols Report (2018).
Tech. rep., ECRYPT-CSA, Feb. 2018.

[75] NIST. Advanced encryption standard (AES). Tech. rep., National
Institute of Standards and Technology, Gaithersburg, MD, Nov. 2001.

[76] OpenFog Consortium Architecture Working Group. OpenFog
Reference Architecture for Fog Computing. Tech. rep., OpenFog
Consortium, 2017.

https://www.maximintegrated.com/en/design/reference-design-center/system-board/6312.html
https://www.maximintegrated.com/en/design/reference-design-center/system-board/6312.html

150 BIBLIOGRAPHY

[77] Padgette, J., Bahr, J., Batra, M., Holtmann, M., Smithbey, R.,
Chen, L., and Scarfone, K. Guide to bluetooth security. Tech. rep.,
National Institute of Standards and Technology, Gaithersburg, MD, May
2017.

[78] Parliament, E. Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement
of such data, and repealing directive 95/46/ec (general data protection
regulation). Official Journal of the European Union 2016, 679 (2016), 88.

[79] Peeters, R., Hermans, J., and Fan, J. IBIHOP: Proper Privacy
Preserving Mutual RFID Authentication. In Workshop on RFID and IoT
Security - RFIDSec Asia 2013 (Guangzhou,China, 2013), Cryptology and
Information Security, IOS PRESS, pp. 45–56.

[80] Pfitzmann, A., and Hansen, M. A terminology for talking about
privacy by data minimization: Anonymity, unlinkability, undetectability,
unobservability, pseudonymity, and identity management. http: // dud.
inf. tu-dresden. de/ literatur/ Anon_ Terminology_ v0. 34. pdf 34
(01 2010), 98.

[81] Picek, S., Yang, B., Rozic, V., Vliegen, J., Winderickx,
J., De Cnudde, T., and Mentens, N. Prngs for masking
applications and their mapping to evolvable hardware. In International
Conference on Smart Card Research and Advanced Applications (CARDIS)
(Cannes, France, 2017), K. Lemke-Rust and M. Tunstall, Eds., Springer
International Publishing, pp. 209–227.

[82] Pierrard, A., and Dumoulin, J. wearIT4health: Wearable Integrated
Technology for health monitoring of hospitalised patients in the Euregio
Meuse-Rhine. http://www.wearit4health.com/, 2019. [Online; accessed
December-2019].

[83] Pivotal Software Incorporated. Rabbitmq is the most widely
deployed open source message broker. https://www.rabbitmq.com/,
2019. [Online; accessed March-2019].

[84] Rabbani, M. M., Vliegen, J., Winderickx, J., Conti, M., and
Mentens, N. SHeLA: Scalable Heterogeneous Layered Attestation. IEEE
Internet of Things Journal (2019), 12 pages.

[85] Raza, S., Seitz, L., Sitenkov, D., and Selander, G. S3K: Scalable
Security with Symmetric Keys - DTLS Key Establishment for the Internet
of Things. IEEE Transactions on Automation Science and Engineering
13, 3 (2016), 1270–1280.

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://www.rabbitmq.com/

BIBLIOGRAPHY 151

[86] Rescorla, E. RFC8446: The Transport Layer Security (TLS) Protocol
Version 1.3. Tech. rep., IETF, 2018.

[87] Rescorla, E., and Dierks, T. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246, Aug. 2008.

[88] Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM 21, 2 (1978), 120–126.

[89] Roussey, C., Bernard, S., Andre, G., Corcho, O., Sousa, G. D.,
Boffety, D., and Chanet, J.-P. Short Paper: Weather Station Data
Publication at IRSTEA: An Implementation Report. In Joint Proceedings
of the 6th International Workshop on the Foundations, Technologies and
Applications of the Geospatial Web and 7th International Workshop on
Semantic Sensor Networks (TC-SSN) (Aachen, 2014), K. Kyzirakos,
R. Gruetter, D. Kolas, M. Perry, M. Compton, K. Janowicz, and K. Taylor,
Eds., no. 1401 in CEUR Workshop Proceedings, pp. 89–104.

[90] Rubin, A., and Honeyman, P. Nonmonotonic cryptographic protocols.
In Proceedings The Computer Security Foundations Workshop VII (June
1994), IEEE Comput. Soc. Press, pp. 100–116.

[91] Saeed, M. E. S., Liu, Q.-Y., Tian, G., Gao, B., and Li, F. AKAIoTs:
authenticated key agreement for Internet of Things. Wireless Networks
25, 6 (Aug. 2019), 3081–3101.

[92] Saied, Y. B., and Olivereau, A. D-HIP: A distributed key exchange
scheme for HIP-based Internet of Things. In 2012 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM) (June 2012), IEEE, pp. 1–7.

[93] Saied, Y. B., Olivereau, A., Zeghlache, D., and Laurent, M.
Lightweight collaborative key establishment scheme for the Internet of
Things. Computer Networks 64 (May 2014), 273–295.

[94] Samie, F., Bauer, L., and Henkel, J. An approximate compressor
for wearable biomedical healthcare monitoring systems. In 2015
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS) (Oct. 2015), IEEE, pp. 133–142.

[95] Schaad, J. RFC 8152: CBOR Object Signing and Encryption (COSE).
Tech. rep., Internet Engineering Task Force (IETF), July 2017.

[96] Schnorr, C.-P. Efficient identification and signatures for smart cards.
In Advances in Cryptology – Proceedings of CRYPTO (1989), Lecture
Notes in Computer Science, Springer-Verlag, pp. 239–252.

152 BIBLIOGRAPHY

[97] Selander, G., Mattsson, J., Palombini, F., and Seitz, L. Object
Security for Constrained RESTful Environments (OSCORE). Tech. rep.,
Internet Engineering Task Force (IETF), July 2019.

[98] Semtech Corporation. SX1272/73 - 860 MHz to 1020 MHz Low
Power Long Range Transceiver. https://www.semtech.com/uploads/
documents/SX1272_DS_V4.pdf, 2019. [Online; accessed June-2019].

[99] Sen, S., Koo, J., and Bagchi, S. TRIFECTA: Security, Energy
Efficiency, and Communication Capacity Comparison for Wireless IoT
Devices. IEEE Internet Computing 22, 1 (Jan. 2018), 74–81.

[100] Shelby, Z., Hartke, K., and Bormann, C. RFC 7252: The
Constrained Application Protocol (CoAP). Tech. rep., Internet
Engineering Task Force (IETF), June 2014.

[101] Shostack, A. Threat Modeling: Designing for Security. Wiley, 2014.

[102] Shuai, M., Liu, B., Yu, N., and Xiong, L. Lightweight and Secure
Three-Factor Authentication Scheme for Remote Patient Monitoring Using
On-Body Wireless Networks. Security and Communication Networks 2019
(jun 2019), 1–14.

[103] Smart, N. P., Rijmen, V., Gierlichs, B., Paterson, K., Stam, M.,
Warinschi, B., Watson, G., and Tirtea, R. Algorithms key sizes
and parameters report-2014. European Union Agency for Network and
Information Security (ENISA) TP-05-14-084-EN-N (2014), 113.

[104] Sornin, N., Luis, M., Eirich, T., Kramp, T., and Hersent, O.
LoRaWAN Specification V1.0. Tech. rep., LoRa Alliance, 2015.

[105] STMicroelectronics. STM32 Nucleo-64 development board with
STM32L073RZ MCU, supports Arduino and ST morpho connec-
tivity. https://www.st.com/en/evaluation-tools/nucleo-l073rz.
html, 2019. [Online; accessed June-2019].

[106] Technical Committee, I. J. . ISO/IEC 7498-1:1994: Information
technology — Open Systems Interconnection — Basic Reference
Model: The Basic Model. Tech. rep., International Organization for
Standardization (ISO), 1994.

[107] technology, I. J. . I. Information technology – Message Queuing
Telemetry Transport (MQTT) v3.1.1. ISO/IEC 20922:2016, International
Organization for Standardization (ISO), June 2016.

https://www.semtech.com/uploads/documents/SX1272_DS_V4.pdf
https://www.semtech.com/uploads/documents/SX1272_DS_V4.pdf
https://www.st.com/en/evaluation-tools/nucleo-l073rz.html
https://www.st.com/en/evaluation-tools/nucleo-l073rz.html

BIBLIOGRAPHY 153

[108] Texas Instruments. CC3120 SimpleLink™ Wi-Fi® Wireless Network
Processor, Internet-of-Things Solution for MCU Applications. http:
//www.ti.com/lit/ds/swas034/swas034.pdf, 2017. [Online; accessed
June-2019].

[109] Texas Instruments Incorporated. Msp432p4011: Simplelink ultra-
low-power 32-bit arm cortex-m4f mcu with precision adc, 2mb flash and
256kb ram. http://www.ti.com/product/MSP432P4011, 2019. [Online;
accessed March-2019].

[110] Texas Instruments Incorporated. Simplelink™ msp432p401r high-
precision adc launchpad™ development kit. http://www.ti.com/tool/
MSP-EXP432P401R, 2019. [Online; accessed June-2019].

[111] The BIPM and the Metre Convention. The International System of
Units (SI). Tech. rep., Bureau International des Poids et Mesures (BIPM),
2019.

[112] The Things Network. Duty Cycle for LoRaWAN Devices. https:
//www.thethingsnetwork.org/docs/lorawan/duty-cycle.html. [On-
line; accessed June-2019].

[113] Trappe, W., Howard, R., and Moore, R. S. Low-Energy Security:
Limits and Opportunities in the Internet of Things. IEEE Security &
Privacy 13, 1 (Jan. 2015), 14–21.

[114] Tschofenig, H., and Eronen, P. Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS). RFC 4279, Dec. 2005.

[115] Van Den Abeele, F., Hoebeke, J., Moerman, I., and Demeester,
P. Integration of Heterogeneous Devices and Communication Models via
the Cloud in the Constrained Internet of Things. International Journal
of Distributed Sensor Networks 2015 (2015).

[116] Whiting, D., Housley, R., and Ferguson, N. Counter with CBC-
MAC (CCM). Tech. rep., Internet Engineering Task Force (IETF), Sept.
2003.

[117] Wi-Fi Alliance. Who We Are. https://www.wi-fi.org/who-we-are,
2019. [Online; accessed October-2019].

[118] Winderickx, J., Bellier, P., Coppieters, D., Duflot, P., and
Mentens, N. Communication and security trade-offs for battery-
powered devices: a case study on wearable medical sensor systems. ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS) (2019), 17 pages. [submitted].

http://www.ti.com/lit/ds/swas034/swas034.pdf
http://www.ti.com/lit/ds/swas034/swas034.pdf
http://www.ti.com/product/MSP432P4011
http://www.ti.com/tool/MSP-EXP432P401R
http://www.ti.com/tool/MSP-EXP432P401R
https://www.thethingsnetwork.org/docs/lorawan/duty-cycle.html
https://www.thethingsnetwork.org/docs/lorawan/duty-cycle.html
https://www.wi-fi.org/who-we-are

154 BIBLIOGRAPHY

[119] Winderickx, J., Bellier, P., Duflot, P., Coppieters, D., and
Mentens, N. Work-in-Progress: Communication and security trade-
offs for wearable medical sensor systems in hospitals. In Proceedings
of the International Conference on Embedded Software Companion -
EMSOFT ’19 (New York, New York, USA, 2019), S. Sankaranarayanan
and T. Bourke, Eds., ACM Press, pp. 1–2.

[120] Winderickx, J., Braeken, A., and Mentens, N. Storage and
computation optimization of public-key schemes on embedded devices. In
2018 4th International Conference on Cloud Computing Technologies and
Applications (Cloudtech) (Brussels, Belgium, 2018), IEEE, pp. 1–8.

[121] Winderickx, J., Braeken, A., and Mentens, N. Enhanced end-to-
end security through symmetric-key cryptography in wearable medical
sensor networks. ACM Transactions on Computing for Healthcare
(HEALTH) (2019), 17 pages. [submitted].

[122] Winderickx, J., Braeken, A., Singelée, D., and Mentens, N.
In-depth energy analysis of security algorithms and protocols for the
Internet of Things. ACM Transactions on Internet of Things (TIOT)
(2019), 18 pages. [submitted].

[123] Winderickx, J., Braeken, A., Singelée, D., Peeters, R.,
Vandenryt, T., Thoelen, R., and Mentens, N. Digital signatures
and signcryption schemes on embedded devices. In Proceedings of the
15th ACM International Conference on Computing Frontiers - CF ’18
(Ischia, Italy, 2018), M. Moretó and J. Weidendorfer, Eds., ACM Press,
pp. 342–347.

[124] Winderickx, J., Daemen, J., and Mentens, N. Exploring the use
of shift register lookup tables for Keccak implementations on Xilinx
FPGAs. In 2016 26th International Conference on Field Programmable
Logic and Applications (FPL) (Lausanne, Switzerland, 2016), J. Anderson
and P. Brisk, Eds., IEEE, pp. 454–457.

[125] Winderickx, J., Daemen, J., and Mentens, N. On the parallelization
of slice-based Keccak implementations on Xilinx FPGAs. In 6th
Conference on Trustworthy Manufacturing and Utilization of Secure
Devices (TRUDEVICE 2016) (Barcelona, Spain, 2016), G. D. Natale
and I. Polian, Eds., pp. 103–107.

[126] Winderickx, J., Singelée, D., and Mentens, N. HeComm: End-
to-end secured communication in a heterogeneous IoT environment via
fog computing. In 2018 15th IEEE Annual Consumer Communications &
Networking Conference (CCNC) (Las Vegas, Nevada, USA, 2018), B. Lee
and J. Kang, Eds., IEEE, pp. 1–6.

BIBLIOGRAPHY 155

[127] WolfSSL. wolfCrypt Embedded Crypto Engine. https://www.wolfssl.
com/products/wolfcrypt-2/, 2019. [Online; accessed June-2019].

[128] Wuyts, K., and Joosen, W. Linddun privacy threat modeling: a
tutorial, 2015.

[129] Xu, L. D., He, W., and Li, S. Internet of Things in Industries: A
Survey. IEEE Transactions on Industrial Informatics 10, 4 (Nov. 2014),
2233–2243.

[130] Xu, Y., and Xie, X. Analysis of Authentication Protocols Based
on Rubin Logic. In 2008 4th International Conference on Wireless
Communications, Networking and Mobile Computing (oct 2008), IEEE,
pp. 1–5.

[131] Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi,
M. Internet of Things for Smart Cities. IEEE Internet of Things Journal
1, 1 (Feb. 2014), 22–32.

[132] Zhang, Z.-K., Cho, M. C. Y., Wang, C.-W., Hsu, C.-W., Chen,
C.-K., and Shieh, S. IoT Security: Ongoing Challenges and Research
Opportunities. In 2014 IEEE 7th International Conference on Service-
Oriented Computing and Applications (Nov. 2014), IEEE, pp. 230–234.

[133] Zhao, K., and Ge, L. A Survey on the Internet of Things Security. In
2013 Ninth International Conference on Computational Intelligence and
Security (Dec. 2013), IEEE, pp. 663–667.

[134] Zolertia. Zolertia Z1 mote. https://github.com/Zolertia/
Resources/wiki/The-Z1-mote, 2016. [Online; accessed 2017].

https://www.wolfssl.com/products/wolfcrypt-2/
https://www.wolfssl.com/products/wolfcrypt-2/
https://github.com/Zolertia/Resources/wiki/The-Z1-mote
https://github.com/Zolertia/Resources/wiki/The-Z1-mote

List of publications

International journal submissions

2019 Winderickx, J., Bellier, P., Coppieters, D., Duflot, P., and
Mentens, N. Communication and security trade-offs for battery-
powered devices: a case study on wearable medical sensor systems. ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS) (2019), 17 pages. [submitted]

2019 Winderickx, J., Braeken, A., Singelée, D., and Mentens, N.
In-depth energy analysis of security algorithms and protocols for the
Internet of Things. ACM Transactions on Internet of Things (TIOT)
(2019), 18 pages. [submitted]

2019 Winderickx, J., Braeken, A., and Mentens, N. Enhanced end-to-
end security through symmetric-key cryptography in wearable medical
sensor networks. ACM Transactions on Computing for Healthcare
(HEALTH) (2019), 17 pages. [submitted]

International journal papers

2019 Rabbani, M. M., Vliegen, J., Winderickx, J., Conti, M., and
Mentens, N. SHeLA: Scalable Heterogeneous Layered Attestation.
IEEE Internet of Things Journal (2019), 12 pages

International conference papers

2016 Winderickx, J., Daemen, J., and Mentens, N. Exploring the use of
shift register lookup tables for Keccak implementations on Xilinx FPGAs.
In 2016 26th International Conference on Field Programmable Logic and

157

158 LIST OF PUBLICATIONS

Applications (FPL) (Lausanne, Switzerland, 2016), J. Anderson and
P. Brisk, Eds., IEEE, pp. 454–457

2016 Winderickx, J., Daemen, J., and Mentens, N. On the paralleliza-
tion of slice-based Keccak implementations on Xilinx FPGAs. In 6th
Conference on Trustworthy Manufacturing and Utilization of Secure
Devices (TRUDEVICE 2016) (Barcelona, Spain, 2016), G. D. Natale
and I. Polian, Eds., pp. 103–107

2017 Picek, S., Yang, B., Rozic, V., Vliegen, J., Winderickx, J.,
De Cnudde, T., and Mentens, N. Prngs for masking applications
and their mapping to evolvable hardware. In International Confer-
ence on Smart Card Research and Advanced Applications (CARDIS)
(Cannes, France, 2017), K. Lemke-Rust and M. Tunstall, Eds., Springer
International Publishing, pp. 209–227

2018 Winderickx, J., Singelée, D., and Mentens, N. HeComm: End-to-
end secured communication in a heterogeneous IoT environment via fog
computing. In 2018 15th IEEE Annual Consumer Communications &
Networking Conference (CCNC) (Las Vegas, Nevada, USA, 2018), B. Lee
and J. Kang, Eds., IEEE, pp. 1–6

2018 Winderickx, J., Braeken, A., Singelée, D., Peeters, R.,
Vandenryt, T., Thoelen, R., and Mentens, N. Digital signatures
and signcryption schemes on embedded devices. In Proceedings of the
15th ACM International Conference on Computing Frontiers - CF ’18
(Ischia, Italy, 2018), M. Moretó and J. Weidendorfer, Eds., ACM Press,
pp. 342–347

2018 Winderickx, J., Braeken, A., and Mentens, N. Storage and
computation optimization of public-key schemes on embedded devices.
In 2018 4th International Conference on Cloud Computing Technologies
and Applications (Cloudtech) (Brussels, Belgium, 2018), IEEE, pp. 1–8

2019 Winderickx, J., Bellier, P., Duflot, P., Coppieters, D., and
Mentens, N. Work-in-Progress: Communication and security trade-
offs for wearable medical sensor systems in hospitals. In Proceedings
of the International Conference on Embedded Software Companion -
EMSOFT ’19 (New York, New York, USA, 2019), S. Sankaranarayanan
and T. Bourke, Eds., ACM Press, pp. 1–2

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING

ES&S AND IMEC-COSIC
Wetenschapspark 27
B-3590 Diepenbeek

nele.mentens@kuleuven.be
https://iiw.kuleuven.be/onderzoek/ess

	Abstract
	Beknopte samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	Challenges in IoT
	Outline
	Publications

	Background
	Wireless networks
	Wi-Fi
	BLE
	6LoWPAN
	LoRaWAN

	IoT platforms
	Cryptography
	Unkeyed primitives
	Symmetric-key primitives
	Public-key primitives
	Random number generators
	Key derivation functions

	Data communication
	OSI model
	Security

	Measuring energy consumption
	Via physical measurements
	Via performance measurements

	End-to-end secured communication for heterogeneous IoT networks via fog computing
	Introduction
	Background on fog computing
	Related work
	HeCommm architecture
	End-to-end secured communication
	HeComm protocol

	Proof-of-concept system
	LoRaWAN
	6LoWPAN

	Implementation
	Evaluation
	Security evaluation
	Implementation overhead

	Conclusion

	Trade-offs between storage and computation for embedded digital signatures and signcryption schemes
	Introduction
	Related work
	Storage and computation methods
	Coupon encoding
	Memory encryption (e)
	Point compression (c)
	Index compression (i)
	Coupon addition
	Comb method

	Implementation
	Coupon implementation
	Window implementation

	Results
	Storage results
	Performance results
	Memory results
	Energy results

	Discussion
	Conclusion

	In-depth energy analysis of secure IoT computation and communication
	Introduction
	Related Work
	Our approach
	Evaluation platforms
	Wireless networks
	Computation
	Communication

	Energy Results for the Basic Operations
	Energy Results for End-to-end Security
	Session setup
	Session runtime

	Energy Results for Digital Signatures
	Derivation of the Minimal Session Period
	Conclusion

	Use cases on end-to-end security for wearable medical devices
	End-to-end security via public-key cryptography
	Introduction
	Related work
	System model
	Wireless communication trade-offs
	Security trade-offs
	Proof-of-concept implementation + measurement results
	Conclusion

	End-to-end security via symmetric-key cryptography
	Introduction
	Related work
	System assumptions, threat model and security requirements
	Proposed Solution
	Security analysis
	Implementation results
	Conclusion

	Comparison of the two solutions
	Conclusion

	Conclusion
	Conclusions
	Future work

	Workflow of medical sensor system in a hospital
	Bibliography
	List of publications

