
Vocell: A 65nm Speech-Triggered Wake-up SoC for
10µW Keyword Spotting and Speaker Verification

J.S.P Giraldo, Steven Lauwereins, Komail Badami and Marian Verhelst
ESAT-MICAS - KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Abstract—The use of speech-triggered wake-up interfaces has
grown significantly in the last few years for use in ubiquitous
and mobile devices. Since these interfaces must be always active,
power consumption is one of their primary design metrics. This
work presents a complete mixed-signal System-on-chip, capable
of directly interfacing to an analog microphone and performing
Keyword Spotting (KWS) and Speaker Verification (SV), without
any need for further external accesses. Through the use of a) an
integrated single-chip digital-friendly design b) Hardware-aware
algorithmic optimization and c) Memory- and power-optimized
accelerators, ultra-low power is achieved while maintaining high
accuracy for speech recognition tasks. The 65 nm implementation
achieves 18.3µW peak power consumption or 10.6µW average
power for typical real-time scenarios, 10x below state-of-the-art.

I. INTRODUCTION

Automatic Speech Recognition (ASR) has become widely
present in many mobile devices such as wearables or cell-
phones. More and more, embedded applications demand
speech-triggered devices to be always-on, always listening to
the environment, in order to process commands spoken by the
user. Popular commercial voice assistants such as Siri or Alexa
use one or several keywords for the activation of the natural
language query system, allowing to reduce expensive cloud
accesses while providing always-on operability. The increased
use of such interfaces is coupled with the emergence of more
accurate and complex Machine Learning (ML) models, ca-
pable of providing higher accuracy for better user satisfaction
[1]. However, the energy constraints associated with embedded
systems are in conflict with the use of advanced SotA ML
algorithms such as computationally complex neural networks
[2], random forests [3] or support vector machines [4].

Recent hardware developments such as [5] and [6] tackled
the problem of embedded voice command recognition through
the design of ASICs that drastically improve energy effi-
ciency compared to general purpose solutions. These systems
integrate wake-up Sound Detection (SD), Feature Extraction
(FEx), as well as ML accelerators to detect speech commands
(Fig. 1-top). This kind of approach attains very good ac-
curacy on standard KWS datasets at a power consumption
of about hundreds of microwatts. However, these solutions
present some drawbacks: First, they lack efficient always-
on implementations, consuming well below 100µW, required
to maintain sufficient battery lifetime in energy constrained
devices. Secondly, these systems do not support speaker
selectivity, which means the device is not customized for
the target user and triggers on anyone’s voice. Finally, SotA
implementations require off-chip analog circuitry and storage

Complexity

En
er

gy

stage 1
Sound

detection

active:
50%

stage 2
Keyword
spotting

40%
“Hey
phone”

stage 3
Speaker

veri�cation

?
10%

This work

State-of-the-Art

Analog
frontend

on chip

Sound
detection

Frontend
Extraction

Keyword
spotting

Analog
frontend

Sound
detection

Frontend
Extraction

Keyword
spotting

Large
Vocabulary

Speech
RecognitionSpeaker

Verification

on chip

Fig. 1. Top) Staged Functionality for a speech-triggered wake-up system
Bottom) Hierarchical system functionality of the presented wake-up engine.

to operate, since they lack an on-chip Analog Frontend (AFE)
and sufficient on-chip memory, diminishing their autonomy.

In this work, we propose Vocell, an integrated mixed-
signal SoC for Keyword Spotting and Speaker Verification that
attains ultra-low power consumption while maintaining state-
of-the-art recognition accuracy. For this purpose, the concept
of hierarchical detection is exploited (Fig. 1-bottom). A set
of tasks with increasing complexity (SD, KWS and SV) are
cascaded, allowing the activation of posterior stages by previ-
ous steps in the pipeline. The pipeline is optimized by taking
into consideration the uneven distribution of input examples:
Easy-to-process speech segments (e.g background noise) are
common, and are hence handled by the first efficient stages
of the hierarchy (e.g sound detection). More complex stages
for KWS and SV are gradually activated in a datadriven way,
significantly reducing the average energy cost per inference.

To this end, this paper present the following contributions:

• Development of a self-contained SoC for KWS and SV,
integrating all the necessary stages from analog pre-
processing to labeling (Section II).

• Hardware-aware algorithmic optimization for each sub-
task as well as their combined interplay (Section III).

• Power and memory optimized hardware accelerators for
FEx, SD and ML classification (Section IV).

• Hierarchical execution of the processing tasks, reducing
average energy cost per inference through selective mod-
ule activation, proven by measurements (Section V).

II. THE SPEECH HIERARCHY

A wake-up speech processing system for voice command
recognition is composed of a pipeline of stages as described
in figure 1. In the following subsections each one of the tasks
is discussed along with the algorithms/techniques chosen for
the Vocell system.

A. Analog Frontend

The analog frontend (AFE) receives the raw speech signal
from an external source, such as a passive or active micro-
phone and subsequently amplifies, filters unwanted frequency
bands, and digitizes it for posterior processing. State-of-the-
art AFEs operating from reduced supply voltage such as 0.6V
suffer from the following shortcomings: (a) limited distortion
performance due to inoperable cascode structures thus limiting
the open loop gain in the frontend amplifier (b) performance
loss with technology scaling as the intrinsic gain of the
amplifier gmro worsens with the technology scaling. The
Vocell SoC overcomes aforementioned limitations by using
time domain processing in the AFE, which relies on the
voltage-to-time-to-voltage conversion as opposed to traditional
voltage-to-current-to-voltage to achieve a large open loop gain
for the frontend amplifier [7]. The amplifier output is then
digitized with a 10b 8X oversampling SAR ADC after which
the digitized signal is decimated in the the digital back end to
compute the necessary features.

B. Sound Detection

Due to the presence of long silence intervals for many
real-time applications, the use of SD allows to avoid the
execution of expensive posterior processing stages saving
significant amounts of energy. For this reason, this stage
must be highly discriminative, while consuming low power.
Several approaches have been applied to this task in the SotA,
including energy calculation [8], spectral analysis [9], and
ML models [10]. In this work, energy-based SD is chosen
due to the limited amount of computations required and the
simplicity of its implementation, which reduces the overhead
of the always-on operation. Yet, a careful balancing of miss
detects and false alarms is crucial, as covered in Section III-A.

C. Feature Extraction

The FEx block receives samples from the AFE and gener-
ates a set of vectors that compress the redundant information
present in the speech signal reducing the input dimensionality
for the ML classifiers. Mel Frecuency Cepstral Coefficients
(MFCCs) are used extensively as features for speech process-
ing applications due to their high reliability as encoders of the
human voice spectrum. Generally, every 16ms, a 32ms window
of consecutive audio samples is processed to compute a feature
vector of MFCCs (between 13 and 20 coefficients) [11]. Its
processing pipeline is composed of a) an FFT for spectral
analysis b) Mel-filtering using triangular filters c) Logarithmic
compression and d) a DFT over the intermediate values [11].
Due to its complex dataflow, its implementation using general
purpose compute architectures presents a large overhead in

terms of power consumption [12]. This creates a need for
hardware acceleration, yet without giving up all flexibility in
the feature parameters.

D. Keyword Spotting

Recently, deep learning models have increasingly been
applied to the field of keyword spotting, replacing the classical
two-stage GMM/HMM by a single-stage feedforward neural
network or RNN [13]. Due to the temporal nature of speech
processing, the use of RNNs, and specifically LSTMs, have
shown very good results in terms of accuracy and computa-
tional efficiency [14]. RNN’s compact model size and reduced
amount of computations per input feature vector bring a
favorable balance of achievable accuracy and computational
complexity. LSTMs are recurrent neural networks that consist
of 4 kernels, also called ’gates’, each operating over a hidden
state vector ht−1 and the current input feature vector xt at the
step t [15]:

ft = σs(Wfxt + Ufht−1 + bf) (1)
it = σs(Wixt + Uiht−1 + bi) (2)
ot = σs(Woxt + Uoht−1 + bo) (3)
gt = σh(Wgxt + Ught−1 + bg) (4)

ct = ft ◦ ct−1 + it ◦ gt (5)
ht = ot ◦ σh(ct) (6)

With W∗, U∗ and b∗ being trained parameters for each gate,
and σ∗ nonlinear activation functions sigmoid σs and tanh σh.
To compute the next memory vector ct and hidden vector ht,
the result of the gates is used by element-wise multiplications
marked by ◦ in (5)-(6). In typical speech processing networks,
one or multiple layers of LSTM neurons are followed by fully
connected layers for data projection. For real-time operation,
every feature vector is processed sequentially, generating an
output probability of the target keyword per time-window.
Recent research [16] has shown it is possible to obtain accurate
and compact models using small-scale LSTMs with 1 or 2
LSTM layers, each having less that 64 neurons.

E. Speaker Verification

Several algorithms have been proposed for speaker ver-
ification such as GMM [17], SVM [18] and i-vector [19]
approaches. Between them, GMMs show the lowest com-
putational load while maintaining high accuracy for typical
recognition contexts. A GMM (Gaussian Mixture Model) is
a probabilistic model generated by a sum of multivariate
Gaussians, which allows to compute the probability P (f | Θ)
that a feature vector f with a dimension D belongs to a specific
class depending on the set of trained parameters Θ.

P(f | Θ) =
∑ngauss

m=1

[
wm

(2π)D/2
∏D
d=1 σm,d

· exp
[
−
∑D
d=1

(fd−µm,d)2
2σ2
m,d

]]
(7)

With fd being the d’th value of feature vector f while
µm,d and σm,d are the mean and standard deviation of the
d’the dimension of the m’th Gaussian. Eq. (7) shows the
simplified equation for Gaussians with diagonal covariance

Fig. 2. Inference using the GMM-UBM speaker verification. If Λ > th, with
th a configurable uncertainty threshold, target speaker is detected. Otherwise
the hypothesis is rejected.

matrices. Classical optimization techniques such as Expecta-
tion Maximization (EM) are used for training the GMM model
parameters [20]. For SV, a universal background model (UBM)
is trained with several speakers, which allows to model the
average user. A total of ngauss = 256 to 2048 Gaussians are
typically necessary, using a feature space of 20 MFCCs and
their first and second order derivatives (D=60). Subsequently,
the UBM is used as initial seed for Maximum Aposteriori
(MAP) adaptation of second, speaker-specific, GMM, using
the target speaker utterances as training data.

During inference, each feature vector is processed by the
UBM and the target speaker GMM, resulting in the output
probability for both models. The difference Λ between the
output of the 2 GMMs is used to decide if the current speech
segment corresponds to the target speaker (Fig. 2):

Λ(F) = ln
(
P (f | Θspeaker)

)
− ln

(
P (f | ΘUBM)

)
(8)

Where Θspeaker and ΘUBM are the trained GMM model pa-
rameters for the target speaker GMM and UBM, respectively.
In order to obtain an accurate classification, the output log-
probabilities ln(P (f | Θ∗)) are averaged over a sequence of
feature vectors (about 500 ms), before making the decision
Λ. The target speaker is detected when Λ is larger than a
configurable uncertainty threshold th.

Yet, the number of Gaussian parameters, the need for
exponentiation for Gaussian computation, as well as the conse-
quent floating point sums, generate serious challenges for the
efficient deployment of GMMs on embedded platforms. Using
a naive approach with ngauss = 256 Gaussians, D = 60 di-
mensions per feature vector, and 8b precision, inference would
demand about 8MOPS and 3.8MB/s of memory bandwidth,
making execution infeasible on many low power devices.
In this work, several optimizations are carried out in the
algorithmic and micro-architecture domain so as to improve
data reuse and hardware economy, as discussed in Section III.

III. HARDWARE-AWARE ALGORITHMIC OPTIMIZATIONS

To reduce the computational overhead of the algorithms
used in the wake-up system, hardware-aware algorithmic op-
timizations are carried out, exploiting algebraic reordering,
approximate computing as well as parameter tuning. To main-
tain high task accuracy, the impact of each design decision is
analyzed on standard speech datasets.

0.005 0.01 0.015 0.02 0.025 0.03 0.035
th

0.5

1

1.5

2

2.5

3

3.5

SV
 A

cc
ur

ac
y (

EE
R)

 [%
]

7

8

9

10

11

12

Po
we

r [
uW

]

EER
power

Min. Power with
no accuracy loss

1 3 5 7 9 11 13 15
0.9

0.92

0.94

0.96

0.98

1

K
W

S
 N

or
m

. F
1

sc
or

e
[%

]

No accuracy loss

LSD h

Fig. 3. Left) Impact of SD threshold thSD on SV accuracy and power
consumption; Right) Impact of hangover length Lh over KWS accuracy.

DFT/DCT

Σ

Σ ×-

χ i-1
k+2αN

2i

χ i-1
k+(2α+1)N

2i

W k2i−1
N

χ i
k+2αN

2i

χ i
k+(2α+1)N

2i72%

20%

5.5% 2.5%

DFT Mel-filtering DCT Derivatives

Fig. 4. Left) MFCC Computation Breakdown Right) DFT Butterfly stage

A. Sound Detection

Energy-based SD computes the energy of every incoming
speech frame E through the sum of absolute values of the
digitized signal:

E(window) =

nw∑
i=1

|xi| (9)

If the result is higher than a configurable threshold thSD, a
sound detection signal is asserted. The hangover length Lh,
which refers to the configurable amount of frames classified
as sound after sound is detected, must be optimized in order to
not cut sound during soft speech segments. thSD and Lh were
carefully tuned to minimize system wake-up, while avoiding
impact on end-to-end KWS and SV accuracy (Fig 3).

B. Feature Extraction

The computationally most expensive stage of the MFCC
pipeline is the DFT phase accounting for 72% of the to-
tal computations per window (Figure 4-left). Yet, the DCT
transformation is based on similar compute kernels as the
DFT transformation. This allows to reuse optimized hardware
resources for the DCT/DFT implementation, saving area and
consequently leakage energy.

1) real-point DFT: For this work, an N-point complex DFT
is mapped on a single standard radix-2 fixed point DFT block,
also called a butterfly stage (Fig. 4-right). The final result is
obtained after log2(N) steps, calculating 2 intermediate results
per iteration i =1..log2(N), with twiddle factor:

W k2i−1

N = exp−j
2π2i−1k

N (10)

With k ∈ [0;N/2i[and α ∈ [0; 2(i− 1)].

Fig. 5. Input sample ordering for (a) a real-point DFT and (b) a DCT.

To reduce the number of computations and memory ac-
cesses, the real-point DFT is computed as a complex DFT of
half the size (N/2) with two changes. 1) The input samples
are restructured in memory such that the even samples are
the real input and the odd samples are the imaginary input
of the complex DFT (Fig. 5a). 2) A final correction step,
equation 11, is performed. This simplification reduces the
number of butterfly computations from N to N/2 for each of
the log2N stages, effectively reducing the computations and
memory accesses with a factor two.

χik = 1
2

[(
χ
log2

N
2

k + χ
∗ log2

N
2

N
2 −k

)
− j
(
χ
log2

N
2

k − χ∗ log2
N
2

N
2 −k

)
W k2i−1

N

]
(11)

with χ∗ the complex conjugate of χ.
2) DCT: It is possible to compute a DCT via a DFT

transformation, through three main steps: 1) reshuffling of
the input 2) computation of a complex DFT and 3) a final
correction step. In the first step, the input data is reshuffled so
that all even samples are successively stored in the first half
of the memory. The odd samples are in reverse order stored
in the second half of the memory, as shown in figure 5b. In
the correction step (step 3) the final DCT is extracted from
the complex DFT by applying the following transformation to
the intermediate result:

Xk = χ
log2N
k exp−j

2πk
N

2√
2N

∀k 6= 0

Xk = χ
log2N
k exp−j

2πk
N

√
2√

2N
∀k = 0

(12)

C. LSTM

The HW-algorithmic optimizations for KWS stage target
to find the most HW-efficient model, capable of achieving
satisfactory KWS accuracy. To this end, accuracy will be
benchmarked on a set of KWS tasks from different datasets,
as shown in table I. All networks were trained using the Keras
framework, dividing the data into training, validation and
testing with a distribution 80-10-10. Accuracy was selected

TABLE I
TASKS FOR KWS BENCHMARKING

Dataset Target Vocab. Speakers Training Size Metric
TIMIT 4 630 25200 utterances F1 score
GSCD 12 2500 65000 utterances Accuracy

TIDIGTS 10 300 25000 utterances Accuracy

2 4 8 16 32
LQ-Bitwidth

20

40

60

80

100

No
rm

ali
ze

d
F1

 sc
or

e [
%

]

2 4 6 8
NLQ Bitwidth

80

85

90

95

100

No
rm

ali
ze

d
F1

 sc
or

e [
%

]

1 2 4 8 16 32
PWL Segments

60

70

80

90

100

No
rm

ali
ze

d
F1

 sc
or

e [
%

]

Fig. 6. Accuracy Impact of hardware-aware algorithmic optimizations for
a 64-nodes LSTM trained on TIMIT dataset. left) Normalized F1 Score in
function of Operand Bitwidth center) Normalized F1 Score in function of
Encoded Bitwidth right) Normalized F1 Score in function of Number of
Linear Segments for piecewise linear approximation.

as performance metric for TIDIGITS and Google Speech
Command Dataset (GSCD) since the examples are evenly
distributed between classes. On the other hand, for TIMIT,
F1 score was used since the amount of positive examples was
significantly higher than the negative instances. Four different
algorithmic optimizations were carried out, which will be
explained in the following subsections.

1) Fixed Point Analysis: The impact of fixed point neural
network computation [21] was evaluated with the objective
of finding the minimal bitwidth without performance losses
compared to a floating-point implementation. Using quantiza-
tion post-training, different operand bit-widths were assessed.
As observed in Fig. 6-left, using 8 bits for all weights and
activations guarantees the baseline accuracy whereas a smaller
bitwidth produces undesirable accuracy loss.

2) Nonlinear Quantization: Deep Compression is an algo-
rithmic technique that allows to encode the neural network
weights into a reduced wordlength codebook through clus-
tering, reducing the model memory size [22]. Since weight
clustering often produces accuracy losses, retraining epochs
are necessary. Fig. 6-center shows the impact of Nonlinear
Quantization (NLQ) for different encoded bitwidths. 16 weight
clusters (4-bit weight encoding) prove to be sufficient to
represent the 8 bit decoded weights. The required on-line
weight decoding from 4-bit to 8-bit words is implemented via
Look Up Tables (LUTs), and allows to maintain the baseline
accuracy while reducing memory bandwidth by 2x.

3) Piecewise Linear Approximation: The nonlinear func-
tions used for LSTM networks (tanh and sigmoid) demand
high computational complexity if rigorous exactness is re-
quired. Nonetheless, the natural resilience of neural networks
can be exploited using piecewise linear approximation (PWL)
for the nonlinear functions. Based on this, the impact of
the number of linear segments was assessed for the KWS
problem As observed in Fig. 6-right, 8 linear segments show
to be sufficient to maintain baseline accuracy. The cut-off
points of the linear segments are stored in a look-up table
for both tanh and sigmoid, and at run-time linear interpolation
between the segment corners allows to efficiently compute the

approximated non-linear functions.
4) Model Size Impact: Models with varying number of

LSTM hidden units were trained in order to evaluate the
accuracy/complexity trade-off. As will be shown with mea-
surements later (Fig. 21-left) accuracy on par with SotA deep
learning KWS systems [5][23] can be achieved by 1 LSTM
layer with 64 cells, requiring 26kB of model memory (8 bits
per weight). To maintain flexibility, the chip is implemented
to support any model comprised of LSTM and FC layers, with
less than 32k model parameters.

D. GMM

Also for the GMM algorithm, several HW-optimization
techniques were assessed against their accuracy implication at
task level. To this end, a binary detection problem is defined
over the TIMIT dataset, classifying the input speech as the
target speaker or not. The UBM is trained on 168 speakers,
and the speaker-specific GMM on a single speaker. For both,
each speaker has 8 audio files in the training set, and 1 in
the test set. The accuracy is measured as the equal error rate
(EER), which is the point where the number of false positives
is equal to the number of false negatives.

1) Mathematically equivalent computational optimisations:
In order to reduce the computational complexity of eq. (7) and
fitting the dataflow requirements to digital hardware, a couple
of techniques were applied. First, base 2 was used instead of
the natural exponent, rewriting eq. (7) as:

P(f | Θ) =
∑ngauss

m=1

[
wm

(2π)D/2
∏D
d=1 σd

· 2ˆ

(
−
∑D
d=1

(fd−µm,d)2
2 ln 2σ2

m,d

)]
(13)

This allows to remove the need for computing natural
exponents which are difficult to deploy in digital hardware.
Second of all, a simple reordering of last equation puts the
exponentiation as the last step before the summation over all
the gaussians:

P(f | Θ) =
∑ngauss

m=1

[
2ˆ

(
log2(wm

(2π)D/2
∏D
d=1 σm,d

)−
∑D
d=1

(fd−µm,d√
2 ln 2σm,d

2

)]
(14)

Moving most part of the operations to the fixed-point log-
domain reduces the need for floating point calculations. Ad-
ditionally, factors of equation 14 can now be precomputed
and stored in memory, reducing the amount of online cal-
culations. Instead of storing the gaussian parameters µm,d,
σm,d and wm in the model memory, µm,d, 1√

2 ln 2σm,d
and

log2(wm
(2π)D/2

∏D
d=1 σm,d

) are stored.
2) Approximate computational optimisations: Computa-

tional load can be reduced further by using approximate
computing techniques: The feature vectors that are “far” from
the center of a gaussian contribute only marginally to the final
GMM computation. More specifically, the probability of a
value belonging to a specific gaussian decreases exponentially
with the distance to the mean. For example, for a 1-D feature
vector with a distance 3σ from the center of a 1-dimensional
gaussian, its probability of belonging to this gaussian is less
than 0.3%. Based on these observations, one can use, in each
dimension d, the σ2

d normalized distance of the feature vector

Normalised distance limit Distth

Eq
ua

l E
rro

r R
at

e
[%

]

Skipped computations
in GMM evaluation [%

]

4 4.5 50

1

2

3

4

30

40

50

60

70

80
EER
skipped
computations
50% less
computation,
no accuracy
loss

Fig. 7. Effect of distance threshold Distth on the SV accuracy and total
skipped computations for GMM inference.

fd to the gaussian’s center µd, as a metric to discard non-
relevant gaussians:

Distd =
fd − µd√
2ln(2)σ2

d

(15)

When in any dimension Distd exceeds a programmable value
Distth, the probability of the gaussian under consideration
is too small to meaningfully contribute to the overall GMM.
Therefore, the computation of this probability can safely be
skipped. Since computing the distance Distd is part of the
computations required for evaluating a gaussian (eq. 14), this
intermediate result is used to discard non-relevant gaussians.
More specifically, as soon as the distance Distd along any
dimension d of the gaussian surpasses Distth, the remainder
of the computations of that specific gaussian is aborted. Using
a lower Distth means reducing the number of gaussians
computed at a potential cost in terms of accuracy. Figure 7
shows the impact of this threshold Distth on the SV task
accuracy, as well as the resulting computational savings. For
this work, Distth = 4.25 was used, reducing 50% of the
computations without having an impact on SV accuracy.

IV. IC ARCHITECTURE

A. High-level Architecture

The complete chip architecture for Vocell is depicted in
Figure 8. The Analog Frontend receives the incoming analog
signal from an external microphone and digitizes the sample
thanks to a high linear amplifier and a SAR ADC. The values
obtained from the AFE are passed through the FEx Unit which
generates Mel Frequency Cepstral Coefficients (MFCCs) and
their respective derivatives. This feature vector is used by the
two ML accelerators, the GMM and LSTM accelerators. Every
module is configurable via dedicated registers allowing to tune
several execution parameters depending on the performance
and energy demands (Section III). The micro-architecture of
each module is presented in the following subsections.

B. Analog Frontend

The Analog Frontend (AFE) integrated in the SoC is shown
in figure 9. The AFE consists of a highly linear time domain
amplifier whose output is digitized by a highly power efficient

LNA ADC

AFE
sound
detector

bu�er FE bu�er speaker
veri�cation

keyword
recognition

CONTROL

de
ci
si
on

de
ci
si
on

st
ar
t

st
ar
t

st
ar
t

re
ad

y

re
ad

y

Fig. 8. IC Architecture

Rlpf
Clpf

vin v-t-v Csamp
= 0.1Clpf

RC LPF 10b SAR

famp fadc

To
 S

D
 a

nd
 F

Ex
Fig. 9. AFE architecture and specifications.

10b oversampling SAR ADC. The AFE is discussed in detail
in [7] and is summarized here.

The time-domain amplifier uses a dynamic comparator to
translate the voltage domain input signal from the sensor to
time domain variations using pulse-density modulation based
encoding. This time domain information is converted back into
the voltage domain using a charge pump as illustrated in the
Figure 9. This enables the time domain amplifier to achieve
a large open loop gain whose value is inversely proportional
to the operating frequency of the dynamic comparator. The
amplifier output is digitized with a 10b 8X oversampling SAR
ADC [24]. Since the AFE design uses highly dynamic building
blocks and the amplifier precision depends on the operat-
ing frequency of the dynamic comparator, the AFE power-
precision performance potentially improves with technology
scaling. The targeted AFE specifications are shown in table
II.

C. Sound Detector

The micro-architecture for SD is depicted in figure 10. As
described in the previous section, the energy calculation is
based on the sum of the magnitude of each data sample in
a frame. Comparing this value with the respective threshold
evaluates the incoming sound on the usefulness of its informa-
tion content. Since in standard speech recognition tasks there

TABLE II
TARGETED SPECIFICATIONS FOR THE 0.6V ANALOG FRONT END

(AMPLIFIER + ADC)

Characteristic Value
Gain 34 dB

Bandwidth 4k Hz
RMS Input referred noise ≤ 10µV

Distortion at 1kHz and 75% swing ≤ 0.2%

is an overlap of half a window between consecutive processing
windows, the average energy of each half window is saved in
registers D and consequently summed together, reusing the
intermediate results for the next computation.

D. Feature Extraction

Upon SD, the FEx is woken up. After this, the FEx module
computes 20 MFCCs with their respective delta and delta-
deltas at programmable center frequencies. The DFT-size,
Mel-filters and DCT size are parametrizable via configuration
registers. Figure 11 shows the micro-architecture of the engine.
Customized hardware is designed for each one of the MFCC
stages with the DFT stage based upon the design shown in [5]
which was further optimized for low power.

1) Audio Buffering: Three audio buffers are implemented
to interface with the ADC due to the overlap between audio
windows. When one buffer is being filled with new data,
the other two are used for computing the current DFT. The
capacity of each buffer is configurable up to 512 10b samples.

2) DFT: A single butterfly stage (Fig. 4), was implemented
in digital hardware allowing to compute 2 intermediate results
per cycle. In the first step, two values are read from each
one of the input audio buffers and the result is written to
two dual-port SRAM compute memories. For the following
even cycles, two data points are read from the first dual-port
SRAM and the twiddle factor is retrieved from the twiddle
ROM, to perform a butterfly computation. At the same time,

Fig. 10. Sound Detector Architecture

Audio buffer 1

Audio buffer 0
640B SRAM
256 x 2 (10b)

Audio buffer 2

Compute memory 1

Compute memory 0
640B dual port SRAM

256 x 2 (10b)

1024 entry Logarithm LUT

0
1
2

2

1

0

0

Layer 0

other

other

Mel-filtering

Mel filter weigths
SRAM

Δ
ΔΔ

To KWS and SV

Fr
om

 A
FE

Feature
extraction

FSM

0

1
2

Sound detected

DFT depth
DCT depth

#Mel-filt.
#MFCCs

Twiddle factors
ROM

s

s

x

ml

Window
select

DFT/DCT

DFT

Layer 0
DFT

Window
select

Fig. 11. Feature extraction Architecture

the butterfly results of the previous clock cycle are saved to
the second dual-port SRAM. For odd cycles, the two input
values are retrieved from the second dual-port SRAM for the
butterfly computation, while previous cycle results are saved
to the first dual-port SRAM. In order to compute a 512-point
complex DFT, 2048 cycles are required. As mentioned earlier,
all dimensions are configurable up to a 512-point complex
DFT, or a 1024-point real DFT.

3) Mel filtering and logarithm: After the completion of the
DFT, mel filtering and dynamic range compression through
logarithm scaling are performed. The mel filters are triangular
filters, evenly spaced below 1kHz and mel-spaced above it
(Fig. 12-left). It supports a maximum of 32 mel filters.

The special characteristics of this kind of filter are exploited
in order to reduce the memory footprint of the filter coeffi-
cients. Since each DFT output value contributes only up to 2
filters, a special memory format is proposed (Fig. 12-right):
The memory contains one row for each DFT output value,
composed of three parts: highest filter index, weight 0 and
weight 1. The first item refers to the highest Mel filter index
to which the specific DFT value contributes. Weight 0 and
Weight 1 are the filter weights for the even and odd filter
band to which the DFT value contributes. These optimizations
allows to save M filter bands into 3M words, with 5b and 12b
for the filter index and the weights respectively. This reduces
mel-filter parameter storage by 400x, compared to a weight
matrix of 1024x32. This matrix would be necessary if each of
the 32 mel-filters could act upon the 1024 point DFT output.

A logarithm operation works over the mel filtering output,
implemented through a look-up table. Using the 10b of the
mel filtering output as the address of a 1024-entries LUT, a
CORDIC implementation is avoided.

4) DCT + time derivatives: In order to reuse available
hardware, the DFT execution engine is exploited to compute
the DCT transformation as explained in Section III-B2. To
compute the first and second order time derivatives, all inter-
mediate values are stored. The first order time derivative is 9
time samples long, with filter response: [-1 -1 -1 -1 0 1 1 1 1];
and the second order time derivative is 3 time samples long,
with filter response: [-1 0 1].

The required dimensionality for KWS and SV is 13 and 20
MFCC values respectively. For KWS this means only the first
13 MFCC values are selected out of the 32 MFCC values
computed. For SV the last 24 MFCC values are pairwise
averaged to 12 new MFCC values. I.e. MFCC value 8 and
9 are combined to form MFCC value 8 for SV. The same
combining is performed for the time derivatives.

E. LSTM accelerator

The LSTM accelerator works over every incoming frame
produced by the FEx sequentially. It has support for LSTM
networks with 1 or 2 hidden layers with up to 64 neurons
per layer and 1 or 2 FC layers. The model weights are fully
stored in a 32kB SRAM, storing 8 bits linear format or 4 bits
nonlinear encoding. In case NLQ is used, a LUT is leveraged
to decode the compressed weights, before they are sent to

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

Frequency (kHz)

Fi
lte

rw
eig

ht

Mel-filtering

Fig. 12. left) Triangular mel filters for frequencies up to 8kHz right) Storage
format for the mel-filter bank weights

KWS decision
LSTM
FSM

Sound detected &
feature vec. ready

nKeywords

nlayers
nneurons

nDim

Model memory
32kB SRAM Compute

memory
8x64 (8b)

Output buffer
16 (8b)

×

+

×

32b acc

PE 1
×

+

×

32b acc

PE 4

...

... ...

Fr
om

 F
Ex

Nonlinear Function
Generator

Fe
at

ur
e

bu
ffe

r
39

-D
 fe

at
ur

e
ve

ct
or

Fig. 13. LSTM Architecture

the processing array. Each one of the LSTM gate kernels
(equations (1)-(4)) is mapped to one of the 4 processing
elements. The data from the model weights, the input feature
vector and the hidden state is routed to each PE in order
to compute the necessary dot products. After finishing all
the Matrix-vector multiplications, the accumulation outputs
are passed through an activation function generator which
computes the nonlinear functions tanh and sigmoid through an
8-segment LUT-based function approximation. The same PE
array is reused for computing the element-wise multiplications
of the LSTM algorithm (equations (5)-(6)). More details of the
accelerator can be found in [25].

F. GMM accelerator

The GMM engine (figure 14) allows to compute the log-
likelihood ratio between a customized GMM and an UBM
to recognize a target speaker (eq. 8). In order to reduce the
memory bandwidth, parallelism at the input vector level is
applied. 8 feature vectors are computed concurrently reducing
the memory accesses by 8x. Since standard SV needs at least
segments of 500 ms or more to compute a reliable output, the
latency constraint due to batching does not affect the overall
system performance. Furthermore, all the model weights are
saved on-chip in a 65kB SRAM for a maximum of 512 60-Dim
Gaussians, avoiding the need of external memory accesses.

Figure 14-bottom, shows the inner accelerator that computes
the log-probability of a gaussian for a specific feature vector.
At the beginning of a gaussian evaluation, the first dimension
of the feature vector is retrieved from memory with the
precomputed Gaussian parameters. The accelerator performs

GMM
FSM

n Gauss
n Dim
σth
n Mod

.

ft,d
Gauss

accelerator
Gauss

accumulation

Model memory
64kB SRAM

1
√2 ln 2 σg,d

σ’g,d=µg,d

Gaussian weights
1kB SRAM

w
(2 π) σm,d

D/2 D

d=1

w =log 2
´
m

GMM accelerator

ft-7,d

Gauss
accelerator

Gauss
accumulation

From FEx

Av
er

ag
ing

SV decision

Ping-pong
Feature buffer
1.8 kB SRAM

32f x 60-D (8b)

Discard
Gaussian g

ft,d × | |-
×

>σth

µg,d

+

D

01

D

after nDim dim

σ’g,d w’g,d

D

after nGauss Gaussians

D
log

2 P
(f t|µ

g,Σ
g)

log
2 P

(f t|µ
g,Θ

)

Gauss accumulation

ex
p

ma
n

ex
p

ma
n

ex
p

ma
n

Floating point
adder

1

St
ar

t
Gauss accelerator

Fig. 14. GMM microarchitectureTop) GMM high-level organizationBottom)
Gaussian Accelerator and Accumulation

D − 1 iterations, by sequentially loading from memory the
dimension d of the current feature vector, and the necessary
gaussian parameters. The model parameters are reused in all
8 gaussian accelerators. In every iteration, each accelerator
evaluates the distance of the current feature dimension to the
gaussian-mean dimension:

fm,d − µm,d√
2 ln 2σm,d

> Distth (16)

In case the distance is greater than the programmable
threshold Distth, the remaining computations of this accel-
erator are aborted, saving dynamic power. Moreover, when
all 8 parallel vectors discard their gaussian, the computation
jumps to the next gaussian, also reducing the number of
memory accesses. This leads to 20% savings in number of
accesses,while maintaining the baseline accuracy.

When all accelerators finish their gaussian, the log-
probabilities are saved in the logProb registers. This result
is then used as the exponent of a floating-point value with
mantissa 1, which is accumulated with the contribution of
all the previous completed gaussians. Since the floating point
adder is used only once every D cycles, the unit is input and
clock gated. When all gaussians are evaluated, the probability
of the GMM for feature vector is available at the output of the
adder, and the output can be thresholded for the SV decision.

G. Control Unit

A programmable control unit allows to activate the different
execution modules depending on the desired hierarchy of
tasks (Fig. 15). The system starts in IDLE state where only
the AFE and SD are active. After the detection of sound, a
signal start is asserted, making the FSM to transition to the
states KWS or SV depending on the configuration registers
act-kws and act-sv. If both registers are asserted, the system
will execute first keyword spotting and, after a command is
detected (keyword=1), speaker verification. Additionally, the

IDLE

SV KWS

KWS + SV

@ready

@act_kws_sv

& keyword

 @act_kws

& !act_sv & start

@!ac
t_

kw
s

& ac
t_

sv
 &

 st
ar

t

@act_kws & act_sv & keyword

Fig. 15. Configurable master control FSM.

Fig. 16. Chip photo and measurement setup.

register act-kws-sv allows to run first keyword spotting and,
when a command is spotted, both accelerators concurrently.
When speaker verification inference is finished, the signal
ready is set to 1, allowing the FSM to transition to the KWS
state again for the next keyword spotting.

V. CHIP IMPLEMENTATION AND EVALUATION

The mixed-signal SoC Vocell was implemented in TSMC
65 nm CMOS, with a die shot shown in Figure 16, measuring
2mmx2mm with a core size of 1.6mmx1.6mm.

A. Test procedures

The measurement setup, shown in figure 16, connects the
chip to the external digital and analog supplies, as well as
an FPGA ZedBoard through SPI and dedicated digital pins.
The board feeds digital inputs to the IC and reads outputs and
intermediate results generated by the SoC.

B. Full system performance

Fig. 17 shows the system operating at logic voltages from
0.6 V (250 kHz) to 0.8 (8 MHz) at a constant SRAM voltage
of 0.8 V (Fig 17). First, the system power is measured in
the different system execution states. To run the 16-keywords
task and a 256 Gaussian/model speaker verification task in
real time, a clock frequency of 250kHz is selected, with input
audio sampled at 16kHz, and logic voltage set at 0.6 V. As
shown in the power breakdown depicted in figure 20, the
power consumption strongly depends on the current execution
state, as coarse clock gating freezes idle accelerators. Just
5.45µW are consumed in idle mode mainly by leakage and
the continuous operation of the AFE and SD. If only KWS or
SV mode are active, 16.11µW, resp. 14.95µW are consumed.
The FEx is the main source of energy dissipation for those

250 500 1000 2000 4000 8000

Frequency [kHz]

0

10

20

30

40

50

60

Po
w

er
 C

on
su

m
pt

io
n

[μ
W

]

logic@0.6V logic@0.6V
logic@0.625V

logic@0.65V

logic@0.725V

logic@0.8V

Minimal Freq.
for Real-time
KWS and SV

Fig. 17. Voltage-frequency scaling for full system active. SRAM voltage fixed
at 0.8V.

0 20 40 60 80 100 520 540 560 1040 1060
0

5

10

15

20

25

30

...

35

...

KWS

SD

Keyword spotted SV

M
ea

su
re

d
po

w
er

 [μ
W

]

V
V
f

= 0.6V
= 0.8V
= 250kHz

logic

SRAM

Time [ms]

FEx GMM bu�er
�lling

Fig. 18. Full system Power trace.

states accounting for almost 50%. The intensive use case with
concurrent KWS and SV consumes 18.4µW, as all accelerators
(SD, FE, GMM acc, LSTM acc) are active at the same time.

Figure 18 shows an example of a power trace when the full
hierarchy SD-FEx-KWS-SV is active, with KWS triggering
SV. As observed, after a sound is detected the FEx and the
LSTM accelerator are activated. Likewise when a keyword is
spotted, the FEx buffer for the GMM is filled and consequently
used for GMM inference. The spiky power trace observed
during speaker verification stems from the preemptive abortion
of gaussians when their distance is higher than the preset
threshold. FEx is responsible for a significant amount of power
consumption in form of localized pulses. A zoom-in measured
power trace of the FEx is shown in figure 19 where the stages
DFT, Mel-filtering and DCT are indicated.

C. Accuracy/Power Trade-off for KWS and SV

To verify and further optimize the trade-off between model
complexity and power consumption for the hardware platform,
the impact of model size was assessed for the KWS and SV
tasks using actual system power measurements. As shown in
figure 21-left, there is a clear trade-off between accuracy and
system power consumption, which can be tuned easily to the
user’s need. The impact of NLQ on the measured dynamic
power consumption of the LSTM accelerator is shown in figure
22. The use of NLQ, reduces the memory accesses by almost

0 1 2 3 4 5 6 7 8

Time [ms]

0

5

10

15

20

25

30

35

Po
w

er
 [u

W
]

Total power
SRAM power
Logic Power

 DFT MEL DCT

Fig. 19. FEx power trace, highlighting the main computational stages: DFT
calculation, Mel-filtering and DCT.

Idle state (5.45uW)

33%

47%

20%

KWS state (16.11uW)
11%

16%

7%

45%

21%

SV state (14.95uW)
12%

17%

7%
49%

15%

KWS+SV state (18.32uW)
10%

14%

6%

40%

18%

12%

AFE: Leakage: SD: FE: LSTM acc: GMM acc:

Fig. 20. Power breakdown for continuous operation in each state of the
Control Unit FSM

20 40 60 80 100
Number of features per Gaussian

95

96

97

98

99

100

Ac
cu

ra
cy

 (1
-E

ER
) [

%
]

10

12

14

16

18

20

Po
we

r [
uW

]

accuracy TIMIT
power

40 48 56 64
Model size (1 hidden layer)

84

88

92

96

100

Ac
cu

ra
cy

 (1
-W

ER
) [

%
]

10

12

14

16

18

20

Po
we

r [
uW

]

accuracy GSCD
accuracy TIDIGTS
power

Keyword spotting

model deployed model deployed

Speaker verification

Fig. 21. Accuracy/power trade-off for Left) KWS and Right) SV.

50% and hence the SRAM dynamic power of the accelerator.
Likewise for SV (Fig. 21-right), if the model complexity of

the GMM is increased, by using a higher number of feature
dimensions, the total accuracy (1 − EER) improves. On the
other hand, measured power consumption increases linearly
with the number of dimensions processed.

D. Hierarchical execution

To assess the impact of the hierarchical detection execution
using varying number of stages on the average energy effi-

TABLE III
STATE-OF-THE-ART COMPARISON

Reference ISSCC’2017 [5] VLSI’2018 [6] ISSCC’2017 [26] TVLSI’2014 [27] This work
Technology 65nm 28nm 40nm 90nm 65nm

Area 13.17mm2 1.29mm2 7.1mm2 19.53mm2 2.56mm2

Voltage 0.6V-1.2V 0.57V-0.9V 0.62V-0.9V 0.9V 0.6V-1.2V
AFE NA NA NA NA !

SD ! ! NA NA !

FE ! ! ! ! !

KWS ! ! ! NA !

SV NA NA NA ! !

Latency Real-time 0.5ms-25ms 7ms
8ms(per

feature vector)
16ms (KWS)

0.5s(SV)

Accelerators

VAD
MFCC

DNN+HMM

VAD
MFCC
BNN

FFT
DNN

LPC
SVM

VAD
MFCC
LSTM
GMM

Stages 2 stages 2 stages 1 stage 1 stage 3 stages

KWS Accuracy
98.35% (TIDIGITS)

96.88%(WSJ) 96.11% (TIDIGITS) NA Not Reported
98.50% (TIDIGITS)

90.87%(GSCD)
SV Accuracy NA NA NA 92.49% (NIST SRE) 99.5%(TIMIT)

Real-time Power 172µW@3MHz 141µW@2.5MHz 288µW@3.9MHz 8.12mW@100MHz 18.3µW@250kHz

Linear Quantization (3.37uW)

51% 49%

Nonlinear Quantization (2.60uW)

64%

36%

Logic: SRAM:

Fig. 22. Dynamic Power consumption of LSTM accelerator for left) Linear
Quantization (8 bits) and right) Nonlinear Quantization (4 bits) for a LSTM
network with 64 neurons.

ciency, three scenarios with unbalanced input data statistics
were analyzed: always-on-sensor, voice-assistant and push-
to-talk. In the first case, an always-on-sensor device must be
always active, which means long background noise intervals
(SD 90%, KWS 9%, SV 1% on-time). In the voice-assistant
example, the quantity of speech segments is increased due
to higher activation by the user (SD 50%, KWS 40%, SV
10%). Finally, in the last push-to-talk scenario the user only
activates the system after specific events like pressing a button
making the presence of speech more common (SD 33%, KWS
33%, SV 33%). In table IV, the real-time power consumption
of each one of the scenarios is presented for 1 stage (Full
system always on), 2 stages (SD triggering joint KWS and SV
activation) and 3 stages (SD activating KWS, KWS triggering
SV). Due to the varying input data statistics, the power
consumption can be modulated between 6.5µW and 18.3µW
depending on the surrounding environment. In this way, for the
voice-assistant setting, using 3 stages it is possible to achieve
about 45% power savings due to the selective activation of the
different digital accelerators.

TABLE IV
REAL-TIME POWER CONSUMPTION USING HIERARCHICAL EXECUTION

FOR DIFFERENT USER SCENARIOS

Scenario 1 stage 2 stages 3 stages
always-on sensor 18.3µW 6.73µW 6.5µW

voice-assistant 18.3µW 11.88µW 10.6µW
push-to-talk 18.3µW 14µW 12.17µW

E. Comparison with SoA

Table V-B compares this work with previous SoA voice
command recognition ASICs. While providing high accuracy
in standard datasets, the present SoC reduces power consump-
tion by 10x in relation with previous accelerators [5][6][26].
Few previous ASICs for SV are present in the literature; [27]
presents a design in 90nm using SVMs and LPC as frontend
extraction. However, only simulations results are presented.
Vocell is the first ASIC that adds speaker verification to the
standard voice command recognition system, improving the
quality of the service provided by the platform at a reduced
power consumption.

VI. CONCLUSION

This work presents Vocell, a speech-trigered wake-up SoC
for Speaker Verification and Keyword Spotting, attaining
high accuracy for the mentioned tasks while consuming only
18.3µW for worst-case scenario. The use of a single-chip
solution, memory and power optimized accelerators as well
as hardware-aware algorithmic tuning, allows to reduce sig-
nificantly the energy required for real-time operation.

VII. ACKNOWLEDGEMENTS

This work was supported by the Research Foundation -
Flanders (FWO) and the EU ERC starting grant RE-SENSE.
We thank the MIT team of A. Chandrakasan and M. Price for
sharing their DFT design [5].

REFERENCES

[1] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile
sensing?” in Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications. ACM, 2015, pp. 117–122.

[2] Z. Chen, Y. Qian, and K. Yu, “Sequence discriminative training for deep
learning based acoustic keyword spotting,” Speech Communication, vol.
102, pp. 100–111, 2018.

[3] Y. Su, F. Jelinek, and S. Khudanpur, “Large-scale random forest lan-
guage models for speech recognition,” in Eighth Annual Conference of
the International Speech Communication Association, 2007.

[4] R. D. Kumar, A. B. Ganesh, and S. Kala, “Speaker identification system
using gaussian mixture model and support vector machines (gmm-svm)
under noisy conditions,” Indian Journal of Science and Technology,
vol. 9, no. 93870, 2016.

[5] M. Price, J. Glass, and A. P. Chandrakasan, “14.4 a scalable speech rec-
ognizer with deep-neural-network acoustic models and voice-activated
power gating,” in 2017 IEEE International Solid-State Circuits Confer-
ence (ISSCC). IEEE, 2017, pp. 244–245.

[6] S. Yin, P. Ouyang, S. Zheng, D. Song, X. Li, L. Liu, and S. Wei, “A 141
uw, 2.46 pj/neuron binarized convolutional neural network based self-
learning speech recognition processor in 28nm cmos,” in 2018 IEEE
Symposium on VLSI Circuits. IEEE, 2018, pp. 139–140.

[7] K. Badami, K. D. Murthy, P. Harpe, and M. Verhelst, “A 0.6 v 54db snr
analog frontend with 0.18% thd for low power sensory applications in
65nm cmos,” in 2018 IEEE Symposium on VLSI Circuits. IEEE, 2018,
pp. 241–242.

[8] M. Vacher, D. Istrate, J.-F. Serignat, and N. Gac, “Detection and
speech/sound segmentation in a smart room environment,” 2005.

[9] K. M. Badami, S. Lauwereins, W. Meert, and M. Verhelst, “A 90
nm cmos, 6µw power-proportional acoustic sensing frontend for voice
activity detection,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1,
pp. 291–302, 2015.

[10] A. Dufaux, L. Besacier, M. Ansorge, and F. Pellandini, “Automatic
sound detection and recognition for noisy environment,” in 2000 10th
European Signal Processing Conference. IEEE, 2000, pp. 1–4.

[11] M. Shahnawaz, E. Plebani, I. Guaneri, D. Pau, and M. Marcon, “Study-
ing the effects of feature extraction settings on the accuracy and memory
requirements of neural networks for keyword spotting,” in 2018 IEEE
8th International Conference on Consumer Electronics-Berlin (ICCE-
Berlin). IEEE, 2018, pp. 1–6.

[12] M. Yuan, T. Lee, P. Ching, and Y. Zhu, “Speech recognition on
dsp: issues on computational efficiency and performance analysis,”
Microprocessors and Microsystems, vol. 30, no. 3, pp. 155–164, 2006.

[13] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword spotting
using deep neural networks,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp.
4087–4091.

[14] M. Sun, A. Raju, G. Tucker, S. Panchapagesan, G. Fu, A. Mandal,
S. Matsoukas, N. Strom, and S. Vitaladevuni, “Max-pooling loss train-
ing of long short-term memory networks for small-footprint keyword
spotting,” in 2016 IEEE Spoken Language Technology Workshop (SLT).
IEEE, 2016, pp. 474–480.

[15] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[16] P. Baljekar, J. F. Lehman, and R. Singh, “Online word-spotting in
continuous speech with recurrent neural networks,” in 2014 IEEE Spoken
Language Technology Workshop (SLT), Dec 2014, pp. 536–541.

[17] D. A. Reynolds, “An overview of automatic speaker recognition tech-
nology,” in 2002 IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 4. IEEE, 2002, pp. IV–4072.

[18] N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Dumouchel, L. Burget,
V. Hubeika, and F. Castaldo, “Support vector machines and joint
factor analysis for speaker verification,” in 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, 2009,
pp. 4237–4240.

[19] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 788–798,
2010.

[20] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[22] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[23] J. Fernández-Marqués, W.-S. T. Vincent, S. Bhattachara, and N. D. Lane,
“Binarycmd: Keyword spotting with deterministic binary basis,” 2018.

[24] P. Harpe, H. Gao, R. van Dommele, E. Cantatore, and A. van Roermund,
“21.2 a 3nw signal-acquisition ic integrating an amplifier with 2.1 nef
and a 1.5 fj/conv-step adc,” in 2015 IEEE International Solid-State
Circuits Conference-(ISSCC) Digest of Technical Papers. IEEE, 2015,
pp. 1–3.

[25] J. S. Giraldo and M. Verhelst, “Laika: A 5uw programmable lstm
accelerator for always-on keyword spotting in 65nm cmos,” in ESSCIRC
2018-IEEE 44th European Solid State Circuits Conference (ESSCIRC).
IEEE, 2018, pp. 166–169.

[26] S. Bang, J. Wang, Z. Li, C. Gao, Y. Kim, Q. Dong, Y.-P. Chen, L. Fick,
X. Sun, R. Dreslinski et al., “14.7 a 288µw programmable deep-learning
processor with 270kb on-chip weight storage using non-uniform memory
hierarchy for mobile intelligence,” in 2017 IEEE International Solid-
State Circuits Conference (ISSCC). IEEE, 2017, pp. 250–251.

[27] J.-C. Wang, L.-X. Lian, Y.-Y. Lin, and J.-H. Zhao, “Vlsi design for svm-
based speaker verification system,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 7, pp. 1355–1359, 2014.

