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 1 

1. Background  2 

 3 

Perfusion imaging uses an intravascular tracer and serial imaging to quantify blood flow through 4 

the brain parenchyma. In acute ischemic stroke, perfusion imaging may increase diagnostic 5 

accuracy, aid treatment target identification and provide prognostic information about 6 

functional outcome (1). Moreover, perfusion imaging can identify patients who benefit from 7 

reperfusion beyond the conventional time window or in whom time of symptom onset is 8 

unknown (2-4). Implementation of perfusion imaging in routine acute stroke care allows 9 

individualized treatment of stroke patients based on brain tissue status, rather than time-based 10 

treatment on the group level.  11 

In this review we give an overview of CT perfusion (CTP) and perfusion MRI (MRP) in acute 12 

ischemic stroke and discuss technical properties, clinical use and pitfalls.  13 

 14 

2. Acquisition of CT and MR perfusion imaging 15 

 16 

Acquiring high quality perfusion maps requires a scanning protocol that is optimized for high 17 

contrast sensitivity and low image noise and also ensures that bolus passage is captured in full 18 

with adequate temporal resolution. For CTP, these requirements must be balanced against the 19 

need to minimize radiation dose. Scan duration should generally be at least 60s with a sampling 20 

rate of 2s or faster. Besides technical considerations, advantages and risks differ between CT and 21 

MRI (Table I of the supplemental data). More details on injection protocol and radiation dose can 22 

be found elsewhere (5).  23 

 24 

3. Post-processing of perfusion images 25 

 26 

a. Background and perfusion maps 27 
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Perfusion source data is a 4-dimensional data set (3-dimensional volumes captured over time). 1 

This may be visualised as a movie in which tissue downstream to an occlusion typically shows 2 

delayed contrast arrival and prolonged bolus washout. Tracer kinetic models are used to 3 

estimate hemodynamic parameters for each voxel, converting the 4-dimensional dataset into a 4 

set of perfusion maps that represent different hemodynamic properties. In essence, computation 5 

of the perfusion maps is based on a relationship between the bolus shape in the feeding 6 

vasculature, the Arterial Input Function (AIF), and the contrast passage observed in each voxel. 7 

Mathematically this relationship is determined using a so called deconvolution algorithm which 8 

enables computation of perfusion parameters. 9 

The fundamental hemodynamic properties of the tissue are cerebral blood volume (CBV; volume 10 

fraction of tissue that is vascularized, typically 2-5%), cerebral blood flow (CBF; the volume of 11 

blood flow per minute per 100mL of tissue) and  mean transit time (MTT; the average transit 12 

time for a tracer particle to traverse the capillary bed). In addition, the delay of the bolus from 13 

the proximal vascularture to the tissue (time-to-maximum [Tmax]) is a popular metric. 14 

Because of limitations of both CT and MRI, CBF is usually not considered quantitative but rather 15 

normalized to a presumed normal reference region of the brain and expressed proportionately, 16 

e.g. 30% for CBF that is 70% depressed relative to the reference region. Multiple other 17 

parameter exist, such as time-to-peak (TTP) and First Moment (FM). These metrics quantify 18 

properties of the curve without attempting to directly quantify hemodynamic properties, but 19 

they can be equally effective at predicting infarction as the hemodynamic parameters (eg CBF, 20 

CBV, MTT) as long as properly normalized to a reference region (6). Visual inspection of 21 

perfusion maps yields disparaging results between readers (7). To obtain more consistent and 22 

objective results, perfusion maps are therefore usually subjected to some form of thresholding 23 

to exclude regions that are experiencing mild hypoperfusion with a low probability of infarction.  24 

For clinical use, the goal is often to quantify: 1) tissue that experiences significant hypoperfusion 25 

and is likely to infarct in the absence from reperfusion (termed “penumbra”), and 2) tissue that 26 

is likely irreversibly infarcted, termed the “ischemic core”. Application of thresholds enables 27 
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quantification the volume of tissue that fall into each category and these volume estimates can 1 

then be used to inform treatment decisions or form part of guidelines.  2 

 3 

b. Software packages 4 

Multiple software products that produce perfusion maps and estimate volumes of ischemic core 5 

and tissue at risk are available. Perfusion processing is a non-standard domain and substantial 6 

differences exist between vendors. Frequently CBF, CBV and Tmax are calculated differently and 7 

are therefore not comparable between packages. Comparison of commercially available 8 

software shows significant differences in core and penumbra volume calculations, which may 9 

influence patient selection for reperfusion therapy (8-10). It is therefore recommended to use 10 

software that has been validated on clinical datasets where it is known to what extent estimated 11 

volumes are meaningful for clinical use (2, 3). A benchmark tool is available which allows 12 

comparison  to validated thresholds for various imaging parameters (11).  13 

 14 

4. Interpretation of perfusion CT and MRI 15 

 16 

a. Background 17 

Occlusion of a cerebral blood vessel causes a variable decrease of blood flow in the downstream 18 

parenchyma proportionate to the degree of collateral circulation. In brain regions with poor 19 

collaterals, lack of oxygen and glucose, may result in electrical failure and ultimately failure of 20 

the cell’s energy metabolism leading to tissue infarction (12, 13). Although both the ischemic 21 

core and penumbra are dysfunctional (and thus contribute to the patient’s symptoms), the 22 

penumbra is viable upon restoration of blood flow (12).  23 

In the absence of reperfusion, the penumbra will eventually grow into the ischemic core. The 24 

rate of infarct growth is highly variable between individuals and is strongly dependent on the 25 

extensiveness of collateral circulation (14). Genetic and environmental factors likely explain 26 
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interindividual differences between native collateral circulation. Furthermore, several stimuli 1 

(e.g. chronic hypoperfusion) may induce collateral formation (15).   2 

 3 

b.   Assessment of ischemic core 4 

 5 

i. Computed tomography-based methods 6 

 7 

In contrast to MRI, CTP visualizes brain infarction indirectly based on perfusion changes. 8 

Therefore, small subcortical infarcts are more difficult to detect and CTP is more error prone 9 

(16, 17). Validation of CTP parameters and thresholds for ischemic core identification is mostly 10 

based on final infarct volume on follow-up MRI in patients with complete reperfusion (Table II 11 

of the supplemental data). Variability in optimal perfusion parameter or threshold is explained 12 

by differences in imaging acquisition (mainly brain volume coverage, image acquisition rate and 13 

scan duration), reference imaging and data processing methods (among others AIF placement, 14 

deconvolution method and delay and dispersion correction) (18, 19).  15 

Decreased CBF relative to normal brain tissue (rCBF) most consistently and accurately identifies 16 

the ischemic core. A rCBF threshold of < 30% has been extensively validated (Table II of the 17 

supplemental data). Because only few studies used acute MRI for validation of ischemic core 18 

thresholds and because infarct growth may occur between CTP acquisition and reperfusion, 19 

validated CBF thresholds may overestimate ischemic core if perfusion imaging is acquired very 20 

early after symptom onset (20-22). Similarly, the ischemic core may be overestimated if rapid 21 

reperfusion is achieved (20). Although one would expect this to be especially the case for 22 

patients undergoing endovascular treatment (EVT), the  threshold of rCBF < 30% does not seem 23 

to overestimate and may underestimate final infarct volume in these patients (21, 23).   24 

Lacunar or small subcortical infarcts are usually not detected using CTP thresholds, but visual 25 

inspection of in particular MTT, TTP and time to drain (TTD) maps has a high specificity but 26 
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moderate sensitivity for detection of these infarcts (16, 24, 25). Sensitivity for infratentorial 1 

lesions is however low (25).  2 

 3 

ii. Magnetic resonance imaging-based methods 4 

Just minutes after stroke onset, cytotoxic edema, characterized by restriction of water molecule 5 

movement, develops in infarcted tissue. This is visualized as a decrease of the apparent diffusion 6 

coefficient (ADC) and a hyperintensity on DWI (26). An ADC threshold between 600-625 x 10-6 7 

mm2/s is a fairly robust parameter to delineate the ischemic core (27). Reversibility of acute 8 

DWI lesions may be seen in on average 24% of cases and is associated with a shorter duration of 9 

ischemia and reperfusion (28). Substantial and permanent DWI reversal in acute stroke patients 10 

undergoing reperfusion treatment is however rare and probably not clinically relevant (29). 11 

 12 

c.  Identifying tissue at risk  13 

 14 

Penumbra is derived from subtracting the ischemic core from the perfusion deficit (the total 15 

volume of brain tissue that is critically hypoperfused). CTP and MRP can successfully 16 

discriminate the perfusion deficit from normal brain tissue or benign oligemia, and a variety of 17 

perfusion parameters and thresholds have been described (Table III of the supplemental data). 18 

Optimal perfusion parameters are mostly validated by comparison to the final infarct on MRI in 19 

the absence of reperfusion (Table III of the supplemental data). Differences in optimal 20 

parameter and threshold are partially explained by deconvolution method and other post-21 

processing algorithms. Although deconvolved perfusion parameters are generally used, non-22 

deconvolved maps may be equally accurate (6, 30). Typically, the perfusion deficit is identified 23 

using parameters related to the temporal profile of the concentration-time curve. The frequently 24 

used Tmax parameter with a delay > 6s provides a reasonable estimate of final infarction in 25 

patients without reperfusion (31). Tmax may also be the most concordant parameter between 26 

CTP and MRP (32).  27 
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 1 

d. Caveats and pitfalls 2 

 3 

i. Limitations of perfusion parameters and thresholds  4 

No perfusion parameter or threshold perfectly describes the perfusion deficit but rather reflects 5 

the probability of infarction in the absence of reperfusion (33). Infarction risk increases with 6 

hypoperfusion severity and duration of hypoperfusion. Short-lasting severe hypoperfusion may 7 

not result in tissue infarction, whereas longer-lasting hypoperfusion more likely will. It is also 8 

not uncommon to see a late increase in blood flow in irreversibly damaged tissue in patients 9 

with spontaneous recanalization, or even with persistent vascular occlusiondue to improved 10 

perfusion via collateral blood vessels (34, 35). This ischemic tissue may be readily visible on 11 

non-contrast CT, but will not be identified as ischemic core on CTP if blood flow exceeds the 12 

threshold for ischemic core detection. Thorough inspection of non-contrast images for 13 

established infarction is thus necessary, especially in late-presenting patients. On MRI, ADC 14 

changes with time and reperfusion state (36). A single ADC threshold may thus result in a 15 

different tissue fate depending on time from symptom onset and (subsequent) reperfusion.  16 

Severity of hypoperfusion also influences tissue fate. Ischemic tissue with limited collateral 17 

circulation resulting in  worse perfusion more rapidly progresses to infarction compared to 18 

better perfused tissue (37-39). This partially explains interindividual variability in infarct 19 

growth rate (40). The hypoperfusion intensity ratio (HIR), the proportion Tmax > 6s lesion with 20 

Tmax > 10s, is a good predictor for collateral flow and infarct growth (38, 39) (Fig 1). Besides 21 

Tmax and HIR, rCBV is associated with the degree of collateral circulation and is predictive of 22 

infarct growth (39).  23 

 24 

ii. Limitations in differentiating normal from pathological tissue 25 

In patients with chronic hypoperfusion (e.g. due to hemodynamically significant stenosis or 26 

occlusion of supplying blood vessels), the perfusion deficit may be grossly overestimated if 27 
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Tmax or MTT thresholds are surpassed (41). Correction for delay and dispersion may increase 1 

reliability of perfusion imaging in such patients.  2 

Absolute CBF values are abnormal in chronic vascular white matter changes (42). Although the 3 

effect on rCBF changes is limited, perfusion imaging in patients with extensive chronic vascular 4 

lesions may be less reliable.  5 

 6 

5. Clinical use of perfusion imaging 7 

 8 

a. The mismatch concept  9 

The mismatch concept is a surrogate marker for the presence of a relevant volume of 10 

salvageable brain tissue and refers to a significant lesion volume difference (i.e. “mismatch”) 11 

between the perfusion deficit and the ischemic core.  12 

The definition of a mismatch pattern depends on the chosen ratio between core volume and  13 

perfusion deficit volume (ie. “mismatch ratio”, MMR). In the DEFUSE study, the concept of target 14 

mismatch (TMM) was introduced to describe patients with a greater response to reperfusion 15 

compared to the general mismatch population, defined as a MMR of at least 1.2 and minimal 16 

penumbra volume of 10 ml, in addition to a maximum core and severly hypoperfused tissue 17 

volume (respectively DWI lesion  and Tmax ≥ 8s volume < 100 ml) (37). The DEFUSE 2 study 18 

redefined the mismatch definition for EVT-eligible patients: MMR > 1.8, penumbra > 15 ml, DWI 19 

volume < 70 ml and Tmax > 10s volume <100ml (43).  20 

  21 

b. Predicting response to reperfusion 22 

In the DEFUSE study the relationship between the perfusion profile and outcome was assessed 23 

in patients treated with alteplase 3-6 hours after known stroke onset (37). Odds of achieving 24 

favorable outcome after reperfusion were only increased in patients with PWI/DWI mismatch 25 

and were greater in patients with TMM (37). The EPITHET study used MRP and the DEFUSE 26 

mismatch definition. They randomized patients to alteplase or placebo 3-6 hours after symptom 27 
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onset (44). No difference in outcome was found between mismatch and non-mismatch patients, 1 

possibly due to differences in the automated analysis. In the pooled DEFUSE and EPITHET 2 

population, thrombolysis was associated with a favourable outcome and attenuation of infarct 3 

growth in mismatch patients but not in non-mismatch or malignant profile patients, using 4 

automated software and a perfusion threshold of Tmax > 6s (45) (Fig 2). An observational study 5 

using CTP and a strict TMM definition adapted from DEFUSE 2 showed only TMM patients had a 6 

higher chance of achieving excellent outcome and a lower chance of severe disability or death 7 

after thrombolysis (7) (Fig 2). 8 

With regards to studies on EVT, the prospective cohort study DEFUSE 2 found a high rate of 9 

good outcome in reperfused patients with a TMM pattern (43). This association was absent in 10 

non-TMM patients. CRISP, a prospective cohort study, confirmed the association between good 11 

functional outcome and reperfusion in TMM patients, regardless of time between stroke onset 12 

and imaging, suggesting that symptom duration is no modifier of reperfusion response in 13 

imaging-selected patients (46).  14 

Besides predicting response to reperfusion therapy, perfusion imaging can identify patients in 15 

whom reperfusion may be detrimental. In a pooled analysis of DEFUSE and EPITHET, 89% of 16 

reperfused patients with a malignant perfusion profile (Tmax >8s volume of > 85 ml) 17 

experienced poor outcome, vs. 39% of patients without reperfusion (47). Reperfusion was 18 

associated with symptomatic intracranial hemorrhage in the malignant profile group, but not in 19 

the TMM group (45).  Observational data also showed an association between severe 20 

hypoperfusion (Tmax > 14s) and the occurrence of parenchymal hematoma after thrombolysis 21 

(48). Similarly, thrombolysis was associated with poor outcome in patients without mismatch 22 

profile, although absolute numbers were low (7).  23 

Although randomized trials are lacking, a large ischemic core should not automatically preclude 24 

patients from EVT (49, 50). In the HERMES meta-analysis which included 7 RCTs on EVT, larger 25 

ischemic core volume was associated with a lower chance of achieving function independence 26 

and treatment effect was more time-dependent (51). Benefit from EVT was however not 27 
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modified by ischemic core volume. Noteably, only 8.5% of patients included in the meta-analysis 1 

had a core volume ≥ 70ml.  Although saving tissue at risk may be less pertinent, reperfusion in 2 

large core patients may improve functional outcome by inhibiting edema formation (52). 3 

Whether patients with large cores (e.g. > 100mL) benefit from reperfusion will need to be 4 

assessed in a RCT. 5 

 6 

c. Mismatch imaging for treatment selection 7 

On a group level, thrombolysis within 4.5h after ischemic stroke onset without the use of 8 

perfusion imaging selection is safe and effective and time modifies treatment effect (53). In 9 

EPITHET, a non-significant trend towards improved outcomes was seen in patients with a MMR 10 

> 1.2 and minimal penumbra volume of 10mL who were treated with alteplase between 3 and 6 11 

h after symptom onset (44). Given the variability in infarct growth, recent clinical trials 12 

hypothesized benefit of reperfusion treatment in patients with a perfusion mismatch profile 13 

who presented in a later time-window, or in whom symptom onset was unknown or occurred 14 

during sleep (i.e. “wake-up patients”) (40). In the placebo-controlled EXTEND trial, benefit of 15 

thrombolysis in patients with a TMM profile between 4.5 and 9h after last seen well was 16 

evaluated (4). Thrombolysed patients had better functional outcomes with a trend towards 17 

more symptomatic intracranial hemorrhage. Subgroup analysis did not show treatment 18 

differences in patients with wake-up stroke and patients treated between 4.5 – 6h or 6 – 9h from 19 

last-seen-well.  20 

 Another placebo-controlled study using alteplase in the same time window was stopped 21 

prematurely due to slow recruitment and failed to show a benefit of thrombolysis (54). A study 22 

using tenecteplase in the 4.5-24h time window using perfusion imaging selection is ongoing 23 

(TIMELESS; clinicaltrials.gov reference NCT03785678) .  24 

Most RCTs on EVT in the early time window did not use perfusion imaging for patient selection. 25 

EVT for stroke due to large vessel occlusion is associated with major benefit in (relatively) 26 

unselected patients and treatment effect is modified by time (55, 56). Two studies (partially) 27 
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selected patients with TMM profile on MRP or CTP (57, 58). Compared to unselected patients, 1 

reperfusion in TMM patients resulted in increased functional indepence (60-71% vs. 32.6%) and 2 

lower mortality (9% vs. 21%) 90 days after treatment despite comparable baseline 3 

characteristics (57-59).   4 

Two RCTs demonstrated benefit of EVT between 6 and 16 to24h after stroke onset or last seen 5 

well in the presence of a mismatch profile (2, 3). Ischemic core was identified as rCBF< 30% on 6 

CTP or DWI lesion on MRI. In the DAWN trial, mismatch between the ischemic core volume and 7 

clinical symptoms was used (NIHSS of at least 10 or 20, depending on age and ischemic core 8 

volume) (2). DEFUSE 3 used a Tmax threshold of > 6 s to define the perfusion deficit,  and 9 

selected patients with ischemic core < 70 mL, MMR ≥ 1.8 and at least 15 mL penumbra (3). The 10 

proportion of good outcome in the intervention arm was similar to studies in the conventional 11 

time window (45-49%). Both studies included wake-up patients. Compared to patients with 12 

known symptom onset, neither study reported differences in treatment effect in patients in 13 

whom symptoms were discovered upon awakening or symptom onset was unknown (2, 3).  14 

Although perfusion imaging is a powerful tool to identify those patients with treatment target, 15 

especially beyond the conventional treatment time window, absence of a perfusion deficit or 16 

TMM profile does not equal absence of reperfusion effect. Several trials on EVT in the early time-17 

window did not use perfusion imaging for patient selection and showed large treatment benefit 18 

in this population (51, 59). Moreover, observational data suggests that patients with large 19 

ischemic core volumes may also benefit from reperfusion (51, 52). Also, in the WAKE-UP trial, 20 

which used a DWI-FLAIR mismatch pattern as a surrogate marker for stroke with recent onset 21 

and randomized patients to thrombolysis or placebo if treatment was possible within 4.5h from 22 

symptom discovery, patients treated with thrombolysis had a higher chance of excellent 23 

functional outcome (60). Although previous studies suggested a similar underlying mechanism, 24 

DWI-FLAIR and perfusion mismatch patterns can occur independently, again confirming that 25 

patients without mismatch pattern can benefit from reperfusion therapy (61). Interestingly, 26 

patients may also present with a so called “total mismatch” pattern, i.e. the presence of a 27 
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perfusion deficit in the absence of a DWI lesion (62). Small, often lacunar, lesions may be 1 

undetectable on CTP, but are visible on DWI. These patients however do seem to benefit from 2 

thrombolytic therapy (63). Therefore, screening for either one of the aforementioned mismatch 3 

patterns might be most conclusive to select eligible patients for reperfusion therapy.   .  4 

d. Other considerations regarding perfusion imaging 5 

Not every center has implemented perfusion imaging for acute stroke. Although it is not 6 

required for therapeutic decision-making in early-presenting patients, many advantages of 7 

perfusion imaging also apply to this population. Perfusion imaging improves diagnostic accuracy 8 

and detection of stroke mimics, and enhances and expedites occlusion localization in patients 9 

with more distal occlusions (1, 64). Furthermore, it provides early prognostic information which 10 

may aid communication to patient and relatives, and help guide early therapeutic decision-11 

making beyond reperfusion therapy (5, 51).  12 

These benefits need to be weighed against treatment time delays. Thrombolytic therapy can be 13 

started after exclusion of contra-indications on non-contrast CT and before or during perfusion 14 

imaging acquisition. When using MRI, rapid stroke imaging protocols are available and similar 15 

door-to-groin times can be achieved compared to CT imaging (65).  16 

Multimodal imaging for targeted thrombolytic therapy may be cost-effective, assuming that 17 

thrombolytic therapy is associated with higher hemorrhage risks or may be futile in certain 18 

subgroups (7, 48, 66). Given the large benefit of endovascular therapy, screening for patients 19 

with treatment targets beyond the early time window is likely highly cost-effective (2, 3).  20 

 21 

6. Summary and future directions 22 

Perfusion imaging improves prognostication in acute ischemic stroke and enables identification 23 

of patients with treatment targets well beyond the conventional time windows for intravenous 24 

thrombolysis or EVT. There is now strong evidence for thrombolytic treatment of patients with a 25 

TMM profile up to 9 hours and for clot removal in patients with a TMM up to 24 hours after last 26 

seen well. Instead of relying on a uniform time window to determine whether to offer 27 
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reperfusion therapy, perfusion imaging allows clinicians to tailor this decision based on the 1 

perfusion and tissue status of an individual patient’s brain. Evidence for reperfusion treatment 2 

of specific patient populations (e.g. large ischemic core volumes [beyond the 6h treatment 3 

window]) and the safety of treatment beyond 24 hours is sparse or lacking and will need to be 4 

addressed in RCTs. Likewise, identification of patients in whom early reperfusion treatment is 5 

futile or may cause more harm than benefit remains difficult.  6 

Many factors challenge the widespread use of perfusion imaging in acute stroke treatment, 7 

among others the insufficient implementation of perfusion imaging in primary and 8 

comprehensive stroke centers, incomplete standardization of image processing and the lack of 9 

expertise in image  interpretation. It is however increasingly clear that advanced brain imaging 10 

allows clinicians to move from time-based to individualized, tissue-based treatment to the 11 

benefit of late-presenting acute stroke patients.  12 

 13 
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 5 

Figure legends 6 

 7 

Figure 1.  8 

CT perfusion imaging processed by RAPID software showing a patient with a low hypoperfusion 9 

intensity ratio (HIR), i.e. Tmax 10/Tmax6 lesion volume (A). In this patient, slow ischemic core 10 

growth is expected. Below a patient with a high HIR is shown, in whom rapid ischemic core 11 

growth is expected (B).  12 

Abbreviations: CT = computed tomograpy 13 

 14 

Figure 2.  15 

CT perfusion imaging processed by RAPID software showing a target mismatch profile in a 16 

patient with an occlusion of the M1 segment of the right middle cerebral artery (A), i.e. small 17 

ischemic core (pink), considerable tissue at risk for infarction (green) and a large mismatch 18 

ratio. Below, perfusion imaging of a patient with a right-sided M1 occlusion and a malignant 19 

perfusion profile is shown (B). This patient has a large ischemic core (pink) which largely 20 

overlaps the perfusion deficit (green). 21 

Abbreviations: CT = computed tomography 22 
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