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Abstract— Goal: Functional connectivity (FC) is an important 

indicator of the brain’s state in different conditions, such as 

rest/task or health/pathology. Here we used high-density 

electroencephalography coupled to source reconstruction to assess 

frequency-specific changes of FC during resting state. Specifically, 

we computed the Small-World Propensity (SWP) index to 

characterize network small-world architecture across frequencies. 

Methods: We collected resting state data from healthy participants 

and built connectivity matrices maintaining the heterogeneity of 

connection strengths. For a subsample of participants, we also 

investigated whether the SWP captured FC changes after the 

execution of a working memory (WM) task. Results: We found 

that SWP demonstrates a selective increase in the alpha and low 

beta bands. Moreover, SWP was modulated by a cognitive task 

and showed increased values in the bands entrained by the WM 

task. Conclusions: SWP is a valid metric to characterize the 

frequency-specific behavior of resting state networks. 

 
Index Terms—EEG, frequency specificity, functional 

connectivity, resting state, small-worldness. 

 

I. INTRODUCTION 

Human brain imaging by means of non-invasive 

electrophysiological recordings is a fast-growing field. Recent 

studies validated the effectiveness of high-density 

electroencephalography (hdEEG) coupled to source imaging 

techniques to reconstruct both brain networks during Resting 

State (RS) [1-3] and the activity of deep subcortical areas [4]. 

Thus, the combination of hdEEG and source imaging allows 

                                                           
This work was partially supported by the Gossweiler foundation, granted to 

L. Avanzino (PI), D. Mantini, and M. Chiappalone. 
1Riccardo Iandolo, Marianna Semprini, Stefano Buccelli, Federico Barban, 

and Michela Chiappalone are with Rehab Technologies, Istituto Italiano di 

Tecnologia, Genova 16163, Italy (e-mails: riccardo.iandolo@iit.it, 
marianna.semprini@iit.it, stefano.buccelli@iit.it, federico.barban@iit.it, 

michela.chiappalone@iit.it). 2Stefano Buccelli and Federico Barban are also 

with the Department of Informatics, Bioengineering, Robotics and systems 
Engineering (DIBRIS), University of Genova, Genova, Italy. 3Mingqi Zhao, 

Jessica Samogin, and Dante Mantini are with Research Center for Motor 

reliably investigating brain functional connectivity (FC) at both 

high temporal resolution and good spatial scale, and 

investigating the frequency-specific properties of functional 

and effective connectivity structures [5-9]. Indeed, each brain 

rhythm is differently involved in, and therefore associated to, 

the brain’s states of activity (e.g. sleep, rest, tasks) [10]. While 

the frequency properties of task-related brain activity have been 

studied [11, 12], frequency-specific FC at rest is still under 

investigation. It is thus important to define what are the features 

of neuronal oscillations in whole brain RS networks and to 

explore the frequency-specific changes induced by a task [2]. 

Moreover, since oscillations in different frequency bands were 

demonstrated to play a major role in FC within RSNs [13-15], 

it might be of clinical relevance understanding if RS frequency-

specificity could be used as a biomarker for brain pathologies. 

Within this framework, here we explored the frequency-

specific properties of FC both at rest and upon a cognitive task. 

To achieve this, we explored the connectivity strength (local 

network property) and the small-worldness (global network 

property) across frequencies, in a cohort of healthy participants. 

Small-worldness is a widely investigated topological property 

of human brain networks [16, 17] because it well addresses the 

integration capabilities (short path length) of multiple highly 

segregated areas (high clustering). As reported in the FC 

literature [18], there is a need of metrics that do not depend on 

graph density and that are estimated from weighted 

connectivity matrices. To address both requirements, the Small-

world Propensity (SWP) was recently proposed, being it 

unbiased to edge density and specifically defined for use in 

weighted networks [19]. So far, SWP has been computed 

primarily from functional and/or structural connectivity 

estimated with Magnetic Resonance Imaging (MRI) [20-24] 

and with low density EEG montages [25] or 

magnetoencephalography (MEG) [26]. Other works 
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investigated the frequency-specific properties of FC graphs, 

however they used metrics different from SWP [8, 27-29]. 

Therefore, to the best of our knowledge, our work is the first 

employing SWP coupled to hdEEG source imaging and 

weighted network analysis to highlight FC frequency-specific 

behavior.  

In summary, our aim is to first evaluate the frequency 

specificity of FC during RS, as measured by the recent SWP 

index, and secondly to determine whether a cognitive task 

affects the SWP frequency-specific properties in the following 

rest state session. 

II. METHODS  

The adopted analysis pipeline is depicted in Fig. 1. 

A. Participants 

We recruited 33 healthy participants (30.4 ± 6.4, mean ± SD 

years, 18 females). All participants had no previous history of 

neurological and psychiatric disorders and provided written 

informed consent prior to participation. A subsample (12 

participants, 32.0 ± 8.9, mean ± SD years, 6 females) also 

underwent a working memory (WM) tasks (see below) for 

PRE/POST evaluation. The study conformed to the standard of 

the declaration of Helsinki and was approved by the 

institutional ethical committee (CER Liguria Ref.1293 of 

September 12th, 2018). 

B. Resting state recordings and MRI acquisition  

HdEEG was recorded at 1000 Hz sampling frequency from 128 

electrodes (actiChamp, Brain Products, Germany; FCz as the 

physical reference) while participants sat with their eyes open 

fixating a white cross on a black screen for five minutes. 

Participants were required to relax as much as possible and to 

keep fixating the cross (Fig. 1, A). For details about 

electrooculograms (EOG) and T1-weighted images acquisition 

parameters, see Suppl. Materials. 

C. Cognitive task 

A subsample of participants performed a WM exercise and we 

acquired the spontaneous oscillatory activity PRE and POST 

task execution. The behavioral task consisted of a n-back WM 

 
 

Fig. 1. Data analysis pipeline. Overview of the steps to perform the analysis. A) HdEEG acquisition. B) Preprocessing of 

hdEEG data. C) Head model generation. D) Source localization. E) Time-frequency analysis. F) Orthogonalization. G) 

Functional connectivity matrices. H) Weighted graphs construction. I) Computation of graph-theory metrics. L) Statistical 

Analysis, including ANOVA, Functional Data Analysis (FDA) and non-parametric permutation tests. 
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task (with n = 2, 3) [30], and was implemented in a custom-

made Graphical User Interface developed in Matlab 

(Mathworks, USA). Briefly, a series of pseudo random letters 

(A, B, C, D, E, F, G, H, I, O) was visually presented in sequence 

and the participant was required to respond with a button press 

when the current letter was the same as the letter presented n 

trials earlier. Each letter was displayed for 500 ms with a 2000 

ms interval between consecutive stimuli. Each n-back sequence 

comprised of the presentation of 130 letters, 32 of which were 

stimuli.  

D. Preprocessing of hdEEG recordings, head model and 

sources reconstruction 

For hdEEG preprocessing, we followed the same steps 

described in [1, 2, 11] (Fig. 1, B and Suppl. Materials). To build 

the volume conductor model, we used T1 weighted structural 

images (see Fig. 1, C and Suppl. Materials). Then, by 

combining each head model conductor and the artifacts-free 

hdEEG signals, we reconstructed brain activity in source space 

using eLORETA [31], constraining the sources (voxels) with a 

6 mm regular grid covering the cerebral gray matter. Then, we 

mapped individual sources timecourses into N = 384 regions of 

interest (ROIs) of the AICHA atlas [32]. N were the nodes 

furtherly employed for the graph-theoretical analysis. The 

activity of each ROI corresponded to the first principal 

component of the voxels falling within a sphere centered in the 

ROI center of mass and with 6 mm radius (Fig. 1, D).  

E. Spectral analysis 

We implemented time-frequency analysis by convolving the 

ROIs signals (𝑋𝑖(t), with i = 1. . N) with Generalized Morse 

Wavelets (GMW), described in [33, 34] (Fig. 1, E). This 

wavelet superfamily guarantees, under certain 

parametrizations, a strict analytic behavior and therefore is 

preferable for accurate time-frequency analysis (see Suppl. 

Materials). We used 23 carrier frequencies, ranging from 20.5 to 

26 Hz in quarter steps (f =  2(0.5:0.25:6) Hz), to cover a large part 

of the EEG spectrum with a fine detail. 

F. Weighted graph construction 

We estimated the FC matrices (384×384) between all pairs of 

nodes and for each carrier frequency, using the methods of 

power envelope orthogonalization [35], as in previous EEG 

studies [2, 8] (Fig. 1, F-G). We removed the coherent zero-lag 

activity from each pair of ROIs. Then, the pair of 

orthogonalized power spectra were log-transformed and 

correlated, using the Pearson coefficient. The resulting 

correlation was Fisher-transformed to improve Gaussianity 

(Fig. 1, G). We then obtained one weighted adjacency matrix 

containing the correlation strength per each frequency and 

participant ( 𝐴𝑠(𝑓), 𝑠 = 1. .33 ). Per each frequency, we 

consistency-thresholded the adjacency matrices according to 

Roberts et al. [36]. We estimated the coefficient of variation 

(CV) across participants and we thresholded each 𝐴𝑠(𝑓) 

according to CV (from 1% to 100%, the left bound corresponds 

to sparsely connected matrix, where the survived connections 

represent the most consistent connections across participants, 

i.e. with lower CV). Thus, we obtained equally-sparse graphs 

across participants and we were able to compare graph metrics 

values over different levels of graph density (Fig. 1, H). 

G. Strength of functional connectivity  

Prior to graph theoretical analysis, we computed each weighted 

adjacency matrix [37]. Then, for each participant and for each 

frequency, we calculated the node strength as the mean of 

𝐴𝑠(𝑓)  columns (obtaining a 384 nodes × 23 frequencies 

matrix). Thus, we characterized the connectivity strength at 

node level, frequency by frequency. In order to obtain an overall 

measure of the average connectivity in each frequency of 

interest, we further averaged the nodal strength across nodes 

[37]. Next, we identified those carrier frequencies showing a 

higher average connectivity when compared with the others. 

Hence, we performed a repeated measures ANOVA with carrier 

frequencies as within-participant factor as in [38]. We tested the 

sphericity assumption with Mauchly’s test, and applied the 

Greenhouse-Geisser correction, if rejected. Then, we 

implemented Tukey HSD post-hoc test to investigate 

significant differences among the 23 frequencies. We further 

applied Bonferroni correction for multiple comparisons 

(p<0.0022, after correcting for the number of compared carrier 

frequencies). 

H. Graph theoretical analysis: Small-World Propensity 

SWP indicates the network propensity to show small-world 

architecture (https://complexsystemsupenn.com/codedata) 

[19]. SWP takes into account the discrepancy of the observed 

𝐴𝑠(𝑓) weighted clustering coefficient (𝐶𝑜𝑏𝑠(𝑓)) and shortest 

path length ( 𝐿𝑜𝑏𝑠(𝑓) ) from equivalent (i.e. with the same 

strength distribution, number of nodes and edges density) lattice 

(𝐶𝑙𝑎𝑡𝑡(𝑓) and 𝐿𝑙𝑎𝑡𝑡(𝑓)) and random (𝐶𝑟𝑎𝑛𝑑(𝑓) and 𝐿𝑟𝑎𝑛𝑑(𝑓)) 

networks (ΔC and ΔL, respectively). Hence, SWP is defined, 

per each carrier frequency, as: 

𝑆𝑊𝑃(𝑓) = 1 −  √0.5 × (∆𝐶(𝑓)2 + ∆𝐿(𝑓)2) 

Where: 

𝛥𝐶(𝑓) = (𝐶𝑙𝑎𝑡𝑡(𝑓) − 𝐶𝑜𝑏𝑠(𝑓)) (𝐶𝑙𝑎𝑡𝑡(𝑓) −  𝐶𝑟𝑎𝑛𝑑(𝑓))⁄  

∆𝐿(𝑓) = (𝐿𝑜𝑏𝑠(𝑓) − 𝐶𝑟𝑎𝑛𝑑(𝑓)) (𝐿𝑙𝑎𝑡𝑡(𝑓) − 𝐿𝑟𝑎𝑛𝑑(𝑓))⁄  

For the weighted clustering coefficient we followed the 

definition of Onnela et al. [39] and for the shortest path length 

we employed the Matlab function graphallshortestpaths.m 

[40]. The small-world regimen is reached when the SWP 

exceeds a value of 0.6 [19]. Importantly, while the classic 

small-worldness (σ) index [41] accounts only for deviation 

from a random-equivalent model, the SWP index considers the 

contribution to deviation from both lattice and random model. 

Moreover, different to σ, SWP does not depend on graph 

density [19]. We computed both SWP and σ for the entire RS 

dataset (Fig. 1, I), and, for those participants who performed the 

cognitive exercise, we evaluated SWP changes PRE/POST 

WM task. 

I. FDA statistical analysis 

To characterize the potential frequency-specific behavior of the 

SWP index, we employed the Functional Data Analysis (FDA), 

as in a previous work [37], which provides a statistical 

framework to compare graph theoretical metrics (Fig. 1, L). For 

further information about FDA analysis, see Suppl. Materials.  

https://complexsystemsupenn.com/codedata
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III. RESULTS 

In this work, we characterized the connectivity strengths and 

the small-world frequency-specific properties during RS and 

after a WM task. When presenting the results, we associate the 

carrier frequencies to the corresponding frequency bands, i.e. 

we localized the carriers into the main EEG spectral bands, here 

defined as: delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 

Hz), beta (β, 13-30 Hz), gamma (γ, 30-80 Hz), as in [42].  

A. Frequency-specific functional connectivity  

Fig. 2, A represents the node strengths across participants: a 

peak emerges in the carrier frequency centered in the EEG high 

theta band (f = 6.73 Hz), reaching a maximum in the alpha band 

(f = 8, 9.31, 11.31 Hz) and decreasing in low beta-centered 

carrier frequencies (f = 13.45, 16 Hz). We overlaid nodal 

strengths values onto the T1-weighted template showing the 

frequency-specific behavior of nodal strengths across 

frequency bands (Fig. 2, B). The same frequency-dependent 

pattern emerged for the average connectivity values as depicted 

in Fig. 2, C (ANOVA frequency factor F(22,704) = 27.1, p < 

0.0001, ϵ = 0.12, Greenhouse-Geisser corrected). The post-hoc 

statistical analysis (see Fig.2, D) revealed a significant increase 

of average connectivity mainly for the carrier frequencies 

localized in the alpha band (f = 8, 9.31, 11.3, yellow elements 

in Fig.2, D) when compared with the other bands. In addition, 

the low beta band carrier frequency (f = 13.45 Hz) was 

statistically higher than high beta and gamma waves (yellow 

elements, in Fig.2, D), as well as higher than delta and theta 

bands, but to a lesser extent (orange elements, in Fig. 2, D). 

High delta carrier frequency (f = 6.73 Hz) was significantly 

greater than high beta and gamma bands (orange elements, Fig. 

2, D). Finally, for all the remaining comparisons, the average 

connectivity had low intensity and it was not significantly 

different across these frequencies (blue elements in Fig. 2, D). 

See Table S2 for an overview of the mean ± SD average 

connectivity values across carrier frequencies. 

B. Small-worldness frequency-specific behavior 

As for the SWP index during RS (Fig. 3, A), we found a 

statistically significant difference when comparing the six 

integer carrier frequencies among each other (FDA analysis, 

p<0.0001 in all the comparisons). The averaged curves for 8 

and 16 Hz vs. graph densities (blue and magenta lines, 

respectively), indicated the highest small-world topological 

organization across all the analyzed frequencies, up to graph 

density of ~75%. The 8 Hz frequency entered the small-world 

regimen (SWP > 0.6) at 13% of graph density while the 16 Hz 

reached small-worldness at 19%. Both frequencies maintained 

small-worldness for all other ranges of graph densities. The 

remaining curves (2, 4, 32 and 64 Hz) showed similar, moderate 

SWP values (less than 0.6, but higher than 0.4 [16]) from low 

graph density ranging from 10% to about 60% graph density. 

For very low graph density (less than 10%), these four averaged 

curves showed the smallest SWP values (lowest bound is ~0.3). 

Instead, after the ~60% graph density, we had the onset of 

small-world regimen and SWP remained above the 0.6  

 

 

 
 

Fig. 2. Node strength and average connectivity. A) Node 

strength across participants in each wavelet carrier frequency 

( 2(0.5:0.25:6) Hz), the X-axis is in 𝑙𝑜𝑔2  scale. B) Node 

strength frequency specificity overlaid onto the T1-weighted 

template. For visualization purpose, we further averaged the 

strength values of the quadruplets between the integer carrier 

frequencies, obtaining the bands: 2-4 Hz, 4-8 Hz, 8-16 Hz, 

16-32 Hz, 32-64 Hz. The colormap is kept fixed to the 

minimum and maximum values across the bands. See Fig. 

S1 in the Suppl. Materials where the colormap is customized 

between minimum and maximum values in each frequency 

band of interest. C) The average connectivity is frequency-

dependent. Black line and gray shaded-areas indicate mean 

± SE across nodes and participants. The X-axis is in 𝑙𝑜𝑔2 

scale. D) Results of the Post-hoc Tukey’s HSD test on carrier 

frequencies. For each couple of frequencies, the lighter 

elements show a statistically significant difference (yellow: 

Bonferroni-corrected for multiple comparisons (p<0.0022), 

orange: uncorrected (p<0.05)). Dark blue elements indicate 

those frequencies that did not significantly differ among each 

other. X-axis and Y-axis are in 𝑙𝑜𝑔2 scale. 
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threshold until the right graph density limit. For higher graph 

density (>~75%) SWP values showed the greatest within- and 

between- variability for all the considered frequencies. 

As for the small-world index (σ), all the selected frequencies 

statistically differed from each other (FDA analysis, p < 0.0001, 

for all comparisons, see Fig. 3, B). Likewise SWP index, σ also 

exhibited the highest small-worldness intensity in the 8 and 16 

Hz carrier frequencies (Fig. 3, B blue and magenta lines). 

Small-worldness averaged curves showed an exponential decay 

that retains small-world property (above 1) respectively until 

80% and 76% graph density, for 8 and 16 Hz. The two curves 

achieved the highest small-worldness for low graph density 

(from 1% to ~5%). On the other hand, the remaining 

frequencies (i.e. 2, 4, 32 and 64 Hz) showed the same 

exponential trend, but with different constants decay. The decay 

caused small-worldness to disappear within the range of 55%-

60% graph density, depending on the carrier frequency. 

C. Modulation of frequency-specific properties induced by 

task performance 

Fig. 4, A-B, show respectively SWP values vs. both frequencies 

and graph density in PRE and POST conditions, computed for 

the subsample of participants who underwent the WM task. The 

difference between the two conditions is highlighted in Fig. 4, 

C which reports the systematic difference between the SWP 

values POST and PRE WM task. When looking at the single 

carrier frequency, we observed a change in the shape of the 

averaged SWP vs. graph density curves in the PRE and POST 

condition (see, Fig. 4, D) in a subset of frequencies. Indeed, the 

SWP increased in the POST condition, when compared with the 

PRE condition (FDA analysis, p < 0.0001) for most frequencies 

belonging to delta rhythm (1.68, 2, 2.38, 3.36, 4 Hz, see Fig. 

S2, black permutation distributions) as well as for most 

frequencies in the high beta and gamma bands (19, 26.91, 32, 

38.05, 45.25, 53.82 and 64 Hz, see Fig. S2). Instead, SWP 

during PRE was greater than during POST for 1.41, 2.83 and 

19.03 Hz frequencies (p < 0.0001). The other carrier 

frequencies did not show a statistically significant change in the 

SWP values (see light-gray distributions in Fig. S2). 

IV. DISCUSSION 

With this study, we characterized the frequency specificity of 

the connectivity strength and the small-world properties of RS 

activity, recorded with hdEEG.  

A. Alpha and low beta band increase of the connectivity 

strength 

This study extends, with the use of hdEEG and weighted 

networks analysis, previous findings [2, 8, 27] about whole-

brain FC structure frequency specificity, showing alpha and low 

beta band increase in nodal strengths and average connectivity. 

In these carrier frequencies (i.e. from 8 Hz to 16 Hz), a spatially 

distributed gradient (in posterior-anterior direction) emerged 

from high to low nodal strength values (see Fig. 2, B and Fig. 

S1). A similar spatially distributed FC pattern was reported in 

[35]. 

B. SWP and σ show different small-worldness information 

We found that the 8 Hz and 16 Hz carrier frequencies, which 

showed the highest connectivity strengths, also exhibited the 

strongest small-world architecture for both indices (blue and 

magenta curves, Fig. 3). This result suggests that for RS 

electrophysiological activity, the optimization of information 

transfer occurs between alpha and low beta band. However, 

SWP and σ show different behaviors when considered across 

graph densities. Indeed, 8 and 16 Hz, for low graph density (less 

than ~20% of graph density) showed small-worldness regimen 

only when considering the σ index, but not SWP, that, by 

contrast, indicate mild (range: 0.3-0.4) to moderate (< 0.4) 

small-world organization [16]. Moreover, the SWP for the 

remaining frequencies (2, 4, 32, and 64 Hz) was below the 0.6 

 
Fig. 3. Small-worldness across graph density. A) SWP vs. 

graph density curves. Black dotted line indicates the 0.6 

threshold for small-worldness. B) σ vs. graph density curves. 

Black dotted lines show the 1 threshold for small-worldness. 

Y-axis is in 𝑙𝑜𝑔10 scale. In both panels, each color identifies 

a different carrier frequency ( f = 2, 4, 8, 16, 32, 64 Hz). 

Lines and shaded areas show, mean ± SE, respectively. 
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threshold until ~60%, while σ indicated small-worldness 

architecture (above 1) until ~60% graph density. However, σ 

suffers from a bias due to graph density, suggesting that SWP 

is more suited than σ to characterize the small-world topology 

[19]. Moreover, by increasing the graph density (after 60-65%, 

depending on the considered frequencies), σ fell below the σ = 

1 threshold. With respect to this, we underline that according to 

Muldoon et al. [19], caution must be taken while trying to 

impose small-world formalism [17] when the graph is dense. 

With respect to this issue, our data indicates that for high graph 

density, SWP values resulted in more variability across 

participants (i.e. SE increase, see Fig. 3, A). Moreover, SWP 

values of 8 and 16 Hz frequencies fell below the SWP of other 

frequencies (Fig. 3, A), but still maintained small worldness 

regimen (≥ 0.6). Frequency specificity was reliably investigated 

using the FDA statistical approach, which by definition takes 

into account the entire graph density range for both SWP and σ. 

Indeed, despite the influence that different graph densities may 

have on the estimated graph-theoretical metrics, we believe that 

analyzing fully dense (no thresholding applied) FC networks 

could be of interest in other applications, such as the detection 

of hidden communities’ structures in weighted networks. In 

fact, thresholding can be detrimental in order to learn the 

underlying community structure [43]. 

C. Modulation of small-worldness induced by cognitive load 

We found a significant increase of small-worldness in high beta 

and gamma bands (≥ 26.91 Hz) and unchanged SWP values in 

alpha band and low beta. Previous MEG and EEG studies 

demonstrated that theta and gamma waves are specifically 

related to WM processing [44], moreover, a gamma modulation 

has been associated to higher cognitive load [45]. During WM 

 
Fig. 4. Modulation of SWP by WM task. A-B) SWP values during RS in the PRE (A) and POST (B) WM task as a function 

of the carrier frequencies (Y-axis, in 𝑙𝑜𝑔2 scale) and of the graph density (X-axis). Black contour lines indicate SWP threshold 

for small-worldness (SWP = 0.6). C) SWP systematic difference between POST and PRE condition, note the different 

colorbar range with respect to panels A and B. D) PRE and POST SWP vs. graph density curves in each of the 23 carrier 

frequencies. Continuous green and red lines (mean values across participants) and shaded areas (SD values across participants) 

indicate PRE and POST conditions, respectively. Black bars at the top of each panel, represent the graph densities for which 

the p-value of a paired t-test indicates a significant difference between the PRE and POST conditions (p<0.0022, Bonferroni 

corrected). 
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task, these bands reflect a consolidation of the small-world 

architecture (i.e. SWP increases), and we speculate that during 

the following RS acquisition (POST condition) the increased 

small-world organization persists, thus still observing SWP 

values higher than the PRE condition. We did not find 

significant difference between conditions in the alpha and early 

beta oscillations. Indeed, although these bands are also partially 

involved during WM tasks [44], they mainly constitute the 

predominant rhythms during RS [2, 27] and therefore also in 

the POST condition, so they are plausibly stronger than all the 

other rhythms. 

V. CONCLUSION 

In this work, we investigated the frequency specificity of RS 

FC by using nodal connectivity strength, average connectivity 

and small-world parameters (SWP and σ). We also computed 

SWP as a sensitive biomarker of frequency-dependent 

spontaneous activity alterations, following a WM task. 

Importantly, the influence of task execution on RS activity is 

relevant in many application domains, such as sensorimotor 

rehabilitation [46, 47]. Within this framework, our long-term 

goal is to validate the effectiveness of a neurorehabilitation 

intervention, as with robot-assisted training, through the 

evaluation of RS-FC [48]. RS has indeed the advantage of being 

well suited also for highly injured patients [49]. Moreover, it is 

not linked to task-related parameters, is less affected by motion 

artifacts, that, in case of EEG studies, may decrease the signal 

to noise ratio, and is a valid tool to explore the retention of the 

rehabilitation program on a long-term perspective. 

In conclusion, here we demonstrated that it is possible to 

estimate SWP properties from FC weighted network with 

hdEEG data, and that this metric is a valid tool to unravel the 

frequency-specific signatures of RS activity. 

SUPPLEMENTARY MATERIALS 

The Supplementary Information is described in more detail in 

the Supplementary Materials file, which includes the following 

Sections: Methods (Electrooculograms, Electrode localization 

and MRI acquisitions; Pre-processing of hdEEG recordings; 

Head model and source reconstruction; Generalized Morse 

Wavelet; Functional Data Analysis); Tables (Supplementary 

Tables TS1: T1-weighted acquisition parameters for the 

participants of the study, and TS2: Average connectivity values 

across participants in each carrier frequency); Figures (Fig. S1: 

Node strength frequency-specificity overlaid onto the T1-

weighted template, and Fig. S2: Permutation distributions 

related to FDA-statistical testing between PRE and POST 

working memory task.); additional References. 
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