

Appl. Sci. 2018, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Article

A comprehensive feature comparison study of open-

source container orchestration frameworks

Eddy Truyen *, Dimitri Van Landuyt, Davy Preuveneers, Bert Lagaisse and Wouter Joosen

1 imec-DistriNet, KU Leuven; dimitri.vanlanduyt@cs.kuleuven.be (D.V.L);

davy.preuveneers@cs.kuleuven.be (D.P.); bert.lagaisse@cs.kuleuven.be (B.L);

wouter.joosen@cs.kuleuven.be (W.J.)

* Correspondence: eddy.truyen@cs.kuleuven.be; Tel.: +32-163-735-85

Received: date; Accepted: date; Published: date

Featured Application: Practitioners and industry adopters can use the descriptive feature

comparison as a decision structure for identifying the most suited container orchestration

framework for a particular application with respect to different software quality properties such as

genericity, maturity and stability. Researchers and entrepreneurs can use it to check if their ideas

for innovative products or future research are not already covered in the overall technological

domain.

Abstract: 1) Background: Container orchestration frameworks provide support for management of

complex distributed applications. Different frameworks have emerged only recently, and they have

been in constant evolution as new features are being introduced. This reality makes it difficult for

practitioners and researchers to maintain a clear view on the technology space. 2) Methods: we

present a descriptive feature comparison study of the three most prominent orchestration

frameworks: Docker Swarm, Kubernetes and Mesos that can be combined with Marathon, Aurora

or DC/OS. This study aims at (i) identifying the common and unique features of all frameworks, (ii)

comparing these frameworks qualitatively ánd quantitatively with respect to genericity in terms of

supported features, and (iii) investigating the maturity and stability of the frameworks as well as

the pioneering nature of each framework by studying the historical evolution of the frameworks on

GitHub. 3) Results: (i) we have identified 124 common features and 54 unique features that we

divided into a taxonomy of 9 functional aspects and 27 functional sub-aspects. (ii) Kubernetes

supports the highest number of accumulated common and unique features for all 9 functional

aspects; however no evidence has been found for significant differences in genericity with Docker

Swarm and DC/OS. (iii) Very little feature deprecations have been found and 15 out of 27 sub-

aspects have been identified as mature and stable. These are pioneered in descending order by

Kubernetes, Mesos and Marathon. 4) Conclusion: there is a broad and mature foundation that

underpins all container orchestration frameworks. Likely areas for further evolution and innovation

include system support for improved cluster security and container security, performance isolation

of GPU, disk and network resources and network plugin architectures.

Keywords: Container orchestration frameworks; Middleware for cloud-native applications;

Commonality and variability analysis; Maturity of features; Feature deprecation risk; Genericity.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 2 of 76

1. Introduction

In recent years, there has been a strong industry adoption of Docker containers due to its easy-

to-use approach for distributing and bootstrapping container images. Moreover in comparison to

virtual machines, Linux containers have a lower memory footprint and allow for flexible resource

allocation to improve server consolidation [1]. The popularity of Docker has also changed the way in

which application software can be packaged and deployed: container images are self-contained

components that can be tagged with version numbers and are made available for download from

private or public Docker registries. Moreover container images are portable across different operating

systems and different cloud provider stacks [2].

Container orchestration (CO) frameworks, such as Docker Swarm, Kubernetes and the Mesos-

based Marathon, provide support for deploying and managing a multi-tiered distributed application

as a set of containers on a cluster of nodes [3]. Container orchestration frameworks have also

increasingly been used to run production workloads as for example demonstrated in the annual

OpenStack user survey [4]–[6].

However, there have been several high paces of feature additions among the most popular CO

frameworks as illustrated by Figure 1, which shows the number of feature additions between June

2013 and June 2018. As shown, there was a first peak of feature additions between June 2014 and

January 2015 because Mesos v0.20.0 [7] added support for Docker containers and Google open-

sourced Kubernetes v0.4.0 [8] that from its inception offered support for Docker containers.

Moreover, Kubernetes v0.6.0 included several innovating features such as container IP and service IP

networking [9], pods [10] and persistent volumes [11]. This caused a ripple effect of feature additions

across the other CO frameworks. For example, support for persistent volumes has been added to

Docker v1.7 [12] in June 2015. By August 2016, Docker’s architecture for persistent volumes has also

been supported by Mesos v1.0.0 [13]. As another example, support for container IP networking has

been added to Mesos v0.25.0[14] and Docker Swarm stand-alone v1.0.0 [15] by January 2016.

Figure 1. Density of feature additions over time (common features only).

This high pace of feature additions has been a challenge for companies to (a) keep an up-to-date

understanding of what constitutes the conceptual foundation of the overall domain, to (b) determine

which CO framework matches most closely with their requirements and to (c) determine which

framework is most mature with respect to these requirements. This is both a risk for companies who

start using container orchestration technology and companies who consider migrating from one CO

framework to another framework. They are also faced with (d) feature deprecation risks, i.e. there is

strong dependence on a feature that will not be supported anymore by future versions of the

Appl. Sci. 2018, 8, x FOR PEER REVIEW 3 of 76

employed CO framework. Finally, (e) academic researchers and entrepreneurs are also faced with

the challenge their innovative idea for a product or research prototype may become obsolete when a

new version of the CO framework has been released.

An illustration of these challenges from the entrepreneur side is the story of ClusterHQ, a

company that pioneered in 2014 with the container data management service Flocker [16]. Flocker

initially gained a lot of traction and the company raised 12$ million in 2015 [17] and there was a well-

working integration [18] with Kubernetes, Mesos and Docker Swarm. However, by the end of 2016,

the company stopped all its activities because of reportedly “self-inflicted wounds”[19]. Actually, by

that time all major CO frameworks provided also built-in support for external persistent volumes.

A final challenge is to (f) keep track and interpret ongoing standardization efforts in this space.

For example, the Cloud Native Computing Foundation has pushed Docker’s containerd[20]

architecture and the associated OCI specification [21] as the de-facto standard for container

runtimes [22] and has pushed Kubernetes as the de-facto standard for container orchestration[23].

Indeed Kubernetes has been the most popular framework for several years now [4], [5], [24] and has

also the largest community on GitHub [25]. Moreover, Mesos [26] and Docker Enterprise Edition

(Docker EE) [27] also provide support for Kubernetes as an alternative orchestrator. Even Amazon

Web Services provides support for Kubernetes [28]. Nonetheless, the development of the other CO

frameworks remains to continue and they also push other incompatible standards or architectures

for networking and persistent volumes. This raises therefore the question what are the relevant

standardization initiatives to which different CO frameworks align. Finally, although out-of-the-

scope of this article, the expected convergence of CO frameworks with other important cloud

application architectures such as micro-service architectures and server-less computing [29] will also

trigger more standardization initiatives in specific vertical application segments.

 Research questions

To help address these challenges, we have performed a systematic assessment of the

documentation of the aforementioned 7 CO frameworks on GitHub with respect to three main

software qualities: genericity, maturity and stability. When the documentation appears inconclusive,

we rely on experience drawn from earlier run-time experiments with CO frameworks or we have just

tested out the specific feature.

A CO framework is defined as more generic than another when it supports more features than

another framework. After all, the more features are supported, the more application and cluster

configurations can be supported by a CO framework. The first aim of the systematic assessment is to

determine a mapping from CO frameworks to commonly supported features and unique features. In

order to provide an easy-to-navigate structure and draw higher-level insights from the results of this

systematic assessment, we logically group the found features into 9 functional aspects and 27 sub-

aspects that each cover a specific coherent set of related use cases (see Table 1). A functional aspect is

defined as a set of related use cases that are of concern to the same type of stakeholder, whereas a

functional sub-aspect is defined as an aspect of which the related use cases all represent interactions

with the same architectural component or logical substrate of functionality of CO frameworks. We

conduct not only a qualitative discussion of the identified aspects and CO frameworks, but also

present a quantitative analysis of the number of supported features in each aspect and CO

framework.

We also assess the maturity and stability of the different CO frameworks by studying the

historical evolution of these CO frameworks in terms of subsequent releases on GitHub. More

specifically, we have inspected all versions that are shown in Figure 2. The aim is to rank CO

frameworks with respect to the time when they have released support for a particular feature for the

first time. We also study the rate of feature deprecations in the development history to gather a more

complete insight in the overall stability of the technological domain and we project this history of

feature deprecation to an estimate of feature deprecation risks in the future.

This systematic assessment with respect to genericity, maturity and stability provides thus

answers on the following 10 research questions:

Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 76

With respect to genericity:

RQ1. What are the common features of CO frameworks and what are the different implementation strategies

for realizing the common features?

RQ2. How can common features be organized in functional (sub)-aspects?

RQ3. What are the unique features of CO frameworks?

RQ4. How are functional (sub)-aspects ranked in terms of number of common and unique features?

RQ5. How are CO frameworks ranked in terms of number of common and unique features?

RQ6. (a) Which functional (sub)-aspects are best supported by a CO framework in terms of highest number of

common features? (b) What if unique features are taken into account?

With respect to maturity:

RQ7. What is the maturity of a CO framework with respect to a common feature or a functional (sub)-aspect?

RQ8. Which functional sub-aspects are mature enough to consider them as part of the stable foundation of the

overall domain? Which CO frameworks have pioneered a particular sub-aspect?

With respect to stability:

RQ9. What are the relevant standardization initiatives and which CO frameworks align with these initiatives?

RQ10. What is the risk that common or unique features might become deprecated in the future?

Figure 2. Timeline of when successive versions of CO frameworks have been released (until sept

2018).

 Contribution statement

The main contribution of this work is thus:

• A descriptive feature comparison overview of the three most prominent CO frameworks used

in cloud-native application engineering: Docker Swarm, Kubernetes and Mesos

• The study identifies 124 common and 54 unique features of all frameworks and groups it into

nine functional and 27 sub-functional aspects.

• The study compares these features qualitatively and quantitatively concerning genericity,

maturity, and stability.

• Furthermore, this study investigates the pioneering nature of each framework by studying the

historical evolution of the frameworks on GitHub.

More specifically with respect to genericity, this work will enable industry practitioners and

researchers to

1. compare CO frameworks on a per feature-basis (thereby avoiding comparing apples with

oranges),

2. quickly grasp what constitutes the overall functionality that is commonly supported by the CO

frameworks by inspecting the 9 functional aspects and 27 sub-aspects,

3. understand what are the unique features of CO frameworks,

4. determine which functional aspects are most generic in terms of common features,

Appl. Sci. 2018, 8, x FOR PEER REVIEW 5 of 76

5. identify those CO frameworks that support the most common and unique features across all

(sub)-aspects,

6. identify the most generic CO framework for a specific functional (sub)-aspect.

With respect to maturity and stability, it will enable industry practitioners and researchers to

1. identify and understand the impact of relevant standardization efforts,

2. compare the maturity of CO frameworks with respect to a specific common feature,

3. understand which features have a higher risk of being halted or deprecated, and

4. determine those (sub)-aspects that can be considered as mature and well-understood and

therefore shape the stable foundation of the technological domain; moreover, academic researchers

and entrepreneurs are guided to invest their time and energy in adding innovative functional or non-

functional aspects that have not yet been well supported.

Table 1. Overview of functional aspects and sub-aspects and their number of common and unique

features.

Functional

aspects
Functional sub-aspects

#common

features

#unique

features

Cluster architecture and setup 13 2

Configuration management approach 1 0

Architectural patterns 5 0

Installation methods and deployment tools 7 2

CO system customization 6 9

 Unified container runtime architecture 3 0

Framework design of orchestration engine 3 9

Container networks 20 8

Services networking 8 2

Host ports conflict management 2 0

Plugin architecture for network services 4 0

Service discovery and external access 6 6

Application configuration and deployment 29 10

Supported workload types 7 1

Persistent volumes 9 6

Reusable container configuration 5 2

Service upgrades 6 1

Resource quota management 4 1

Container QoS Management 15 6

Container CPU and mem allocation with support for over-

subscription
5 1

Allocation of other resources 2 4

Controlling scheduling behavior by means of placement

constraints
3 0

Controlling preemptive scheduling and re-scheduling behavior 5 1

Securing clusters 9 4

 User identity and access management 3 1

Cluster network security 6 3

Securing containers 7 3

 Protection of sensitive data and proprietary software 2 0

Improved security isolation between containers and OS 5 3

Application and cluster management 21 10

Creation, management and inspection of cluster and

applications
4 1

Monitoring resource usage and health 4 3

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 76

Logging and debugging of CO framework and containers 3 1

Cluster maintenance 5 2

Multi-cloud deployments 5 3

 124 54

Although most insights that can be derived from answering the formulated research questions

will stand the test of time, some quantitative results such as the exact number of common features

and the number of unique features will naturally evolve. However, we have consciously started this

research around the beginning of 2017 as the pace of feature additions has clearly slowed down after

June 2017 (see Figure 1). As such, we believe that most statistical evidence about significant

differences in genericity between the CO frameworks will not become obsolete in any near feature

due to the release of new versions of the studied CO frameworks.

 Structure of the article

The remainder of this article is structured as follows. First, Section 2 overviews related surveys

and research articles that provide an overview of CO frameworks. Then, Section 3 presents our

research method to perform the systematic assessment. Thereafter, Section 4 and Section 5 present

the qualitative assessment of the genericity of the CO frameworks: Section 4 presents the assessment

of the common features and functional (sub)-aspects, i.e., research questions RQ1-RQ2, and Section

5 presents the assessment of unique features, i.e., research question RQ3. Subsequently, Section 6

presents the quantitative analysis with respect to the genericity property, i.e., research questions

RQ4-RQ6. Thereafter, Section 7 summarizes the results of assessment of the maturity and pioneering

nature of the CO frameworks, i.e., research questions RQ7-RQ8, and the assessment of the stability

of the CO frameworks, i.e., research questions RQ9-RQ10. Then, Section 8 presents a look-ahead into

the future of container orchestration frameworks and outlines important missing aspects and open

research questions. Thereafter, Section 9 discusses the threats to validity and the limitations of the

overall study. Subsequently, Section 10 presents a synthesis with respect to the findings for genericity,

maturity and stability and summarizes the main distinguishing characteristics of the CO frameworks.

Finally, Section 11 concludes.

 Note, all the collected data including hyperlinks to relevant documentation pages of CO

frameworks at GitHub is available at Zenodo [30]. Moreover an extensive technical report with

detailed comparisons between the CO frameworks and detailed assessments of all the data is also

available [31].

2. Related work

There are a number of papers that mainly focus on describing (and evaluating) the common

features of the Linux container technology, i.e. system virtualization, and/or specific features of

Docker [32]–[37]. However, these works provide little to no overview of the common functions of

state-of-the-art container orchestration frameworks.

Heidari et al. [38] presents a survey of seven container orchestration frameworks that were

identified as most promising: Apache Mesos, Mesos Marathon, Apache Aurora, Kubernetes, Docker

Swarm and Fleet. This survey concisely and clearly describes the architecture of these frameworks

and zooms into a number of features of these platforms. However, it does not present a systematic

assessment of commonality and variability. Moreover, it does not study the maturity of these

frameworks and the risks of feature deprecation.

Jennings et al. [39] and Costache et al. [40] present classifications of resource management

techniques in cloud platforms. More specifically, Jennings et al. provides a review of the literature in

cloud resource management, while Costache et al. focuses on complete Platform-as-a-Service (PaaS)

platforms, including commercial and research solutions. The latter work by Costache et al. studies

commercial solutions include Mesos [41] and Borg [42], the predecessor of Kubernetes. Costache et

al. also presents a list of opportunities for further research, which includes the use of container

orchestration frameworks to support (i) generic resource management for any type of workload and

Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 76

(ii) provisioning of cloud resources from multiple IaaS clouds. However these works do not study

the resource management concepts of container orchestration frameworks in detail, such as support

for oversubscription and neither includes an assessment of other functional aspects such as cluster

setup tools, virtual networking, customizability, security and multi-cloud support.

Pahl et al. [43] analyses required container orchestration functions for facilitating deployment

and management of distributed applications across multiple clouds and how these functions can be

integrated in PaaS platforms and relevant standards for portable orchestration of cloud applications.

However, these functions are presented at a high level.

Kratzke et al. [3], [44] define a reference model of container orchestration frameworks, i.e. these

works identify common functionalities of existing container orchestration frameworks such as

scheduling, networking, monitoring and securing clusters as well as their inter-dependencies. These

common functionalities are similar with the found commonalities of our study but these

functionalities are described shortly at a high-level while our work decomposes each functionality

into a detailed set of individual features.

In another paper, Kratzke et al. also present a domain-specific language (DSL) for specifying

portable, multi-cloud application descriptors that can be translated to application descriptors for

multiple container orchestration frameworks such as Docker Swarm and Kubernetes [45]. This DSL

is mainly concerned with expressing common concerns that are of interest to an application manager,

i.e. specifying units of deployments and configuring their allocated resources and replica levels,

customizing scheduling decisions, auto-scaling rules. Additionally, Kratzke et al. [46] studies

concerns that are of interest to a cluster administrator in order to build a middleware platform to

transfer container clusters from one cloud provider to another cloud provider. As one of the

requirements of the DSL and the middleware platform is to favour pragmatism over

expressiveness [47], this DSL and middleware platform supports concepts that are supported by

Kubernetes, Docker Swarm and Mesos.

We confirm by large extent the common functionalities of container orchestration frameworks

as presented by the work of Kratzke et al. However, we also extend the findings of this already

extensive work in several dimensions. Firstly, we relax the definition of what is a common feature,

i.e. a common feature is supported by at least two CO frameworks. Secondly, we also determine

unique features that are only supported by one CO framework. Thirdly, we give a systematic and

exhaustive overview of all common and unique features whereas the work of Kratzke et al. presents

meta-models of configuration languages that encompass concepts to support expressing cluster or

application configurations that are commonly supported by all CO frameworks; in other words, our

work is complementary as it can be used to refine and update the meta-models with support for

common features that have not been discovered by Kratzke et al. Finally, we do not only study

common features but we also study the maturity of these common features to distinguish between

stable features and those features that are relatively immature and subject to change; additionally we

also discuss the risks of feature deprecation.

In summary, to our knowledge, this is the first work that presents a detailed and exhaustive

commonality and variability analysis among popular container orchestration frameworks and that

studies the maturity frameworks as well as the risks of feature deprecation. The systematic approach

of processing the high-quality documentation of the frameworks ensures that no features of

importance are overseen in this work.

3. Research method

This section presents how we have been working towards studying the genericity, maturity and

stability of the CO frameworks. The reader can skip this section if she or he is not interested in these

methodological aspects of our work.

Before starting the research for this article, we have already acquired plenty of experience with

container orchestration frameworks in the context of the DeCOMAdS research project [48] that aims

to design advanced deployment and configuration middleware for adaptive multi-tenant SaaS

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 76

applications. At the beginning of this project we performed a technical SWOT1 analysis of containers

and container orchestration framework that helps a SaaS provider to make a cost-benefit analysis to

move their applications to a container orchestration framework [2]. Subsequently, we have also

compared the performance of Docker Swarm and Kubernetes for NoSQL databases [49] and we have

built a tool for comparing different auto-scalers for container-orchestrated services in

Kubernetes [50].

We have processed the documentation of the CO frameworks on GitHub because this platform

has been used to manage the editing of the documentation as well as the versioning of

documentation. To manage the documentation of different versions of a CO framework, git tags are

typically used. These git tags allow us to dynamically browse through different versions of the

documentation. This was essential for us in order to discover the addition and removal of features

across versions (see Section 3.4). Only DC/OS doesn’t use git tags, therefore we have used the official

website of DC/OS.

Figure 3 presents a workflow diagram of how we have extracted all relevant data from the

documentation of the CO frameworks on GitHub. This data involves information about the three

aforementioned software quality properties of interest. After consulting with experts in mining

software repositories, it became clear that no useful or robust tools for automating one or more of

these 7 steps existed. Research in the area of processing software documentation [51], [52] is in its

infancy. We therefore have manually executed these steps using simple repetitive strategies and

pseudo algorithms in order to reduce human error extract the relevant data from GitHub.

Figure 3 Overview of the method for collecting data from GitHub with respect to genericity, maturity

and stability. The top of the diagram shows the 7 successive steps performed. Each step produced

specific data that is related to one or more software quality properties. Each of these software qualities

are presented by a colored bar. For each step, the extracted data items are specified directly below.

The following six subsections explain our method for (1) the qualitative assessment and (2) the

quantitative analysis with respect to the genericity property -- using the data collected in the blue bar

of Figure 3, (3) the qualitative assessment of maturity using the data in the green bar, (4) the quality

1 Strengths, Weaknesses, Opportunities and Threats

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 76

assessment of stability using the data in the red bar. We also explain (5) how we have gathered

feedback from industry to improve the coherency and correctness of the collected data and (6) how

we have dealt with the continuous evolution of the CO frameworks during the course of the research

work.

 Qualitative assessement of genericity

The following three subsections explain how (1) features of CO frameworks have been

identified, (2) how common and unique features across CO frameworks have been discovered and

modelled, (3) how features have been organized in functional aspects and sub-aspects.

 Identifying features in documentation of CO frameworks

Our method for identifying and modeling common and unique features among different CO

framework is widely inspired on feature modeling [53], [54] that is the commonly accepted method

in product line engineering for modeling the commonalities and variabilities of a family of

frameworks. A feature is defined as a characteristic of a framework that is visible to the end-user or

as a distinguishable characteristic that is relevant to some stakeholder [54].

We have first derived an initial list of features for each CO framework separately by inspecting

the release notes, change logs and feature planning documents of the latest version. We have then

refined this initial list of features with additional features by reviewing the full documentation of the

latest version of each CO framework. We also found multiple GitHub documentation pages that

explained the same feature with different audiences or purposes in mind. We have grouped these

pages so we could later study them together to fully understand the implementation strategy for the

feature or discover additional related features.

 Discovering common and unique features

We have identified common features and unique features by comparing the feature lists of all

CO frameworks pair-wise. We define a common feature as appearing in the documentation of two

or more container orchestration frameworks (or related incubation projects) and having passed the

beta stage in at least one of the frameworks.

We first identify all common features. The question whether two documentation pages from

different CO frameworks describe the same feature is concurred based on our previously acquired

research experience in using and evaluating CO frameworks [2], [49], [50].

We then determine all unique features for each CO framework. We define a unique feature as a

feature that has been documented by only one framework and other CO frameworks have no related

incubation projects or design proposals on GitHub. By striking through all documentation pages of

common features, we withhold documentation pages of possible unique features. This work resulted

into one table with common features and one table with unique features.

 Organizing features in functional aspects and sub-aspects

We have organized the common and unique features in functional aspects because the number

of discovered features was too large to be comprehendingly presented as a flat list. We have used the

principles of card sorting [55] as the method for grouping features in usable aspects and naming these

aspects. We decided that two features belong to the same aspect when they relate to similar use cases

or requirements and have the same stakeholder in common.

Based on the feedback from industry (see Section 3.5), we concluded that it takes too much time

to process the volume of the presented information in these tables. As such, we have refined the

functional aspects into functional sub-aspects because the lists of features in some functional aspects

were still too large in order to be comprehensively grasped from a helicopter view. We decided that

two features of a functional aspect belong to the same functional sub-aspect when they concern the

same architectural component or logical substrate of functionality that is found in many CO

frameworks.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 76

We have then written an exhaustive inventory of common features by carefully reading the

documentation pages of the CO frameworks. This helped us for a given common feature to (i)

determine differences in feature implementation strategy among CO frameworks and (ii) to

discover new features that are also distinguishable in other CO frameworks. Moreover, (iii) we

discovered one new functional aspect and many sub-aspects; finally we have identified 9 functional

aspects and 27 functional sub-aspects (see Section 4 and Table 2).

We also classified the found unique features in the different found sub-aspects. It was possible

to perform this task without introducing new functional sub-aspects (see). This increased our

confidence that the set of identified sub-aspects covered the whole technological domain of container

orchestration.

 Quantitative analysis with respect to genericity

The results of the qualitative assessment of genericity allowed us to quantify rankings between

(sub)-aspects in terms of number of supported common and unique features (see Section 6, RQ4).

Similarly it possible to determine rankings between CO frameworks (see Section 6, RQ5).

To find evidence for overall significant differences between CO frameworks with respect to RQ6,

we have used statistical tests for checking the overall ranking of multiple CO frameworks with

respect to different sub-aspects (see Section 6, RQ6). The goal is to identify if there are significant

differences in genericity between different CO frameworks, i.e., although a CO framework may

support a higher number of features for several sub-aspects, the difference with other CO frameworks

may still be just one or two features and therefore not significant. We have used the Friedman and

Nemenyi tests that are designed with this goal in mind, but for un-replicated experimental designs

[56]: un-replicated experiments take for each metric only one sample of the performance of a system,

but many different metrics are evaluated; in the context of this study, metrics correspond with the 27

sub-aspects.

 Study of maturity

Initially we have established an historical timeline of the versions of each CO framework by

storing the date when each version of a CO framework has been released. We have extracted this

information from official release notes (see Figure 2).

Then, for each Co framework, we have determined a historical timeline for each common

feature. The historical timeline of a common feature starts with a feature addition event, then has zero

or more feature update events and optionally ends with a feature removal/deprecation event. We annotate

these events with the version of the CO framework during which the events have occurred. The

pseudo-algorithm for defining the timelines is detailed in Section 3.3 of the technical report [31].

The obtained timelines of different CO frameworks are then merged per common feature in

order to understand which CO framework pioneered in which feature and which functional sub-

aspects. Detailed timelines to answer RQ7 for each common feature are available in Tables 18-26 of

the technical report [31], Section 6, RQ7.

Finally, an overall assessment of the maturity of the sub-aspects has been conducted (see Section

7, RQ8). We define a sub-aspect as mature and well-understood if it meets the following three criteria:

(i) the sub-aspect has been consolidated by the pioneering framework at least two traditional release

cycles of 18 months [57] ago, (ii) the corresponding feature implementation strategies of the

pioneering framework have at least reached beta-stage in the meantime and (iii) there are no

deprecation or removal events of important features in the latest traditional release cycle.

 Assessment of stability

The existing standardization initiatives in the container orchestration space are an important

indicator for the stability of the platform development artifacts of the leading CO frameworks. We

have already identified the existing initiatives and the mapping towards adopting CO frameworks

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 76

during the commonality analysis. As such, we could easily derive a compact table from this work to

assess the overall state of these standardization initiatives (see Section 7, RQ9).

We have performed the assessment of feature deprecation risks during the last part of the

writing. The risks of feature deprecation have only been assessed for the unique features because an

analysis of the historical evolution of common features has shown that very few common feature

implementation strategies have actually been deprecated by a CO framework. A detailed assessment

of the feature deprecation risks is presented in Section 7 of the technical report [31]. A summary of

the most important identified risks is shortly summarized in Section 7 of this article, as part of RQ10.

 Involvement and feedback from industry

We have asked three senior platform developers to provide feedback on the aforementioned

grouping of features into functional aspects as represented in a Google Docs document [58]. All three

platform developers have worked or still work for companies who aim to create commercial

platforms and tools for container orchestration in cloud computing environments. Moreover they

lead the development of installation tools and network plugins for setting up container clusters in

Docker Swarm, Kubernetes and Mesos. They did not provide any substantial feedback however. This

made us doubt about whether there is any interest in comparisons between CO frameworks from

platform industry. When asked for the reasons of providing no feedback, it was because of lack of

time.

We have also asked to review the technical report [31] by a senior developer from a software

services company who has used DC/OS and Kubernetes for running their application services. Based

on his feedback, we have been able to improve the clarity and correctness of the feature descriptions

in the technical report.

 Dealing with continuous evolution of CO frameworks during the research

We have performed the above research from April 2017 till December 2017. After that period,

new versions of CO frameworks have of course been continuously released. We have kept the

collected information up-to-date as follows. Each time a new version of a CO framework has been

released, we reviewed the release notes and change logs of that new version in order to discover

feature additions, feature updates and feature deprecations. As a result, new common features have

been discovered when a unique feature of a CO framework becomes also supported by another

framework; if so, timeline information was also updated.

As the article reached completion, we decide to take into account only versions released before

1 July 2018.

4. Genericity: Qualitative assessment of common features

We present in this section answers to research questions RQ1-RQ2:

RQ1. What are the common features of CO frameworks and what are the different implementation strategies

for realizing the common features?

RQ2. How can features be organized in functional (sub)-aspects?

We have used the OpenStack user survey as the main inspiration for selecting popular open-source

CO frameworks as OpenStack itself is a cloud provider company that is fully rooted in the open-

source culture and is a rather neutral with respect to promoting a specific CO framework. Figure 4

gives an overview of the most popular PaaS platforms in OpenStack deployments according to the

last two surveys of October 2016 and November 2017. It shows that Kubernetes, OpenShift, Docker

Swarm and Mesos are the most used container orchestration frameworks for running production-

grade services. Note that OpenShift 3.0 [59] has been completely built on top of Kubernetes and

Cloud Foundry [60] also provides support for Kubernetes. Moreover, as OpenShift and Cloud

Foundry are not pure container orchestration frameworks, but also offer additional PaaS

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 76

development services, we choose to focus on Docker Swarm, Kubernetes and Mesos for deriving a

base of common and unique features.

Figure 4. The two most recent annual OpenStack public user surveys show that Kubernetes,

OpenShift, Docker Swarm and Mesos are the most popular container orchestration frameworks in

OpenStack deployments. Cloud Foundry has decreased in popularity.

Note that Docker Swarm and Mesos actually cover different frameworks. As such, we compare

in total 7 CO frameworks:

1. Kubernetes [61] supports deploying and managing both service- and job-oriented workloads as

sets of containers.

Docker Swarm comes with two different distributions:

2. Docker Swarm stand-alone [62] manages a set of nodes as a single virtual host that serves the

standard Docker Engine API. Any tool that already communicates with a Docker daemon can thus

use this framework to transparently scale to multiple nodes. This framework is minimal but also the

most flexible because almost the entire API of the Docker daemon is available. As such it is mostly

relevant for platform developers that like to build a custom framework on top of Docker.

3. The newer Docker Swarm integrated mode [63] departs from the stand-alone model by re-

positioning Docker as a complete container management platform that consists of several

architectural components, one of which is Docker Swarm.

4. Apache Mesos [41], [64] supports fine-grained allocation of resources of a cluster of physical or

virtual machines to multiple higher-level scheduler frameworks. Such higher-level scheduler

frameworks do not only include container orchestration frameworks but also more traditional non-

containerized job schedulers such as Hadoop.

Currently, the following three Mesos-based CO frameworks are the most popular:

5. Aurora [65], initially developed by Twitter, supports deploying long-running jobs and services.

These workloads can optionally started inside containers.

6. Marathon [66] supports deploying groups of applications together and managing their mutual

dependencies. Applications can optionally be composed and managed as a set of containers.

7. DC/OS [67] is an easy-to-install distribution of Mesos and Marathon that extends Mesos and

Marathon with additional features.

https://www.openstack.org/assets/survey/

October2016SurveyReport.pdf

Container and PaaS tools used by

OpenStack users in 2016
Container and PaaS tools used for managing

OpenStack applications in 2017

https://www.openstack.org/assets/survey/

OpenStack-User-Survey-Nov17.pdf

https://www.openstack.org/assets/survey/October2016SurveyReport.pdf
https://www.openstack.org/assets/survey/October2016SurveyReport.pdf
https://www.openstack.org/assets/survey/OpenStack-User-Survey-Nov17.pdf
https://www.openstack.org/assets/survey/OpenStack-User-Survey-Nov17.pdf

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 76

Table 2. Overview of the 124 common features and the mapping from features to CO frameworks.

Aspects Container orchestration frameworks

Sub-aspects Features

Cluster architecture and setup Sa Si Ku Me Au Ma Dc

Configuration
management

Declarative configuration management ✓ ✓ ✓ n/a ✓ ✓ Dlgt

Architectural
patterns

Master-Worker architecture ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
Highly-available (HA) master design ✓ ✓ ✓ ✓ ✓ ✓ Dlgt

Generic, automated setup of HA masters ✓ ✓ GCE, juju
tectonic ✓ ✓ Dlgt

Versioned HTTP API and client libraries ✓ ✓ ✓ ✓ ✓ Extnd
Simple, policy-rich scheduling algorithm ✓ ✓ ✓ n/a ✓ ✓ Dlgt

Installation
methods and
tools for setting
up a cluster

Dockerized CO software ✓ ✓ ✓ ✓
VM images with CO software for local dev ✓ ✓ ✓ ✓ Extnd
Linux packages + CLI for cluster setup ✓ ✓ ✓ ✓ ✓ Extnd
Configuration management tools ✓ ✓
Cloud-provider tool or platform MsAz MsAz ✓ MsAz

Cloud-provider independent tools ✓ ✓ Add
Microsoft Windows or Windows Server ✓ ✓ ✓

CO framework customization Sa Si Ku Me Au Ma Dc

Unified
container
runtime
architecture

Unified container runtime architecture ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
Support for OCI specifications ✓ ✓ ✓ future

Other supported container runtimes ✓ ✓ ✓ ✓ ✓ ✓ Dlgt

Framework
design of
orchestration
engine

External plugin architecture ✓ ✓ ✓ ✓ ✓ Dlgt
Plugin-architecture for schedulers ✓ ✓ ✓ ✓ Dlgt

Modular interceptors ✓ ✓ ✓ Dlgt

Container networking Sa Si Ku Me Au Ma Dc

Column Legend:

• Sa: Docker Swarm stand-alone

• Si: Docker Swarm integrated mode

• Ku: Kubernetes

• Me: Mesos

• Au: Mesos+Aurora

• Ma: Mesos+Marathon

• Dc: DC/OS

Cell Legend:

• ✓: The feature is fully supported by the open-source distribution of the platform.

• externalComponent: Support for the feature is not included in the open-source distribution of the CO

framework, but the feature is supported by a third party component or platform. The name refers to

the name of the component.

• future: The feature is not yet part of the open-source distribution of the CO framework. It has however

been planned according to the documentation, or there is a separate incubation project.

• $..$: Support for the feature is not included in the open-source distribution of the CO framework, but

is included in a commercial product or cloud service of the CO framework.

• partially supported feature: the CO framework offers partial support for the feature.

• tutorial: The feature is not directly supported by the framework, but a set of tutorials how to add auto-

scaling capabilities using third-party components has been provided as part of documentation

• MsAz: Microsoft Azure, GCE: Google Cloud Engine, GKE: Google Kubernetes Engine, AWS: Amazon

Web Services.

• DC/OS builds upon and extends Mesos+Marathon. Therefore, we characterize the nature of how

DC/OS supports a feature as follows :

o Dlgt (Delegate): The feature is already implemented by Mesos+Marathon

o Extnd (Extend): The feature is implemented by Mesos+Marathon, but DC/OS extends it

o Sprsd (Supersede): The feature implementation by Mesos+Marathon is superseded by DC/OS

o Add (Add): The feature is not supported by Mesos+Marathon, but DC/OS adds support for it.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 76

Services
networking

Routing mesh
for global
service ports

L4, ipvs-based LB distributed
on all nodes

 ✓ ✓

central L4-L7 LB (without
ipvs)

 $Docker
EE$ ✓

port
mapping
isolator

 ✓ Extnd

Virtual IP
network for
containers

L4 distributed LB (with ipvs) ✓ ✓ Add
with stable DNS name for
services

 ✓ ✓ Add

IP per container ✓ ✓ ✓ ✓ ✓ Dlgt
Host ports
networking

Mapping container port to
host port

✓ ✓ ✓ ✓ ✓ ✓ Extnd

with stable DNS name for
service

 ✓ ✓ ✓ ✓ Extnd

Host mode networking ✓ ✓ ✓ ✓ Dlgt
Host ports
conflict
management

Dynamic allocation of host ports ✓ ✓
port

mapping
isolator

✓ ✓ ✓

Management of host port conflicts ✓ ✓

Plugin
architecture for
network
services

Network plugin architecture ✓ ✓ ✓ ✓ ✓ Dlgt
Support for CNI specification ✓ ✓ ✓ ✓ Dlgt
Support for Docker’s libnetwork ✓ ✓ ✓ ✓ Dlgt

Separation of data and control traffic ✓ ✓ Multus
plugin

Service
discovery and
external access

Internal
DNS
service

Distributed DNS server on all
nodes

 ✓ ✓ Extnd

Central DNS server ✓ ✓ ✓ ✓ Dlgt
DNS SRV records (only in central DNS) ✓ ✓ ✓ ✓ Dlgt
Bypassing the L4 service load balancer ✓ ✓
External service access via routing mesh ✓ ✓ ✓ ✓ Dlgt
Co-existence of service IPs and global service
ports for a single service

n/a ✓ ✓ n/a n/a n/a

Application configuration and deployment Sa Si Ku Me Au Ma Dc

Supported
workload
types

Pods ✓ ✓ ✓ Dlgt
Container-based jobs ✓ ✓ Add
Container-based services ✓ ✓ ✓ ✓ Dlgt
Elastic scaling of services ✓ ✓ ✓ ✓ ✓ Dlgt

Auto-scaling of services ✓ marathon-
autoscale

Global containers ✓ ✓
Composite applications ✓ ✓ Helm

Kompose ✓ Dlgt

Persistent
volumes

Local volumes ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
Automatic (re)scheduling ✓ ✓ ✓ ✓ Dlgt
Shareable volumes between containers ✓ ✓ ✓ ✓
External volumes ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
Volume plugin architecture ✓ ✓ ✓ ✓ ✓ Dlgt
Run-time installation of volume plugins ✓ ✓ CSI ✓ ✓ Dlgt
Docker volume plugin system support ✓ ✓ ✓ ✓ Dlgt
Common Storage Interface (CSI) support ✓ ✓ Dlgt

Dynamic provisioning of volumes ✓ ✓ ✓
Supported for local volumes but
not recommended for Docker
volumes

Reusable
container
configuration

Pass environment variable to container ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
Self-inspection API ✓ ✓ Dlgt
Separate configuration data from image ✓ ✓
Custom ENTRYPOINT ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
Custom CMD ✓ ✓ ✓ ✓ ✓ ✓ Dlgt

Service
upgrades

Rolling upgrades of services ✓ ✓ ✓ ✓ Dlgt
Monitoring of a rolling upgrade ✓ ✓ ✓ ✓ Dlgt
Roll back ✓ ✓ ✓ Add
Configuration of custom readiness checks ✓ ✓ Dlgt
Customizing the rolling upgrade process ✓ ✓ ✓ ✓ Dlgt
Canary deployments ✓ ✓ Add
In-place updates of app configurations ✓ ✓ ✓ Add
Non-disruptive, in-place updates ✓ ✓ ✓

Resource quota management Sa Si Ku Me Au Ma Dc

Resource quota
management

Partitioning API objects in user groups $Docker
EE$ ✓ ✓ ✓ Add

CPU, mem and disk quota per user group ✓ ✓ ✓
Object count quota limits per user group ✓ ports
Reserving resources for the CO framework ✓ ✓ Dlgt

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 76

Container QoS management Sa Si Ku Me Au Ma Dc

Container CPU
and memory
allocation with
support for
oversubscript.

Minimum guarantees for CPU ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
Abstraction of CPU-shares ✓ ✓
Minimum guarantees for memory ✓ ✓ ✓
Maximum limits for CPU ✓ ✓ ✓ ✓
Maximum limits for memory ✓ ✓ ✓ ✓ ✓ ✓ Dlgt

Allocation of
other resources

Limits for NVIDIA GPU no gpu
sharing ✓ ✓ ✓ Dlgt

Limits for disk resources local
storage ✓ ✓ ✓ Dlgt

Controlling
scheduling
behavior

Evaluate over node labels/attributes ✓ ✓ ✓ n/a ✓ ✓ Dlgt
Define custom node labels/attributes ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
More expressive constraints ✓ ✓ ✓ n/a ✓ ✓ Dlgt

Controlling
preemptive
scheduling and
re-scheduling
behavior

Preemptive scheduling ✓ ✓
Container eviction when out-of-resource ✓ ✓
Container eviction on node failure ✓ ✓ ✓ ✓ ✓ ✓ Dlgt
Container lifecycle handling ✓ ✓ ✓ ✓ ✓ Dlgt
Re-distributing unbalanced services ✓ future

Securing clusters Sa Si Ku Me Au Ma Dc

User identity
and access
management

Authentication of users with master API ✓ ✓ ✓ ✓ ✓ ✓ Extnd
Authorization of users with master API ✓ ✓ ✓ ✓ ✓ $Extnd$

Tenant- aware ACLs $Docker
EE$ ✓ ✓ ✓ Add

Cluster
network
security

Authent. of worker nodes with master API ✓ ✓ ✓ ✓ ✓ Dlgt
Automated bootstrap of worker tokens ✓ ✓ ✓

Authorization of CO agents on workers ✓ ✓ ✓

Encryption of control messages ✓ GKE Add

Restricting external access to service ports ✓ ✓ Add

Encryption of application messages ✓ weave
Net Add

Securing containers Sa Si Ku Me Au Ma Dc

Protection of
data and
software

Storage of sensitive-data as secrets ✓ ✓ ✓ ✓ Extnd

Pull image from a private Docker registry ✓ ✓ ✓ ✓ Extnd

Improved
security
isolation

Setting Linux capabilities per container ✓ future ✓ ✓ Future

Setting SELinux labels per container Red
Hat future ✓

Setting AppArmor profiles per container ✓ future ✓
Setting seccomp profiles per container ✓ future ✓
Higher-level aggregate objects future future ✓

Application and cluster management Sa Si Ku Me Au Ma Dc

Creation,
management
and inspection
of cluster and
applications

Command-line interface (CLI) ✓ ✓ ✓ ✓ ✓ ✓ Sprsd
Web UI $Docker EE$ ✓ ✓ ✓ ✓ Sprsd
Labels for organizing API objects ✓ ✓ ✓ ✓ ✓ Dlgt

Inspection of resource usage graphs $Docker EE$ ✓ disk
usage Add

Monitoring
resource usage
and health

Monitoring container resource usage ✓ ✓ Extnd
Monitoring CO framework resource usage Prometheus ✓ ✓ ✓ ✓ Dlgt
Framework for container health checks ✓ ✓ ✓ ✓ ✓ ✓ Extnd
Distributed events monitoring ✓ ✓ ✓ ✓ ✓ Dlgt

Logging and
debugging of
CO framework
and containers

Logging of containers ✓ ✓ ✓ ✓ Extnd
Logging of CO framework components ✓ ✓ ✓ ✓ ✓ ✓ Extnd

Integration with log aggregator systems $Docker EE$ ✓ Add

Cluster
maintenance

Cluster state backup and recovery ✓ future ✓ ✓ ✓ Dlgt
Official cluster upgrade documentation ✓ ✓ ✓ ✓ Extnd

Upgrade does not affect active containers ✓ ✓ kube
adm ✓ ✓ ✓ Dlgt

Draining a node for maintenance ✓ ✓ ✓ ✓ Dlgt
Garbage collection of containers/images images images ✓ images Extnd

Multi-cloud
support

A cluster across availability zones/regions ✓ ✓ GKE
AWS ✓ ✓ ✓ Extnd

Recovering from network partitions ✓ ✓
Management of multiple clusters ✓ ✓ Add
Federated authentication across clusters ✓ Add
Multi-zone/multi-region workloads ✓ ✓ ✓ ✓ ✓ Extnd

Appl. Sci. 2018, 8, x FOR PEER REVIEW 16 of 76

We have identified in total 124 common features. A common feature is supported by at least two

CO frameworks or related incubation projects and has not been released in the latest version of at

least one of the frameworks. As stated above, the common features are grouped in 9 functional

aspects that cover a set of related functionalities that are of concern to a single type of stakeholder.

For reasons of simplicity we distinguish between two high-level stakeholders that each may subsume

different user types:

• Application Managers develop, deploy, configure, control or monitor an application that runs

in a container cluster. An application manager can be an application developer, application

architect, release architect or site reliability engineer.

• Cluster administrators install, configure, control and monitor container clusters. A cluster

administrator can be a framework administrator, a site reliability engineer, an application

manager who manages a dedicated container cluster for his application, a framework developer

who customizes the CO framework implementation to fit the requirements of his or her project.

A particular stakeholder, after reading the features associated to a particular functional aspect,

will have a clear understanding of how CO frameworks work and how they must be operated with

respect to that functional aspect. In total we distinguish between 9 aspects. These are discussed in

detail in terms of their common features throughout Sections 4.1-4.9 and presented visually in Table 2.

For each aspect, sub-aspects are indicated with a bold paragraph heading. For each sub-aspect,

a common feature is indicated in an italic paragraph heading. Finally, for each common feature,

different feature implementation strategies of the CO frameworks are identified based on relevant

documentation webpages of the frameworks at GitHub. The URLs to these documentation pages are

available as part of the bibliographic references2.

Table 2 presents a summary of all common features, organized according to the 9 functional

aspects and 27 sub-aspects. The first column presents the 27 sub-aspects, while the second column

specifies the names of the common features. Table 2 also maps all identified common features to CO

frameworks. The mapping includes structured information about (a) whether a common feature is

fully or partially supported by that CO framework, (b) whether it is available in the open-source

distribution or only in the commercial version of that CO framework, and (c) whether any standards

related to the feature are implemented by that particular CO framework.

 Cluster architecture and setup

This aspect represents common architectural patterns and features of CO frameworks that a

cluster administrator must understand in order to be able to setup a running container cluster on top

of a particular operating system and/or cloud provider infrastructure.

Configuration management approach. All container orchestration (CO) frameworks follow a

declarative configuration management approach instead of an imperative configuration management

approach [68]. Declarative configuration management implies that an application manager describes

or generates a declarative specification of the desired state of the distributed application. The CO

framework then continuously adapts the deployment and configuration of containers until the actual

state of the distributed application matches the described desired state. The configuration language

that is used for describing the desired state varies among CO frameworks. Docker Swarm stand-

alone[69], Docker Swarm integrated mode [70] and Kubernetes [71] support the YAML mark-up

language. Kubernetes also support the JSON mark-up language but recommends YAML. Aurora [72]

uses the Python programming. Marathon [73] and DC/OS [74] use the JSON mark-up language.

Architectural patterns. The core architectural pattern underlying a container cluster is very similar

between all frameworks: it is based on the Master-Workers architecture where a Master node controls

2 Direct hyperlinks are also available in table format as part of research data repository at Zenodo [30]

Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 76

that running applications are always in their desired state by scheduling containers to the Worker

nodes and by monitoring the actual run-time state of nodes and containers. Masters use a distributed

data store (e.g., etcd, Consul, or Zookeeper) for storing the actual configuration state about all

deployed containers and services.

In opposition to Kubernetes and Docker Swarm, Mesos supports a two-level scheduler

architecture [75]:

1. To deal with the differences between frameworks (e.g. some frameworks execute applications

in containers, while other frameworks do not), Mesos uses the generic concept of Task for launching

both containerized and non-containerized processes.

2. Mesos consists of a two-level scheduler architecture, i.e. the Mesos master and multiple

framework schedulers. The Mesos master offers free resources to a particular framework based on

the Dominant Resource Fairness [76] algorithm. The selected framework can then accept or reject the

offer, for example based on data locality constraints [41]. In order to accept an offer, the framework

must explicitly reserve the offered resources [75]. Once a subset of resources is reserved by a

framework, the scheduler of that framework can schedule tasks using these resources by sending the

tasks to the Mesos master [77]. The Mesos master continues to offer the reserved resources to the

framework that has performed the reservation. This is because the framework can respond by

unreserving [78] the resources.

3. Since the task life cycle management is distributed across the Mesos master and the framework

scheduler, task state needs to be kept synchronized. Mesos supports at-most-once [79], unreliable

message delivery between the Mesos master and the frameworks. Therefore, when a framework’s

scheduler has requested the master to start a task, but doesn’t receive an update from the Mesos

master, the framework scheduler needs to perform task reconciliation [80].

Highly-Available (HA) master design. To ensure high-availability of the cluster, Masters can be

replicated in all CO frameworks (see Table 2).

Generic and automated setup of HA masters. A fully automated and portable framework for setting up

replicated Masters in different execution infrastructures is supported in Docker Swarm integrated

mode [81], Aurora [82], Marathon [79] and DC/OS [83]. A fully automated HA framework for

Kubernetes does not exist in the open-source distribution. However a large number of public cloud

provider services (e.g. Google Compute Engine (GCE) [84], Amazon Elastic Container Service for

Kubernetes (EKS) [28] and Google Kubernetes Engine (GKE) [85]) and a number of commercial tools

for installing and managing Kubernetes clusters (e.g. juju [86] and tectonic [87]) include support for

an automated HA setup procedure.

Versioned HTTP API and Client API libraries. All CO frameworks except Aurora offer a versioned API

that defines the concepts for specifying the desired state of the cluster and distributed applications

(see Table 2). In the remainder of this article, we refer to an atomic element in such desired state

specification as an API object. For example, a request to the Master API for registering a new worker

node will lead to the creation of Node object, which is specified in the aforementioned configuration

languages and stored in the distributed data store of Master nodes.

To support evolution of the API, a specific versioning schema is devised for each CO framework. In

general, a specific version of the API corresponds with a certain version of the CO framework. The

version schema also allows demarcating stable parts of the API from those parts that are still beta.

An HTTP API becomes only usable if there are client libraries available for one or more programming

languages.

Simple and policy-rich scheduling algorithm. An important element of every CO framework is the

scheduling algorithm used for computing on which node a container should be placed. All CO

frameworks have a simple yet highly customizable scheduling algorithm. For example, the

scheduling algorithms of Mesos-based frameworks [88] [89] randomly select the first Mesos agent

with a reserved resource offer that fits the task, but the placement decision can be restricted by means

of different kinds of constraints (see Section 4.6). This simple, yet highly customizable scheduling

Appl. Sci. 2018, 8, x FOR PEER REVIEW 18 of 76

algorithm is an interesting difference with schedulers for traditional clusters like Hadoop which must

compute job placements at massive scale in a time-efficient manner such that node resources are fairly

distributed across different users [76], [90]–[93]. Container clusters, on the other hand, need to run

dozens of small services that need to be organized and networked to optimize how they share data

and computational power [94]. A detailed overview of the specific scheduling algorithms of Docker

Swarm and Kubernetes is presented in Section 4.1.1 of the technical report [31].

Installation methods and tools for setting up a cluster. In order to simplify the installation

procedure, a number of deployment methods and associated tools or platforms exist (see Table 2 for

a detailed mapping towards CO frameworks):

• Methods that install the CO software itself as a set of Docker containers.

• Methods that use VM images with the CO software installed for local development.

• Methods that install the CO software from a traditional Linux package.

• Methods that use configuration management tools such as Puppet or Chef.

• Cloud provider owned tools and APIs

• Cloud provider independent orchestration tools that come with specific deployment bundles for

installing a container cluster on one or multiple public cloud providers.

• Container orchestration-as-a-Service platforms

• Setup-tools for Microsoft Windows or Windows Server

 CO framework customization

This aspect corresponds with features of CO frameworks that a cluster administrator must

understand in order to create a customized version of the CO framework.

Unified container runtime architecture. All CO frameworks support a unified container runtime

architecture such that multiple container runtimes can be plugged in, and optionally different container

image formats can be supported.

Support for Open Container Initiative specifications. The Open Container Initiative (OCI) [95] defines a

specification for container runtimes and a specification for container images. Docker’s containerd

architecture [20] supports both specifications. Kubernetes [96] has an OCI-based implementation of

its Container Runtime Interface. Mesos-based frameworks will provide support for the OCI image

specification in the future [97].

Other supported container runtimes. As a consequence of the unified container runtime architecture,

each CO framework also supports other container runtimes besides Docker Engine: Docker Swarm

supports runC [98] that runs containers according to the OCI specification. Kubernetes supports the

rkt container runtime, runC and any other OCI-based container runtime [99]. Mesos-based

frameworks support besides the Docker containerizer also the Mesos containerizer [100].

Framework design of core orchestration engine. All CO frameworks except Aurora support an

external plugin architecture for customizing multiple cluster operations. The following cluster operations

can be typically customized by means of a plugin: container networking, persistent volume

operations, and Identity and Access Management (IAM). Network plugin architectures are presented

in Section 4.3, volume plugin architectures are discussed in Section 4.4, and security plugin

architectures are discussed in Section 4.7.

Plugin-architecture for schedulers. It is also possible to plug-in a custom scheduler in Kubernetes [101],

Mesos [102], Aurora [103] (see scheduler configuration [104], parameter --offer_set_module),

Marathon [105] (and by inclusion DC/OS). In Kubernetes it is even possible to plug-in multiple

schedulers in parallel [106].

Modular interceptors for functional extension of the orchestration engine. Modular interceptors encapsulate

specific extensions of existing CO components. For example, they are used for implementing resource

quota management (see Section 4.5), authentication and authorization of users and worker nodes

with respect to the Master API (see Section 4.6) and container security isolation (see section 4.7) and

Appl. Sci. 2018, 8, x FOR PEER REVIEW 19 of 76

even customizations to container runtimes. Multiple kinds of modular interceptors are supported by

Kubernetes [107], [108], [109], Mesos [100], [110] and Aurora [111], [112]. These different kinds of

interceptors vary according to (i) whether they support black-box or white-box specialization of the

Master API and (ii) whether they can be deployed statically at compile-time or dynamically at run-

time. A detailed overview of these different kinds of modular interceptors is presented in Section

4.2.1 of the technical report [31].

 Container networking

This aspect corresponds with features of CO frameworks that a cluster administrator must

understand in order to customize how containers are networked, load balanced and discovered.

Services networking. A container exposes a certain service at a well-defined container port. In order

to support availability and fault-tolerance, multiple replicas of the container have to be started across

multiple nodes and health checked. In order to support connectivity to such container-based,

replicated services the following elements are necessary: (i) a stable service name or IP address that

is unique to this service irrespective of the state of the pool of containers of that service, (ii) a network

with a unique network address for each container, and (iii) a service proxy that enables to lookup

service network addresses and translate them to container replica network addresses; the service

proxy may also encompass a load balancer to spread the workload of a service across the different

replica’s.

There are three different approaches to enable these three elements of services networking. We

consider them as parent features that can be decomposed into a number of child features.

Routing mesh for global service ports. Here, (i) every service is identified by means of a unique port that

is opened at each node of the cluster where a container replica runs, (ii) a container is thus addressed

using the IP address of its local cluster node and the unique service port, (iii) at one or more nodes of

the cluster a load balancer serves requests to a service port by forwarding the requests to the cluster

nodes where the containers of that service are running. Load balancers (LBs) can be classified

according to the following sub-features:

1. Whether the LB is automatically distributed on every node of the cluster vs. centrally installed on a

few nodes by the cluster administrator. In the latter case, sending a request to a service port requires a

multi-hop network routing to an instance of the LB.

2. Whether the LB supports Layer 4 (i.e. TCP/UDP) vs Layer 7 (i.e. HTTPS) load balancing. Layer 7

load balancing allows implementing application-specific load-balancing policies.

3. Whether the Layer 4 LB implementation is based on the ipvs load balancing module of the Linux

kernel. This ipvs module is known as a highly-performing load balancer implementation [113].

4. Whether containers can run in bridged or in virtual network mode. In the former mode containers

can only be accessed via a host port of the local node; the host port is mapped to the container port

via a local virtual bridge. In the latter case, remote network connections to a container can be served.

Docker Swarm integrated mode [114], Kubernetes [115], Marathon [116] and DC/OS [117], [118]

provide support for a routing mesh. An overview of how these CO frameworks can be classified

according the above sub-features is provided in Table 2 and a detailed account is provided in Section

4.3.1 of the technical report [31].

Virtual IP network for containers. Here, (i) each service is either identified by means of a stable DNS

name or a stable service IP address, (ii) containers run in virtual network mode, i.e. each container

has a unique IP address to which can be remotely connected by means of a virtual network; this

virtual network is supported by overlay network software that preferably supports IPv6 network

addresses in order to allow for a massive amount of containers in a single cluster, (iii) Service IPs are

load balanced by an automatically distributed Layer 4, ipvs-based load balancer, (iv) DNS names are

served by an internal DNS service that is automatically installed at one or multiple nodes of the

cluster. For load-balanced services with a Service IP, the DNS service resolves to the Service IP by

default; otherwise the DNS services resolves to the list of IP addresses of the containers behind that

Appl. Sci. 2018, 8, x FOR PEER REVIEW 20 of 76

service. The DNS service of different CO frameworks can be classified according to several features

which are described in the “service discovery and external access” sub-aspect.

All CO frameworks, except Aurora, support this approach (see Table 2), but Docker Swarm

alone and Marathon provide only container IP networking but no service IP load balancing [31].

Host port networking. Here, (i) services are identified by means of a stable DNS name; (ii) container

ports are exposed via a host port – here containers can run in host mode (i.e. share the network stack

of the underlying host) or bridge mode (which is less performant but more secure than host mode

because of the intermediate virtual bridge; (iii) in the internal DNS service, the IP addresses of the

nodes on which a container of the service is deployed are registered as a list of A records and these

records are returned according to the DNS round robin scheme; (iv) it is also possible to register

exposed host ports as SRV records.

Docker Swarm integrated mode [119], Mesos+Aurora [120], Mesos+Marathon [121] and

DC/OS [117] fully support this third approach.

Host ports conflict management.

A common problem with host ports networking is that containers with the same host port cannot be

scheduled on the same node and therefore the number of scheduled containers with the same host

port is limited to the number of nodes in the cluster. For these reasons, host ports are not

recommended by Kubernetes [122] except for very specific use cases such as running CO plugins as

global containers (see Section 4.4) on every node of the cluster.

Dynamic allocation of host ports. To deal with host port conflicts at the same node, host ports for a

container are preferably dynamically allocated so that every allocated host port is guaranteed to be

unique within the cluster. Such dynamic allocation can be requested in the API object specification

of a container in Docker Swarm integrated mode [123], Aurora [124] and Marathon [125].

Note that dynamic allocation of host ports also requires that the containerized application is

reconfigured via a custom Docker ENTRYPOINT so that the default port of the application is changed

to the dynamically allocated host port (see Section 4.4).

Management of statically specified host port conflicts on the same node. For those applications where

dynamically changing the default port is not possible or too cumbersome, or those CO frameworks

that do not support dynamic host port allocation, it is still possible for a container to statically reserve

a particular port:

• in Docker Swarm integrated mode [126], host ports are centrally managed at the service level

such that requests for creating a new service with an already allocated host port is a priori

rejected

• in Kubernetes [127], the default scheduler policy (see Section 4.1) ensures that containers are

automatically scheduled on nodes where the requested host port is still available.

There is no specific support for reservation of host ports in the other CO frameworks. As a

workaround, scheduling constraints (see Section 4.6) can be specified per container in order to ensure

that containers with the same host port are scheduled on different nodes.

Plugin architecture for network services.

Network plugin architecture. In order to support different network implementations, all CO

frameworks support a common interface and composition framework for network plugins. What

network plugin is preferred by an application depends on various contextual parameters such as the

underlying cloud provider network, the desired performance, desired routing topology, etc. The

implementation of routing mesh and/or virtual network can be customized to accommodate

performance requirements of the containerized applications. The involved customizations include

the implementation of the local virtual bridge, the virtual overlay network software, and the

distributed load balancer. For more details, we refer to the technical report [31], Section 4.3.1.

Support for the Container Network Interface specification. A noteworthy standardization initiative for

network plugins is the Container Network interface (CNI) project [128], which consists of a

Appl. Sci. 2018, 8, x FOR PEER REVIEW 21 of 76

specification, a library for writing network plugins and a set of helper plugins. Currently,

Kubernetes [129], Mesos [130] and DC/OS [131] support CNI. The CNI specification also allows for

multiple networks to exist simultaneously. Mainstream Kubernetes installation tools currently do not

support the creation of multiple co-existing networks however. Instead a single network must be

installed for the entire cluster when bootstrapping the master node. As such, exhaustion of the

number of available subnet IP addresses is an issue. Another limitation is that most CNI plugins do

not yet support hairpin mode which allows containers to reach themselves via their Service IPs [132].

Support for Docker Swarm’s libnetwork. Docker Swarm uses its own networking plugin architecture,

libnetwork [133]. The advantage of this architecture is that multiple networking plugins can be

dynamically installed/removed and co-exist in an already running cluster. Mesos v1.0.0+ [134] and

DC/OS v1.9+ [135] also support Docker’s libnetwork architecture. Due to Mesos’ architecture, it is

however not possible to add or remove virtual networks at run-time [136], nor is it possible to connect

a container to multiple Docker networks [137].

Separation of data and control traffic. Docker v17.12 [138] can be configured to to use separate network

interfaces for handling data traffic and swarm control traffic. For CNI-based networks, a specific

Kubernetes network plugin, named Multus [139], also supports separating data and control traffic by

means of distinct container network interfaces.

Service discovery and external access.

Internal DNS service. All CO frameworks support an internal DNS service for mapping service DNS

names to IP addresses. A DNS service can be either deployed centrally, distributed across all nodes of

the cluster, or in a hybrid fashion where a central and a distributed DNS service co-exist.

DNS SRV records. It is also possible to lookup named ports as SRV records [140] in Kubernetes [141],

Aurora [120] and DC/OS [142].

Bypassing the Layer 4 load balancer. Kubernetes and Docker Swarm allow to bypass the built-in Layer

4 load balancer of respectively the virtual network layer and routing mesh by means of round-robin

DNS. In Kubernetes [143], this feature is supported as Headless Services, which don’t have a Service

IP address. Instead the IP addresses of the containers are stored as a DNS record in the internal DNS

service. Of course, clients need to implement the load-balancing themselves. In Docker Swarm

integrated mode [119] it is only possible to bypass the L4 load balancer if the service is exposed as a

global service port via the routing mesh. A DNS lookup for the service name returns then a list of IP

addresses for the nodes running the containers behind that service.

Support for access to services from outside the cluster via the routing mesh. In order to support access to

services from external clients that run outside the cluster, an external load balancer solution must be

used. In CO frameworks with a routing mesh, the built-in L4 load balancer can play the role of such

load balancer if the public or private IP addresses of one or more nodes of the cluster and the global

service port of the service are reachable for external clients. DC/OS’ Edge-LB load balancer is

specifically designed for this purpose [144] and also allows to load balance non-container

orchestrated services of DC/OS [145].

It is also possible to let a cloud provider’s load balancing service forward client requests to the

L4 load balancer. However, only Kubernetes [146] supports automated configuration for this feature.

Co-existence of service IPs and service ports for a single service. Docker Swarm integrated mode [147] and

Kubernetes [115] allow assigning to a single service both a global service port and a service IP. After

all, both network addresses are served by the same distributed L4 load balancer.

Note that this is not possible in Marathon or DC/OS [116]: global service ports and virtual

container networking cannot be combined for the same application: global service ports can only be

assigned to Marathon applications of which the containers do not run in container network mode

and thus these containers cannot be reached via a virtual Service IP address (which is served by

DC/OS’ distributed L4 load balancer [148]). As a consequence, internal clients are required to send

their requests to the centrally deployed L4-L7 marathon load balancer. Vice versa, Marathon

Appl. Sci. 2018, 8, x FOR PEER REVIEW 22 of 76

applications that do run in container network mode cannot be accessed via the marathon-lb and thus

are not externally accessible. As a work-around, DC/OS containers that run in host or bridged mode

can be assigned a global service port and an internal DNS name (which is resolved to a cluster node

IP address [149]).

 Application configuration and deployment

This aspect covers features of CO frameworks that an application manager must understand in

order to configure, compose, deploy, scale and upgrade containerized software services and

applications.

Supported workload types. All CO framework offer support for running different types of

workloads: (i) user-facing latency-sensitive, elastically scalable, stateless services; (ii) throughput-sensitive

job processing; and (iii) stateful applications. In this sub-aspect we zoom into the former two types of

workloads while the next sub-aspect focusses on the support for stateful applications.

Smallest unit of deployment. Docker Swarm integrated mode [150] and all Mesos-based

frameworks [77] propose the concept of Task, which is the smallest atomic unit of deployment. In

Docker Swarm, a task encapsulates always a single container. In Mesos-based frameworks, a task

encapsulates at most one container, but a task can also run non-containerized processes.

In opposition, in Kubernetes, the smallest unit of deployment is a Pod [151], which is a set of co-

located containers that logically belong together and therefore are always deployed together on the

same node.

Pods. The abovementioned Kubernetes concept of Pod has also be adopted in Mesos [152],

Marathon [153] and DC/OS [154]. Here multiple containers can be launched atomically as part of a

task group and these containers are all started inside an underlying Executor container. Such nested

containers are only supported in the Mesos containerizer runtime [155].

Container-based jobs. Job-oriented workloads where jobs can be configured to execute either (i)

sequentially or (ii) in parallel are supported by Kubernetes [156] and Aurora [157]. (iii) Cron jobs, which

run at predetermined time intervals, are also supported by Kubernetes [158] and Aurora [159].

Container-based services. As already stated in section 4.3, all CO frameworks, except Docker Swarm

stand-alone, offer a Service concept for exposing a replicated set of containers to customers as a stable

service endpoint that is served by the distributed load balancer or the internal DNS service. Such

stable service endpoint can be represented by one or more forms: a virtual IP address, a global service

port, a fully qualified DNS name, or just a unique service name. To deploy the container image that

implements the service, the application manager declares, besides properties for bootstrapping

containers from that image, also information related to the type of load balancing that must be used

(internal to the cluster, external, DNS round-robin). A detailed account of the specific approach for

each CO framework is presented in the technical report [31].

Kubernetes additionally introduces the concept of ReplicaSet [160] for managing Pod replicas of

services and for restarting Pods after a node failure. A ReplicaSet attaches labels [161] to Pods. A

service configuration file then only contains a so called label selector [162] that selects Pods based on

their attached labels.

Elastic scaling of services. In all CO frameworks, the containers behind a service can be horizontally

scaled in a dynamic fashion. The number of container replicas can be increased or decreased and for

those CO frameworks with a built-in load balancer, the load balancer will automatically reconfigure

itself to take into account newly added or removed container replicas.

Auto-scaling of services. Kubernetes [163] also supports auto-scaler functionality that automatically

adapts the number of Pod replicas depending on one or more threshold values with respect to a

performance or resource consumption metric. In order for the auto-scaling to work, resource

monitoring features (see Section 4.9) must be enabled. The DC/OS [164] distribution of Marathon also

supports auto-scaling of Marathon applications by running a Python implementation inside a

Appl. Sci. 2018, 8, x FOR PEER REVIEW 23 of 76

separate Docker container. It also includes third-party documentation other approaches for auto-

scaling services.

Global containers. For some applications or framework support services it is necessary that a particular

container image is running at every node of the cluster. This concept is supported in Docker Swarm

integrated mode [165] and Kubernetes [166] as respectively global services and daemon sets.

Composite applications. Docker Swarm integrated mode and Marathon provide support for deploying

multiple tiers of a distributed application in such an order that the dependencies between the tiers

are respected. In Docker Swarm integrated mode [167], different service configurations and their

mutual dependencies can be specified as part of a ComposeV3 file [70]. The docker stack deploy

command takes as input such ComposeV3 file and deploys all the specified services together as one

group while respecting the interdependencies between the services. Marathon supports a similar

concept called Application groups [168].

Kubernetes does not natively support a similar concept, but several tools such as, Helm [169]

and Kompose [170], can be employed.

Persistent volumes. In all container orchestration frameworks, containers are stateless; when a

container dies, any internal state is lost. Therefore, so called persistent volumes, which store the

persistent state, can be attached to containers. Persistent volumes can be implemented by various

mechanisms: services for attaching block storage devices to virtual machines such as Cinder,

distributed file frameworks such as NFS, cloud services such as Google Persistent Disk, or local

volumes that reserve a subset of the local disk resources. Persistent volume mechanisms can be

categorized according to the following 9 features:

Local volumes that are comprised of disk resources of a container’s local host node are supported by

all CO frameworks.

Automatic (re)scheduling of containers to local volumes. Containers that are configured to use a specific

local volume are automatically (re)scheduled to the node where that local volume resides.

Shareable volumes between containers can be used as an asynchronous data communication channel

between containers. Note however, that in general not all types of persistent volumes support

sharing.

External persistent volumes are supported by all CO frameworks. Such external volumes support

managing data sizes that exceed a node’s disk capacity and also allow for state recovery in case of

node failures.

Volume plugin architecture. All CO frameworks except Aurora support a unified interface for different

volume implementations. Overall there are two different architecture that are adopted by multiple

CO frameworks: the Docker Engine plugin framework and the CSI-based plugins:

• Support for Docker volume plugin architecture. The Docker Engine plugin framework [171], which

offers a unified interface between the container runtime and various volume plugins, is adopted

by Mesos [172], Marathon [173] and DC/OS [174] in order to support external persistent

volumes. In Mesos-based frameworks, Docker volume plugins must be integrated via a separate

Mesos module, named dvdi [175], which requires writing plugin-specific glue code. As such a

limited number of Docker volume plugins are currently supported in Mesos.

• Support for the Common Storage Interface (CSI) specification. The Common Storage Interface

specification [176] aims to provide a common interface for volume plugins so that each volume

plugin needs to written only once and can be used in any container orchestration framework.

The specification also supports run-time installation of volume plugins. Typically, CSI can be

implemented in any CO framework as a normal volume plugin, which itself is capable

interacting with multiple external CSI-based volume plugins. Currently, CSI has been adopted

by Kubernetes [177], Mesos [178] and DC/OS [179].

Appl. Sci. 2018, 8, x FOR PEER REVIEW 24 of 76

Support for run-time installation of volume plugins has been supported by the Docker Engine plugin

framework[180] since Docker engine v1.12 and therefore also supported by Docker Swarm, Mesos ,

Marathon and DC/OS. Kubernetes v1.9+ [177] and Mesos v1.5+ [178] support the CSI

specification [176] that allows run-time installation of external volume plugins.

Dynamic provisioning of persistent volumes is supported by most CO frameworks. This feature entails

that volumes must not be manually created by the application manager in advance, but instead

volumes are automatically created when a new container is started.

The technical report [31] presents a more in-depth comparison of the CO frameworks with respect to

the above features.

Reusable container configuration. There are a number of commonly supported features related to

supporting generic yet configurable container images.

Passing environment variables to a container. First, all CO frameworks allow to pass environment

variables to a container, which is a common way for configuring the software that is running inside

the containers.

Self-inspection API. Kubernetes [181] and Marathon[182] enable a container to retrieve information

about itself via a so called downward API. Therefore, this information must not be specified as part

of the container configuration or container image.

Storing non-sensitive information (such as configuration files) outside a container’s image. Docker Swarm

integrated mode [183] and Kubernetes [184] additionally support separating configuration data from

images in order to keep containerized applications portable.

Configuring a custom ENTRYPOINT and CMD. All CO frameworks allow customizing the default

ENTRYPOINT and CMD entries of a Docker image at run-time. ENTRYPOINT specifies the

command that must be run when starting the container (e.g. /bin/sh –c opens a shell), while CMD

specifies the arguments for the entrypoint’s command (e.g. cassandra –f starts the Cassandra program

of the official Cassandra container image) [31].

Service upgrades. All CO frameworks support rolling upgrades of services by means of restarting the

containers of the service with a new image. In this way the old version of the service gets gradually

replaced with a new version. Note Aurora supports both rolling upgrades of jobs and services [185].

Monitoring the progress of a rolling upgrade. The status of the rolling upgrade can be monitored. Default

health and readiness checks (see Section 4.9) are used in order to monitor the health of container

replicas and the readiness of new container replicas to start processing requests. In case of failures,

the upgrade can be paused, resumed or rolled back.

Configuration of custom readiness checks. It is also possible to configure custom readiness checks in

Kubernetes [186] and Marathon [187].

Customizing the enactment of the rolling upgrade. Docker Swarm integrated mode [188],

Kubernetes [189], Marathon and DC/OS [190] offer various options to customize how the rolling

upgrade process is executed/enacted. A common enactment customization is controlling how many

instances of the old and new version of the service should always be running during the upgrade.

Roll back. Docker Swarm integrated mode [191], Kubernetes [192], Aurora [193] and the DC/OS [194]

distribution of Marathon support rolling back an upgrade. Aurora does not offer a command for

rolling back an upgrade but can be configured to automatically rollback in case of a failure. Note that

recovering from a failed upgrade is a more complicated problem than what a roll back can resolve.

In most case, it is better to roll forward by upgrading to a resolved application state [195].

Canary deployments. A variant of rolling upgrades, named blue-green deployments or canary

deployments [196], intents the same effect as a rolling upgrade but allows for more manual control

over the upgrade. The application manager will deploy a completely new service next to the existing

service and the application manager can manually control when to redirect users from the old to the

Appl. Sci. 2018, 8, x FOR PEER REVIEW 25 of 76

new service. Typically this redirection is only performed after testing the health and readiness of the

new service. Moreover, users are redirected in a gradual way so the old service is gradually scaled

down while the new service is gradually scaled up. Kubernetes [197], Aurora [193] and DC/OS [198]

support performing such canary deployments.

In-place updates of application configurations. Several CO frameworks allow narrow updates to

application configuration files such as changing the value of property. This can be supported by

either an update command that allows setting the value of a specific property or by means of

replacing the entire configuration file of a particular API object.

Non-disruptive, in-place updates. Some CO frameworks allow to perform the aforementioned in-place

updates without stopping and restarting the affected applications. When the set of possible properties

than can be updated is extensive, application managers should be aware that some properties such

as resource limits can only be updated safely if a set of desired conditions holds.

 Resource quota management

This aspect covers features of CO frameworks that a cluster administrator must understand in

order to organize the hardware resources of a cluster among different teams or organizations.

Concept for partitioning API objects into logically named user groups. All container orchestration

frameworks offer a concept for partitioning one or more types of API objects (e.g. services, volumes)

into a logically named user group that corresponds with a specific organization or tenant that is able

to contract resources from the cluster. The typical use case of user groups is to support multi-tenancy

such that the resources and services of a cluster can be divided among different tenant of the cluster.

Mesos does not offer the concept of user groups. Instead it offers a similar concept, named

framework roles [199], for dividing hardware resources across multiple scheduler frameworks.

Declaring a minimum guarantee and/or maximum limit on CPU, memory and disk quota per user group.

Kubernetes, Mesos and Aurora provide support for declaring a minimum and a maximum quota of

CPU, memory and disk resources per user group. More specifically:

• Kubernetes supports attaching to user groups minimal guarantees and maximum limits for CPU

and memory quota [200] and maximum limits for disk quota per storage class [201].

• Mesos supports attaching to framework roles minimal guarantees [202] for CPU, mem and disk

quota [203] for local volumes as well as weights [204] for dividing resources across roles.

• Apache Aurora allows attaching to user groups quota for memory and disk [205] via the

aurora_admin set_quota command.

Declaring an object count quota limit for the number of API objects per user group. Kubernetes and Mesos

allow assigning to user groups/framework roles a maximum number of API objects such as the

number of nodes, containers, services, etc. More specifically, in Kubernetes [206], object count quota

can be declared by expressing a maximum quantity for different kinds of Kubernetes API objects. In

Mesos [203], port ranges can be associated to framework roles.

In Docker EE [207] high-level resources such as nodes [208], volumes [209] and services can be

organized in collections, but there is no declaration of a maximum limit. The DC/OS distribution of

Marathon [210] also allows organizing services into service groups without enforcing a limit on the

number of services for a service group.

Reserving resources for the CO framework. The available set of resources on a node is automatically

computed via the operating system in all CO frameworks. Additionally, Kubernetes [211] and

Marathon [212] can be configured to reserve a subset of the node resources for the framework’s

operation and local daemons.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 26 of 76

 Container QoS management

This aspect covers features of CO frameworks that an application manger must understand in

order to efficiently use the resources of a user group while also achieving the intended QoS level of

its applications.

Supporting high utilization of allocated resources while also maintaining desired QoS levels of

applications, during either normal execution or resource contention and failures, is a complex goal.

As such, CO frameworks are designed with the following two goals in mind:

• Resource allocation models have been developed that support QoS differentiation between

containers while also allowing for over-subscription of resources to improve server

consolidation.

• CO frameworks offer various mechanisms to application managers for controlling scheduling

decisions that influence the performance of the application. These decisions include the

placement of inter-dependent containers and data, and prioritization of containers during

resource contention.

Note that the offered features do not provide strong SLA guarantees at the level of application-

specific metrics (e.g. latency or throughput) but include general mechanisms that can be used to

balance the competing goals of improved resource utilization and controllable performance of the

application.

Container CPU and memory allocation with support for oversubscription. This sub-aspect covers

common features of CO frameworks that an application manager must understand to (i) allocate

sufficient resources to a container to achieve its intended performance level, but also to (ii) allow

flexible reallocation of idle resources to improve resource utilization.

In general, the allocation of computational resources to a container is governed by means of

resource allocation policies. Container orchestration frameworks differ in their support for resource

allocation policies and also differ in the type of resources that can be limited. In the following, we set

out the available support for the different types of resources.

Minimum guarantees and maximum limits for CPU and memory. Kubernetes and Docker Swarm provide

support for minimum guarantees and maximum limits for CPU and memory, while Mesos-based

frameworks supports minimum guarantees for CPU and maximum limits for both CPU and

memory[31]. For example, Kubernetes manages a <request, limit> [213] pair per container and per

Pod. A request defines the resource quantity that is always guaranteed to the container (e.g. a requests

of 1.5 CPU imply that 1 CPU core and 50% of another CPU core is fully assigned to the container),

while a limit specifies the maximum resource quantity that can be used by this container (e.g. a

request of 1.5 CPU and a limit of 2 CPU specifies that the container is guaranteed 1.5 CPU cores, but

it can take up until 2 full CPU cores if the processing power is not used by other containers). When a

CPU limit is exceeded by a container, the container will be throttled [214]. When a memory limit is

exceeded, the process using the most memory in the container is killed [215]. Note that when the

request is set lower than the limit, the container is guaranteed the request but can opportunistically

consume the difference between request and limit if some resources are not being used by other

containers. It has been shown in Borg, the predecessor of Kubernetes, that setting requests and limits

in the above ways increases resource utilization [42].

Abstraction of CPU-shares for enforcing CPU guarantees. Note that Mesos, Aurora, Marathon and Docker

Swarm stand-alone rely on CPU-shares of the CFS Scheduler for implementing minimal guarantees.

CPU-shares are however difficult to configure because CPU-shares are always defined as weights

that are relative to the CPU-shares of other co-located containers: for example, if a new container is

started, then the CPU-shares declared by that new container reduce the weights of the already

running containers. Kubernetes [213] and Docker Swarm integrated mode [216], on the other hand,

offer higher-level abstractions for expressing minimal guarantees that hide the complexity of CPU-

shares.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 27 of 76

Allocation of other resources.

Limits for NVIDIA GPU are supported by Mesos [217], Aurora [218] and Marathon [219] (and

DC/OS [220]). Kubernetes [221] offers partial support for GPU allocation because containers cannot

requests fractions of a GPU, only a whole GPU, and a single GPU device can neither be shared

between containers.

Limits for disk resources. Mesos offers support for hard [155] and soft limits for disk usage. Hard limits

for disk usage are adopted by Aurora [222], Marathon [219] (and DC/OS). Kubernetes [223] offers

support for setting a <request, limit> pair for usage of a node’s local root partition (ephemeral

storage).

Controlling scheduling behavior by means of placement constraints. All CO frameworks allow

restricting the placement decision of the default scheduling algorithm by means of various user-

specified constraints in order to improve the QoS level of applications. These user-specified

constraints support placing inter-dependent application containers and data close or far from each

other in the network topology. Different types of constraints are supported:

Restrict the set of nodes by evaluating over node labels. CO frameworks allow restricting the set of nodes

on which a specific container can be scheduled by means of evaluating over node labels or attributes.

A label is defined as a <key, value> pair. A number of such labels are predefined like the hostname

of the node.

Evaluate over custom labels. Custom labels can also be defined: in Docker Swarm integrated mode [224]

and Kubernetes [225], custom labels can be dynamically added or removed, whereas in

Marathon [226] and DC/OS [227] custom attributes [228] can only be changed by (re)starting the

Mesos agent with the desired list of attributes.

More expressive constraints. The CO frameworks differ in the expressiveness of the constraints. Docker

Swarm integrated mode [229] offers set-based inclusion operators for both label keys and label values.

Kubernetes does not only offer the same set-based inclusion operator [230], but also more expressive

affinity and anti-affinity constraints [231] and constraints for restricting placement of containers to nodes

with specific hardware features such as GPUs [232]. Mesos-based frameworks support SQL-alike queries

such as GROUP BY that evenly divides containers across aggregate units such as racks or

datacenters [89].

Controlling preemptive and re-scheduling behavior. This sub-aspect covers common features of

CO frameworks that an application manager must understand in order to customize the pre-emptive

scheduling and rescheduling logic of CO frameworks such that an intended QoS level for a

containerized application is achieved during several exceptional conditions: (i) resource contention

at the scheduler level, (ii) out-of-resource node conditions, (iii) node failures, (iv) container start

failures and (v) unbalanced services of which the containers are not spread across different nodes..

Pre-emptive scheduling. Kubernetes [233] and Aurora [234] use priorities between containers for killing

low-priority containers in case the scheduler cannot find a node with enough available resources for

scheduling a new container.

Container eviction when a node runs out of resources. A fully packed node will likely run out of resources

in Kubernetes and Docker Swarm when the maximum resource limits of multiple containers on that

node are set higher than their minimum guarantees. After all, the default scheduling algorithm of

Kubernetes [235] and Docker Swarm3 will allocate containers to a node so that, for each resource

type, the sum of the containers’ minimum guaranteed resources does not exceed the capacity of that

3 There is no documentation on this. Run-time tests indeed showed that only reservations are taken into account

by Docker Swarm’s scheduling algorithm.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 28 of 76

node. To handle such out-of-resource conditions, Kubernetes and Aurora distinguish between

different QoS classes of containers. In case a node is about to run out of resources, Pods of the lowest

QoS class are evicted first.

Container eviction on node failures. Node failure detection is performed by means of different kinds of

health checks by the master. When a node is considered failed, the master reschedules containers on

that node to healthy nodes. Mesos [236] distinguishes between multiple failure scenarios (failed or

partitioned agents) and multiple recovery tactics depending on whether the frameworks on the failed

agent have enabled checkpointing [237].

Container lifecycle handling. All CO frameworks, except Docker Swarm stand-alone, manage the life

cycle of a container as a state machine involving states such as staging, pending, running, failed,

completed, etc.

Re-distributing unbalanced services. As container clusters can be very dynamic, the distribution of

containers over nodes may become unbalanced over time, for example when adding new nodes to

the cluster. CO frameworks, by default, do not automatically re-distribute unbalanced services in

order to avoid temporary service disruptions. Instead the application manager can control by means

of a direct command or higher-level policy when the containers of a particular service must be re-

distributed.

 Securing clusters

This aspect covers features that a cluster administrator must understand in order to setup a

secure cluster. Note that this aspect only focuses on the security provisions at the level of the container

orchestration framework as it does not entails features related to the security of the applications

running inside containers.

User identity and access management. All CO frameworks provide secure access to their Master API

by means of authentication and authorization of users. The CO frameworks differ in the range of

supported authentication and access control models, as well as the plug-ability of the solutions) (see

technical report [31] for a detailed comparison).

Tenant-aware access control. All CO frameworks, except Docker Swarm stand-alone, support tenant-

aware access-control that grants users, teams or organizations specific access permissions to a particular

user group (see user groups and resource quota management in Section 4.5).

Cluster network security.

Authentication of worker nodes with the master API is supported by Docker Swarm stand-alone [238],

Docker Swarm integrated mode [239], Kubernetes [240], Mesos [241] and Aurora [242].

Automated bootstrap of authentication tokens for worker nodes is also supported by Docker Swarm

integrated mode [243] and Kubernetes [244] . An authentication token is a symmetric key that enables

worker nodes to more easily register with the master node to join the cluster.

Authorization of CO agents on worker nodes towards the master API is additionally supported by

Kubernetes [245], Mesos [246], and Aurora [242]. In Kubernetes, this feature allows to grant API

access at the Master node to the Kubelet agent of any node based on the containers which are

currently running on that node. Mesos can be configured with an ACL to allow or deny worker nodes

to (re-)register with the master. Aurora relies on Zookeeper’s ACL mechanisms [247] for controlling

Aurora-specific actions of the worker nodes.

Encryption of control messages between masters and workers is supported by Docker Swarm integrated

mode [248] and Kubernetes Container-as-a-Service offering Google Container Engine [249].

Moreover, DC/OS [250] can be configured to startup in a strict or permissive security mode that

respectively enables or enforces TLS encryption of communications between masters and agents.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 29 of 76

Encryption of application messages is supported by Docker Swarm integrated mode [251] and

DC/OS [250] as an optional feature. Finally, the Weave NET plugin of Kubernetes [252] also supports

encryption of application messages.

Restricting external access to service ports. As stated in Section 4.3, containers of which the services are

exposed via a service port can be accessed from outside the cluster if there exists a cluster node with

a load balancer which has an IP address that is routable from outside the cluster. However, a security

risk ensues that any container with a service port is susceptible to outside malicious attacks, especially

if the load balancer is deployed distributed on every node. In order to manage this security risk, one

needs a way to segregate the nodes of a cluster into those attached to a private network only and

those attached to a private and public network.

With this end in view, Docker Swarm integrated mode [253] allows exposing master and worker

endpoints at a specific IP address or network interface so that service ports on that node are only

accessible from the subnet to which the endpoints are attached.

Kubernetes v1.10+ [254] added a similar feature but also allows specifying a range of IP

addresses instead of a single IP address for a master or worker node.

Finally, DC/OS [255] distinguishes directly between private and public node types. Public nodes

support inbound connections from outside the cluster and are thus primarily meant for externally

facing load balancers such as marathon-lb or edge-lb. Private nodes cannot be directly accessed from

outside the cluster.

 Securing containers

Improved support for container security is needed to deal with a large array of known security

vulnerabilities at the level of container images [256] and container runtimes [257]. This aspect

therefore covers features that an application manager must understand in order to manage sensitive-

information, manage passwords for getting access to private Docker repositories, and limiting the

security attack interface of containers by limiting the access of containers towards the underlying

Linux kernel.

Protection of sensitive data and proprietary software. Docker Swarm integrated mode [258],

Kubernetes [259], Mesos [260], Marathon [261] and the Enterprise distribution of DC/OS [262] offer

concepts for storing sensitive information such as private keys in Secret API objects which encompass one

or more encrypted data fields.

Pulling images from a private Docker registry. Docker Swarm, Kubernetes, Mesos and Marathon offer

support for automated login to a private Docker registry so that private images can also be pulled (see

the technical report [31] for a detailed comparison).

Improved security isolation: One of the weaknesses of containers is that they have a broader security

attack surface than virtual machines: containers run on the same host operating system and thereby

enlarge the attack surface in comparison to virtual machines that run on a more compact hypervisor.

For this reason, all major cloud providers continue to use a virtual machine as a key abstraction for

representing a node in order to protect their assets.

Therefore, besides the basic isolation mechanisms at the level of linux containers, i.e. cgroups

and namespaces[263], container orchestration frameworks additionally leverage existing security

modules in the Linux kernel in order to configure on a per container basis what a container is allowed

to do in terms of linux system calls, file permissions, etc.

These modules include SELinux, AppArmor, seccomp and Linux capabilities. SELinux [264] and

AppArmor [265] are security modules that can limit by means of access control policies what a

process can do. Seccomp-bpf [266] allows filtering of framework calls using a configurable policy

implemented using Berkeley Packet Filter [267] rules. Linux capabilities [268] allows to give a user-

level process specific root-level permissions. As such a process can be granted access to what it needs

without running the process as root.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 30 of 76

All container orchestration frameworks have just began to integrate with these different security

modules. Note that the following security features are supported by Docker engine and therefore also

for Docker Swarm stand-alone. However, these security features are not yet available for Services in

Docker Swarm integrated mode.

Setting Linux capabilities per container is supported by Docker Swarm stand-alone [269],

Kubernetes [270] and Mesos .

Setting SELinux labels per container is supported by the Fedora Atomic distributions of Docker-

engine [271] and by Kubernetes [272].

Setting custom AppArmor profiles per container is supported by Docker Swarm stand-alone [273] and is

a beta feature of Kubernetes [274].

Setting custom seccomp profiles per container is supported by Docker Swarm stand-alone [275] and there

is also alpha support for seccomp profiles in Kubernetes [276].

Higher-level aggregate objects for storing multiple security profiles. Kubernetes offers a generic aggregate

object in the Kubernetes API, named SecurityContext [277], which manages per container and per Pod

which Linux capabilities, custom profiles, SELinux labels and other privileges must be applied.

Docker [278] has launched a design proposal and work-in-progress library for supporting a similar

generic object, called entitlements [279]. Such entitlements are actually envisioned as higher-level

abstractions for encompassing security profiles of Services in Docker Swarm integrated mode as well

as Pods in Kubernetes.

 Application and cluster management

This aspect covers features of CO framework that a cluster administrator or application manager

must understand in order to manage various non-functional requirements of respectively the cluster

or the containerized applications. These management services rely on the Identity and Access

Management functionality (see Section 4.7) in order to support customized instances of their

functionality to cluster administrators and application managers.

Creation, management and inspection of cluster and applications. To support user-friendly usage

of the Master API, a Command Line Interface (CLI) with a well-defined command structure is provided

in all CO frameworks.

Web UI. Docker [280], Kubernetes [281] and DC/OS [282] offer beside their HTTP-based Master API

and Command-Line Interface (CLI) also a graphical user interface for inspecting and managing the

state of all objects that can be managed via the Master API, e.g. nodes, services, containers, replication

levels of containers, volumes, user groups, multi-tenant authorization controls etc. Erroneous states

such as unhealthy containers or failed nodes can also be inspected. See the technical report [31] for a

detailed comparison.

Labels for organizing and selecting subsets of API objects. The CLI and/or dashboard of Docker,

Kubernetes, Mesos and DC/OS also use labels for organizing and selecting subsets of containers,

services and nodes according to multiple dimensions (e.g. development vs production environments,

front-end vs database tiers). Docker Swarm supports service labels [283] and node labels [284]. In

Kubernetes, labels can be attached to various API objects [161] and the Kubernetes CLI and

dashboard allows to select objects by their labels. Mesos supports task labels [285], while the DC/OS

distribution of Marathon allows to attach labels to Marathon applications and Mesos tasks [286].

Inspection of cluster-wide resource usage. The GUIs and associated CLIs also support inspection of

(aggregate statistics of) cluster-wide resource usage in order to inspect global cluster state and health.

Docker EE’s Universal Control Plane [280] shows CPU and memory resource consumption of nodes.

Kubernetes’ dashboard [281] shows CPU and memory usage at different levels: cluster-wide, per

node, and for each separate pod. Aurora’s Observer component [287] enables browser-based access

Appl. Sci. 2018, 8, x FOR PEER REVIEW 31 of 76

of disk usage metrics per task. DC/OS [282]’s dashboard shows CPU, memory and disk usage at

similar levels: cluster-wide, per node, per service.

Monitoring resource usage and health. Kubernetes, Mesos and the DC/OS distribution of Mesos and

Marathon offer central monitoring of resource usage of services and containers. Kubernetes [288] supports

two kinds of resource metrics pipelines: (i) a core Metrics API [289] that supports monitoring Pods

for auto-scaling purposes and (ii) several independent full metrics pipelines [290] of which the most

prominent are the Prometheus open-source project with built-in support for Kubernetes and Google

Cloud Monitoring.
Mesos [291] exposes at every agent an HTTP endpoint with aggregate resource consumption

metrics for containers running under that agent. When using marathon-lb [292] for exposing the

service of a container, statistics for the network interface of that container [293] can be monitored at

the same HTTP endpoint. When using a CNI network [294], network statistics of a container can also

be queried.

DC/OS supports a central Metrics API [295] for monitoring containers and Marathon

applications. This also involves monitoring network usage per container.

Central monitoring of resource usage by CO framework components. Besides monitoring the resource usage

of services and containers, Docker Swarm [296], Kubernetes [297], Mesos [298], Aurora [299],

Marathon [300] and DC/OS [301] also support central monitoring of (aggregated statistics) of

resource usage by CO framework components. Kubernetes [302] and Mesos [303]-based frameworks

also support monitoring GPU usage.

Reusable and configurable framework for checking the health of containers. All CO frameworks also offer a

framework for developing custom health checks per container. Different health check methods are

possible including HTTP checks and checking via a shell command. Relevant configuration

parameters include the timeout period, the interval between two checks and the minimum number

of consecutive failed checks for the health check to be considered failed [31].

Central monitoring of distributed events. Docker Swarm integrated mode, Kubernetes, Mesos, Aurora

and Marathon also support an API for monitoring of events about new requests for creating services,

container, container state changes and errors [31].

Logging and debugging of CO framework and containers.

Logging of containers is supported via the CLI and/or dashboard of Docker Swarm [304],

Kubernetes [305], Mesos [306] and DC/OS’ Marathon [307].

Internal logging of CO framework components is supported by all CO frameworks. Which specific

logging tool is used, depends on the used deployment method: when the CO framework is deployed

as a set of containers, container logging can be used; when the CO framework is installed as Linux

package, the journald [308] service is used [31].

Integration with external log aggregation frameworks is documented in Docker Swarm [309],

Kubernetes [310] and DC/OS [311].

Cluster maintenance.

Cluster state backup and recovery is a built-in feature of Docker Swarm integrated mode [312],

Mesos [313], Aurora [314] and Marathon [315]. For Kubernetes an external project for cluster state

management operations [316] such as backup and restore exists. Note that Mesos uses state machine

replication (SMR) for storing the state of the entire cluster, including the state of the running

frameworks. Aurora uses Mesos’ SMR while Marathon does not.

Documentation about how to upgrade a running cluster to a next release is provided by Kubernetes [317],

DC/OS distribution of Mesos [318], Aurora [319] and Marathon [320].

Appl. Sci. 2018, 8, x FOR PEER REVIEW 32 of 76

Upgrades do not affect active containers. Docker, the kubeadm deployment tool of Kubernetes and all

Mesos-based frameworks support that when the Docker daemon is shut down for upgrade on a node,

the containers on that node can continue running [31].

A CLI command for draining all containers from a node for maintenance is supported by Docker Swarm

integrated mode [321], Kubernetes [322], Mesos [323], Marathon [324] and DC/OS [325].

Garbage collection of containers and/or images is differently supported by different CO frameworks.

Docker [326] supports manual garbage collection of images only at the level of the local registry;

Kubernetes’ kubelet agent [327] supports automated garbage collection of container images as well

as containers. Mesos v1.5 [328] supports automated garbage collection of only Docker images for the

Unified Container Runtime. Finally, DC/OS extends Mesos with support for garbage collection of

container images for both the Unified Container Runtime as well as the Docker containerizer.

Moreover, the architecture of DC/OS [329] also includes support for garbage collection of Docker

containers.

Multi-cloud support.

One cluster across multiple availability zones or regions. Docker Swarm stand-alone [330] as well as

integrated mode [331] allow deploying multiple master nodes across multiple availability zones.

Kubernetes [332] provides limited support for multi-zone deployments as generic support for

automated HA master setups is not provided. However, Kubernetes-as-a-Service platforms such as

Google Kubernetes Engine (GKE) and Amazon Elastic Container Service for Kubernetes (Amazon

EKS) [28] offer scalable and highly-available Kubernetes clusters where multiple masters can be

deployed across different availability zones. The design of Mesos [333]-based frameworks, in

particular DC/OS, allows that one cluster can be more easily deployed across multiple availability

zones or regions because these CO frameworks have generic and automated support for setting up

replicated masters (see Highly-Available Master/Manager architecture in Section 4.1).

Recovering from network partitions. Mesos [236] provides good support for dealing and recovering from

network partitions. Aurora v0.20.0 [103] has added an optional and experimental feature for using

the Mesos partition-aware APIs in order to customize the job or service recovery strategy. Users of

Aurora can set partition policies [334] per job whether or not to reschedule and how long to wait for

the partition to heal.

Management of multiple clusters across multiple clouds. Docker’s Docker Cloud [335], Kubernetes’

kubefed [336], and DC/OS’ multi-cluster CLI [337] also offer CLI commands for managing multiple

clusters across one or more cloud providers.

Federated authentication: Kubernetes’s federated API [338] and DC/OS’ single-sign-on across

clusters [339] capability support federated authentication of users.

Multi-zone/multi-region workloads: All CO frameworks, except Docker Swarm stand-alone, allow

controlling the availability of a service by spreading its containers across multiple fault domains (i.e.,

availability zones, regions or datacenters). Docker Swarm integrated mode [229], Mesos [340],

Aurora [341], Marathon and DC/OS [342] require that nodes are in advance labeled with their zone,

region or datacenter and offer a placement preference operator that ensures that containers of a

service are spread across these different fault domains. Kubernetes [343] uses another approach: It

uses its extensive support for federating multiple container clusters across different fault domains

(see Section 5.1) .

5. Genericity: Qualitative assessment of unique features

This section answers RQ3:

RQ3. What are the unique features of CO frameworks?

We define a unique feature as being supported by only one CO framework and not having been

released in the latest version of the framework. According to this definition, we have identified 54

Appl. Sci. 2018, 8, x FOR PEER REVIEW 33 of 76

unique features. We have been able to organize these 54 unique features according to the 27

functional sub-aspects (see Table 8 in Appendix), therefore increasing our confidence that these 27

functional sub-aspects comprehensively cover the overall technical domain.

A quantitative analysis of is presented in Section 6. A first look at this table clearly shows that

Kubernetes has much more unique features than the other frameworks. The following three

subsections present a brief overview of the most prevalent unique features of respectively

Kubernetes, Mesos-based frameworks and Docker Swarm. A detailed overview of all unique features

is presented in the technical report [31], Section 4.

 Kubernetes

With respect to the sub-aspect “installation methods and tools” multiple public cloud providers

exploit commercial Kubernetes-as-a-Service offerings [344].

This wide support from public cloud providers has also ensued various unique features in the

open-source distribution of Kubernetes to improve the integration with cloud platforms. Most of

these features belong to the sub-aspect “service discovery and external access” and include automated

integration with load balancing services of cloud providers [146], synchronization with external DNS providers

[345] and IP masquerading when Pods send messages to IP addresses outside of the Pod CIDR

range[346].

With respect to CO framework customization, Kubernetes is much more extensible than the

other CO frameworks [347]; more specifically, the following types of customizations to Kubernetes

are supported: cloud-provider specific functionality [348], API object annotations [349], API extension [350]

and API aggregation [351] and hardware-specific device plugins [352].

With respect to application configuration and deployment, Kubernetes offers support for vertical

Pod auto-scaling [353] and the concept of Podpresets that helps developers to reuse the same piece of

configuration code across multiple Pod configuration files [354]. Moreover, with respect to the sub-

aspect “persistent volumes”, Kubernetes offers automated support for deploying and managing database

clusters [355], raw block storage [356], on-line re-sizing of persistent volumes without having to restart

Pods [357] and support for dynamically limiting the maximum number of volumes that can be attached to a

node [358].

With respect to container QoS management, Kubernetes offers concepts for stronger performance

isolation guarantees for memory [359] and CPU resources [360]. Moreover, it allows cluster

administrators to define custom node resources of random kind with the limitation that resource

quantities must be integers and oversubscription is not support [361].

With respect to cluster security, Kubernetes provides support for auditing [362], authentication

and authorization for access to the HTTP API of worker agents [363] and network policies [364] that are

specifications of how groups of Pods are allowed to communicate with each other.

With respect to container security, Kubernetes offers Pod security policies for admission control

of Pods to validate that Pods have declared the appropriate access control profiles, Linux capabilities,

and privileges [365]. Kubernetes also offers a Linux sysctl interface [366] that enables cluster

administrators to modify Linux kernel parameters at runtime and in a safe manner.

Finally, Kubernetes exhibits unique features in several application and cluster management sub-

aspects: (i) with respect to the sub-aspect “monitoring resource usage and health”, it supports a cluster

autoscaler [367] for automatically adding or removing nodes to a cluster, (ii) with respect to the sub-

aspect “logging and debugging of CO framework and containers”, Kubernetes supports port

forwarding [368] that allows a developer to connect his local workstation to a running Pod, (iii) with

respect to the sub-aspect “cluster maintenance”, Kubernetes supports a disruption budget [369]

enabling an application manager to limit the number of concurrent voluntary disruptions that his

application experiences due to cluster maintenance operations, and (iv) with respect to the sub-aspect

“multi-cloud support”, Kubernetes offers a separate federated API with federated instantiations of

several single-cluster API objects [370] such as deployments. This API is implemented by a separate

policy-based controller plane that additionally supports federated management of service shards that are

running across multiple clusters in different availability zones [371].

Appl. Sci. 2018, 8, x FOR PEER REVIEW 34 of 76

 Mesos-based frameworks

Mesos-based frameworks have various unique features that logically ensue from the two-level

scheduler architecture with a central Mesos master and multiple framework schedulers:

• Mesos is better suited for managing datacenter-scale deployments given the inherent improved

scalability properties of its two-level scheduler architecture with multiple distributed scheduler

frameworks [41].

• Mesos offers a resource provider abstraction [372] for customizing Mesos worker agents to

framework-specific needs.

• DC/OS offers integrated support for load-balancing Marathon-based services as well as load-balancing

of workloads that are managed by other, non-container-based frameworks [373].

• Local volumes can be shared by tasks from different frameworks [374].

• Framework rate limiting [375] aims to ensure performance isolation between frameworks with

respect to request rate quota towards the Mesos Master.

Mesos has also various unique features to support high-performance computing:

• DC/OS has made the conscious design choice to enable database-as-a-service offerings without using

containers for running database instances [376], presumably because of the non-negligible

performance overhead of container orchestration frameworks for managing database

clusters [49].

• With respect to container QoS management, Mesos contributes to improved network

performance isolation between containers for both routing mesh networking [377] and virtual

networks [378]. Unfortunately, little of these features are currently used by the CO frameworks

Aurora and Marathon. Only container port ranges in routing mesh networks can be isolated in

Marathon.

 Docker Swarm

With respect to the sub-aspect “reusable container configuration”, in both Docker Swarm stand-

alone [379] and Docker Swarm integrated mode [380], an option can be set for automatically running a

simple service initialization system inside containers.

With respect to the “service upgrades” sub-aspect, Docker Swarm integrated mode allows

customizing the enactment of a roll back [191] of a service.

With respect to container QoS management, Docker Swarm stand-alone supports run-time

updating resource reservations and limits of a container without needing a restart of the container [381].

These operations should be managed with care and preferably as automated as possible to avoid

human-errors by application managers [382].

Finally, with respect to cluster and application management, Docker’s CLI comes with a very-

handy command-line completion for Docker Swarm integrated mode [383].

6. Genericity: Quantitative analysis

This section presents the results of the quantitative analysis of the collected data in Sections 4

and 5 to determine evidence of significant differences in genericity between aspects and CO

frameworks. We structure the presentation of these results in accordance with the research questions

RQ4-RQ6 (see Section 1.1).

A CO framework is more generic than another CO framework when it supports a higher number

of common features. After all, the more features are supported, the broader the set of application and

cluster configurations that can be supported and managed by a CO framework. The same measure

can also be used to quantify differences in genericity between (sub)-aspects.

We also take into account the number of unique features for quantifying the differences in

genericity because Kubernetes has a relatively large number of unique features. Since Kubernetes is

already supported by many public cloud providers and Docker EE and DC/OS also offer support for

Appl. Sci. 2018, 8, x FOR PEER REVIEW 35 of 76

Kubernetes as an alternative orchestrator, these unique features are widely available at a large set of

private and public cloud platforms.

RQ4: How are functional (sub)-aspects ranked in terms of number of common and unique

features? Table 3 presents an overview of the number of common and unique features found for the

9 aspects of container orchestrations. The table ranks the aspects according to the number of common

feature implementation strategies by CO frameworks. We see that the functional aspects of

“application configuration and deployment”, “application and cluster management”, “container

networking” and “container QoS management” count the most common feature implementation

strategies. On the other hand, the aspects of “securing containers”, and “resource quota

management” count the lowest number of common feature implementation strategies.

Table 4 ranks the functional sub-aspects according to the number of common feature

implementation strategies. Again, this metric is a measure for ranking sub-aspects in terms of

genericity.

Table 3. Functional aspects ranked according to the number of common feature implementation

strategies by CO frameworks. If a common feature is partially supported by or only supported in the

commercial version of a CO framework, the implementation strategy is counted as ½. Finally, the

number of common and unique features of each functional aspect are also presented.

Aspects
#common

features

#implementation

strategies

#unique

features

Application configuration and deployment 29 130.5 10

App and cluster management 21 104 10

Container networking 20 82 8

Container QoS Management 15 69 6

Cluster architecture and setup 13 63 2

Securing clusters 9 36 4

CO framework customization 6 32 9

Securing containers 7 19.5 3

Resource quota management 4 12.5 1

Total 124 548.5 53

Table 4. Functional sub-aspects ranked according to the number of common feature implementation

strategies by CO frameworks. Features that are only partially supported by CO framework or that are

only offered by the commercial version are counted as a ½.

Sub-aspects
#common

features

#implementation

strategies

#unique

features

Persistent volumes 9 47 6

Services networking 8 35 2

Service upgrades 8 32 1

Architectural patterns 5 31.5 0

Reusable container configuration 5 26 2

Installation methods and deployment tools 7 25.5 2

Supported workload types 7 25.5 1

Cluster maintenance 5 25 2

Container CPU and mem allocation with support for

over-subscription
5 23 1

Creation, management and inspection of cluster and

applications
4 22.5 1

Service discovery and external access 6 22 6

Monitoring resource usage and health 4 22 3

Appl. Sci. 2018, 8, x FOR PEER REVIEW 36 of 76

Multi-cloud deployments 5 19.5 3

Controlling scheduling behavior by means of placement

constraints
3 19 0

Cluster network security 6 18.5 3

Controlling preemptive scheduling and re-scheduling

behavior
5 18 1

Plugin architecture for network services 4 17.5 0

User identity and access management 3 17.5 1

Unified container runtime architecture 3 17 0

Framework design of orchestration engine 3 15 9

Logging and debugging of CO framework and containers 3 15 1

Resource quota management 4 12.5 1

Protection of sensitive data and proprietary software 2 10 0

Improved security isolation 5 9.5 3

Allocation of other resources 2 9 4

Host ports conflict management 2 7.5 0

Configuration management approach 1 6 0

Total 124 548.5 53

A first findings from

Table 4 is that the sub-aspect “persistent volumes” counts the most common features and the

most common feature implementation strategies. This is because of two reasons:

• Besides the main functional requirement of persistent storage, various orthogonal orchestration

features for management of persistent volumes can be distinguished. Moreover most of these

features are supported by almost all CO frameworks.

• The adoption of the Docker volume plugin architecture by Mesos-based systems as well as the

CSI specification by Kubernetes and Mesos has also been recorded as an additional feature.

Secondly the sub-aspect “services networking” counts also a high number of common features

because of two similar reasons:

• No less than 3 alternative approaches to services networking can be distinguished that are all

supported by multiple CO frameworks and within each alternative approach one can

distinguish at a lower nested level between different alternative load balancing strategies.

• There are again two standardization initiatives related to this sub-aspect: Docker’s libnetwork

architecture and the CNI specification.

RQ5: How are CO frameworks ranked in terms of number of supported common features? As

shown in Figure 5, Kubernetes implements the highest number of common features, but also supports

the highest number of unique features).

Appl. Sci. 2018, 8, x FOR PEER REVIEW 37 of 76

Figure 5. Comparison of CO frameworks according to the total number of supported features.

Features that are partially supported by a CO framework or that are only offered by the commercial

version of the framework are counted as a ½.

RQ6a. Which functional (sub)-aspects are best supported by a CO framework in terms of common

features?

As shown in Figure 6, Kubernetes implements the highest number of common features for 6 aspects.

Docker Swarm integrated mode supports the most common features for the aspects “container

networking” and “securing clusters”. Finally, DC/OS supports the most common features for the

aspect “application and cluster management”.

Figure 6. The number of common feature implementation strategies supported by each CO

framework is shown for each of the 7 CO frameworks.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 38 of 76

Table 5 presents an overview of the number of common feature implementation strategies per CO

framework and per (sub)-aspect. We find significant differences in ranking between the frameworks

when applying the Friedman test for unreplicated designs[56] (p-value=2.668e-08). To deal with tied

observations in this test, we compute ranks using R’s rank() method where ranks for tied observations

are replaced by their mean.

We also performed during post-hoc analysis a pairwise comparison between CO frameworks

using the Nemenyi multiple comparison test with q approximation for unreplicated blocked data[56]

(see Figure 7).

Figure 7. Resulting p-values of the Nemenyi multiple comparison test. For p-values <= 0.05, we can

reject the null hypothesis, i.e. there is no significant difference in overall ranking between a pair of

CO frameworks).

Based on the p-values of the Nemenyi test, we find that Docker Swarm stand-alone and Aurora

differ significantly in genericity from both Kubernetes and DC/OS. Moreover there is a significant

difference between Kubernetes on the one hand and Mesos and Marathon on the other hand:

• Docker Swarm stand-alone and Aurora are indeed clearly less generic in terms of offered

features than the other CO frameworks. After all, Aurora is specifically designed for running

long-running jobs and cron jobs, while Docker Swarm stand-alone is also a more simplified

framework with substantial less automated management.

Table 5. For each functional (sub)-aspect, the number of common feature implementation strategies

by each CO framework are shown and the framework(s) with the highest number is/are also shown.

Aspects Sub-aspects CO frameworks
FW(s) with most
common features Sa Si Ku Me Au Ma Dc

cluster architecture and setup 7.5 9.5 12.5 8 7 9 9.5 Ku

Configuration management
approach 1 1 1 0 1 1 1 All but Me
Architectural patterns 5 5 4.5 3 4 5 5 Sa/Si/Ma/Dc
Installation methods and
deployment tools 1.5 3.5 7 5 2 3 3.5 Ku

CO system customization 4 4 6 5 4 4 5 Ku

Unified container runtime
architecture 3 3 3 2 2 2 2 Sa/Si/Ku
Framework design of
orchestration engine 1 1 3 3 2 2 3 Ku/Me/Dc

Container networks 8 16.5 14.5 11 5 12 15 Si

Services networking 3 7.5 6 4.5 2 5 7 Si
Host ports conflict
management 1 2 1 0.5 1 1 1 Si
Plugin architecture for network
services 3 3 2.5 3 0 3 3 Sa/Si/Me/Ma/Dc
Service discovery and external
access 1 4 5 3 2 3 4 Ku

Application configuration and
deployment 14 21 27 12.5 14 18.5 23.5 Ku

Supported workload types 2 4 6.5 1 3 4 5 Ku
Persistent volumes 7 7 7.5 8.5 3 6.5 7.5 Me
Reusable container
configuration 3 4 5 3 3 4 4 Ku
Service upgrades 2 6 8 0 5 4 7 Ku

Resource quota management 0 1 4 2.5 2 1 2 Ku
Container QoS Management 8 11 13 8 11 9 9 Ku

Appl. Sci. 2018, 8, x FOR PEER REVIEW 39 of 76

Container CPU and mem
allocation with support for
over-subscription 4 5 5 3 2 2 2 Si/Ku
Allocation of other resources 0 0 1 2 2 2 2 Me/Au/Ma/Dc
Controlling scheduling
behavior by means of
placement constraints 3 3 3 1 3 3 3 All but Me
Controlling preemptive
scheduling and re-scheduling
behavior 1 3 4 2 4 2 2 Ku/Au

Securing clusters 2 7.5 7.5 5 5 2 7 Si

User identity and access
management 1 2.5 3 3 3 2 3 Ku/Me/Au/Dc
Cluster network security 1 5 4.5 2 2 0 4 Si

Securing containers 3.5 2 7 3 0 2 2 Ku

Protection of sensitive data and
proprietary software 0 2 2 2 0 2 2 All but Sa/Au
Improved security isolation 3.5 0 5 1 0 0 0 Ku

App and cluster management 9.5 14.5 18 16.5 12.5 13 20 Dc

Creation, management and
inspection of cluster and
applications 3 3 4 3 2.5 3 4 Ku/Dc
Monitoring resource usage and
health 1.5 2.5 4 4 3 3 4 Ku/Me/Dc
Logging and debugging of CO
framework and containers 2.5 2.5 3 2 1 1 3 Ku/Dc
Cluster maintenance 1.5 3.5 3.5 4.5 3 4 5 Dc
Multi-cloud deployments 1 3 3.5 3 3 2 4 Dc

Total # common feature implementation
strategies 56.5 87 109.5 71.5 60.5 70.5 93 548.6

We only recommend Docker Swarm stand-alone as a possible starting point for developing

one’s own CO framework. This is a relevant direction because 28% of surveyed users in the most

recent OpenStack survey[4], responded that they have built their own CO framework instead of

using existing CO frameworks (see also Figure 4). We make such recommendation because the

API of Docker Swarm stand-alone is the least restrictive in terms of the range of offered options

for common commands such as creating, updating and stopping a container. For example,

Docker Swarm stand-alone is the only framework that allows to dynamically change resource

limits without restarting containers. Such less restrictive API is a more flexible starting point for

implementing a custom developed CO framework.

• The significant difference between Kubernetes and Mesos can be partially explained by the fact

that Mesos by itself is not a complete CO framework as Mesos enables fine-grained sharing of

resources across different CO frameworks such as Marathon, Aurora and DC/OS.

• The significant difference between Kubernetes and Marathon can be explained by the fact that

very few new features have been added to Marathon since the start of DC/OS. After all DC/OS

is the extended Mesos+Marathon distribution that has also an enterprise edition.

An important conclusion is that there are no significant differences between the three most

generic CO frameworks: Docker Swarm integrated mode, Kubernetes and DC/OS. However, for 13

sub-aspects, a specific CO framework distinguishes itself by offering the most common features in

that sub-aspect. In particular, Kubernetes, Docker Swarm integrated mode, DC/OS and Mesos are the

most distinguishing frameworks:

• Kubernetes has the absolutely most features for 7 sub-aspects:

1. Installation methods and deployment tools

2. Service discovery and external access

3. Supported workloads

4. Reusable container configuration

5. Service upgrades

6. Resource quota management

7. Improved security isolation

For all 7 sub-aspects, the open-source distribution of Kubernetes supports all common features

of these sub-aspects. As such Kubernetes is very generic with respect to these sub-aspects.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 40 of 76

• Docker Swarm integrated mode has the most features for 3 sub-aspects:

1. Services networking

2. Host ports conflict management

3. Cluster network security

For the first two sub-aspects, Docker Swarm integrated mode offers support for all common

features, while for the last sub-aspect, the open-source distribution of Docker Swarm integrated

mode offers support for all common features except authorization of CO agents on worker nodes.

• DC/OS has the most features for 2-sub-aspects:

1. Cluster maintenance

2. Multi-cloud deployments

For the first sub-aspect, DC/OS offers support for all common features of this sub-aspect by

building upon Mesos and Marathon and providing detailed manual instructions for upgrading

DC/OS. For the second sub-aspect, DC/OS offers support for all common features except recovery

from network partitions.

• Mesos has the most features for 1 sub-aspect:

1. Persistent volumes

After all, Mesos offers support for both Docker volumes as well as CSI-based volumes.

There are furthermore tied observations between Docker Swarm, Kubernetes and DC/OS for 12

sub-aspects where these CO frameworks offer an equal number of features (see Figure 8 for a visual

overview of the differences in genericity between these frameworks for the 27 sub-aspects).

Figure 8. Radar chart of Docker Swarm integrated mode, Kubernetes and DC/OS to graphically

present in which sub-aspects these CO frameworks support the highest number of common features.

RQ6b. Which functional sub-aspects are best supported by a CO framework in terms of common

features ánd unique features? Kubernetes clearly offers the highest number of unique features (see

Appl. Sci. 2018, 8, x FOR PEER REVIEW 41 of 76

Figure 5). When adding up common and unique features, Kubernetes even supports the highest

number of features for all 9 aspects (see Figure 9). We argue that it is fair to take into account the large

number of unique features of Kubernetes when ranking CO frameworks with respect to genericity.

After all, as already stated in Section 1, both Docker EE and DC/OS also offer support for Kubernetes

as an alternative orchestrator. So the unique features are not a source of vendor lock-in.

Table 6 provides an overview of the total number of features per (sub)-aspect and per CO

framework. In comparison to the quantitative analysis of the common features only (i.e RQ6a), we

find a more significant difference in ranking between the frameworks when re-applying the

Friedman test for unreplicated designs (p-value=1.729e-10). However, a pairwise comparison

between CO frameworks using the Nemenyi test [56] did not show any significant differences

between the three major frameworks Docker Swarm integrated mode, Kubernetes and DC/OS. We

do observe an additional, significant difference between Docker Swarm integrated mode and Docker

Swarm stand-alone. This can be explained by the fact that the former introduces more unique features

than the latter.

However, for 17 sub-aspects there is a specific CO framework that supports the highest number

of common and unique features. We graphically present the top 3 CO frameworks using a radar chart

(see Figure 10). Kubernetes offers the most features for 15 sub-aspects. Docker Swarm integrated

mode loses the 1st rank for the sub-aspect “cluster network security” to Kubernetes, but still offers the

most features for the sub-aspects “services networking” and “host port conflict management”. Mesos

does not offer anymore the most features for the sub-aspect “persistent volumes”, which is now more

elaborately supported by Kubernetes. Instead it offers the most features for the sub-aspect “allocation

of other resources”. DC/OS does not anymore offer the absolute most features in any sub-aspect.

Figure 9. The total number of features supported by each of the CO frameworks is shown for the 9

aspects.

Table 6. Overview of the number of total number of features (i.e. common + unique features) per

(sub)-aspect and CO framework. The last column also shows which framework(s) support(s) the

highest number of features per sub-aspect.

Aspects Sub-aspects CO frameworks FW(s) with most
features Sa Si Ku Me Au Ma Dc

Cluster architecture and setup 7.5 9.5 13.5 8 7 9 10.5 Ku

Appl. Sci. 2018, 8, x FOR PEER REVIEW 42 of 76

Configuration management
approach

1 1 1 0 1 1 1 All but Me

Architectural patterns 5 5 4.5 3 4 5 5 Sa/Si/Ma/Dc
Installation methods and
deployment tools

1.5 3.5 8 5 2 3 4.5 Ku

CO framework customization 4 5 12 6 5 4 5 Ku

Unified container runtime
architecture

3 3 3 2 2 2 2 Sa/Si/Ku

Framework design of orchestration
engine

1 2 9 4 3 2 3 Ku

Container networks 8 17.5 20.5 11 5 12 16 Ku

Services networking 3 8.5 6 4.5 2 5 8 Si
Host ports conflict management 1 2 1 0.5 1 1 1 Si
Plugin architecture for network
services

3 3 2.5 3 0 3 3 Sa/Si/Me/Ma/Dc

Service discovery and external
access

1 4 11 3 2 3 4 Ku

Application configuration and deployment 14 23 34 13.5 14 18.5 24.5 Ku

Supported workload types 2 4 8.5 1 3 4 5 Ku
Persistent volumes 7 7 11.5 9.5 3 6.5 8.5 Ku
Reusable container configuration 3 5 6 3 3 4 4 Ku
Service upgrades 2 7 8 0 5 4 7 Ku

Resource quota management 0 1 4 3.5 2 1 2 Ku
Container QoS Management 9 11 16 10 11 9 9 Ku

Container CPU and mem
allocation with support for over-
subscription

5 5 5 3 2 2 2 Sa/Si/Ku

Allocation of other resources 0 0 3 4 2 2 2 Me
Controlling scheduling behavior
by means of placement constraints

3 3 3 1 3 3 3 All but Me

Controlling preemptive scheduling
and re-scheduling behavior

1 3 5 2 4 2 2 Ku

Securing clusters 2 8.5 10.5 5 5 2 7 Ku

User identity and access
management

1 2.5 4 3 3 2 3 Ku

Cluster network security 1 6 6.5 2 2 0 4 Si/Ku
Securing containers 3.5 3 9 3 0 2 2 Ku

Protection of sensitive data and
proprietary software

0 2 2 2 0 2 2 Si/Ku/Me/Ma/Dc

Improved security isolation 3.5 1 7 1 0 0 0 Ku
App and cluster management 9.5 15.5 25 16.5 13.5 13 21 Ku

Creation, management and
inspection

3 4 4 3 2.5 3 4 Si/Ku/Dc

Monitoring resource usage and
health

1.5 2.5 5 4 4 3 5 Ku/Dc

Logging and debugging 2.5 2.5 4 2 1 1 3 Ku
Cluster maintenance 1.5 3.5 5.5 4.5 3 4 5 Ku
Multi-cloud deployments 1 3 6.5 3 3 2 4 Ku

Total number of feature implementation
strategies

57.5 94 144.5 76.5 62.5 70.5 97 602.5

Appl. Sci. 2018, 8, x FOR PEER REVIEW 43 of 76

Figure 10. Radar chart of Docker Swarm integrated mode, Kubernetes and DC/OS for common +

unique features.

7. Assessment of maturity and stability

This section answers research questions RQ7-RQ10:

RQ7. What is the maturity of a CO framework with respect to a common feature or a functional

(sub)-aspect? For each of the 9 functional aspects, we have created a table that maps each common

feature to a timeline that orders CO frameworks according to the time they have released the alpha

version of the common feature. The timelines also show when feature update and feature removal or

deprecation events have occurred in order to assess the stability property. Because these timelines

contain a lot of details we present in this article only a high-level summary as part of addressing RQ8,

but the detailed timelines and their analysis are available in the associated technical report [31],

Section 5.

RQ8. Which functional sub-aspects are mature enough to consider them as part of the stable

foundation of the overall domain? Which CO frameworks have pioneered a particular sub-aspect?

Figure 11 shows an overall timeline that ranks sub-aspects with respect to their maturity. For each

sub-aspect, the figure shows which CO framework has pioneered in consolidating the sub-aspect. We

define a sub-aspect as being consolidated when a coherent subset of the common features of that sub-

aspect has been established by the pioneering framework.

With respect to identifying those sub-aspects that are considered mature and well-understood,

we are guided by the criteria that (i) the sub-aspect has been consolidated by the pioneering

framework at least two traditional release cycles of 18 months [57] ago4, (ii) the corresponding feature

implementation strategies of the pioneering framework have at least reached beta-stage in the

meantime and (iii) there are no deprecation or removal events of important features in the latest

traditional release cycle.

4 These two release cycles are needed for letting other CO framework adopt and develop similar features.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 44 of 76

This leads us to the observation that 15 out of 27 sub-aspects can be considered mature and well-

understood (see green rectangle in Figure 11). Some sub-aspects that have been consolidated at least

36 months ago are not yet considered mature because they fail to meet one of the other two criteria:

• The sub-aspect “monitoring resource usage and health” is still in flux as Kubernetes’ monitoring

service (Heapster) has recently been completely replaced by two new monitoring services.

• Host port conflict management is expected to evolve due to the growing importance of

supporting service networking in true host mode.

• Improved security isolation support by Kubernetes has not been substantially adopted by other

orchestration frameworks; instead security isolation is becoming a customizable property of

container runtimes themselves.

• Logging support has remained very basic in all frameworks. Instead many third-party

companies have already offered commercial solutions for centralized log management.

• The network plugin architecture of Kubernetes has remained in alpha-stage for a very long time

and is therefore expected to evolve. Docker’s network plugin architecture is also expected to

evolve because Docker EE supports Kubernetes as an alternative orchestrator.

• Inspection of cluster applications is expected to evolve towards a fully reflective interface so that

it becomes possible to support application-specific instrumentation of different types of

container orchestration functionality (see Section 8.3).

• Cluster maintenance, especially cluster upgrades, remains poorly automated.

Figure 11 also presents the creativity of CO frameworks by showing on the left of the timelines

which CO frameworks have pioneered in consolidating a sub-aspect. Kubernetes has pioneered in 12

of the 27 sub-aspects. Mesos+Marathon in 10 of these sub-aspects, Docker Swarm in 4 sub-aspects,

and Aurora in 1 sub-aspect. As such, the Kubernetes project has been the most creative in terms of

pioneering new features despite being a younger project than Mesos, Marathon and Aurora.

Figure 11. Timeline of when support for a sub-aspect have been consolidated by a CO framework.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 45 of 76

RQ9. What are the relevant standardization initiatives and which CO frameworks align with these

initiatives? The stability of a CO framework software depends among other factors on its alignment

with standardization initiatives. Increased openness to such standardization initiatives also creates

more potential for researchers and entrepreneurs to contribute innovating technology that can be

integrated in multiple CO frameworks.

In Section 4, we have identified several standardization initiatives towards common

specifications to improve the plug-ability of various components including container runtimes,

container networking services and storage drivers for external persistent volumes. Table 7 gives an

overview of these standardization initiatives and which CO frameworks have aligned with these

initiatives.

The OCI specification for pluggable container runtimes has been accepted by Docker EE and

Kubernetes, while Mesos has announced to add support for OCI soon.

Different standards for container networking (CNI, libnetwork) and persistent storage (CSI,

Docker volumes) are not compatible across respectively Kubernetes and Docker Swarm. In

opposition, DC/OS, provides encompassing support for all initiatives:

• DC/OS supports both CNI-based network plugins and Docker’s libnetwork architecture.

• Moreover it supports both Docker volumes as well as the CSI specification for persistent

volumes.

As such with respect to networking and storage plugins, DC/OS and other Mesos-based

frameworks are the most open frameworks. With respect to container runtimes, Kubernetes and

Docker Swarm are the most open frameworks.

In general we can state that DC/OS is the most interesting platform for prototyping novel

techniques for container networking and persistent volumes because DC/OS’ adherence to all

relevant specifications in these two areas maximizes the potential to deploy these techniques in

Docker Swarm and Kubernetes as well. Docker or Kubernetes are best fit for prototyping innovating

container runtimes.

Table 7. Overview of existing standardization initiatives and their support.

Sub-aspects
with features
that relate to
standardization
initiatives

Standardization initiatives

S
w

ar
m

 s
ta

n
d

-a
lo

n
e

 S
w

ar
m

 i
n

te
g

ra
te

d

K
u

b
er

n
et

es

M

es
o

s

M
es

o
s

+
A

u
ro

ra

M
es

o
s

+
M

ar
at

h
o

n

D
C

/O
S

 Sa Si Ku Me Au Ma Dc

Unified
container
runtime
architecture

Open Container Initiative (OCI) spec ✓ ✓ ✓ future

Containerd container runtime architecture ✓ ✓ ✓

Plugin
architecture for
network
services

Container Network Interface (CNI) ✓ ✓ ✓ ✓ ✓

Docker’s libnetwork (aka CNM) ✓ ✓ ✓ ✓ ✓

Persistent
volumes

Docker’s volume plugin system ✓ ✓ ✓ ✓ ✓

Common Storage Interface (CSI) ✓ ✓ ✓

Appl. Sci. 2018, 8, x FOR PEER REVIEW 46 of 76

However, a widespread adoption of Kubernetes by cloud providers and cloud orchestration

platforms5 has also occurred after the Cloud Native Computing Foundation has pushed Kubernetes

as the de-facto standard in container orchestration and launched a certification programme for

production-grade commercial Kubernetes offerings[23]. As a result, Docker volumes and Docker’s

libnetwork architecture, which are not supported by Kubernetes, may face the risk of not being

further developed or halted. We estimate this risk to be low however because Docker offers its

volume and networking architecture as separate building blocks that are relatively loosely coupled

from its orchestrator layer. Therefore we believe that Docker’s volume and networking architectures

will remain important alternatives to the existing standardization initiatives.

RQ10. What is the risk that common or unique features might become deprecated in the future? If

a particular CO framework halts the development of a particular feature or even deprecates the

feature without offering a replacing feature update, then the risk arises that the development of

company products or research prototypes that heavily rely on those features might also get

compromised. In this section we will assess that risk but for the future.

With respect to common features, we have studied the volatility of features in the past by

counting the number of feature additions versus the number of feature deprecations (see Figure 1).

Surprisingly, we have found very little volatility in terms of feature being deprecated without a

replacing feature update. We recorded in total 626 feature additions; 48 out of these 626 additions

comprised an update of an existing feature without deprecating the existing implementation strategy

of the feature; finally only 9 out of 626 feature additions comprised a feature update with deprecation

or removal of the old implementation strategy of the feature. If we assume that the past is good

indicator for the future, the risk that a common feature will be deprecated by a CO framework

without being replaced with an alternative new feature implementation strategy is less than 2%.

With respect to unique features, we assume that the risk may be higher. After all, if the team

developing a specific unique features faces even small problems, there is less incentive to resolve

these problems in comparison to common features that are supported by other CO frameworks as

well. This risk should be taken into account by research and development projects that consider

relying on those unique features. The technical report [31] presents in Section 6 a detailed assessment

of the risk of feature deprecation for the unique features of the three leading CO frameworks, Docker

Swarm integrated mode, Kubernetes and DC/OS. In this article, we only present a summary of the

most important findings for Kubernetes that offers a substantial higher number of unique features:

• If the performance overhead of StatefulSets for running database clusters cannot be resolved,

DC/OS’ approach to offer a user-friendly software development kit for generating custom

scheduler frameworks for specific database may be the better approach.

• Horizontal and vertical Pod autoscalers are not fit to meet SLOs for complex stateful applications

like databases. The generic design of these autoscalers will need to be sacrificed so that

application managers can develop custom auto-scalers for particular workloads. As such there

is a substantial chance that the generic autoscaler will be replaced by different types of auto-

scalers (see also Section 8.3).

• The development of the federation API for managing multiple Kubernetes clusters across cloud

availability zones has been halted; instead a new API is being planned [384]. Most likely the

federation API will replaced by a simplified API where some existing federated instantiations of

Kubernetes API objects such as federated namespaces will be deprecated.

8. A look-ahead, missing functionality and research challenges

5 Cloud orchestration platforms such as Rancher [406] and Juju [407] that in the past allowed to manage different

CO frameworks on multiple cloud providers, nowadays only support Kubernetes.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 47 of 76

Section 8.1 provides an overview of likely future directions in the short term. Then, Section 8.2

provides an overview of what functional aspects are not yet covered by container orchestration

frameworks, but could be envisioned to be engineered based on current scientific state-of-the-art.

Finally, Section 8.3 presents a number of open research questions that we are trying to address in

future work.

 Further evolutions in the short term.

Likely areas for further evolution and innovation include improved system support for cluster

network security and container security, performance isolation of GPU, disk and network resources

and network plugin architectures:

• As stated above, Kubernetes is the only framework that offers rich support for container security

isolation whereas Mesos and DC/OS offer very limited support and Docker EE uses another

approach so that security isolation policies in Kubernetes are not easy to migrate to Docker. It is

expected, however, that existing research [385] of how container security guarantees can be

enforced using trusted computing architectures such as Intel SGX will influence the overall

container security approach of CO frameworks.

• A weakness of Kubernetes is its limited support for performance isolation of GPU and disk

resources and its lack of support for network isolation. Improved support for persistent volumes

as part of the Container Storage Interface (CSI) specification effort has been the main focus of

the most recent releases of Kubernetes. Network isolation features for Kubernetes have also been

subject to recent research [386], [387]. It is expected that thus in the near future these features

will be considerably improved.

• Finally, network plugin architectures themselves will change considerably due to recent

research in the area of network function virtualization (NFV). Better support for high-

performance networking without sacrificing automated management is currently also a main

focus of current systems research [388]. It is expected that these innovations will also trigger

improvements in virtual networking architectures for containers.

As Kubernetes offers an extensive set of unique features for managing container orchestrated

services on public cloud providers, we believe these unique features are assets of Kubernetes that

will be further developed to further strengthen the position of Kubernetes as the main CO framework

for managing container clusters in public clouds.

Docker Swarm is the most light-weight framework in terms of complexity and memory

footprint [389]. Moreover it offers support for network protocols used in cellular network

applications (see). As such, Docker Swarm could be further developed to be used in specific

technology segments such as cellular networks, cyber-physical systems, and connected and

autonomous vehicles.

Kubernetes and DC/OS are definitively two camps of opposite approaches with respect to their

support for the management of database clusters. We believe that when high-performance database

workloads must be targeted where database instances must run close to the physical data storage

location in the data center, DC/OS’ database services might be the preferred choice because they are

installed natively without relying on containers and Mesos support for allocation and reservation of

local disk resources is very mature. Performance enhancements for database workloads have already

been added to Kubernetes and we expect that more features will be added to Kubernetes in the short-

term.

 Missing sub-aspects

 Monitoring dynamic cloud federations

Intercloud middleware [390] enables application managers to deploy their applications across

multiple independent cloud platforms that are located in geographically different data centers. It also

enables an application to more autonomously delegate parts of its application components to those

Appl. Sci. 2018, 8, x FOR PEER REVIEW 48 of 76

cloud providers that offer suitable pricing models or SLA. Also customers of applications may want

to run parts of the application nearby or on their own trusted infrastructure in order to protect their

data or because the data is too big to move.

While existing CO frameworks offer basic support for customizing the placement of applications

across multiple cloud providers, they lack support for observing and dynamically exploiting the

different VM types that are offered by a cloud provider in terms of pricing models and SLAs. For

example, customer-facing latency-sensitive applications require VMs that can be leased for a longer

period at a lower-cost, while non-critical batch workloads can acquire VMs that are only run when

idle datacenter resources are available. The design of an autonomic monitoring service that is able to

detect and annotate these different pricing models and SLAs in the cloud federation is thus lacking

in current CO frameworks. It is neither possible to monitor for events about changes in pricing

models and SLAs of cloud providers.

However, existing state-of-the-art [39], [40] has already performed extensive research in this

area. It is thus expected that existing multi-cloud support of CO frameworks can be extended with

pricing-aware and SLA-aware selection of VM types.

 Support for application-level multi-tenancy

SaaS providers continuously aim to optimize the cost-efficiency, scalability and trustworthiness

of their offerings. Traditionally, these concerns have been addressed by a shared-everything multi-

tenant architecture where multiple tenants are hosted by the same application instance.

Common requirements in multi-tenant SaaS applications are support for performance isolation

between tenants and exploitation of hybrid clouds. Existing platform-level multi-tenancy support, as

offered by existing CO frameworks in the form of resource quota management for different user

groups and tenant-aware access control to API objects, is a great first start for accommodating these

requirements but is not enough for accommodating multi-tenant SaaS applications. For example, it

is possible to host multiple tenants in separate application containers, thus providing performance

isolation and security isolation but at a higher operational cost. On the other hand, hosting multiple

tenants in the same container is more cost-efficient but CO frameworks cannot offer security isolation

and protection against aggressive tenants who flood the application container with a high request

rate.

A key missing component is therefore a network admission component for throttling incoming

network traffic from aggressive tenants before this traffic can hit the Layer 4 load balancing tier of

container orchestration frameworks. Mesos’ framework rate limiting [375] and so called service

meshes such as Istio [391] for Kubernetes already exist for protecting the Master API of the CO

framework against aggressive tenants, but this should be extended for network traffic to any

application deployed. Providing a single service mesh that can host different tenants with some level

of isolation and security between the tenants is however planned future work in Istio [392].

 Research challenges

 Accurate estimation of compute resources

A first open research question is achieving both (i) cost-effective use of node resources by means

of co-locating workloads and (ii) meeting tail latencies of service-level objectives (SLOs)6.

Competitive Software-as-a-Service (SaaS) markets drive application providers to offer high-

quality services while reducing operating cost. Today’s SaaS applications are typically developed as

multi-tiered applications that can be easily deployed using container orchestration frameworks. By

taking advantage of fine-grained resource control features offered by these frameworks, application

manager have already the capability of maximizing their resource utilization. However, mapping

6 Tail latencies refer to 99th percentile of the response times of a service.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 49 of 76

SLOs into resource allocations for containers is a difficult task. Especially with the trend from

monolithic business tiers to micro-service architectures, it is a difficult task for application managers

to allocate optimal resources quantities for the different micro-services [393].

Therefore, an automated resource optimization approach is needed in order to assist the

application managers and reduce human errors. Existing techniques for resource optimization often

require the specification of an accurate performance model representing the application

however [394], [395]. Moreover, SaaS providers might offer custom features and custom SLOs to

different tenants that complicates this modelling task. Therefore, what is needed is a generic, black-

box optimization solution that does not require any model of the application or another type of

domain expertise.

 Performance-driven instrumentations of CO framework functionality

Verma et al. [396] report that the implementation of the cgroups mechanism requires

substantial tuning of the standard Linux CPU scheduler in order to achieve both low latency and

high utilization for the typical latency-sensitive, user-facing workloads at Google.

Recent research indicates that the problem of meeting tail latencies also needs dedicated

performance engineering strategies that are specifically designed for specific application families.

Recent contributions in this space include tail-latency aware caching for user-facing web

services [397] and auto-tuning threading for on-line data-intensive micro-services [398].

Clearly, existing QoS management features of CO frameworks such as setting appropriate

compute resources limits and reserving CPUs for specific containers are too generic in that they

cannot accommodate deep customization of orchestration functionality for specific families of

applications.

Research is therefore needed how to incept and design reflective APIs for application-specific

instrumentation of particular container orchestration functionalities. An evolution towards such

instrumentation already has happened at the level of container runtimes (e.g. crictl [399] and Mesos

containerizer isolators [400]) but is expected to extend towards orchestration framework

functionality as well. Examples of relevant instrumentation scenarios include customizations to

service load balancing strategies and performance-sensitive enactment customizations of rolling

upgrades. But also non-performance requirements, such as global checkpointing for recovering from

failures [401], require instrumentations of the service IP addresses so that these can be persisted and

recovered again.

 Elastic SLO management

With respect to auto-scaling concepts, Kubernetes provides besides the Horizontal Pod

Autoscaler [163] (HPA) also the Vertical Pod Autoscaler [353] (VPA).

With the increasing focus of recent Kubernetes releases to improve QoS management, the

question arises if these auto-scaling concepts can also be configured to meet service-level objectives

(SLOs). However, we have demonstrated in previous research that the Horizontal Pod Autoscaler is

too simplistic for meeting service level objectives (SLOs) of database clusters. We handled this

problem by developing a tailored auto-scaler component that is customized to the type of database

cluster [49]. Unless the HPA for StatefulSets can be tailored via Kubernetes’ annotations or modular

interceptors, the HPA for StatefulSets will need to be redeveloped by relying on a framework or library

by means of which custom auto-scaling policies and complex event monitoring policies can be

specified and enforced.

The Kubernetes’ VPA concept is promising but there is one big disadvantage with respect to

SLO compliance: adjusting resource allocation policies of Pods requires killing these Pods and

waiting till the scheduler assigns a new Pod with the adjusted allocation policies. Obviously, this

operation needs to be performed at run-time without restarting containers in order to avoid

temporary performance degradation with SLO violations. Ironically, although run-time adjustment

of container resource allocation policies is by default supported in Docker engine, they are not

supported by any CO framework except Docker stand-alone. Indeed recent research presents a

Appl. Sci. 2018, 8, x FOR PEER REVIEW 50 of 76

middleware for vertical scaling of containers that is implemented on top of Docker engine exactly

because the presented middleware requires adjusting resource allocation policies without restarting

containers[402].

Finally, cost-effective auto-scaling to meet SLOs has been shown a sub-linear resource scaling

problem[403], especially when co-locating tenants that are being offered different types of SLOs [404].

However existing HPAs of Kubernetes only support linear scaling, therefore leading to either SLO

violations or allocating too much resources. A work-around that simulates sub-linear scaling is to

combine HPA and VPA, but it would be much better to support managing container replicas with

heterogeneous resource allocation policies.

In summary, existing auto-scalers of Kubernetes are not ready for managing performance SLOs.

This lack is also the main reason why we have not grouped these auto-scaling features under the

“Container QoS Management” aspect.

9. Threats to validity and limitations of study

In essence, we present in this article a descriptive study based on expert reviews and expert

assessments and therefore the main results are qualitative. All quantitative results are based on the

identified features in the qualitative part of the study, which is inherently subjective to some extent.

We have thus not used variations of dependent and independent variables with different subject

groups. Neither have we used automated metrics such as NLP-based processing of documentation,

or amount of code/documentation.

As consequence, a large part of the standard threats to internal and external validity in

experiment design are not relevant to this study. As a reminder, threats to internal validity

compromise our confidence in stating that the found differences between CO frameworks are correct.

Threats to external validity compromise our confidence in stating that the study’s results are

applicable to other CO frameworks.

As we don’t make claims about other CO frameworks, only the following internal validity

threats remain relevant:

• Selection bias, i.e. the decision what CO framework to select and the selection of the different

features and the overarching (sub)-aspects may be determined subjectively. Thus, we may have

missed features or interpreted feature implementation strategies inappropriately.

• Experimenter bias, i.e. unconscious preferences for certain CO frameworks that influence

interpretation of documentation; e.g., whether a feature is partially or fully supported by a

framework.

 Selection bias.

We have tried to manage selection bias in our research method by means of three complementary

approaches that have been explained in detail in Section 3. Firstly, we have applied a systematic

approach and used existing methods if possible; for example, we have applied commonality and

variability analysis in feature modelling to find common features (see Section 3.1.2) and we have

applied card sorting to group features in usable aspects (see Section 3.1.3).

Secondly, we improved the accuracy of the description of the features and feature

implementation strategies by means of an iterative approach. For example, we have first performed

a pair-wise comparison of titles of documentation pages and thereafter a detailed review of the

documentation pages in full detail. Then, we have asked customers and platform developers to

review different versions of this article with respect to the question whether the set of identified

features and their comparison makes sense and is complete (see Section 3.5).

Thirdly, we have continuously elaborated our practical experience of CO frameworks by not

only testing specific features but also conducting performance evaluation research [49], [50]. This

practical experience helps to make better interpretations of documentation.

 Experimenter bias

Appl. Sci. 2018, 8, x FOR PEER REVIEW 51 of 76

It has been challenging to manage experimenter bias because container technology is currently at its

peak of inflated expectations according to the Gartner hype cycle, has evolved quickly in the past,

and Kubernetes has been adopted by Docker EE and DC/OS and all major public cloud providers.

To stay objective in the mid of such inflated expectations, we have consciously scoped the study to

research questions with respect to software qualities that can be objectively measured using simple

arithmetic: (i) genericity (in terms of number of supported features, (ii) maturity (i.e., mapping

features to development history on GitHub) and (iii) stability (i.e., number of updated or deprecated

features). To find evidence for overall significant differences between the CO frameworks with

respect to genericity, we have used the Friedman and Nemenyi tests due to their effectiveness in un-

replicated experimental designs for checking overall ranking of multiple systems with respect to

different metrics [56]; in our research, metrics correspond with the 27 sub-aspects and systems with

the CO frameworks.

 Limitations of the study

Besides the above threats to internal validity in experimental design, the study has the following

limitations:

• We have only studied the documentation of CO frameworks, not the actual code. We have not

used any automated methods for mining features/aspects from code. As such features that can

only be extracted from code are not covered in this study.

• Any claims about performance or scalability of a certain CO framework’s feature

implementation strategy are based on actual performance evaluation of Kubernetes and Docker

Swarm integrated mode in the context of the aforementioned publications[49], [50]. Projections

of these claims towards performance and scalability of similar feature implementation strategies

in Mesos-based frameworks are speculative however.

• The study does not provide findings about the robustness of the CO frameworks such as or the

ratio of bugs per line of code, or the number of bug reports per user.

10. Lessons learned

We organize the main conclusions from this study according to the three aforementioned software

qualities, and thereafter we summarize the highlights for each of the frameworks

 Genericity

• The ratio of common features over unique features is relatively large and most common features

are supported by at least 50% of the CO frameworks. Such a high ratio of common features

allows for direct comparison of the CO frameworks with respect to non-functional requirements

such as scalability and performance of feature implementation strategies.

• Features in the sub-aspects “improved security isolation” and “allocation of other resources” are

only supported by two or three CO frameworks

o Although Kubernetes consolidated a full feature set for container isolation policies almost

36 months ago, there is little uptake of these features by the other CO frameworks.

o Mesos-based support for allocating GPU and disk resources to co-located containers is only

marginally supported by Kubernetes and not supported by Docker Swarm.

• Kubernetes offers the highest number of common features and the highest number of unique

features. When adding up both common and unique features, Kubernetes even offers the highest

number of features for all 9 aspects and it offers the highest number of features for 15 sub-

aspects.

• Significant differences in genericity with Docker EE and DC/OS have however not been found.

After all, when taking into account only common features, Kubernetes offers the absolute

highest number of common features for 7 sub-aspects, whereas Docker Swarm integrated mode

offers the highest number of common features for the sub-aspects “services networking”, “host

port conflict management” and “cluster network security”. Mesos offers the most common

Appl. Sci. 2018, 8, x FOR PEER REVIEW 52 of 76

features for the sub-aspect “persistent volumes” and DC/OS offers the most common features of

the sub-aspects “cluster maintenance” and “multi-cloud deployments”.

• In the sub-aspects “services networking” and “host port conflict management”, Docker Swarm

integrated mode and DC/OS offer support for the features host mode services networking, stable

DNS name for services and dynamic allocation of host ports. We have found that the other approaches

to services networking such as routing meshes and virtual IP networks introduce a substantial

performance overhead in comparison to running Docker containers in host mode. As such, a

host mode service networking approach with appropriate host port conflict management is a

viable alternative for high-performance applications.

• For some of these sub-aspects, there remain differences between whether a particular set of

features is offered by the open-source distribution or commercial version of these frameworks:

o Architectural patterns. The open-source distributions of Docker Swarm and DC/OS all

support automated setup of highly available clusters, where Kubernetes only provides support

for this feature in particular commercial versions.

o User identity and access management. Kubernetes offers the most extensive support for

authentication and authorization of cluster administrators and application managers

because the open-source distributions of these frameworks offer support for tenant-aware

access control lists. In opposition, only the commercial versions of Docker Swarm and DC/OS

offer support for this feature.

o Creation, management and inspection of cluster and applications. The open-source

distributions of Kubernetes and DC/OS offer the most extensive command-line interfaces and

web-based user interfaces with support for common features such as labels for organizing API

objects and visual inspection of resource usage graphs. The commercial version of Docker

Swarm also includes a web-based UI with the same set of features, though.

o Logging and debugging of containers and CO frameworks. The open-source distribution

of Kubernetes and DC/OS offer support for integrating existing log aggregation systems. In

opposition, only the commercial version of Docker Swarm supports this feature.

o Multi-cloud support. Docker Swarm and all Mesos-based systems have invested most of

their effort in building extensive support for running a single container cluster in high

availability mode where multiple masters are spread across different cloud availability

zones. Support for such an automated HA cluster across multiple availability zones is not

supported by the open-source contribution of Kubernetes; it is only supported by the

commercial Kubernetes-as-a-Service offerings on top of AWS and Google cloud.

 Maturity

• The 15 sub-aspects identified by the green rectangle in Figure 11 shape a mature foundation for

the overall technology domain as these sub-aspects are well-understood by now and little

feature deprecations have been found in these sub-aspects.

• Figure 11 further indicates that Kubernetes is the most creative project in terms of pioneering

common features despite being a younger project than Mesos, Aurora and Marathon.

 Stability

• Mesos is the most interesting platform for prototyping novel techniques for (i) container

networking and (ii) persistent volumes because Mesos’ adherence to all relevant standardization

initiatives in these two areas maximizes the potential to deploy these techniques in Docker

Swarm and Kubernetes as well. Docker or Kubernetes are best fit for prototyping innovating

techniques for container runtimes.

• The overall rate of feature deprecations among common features in the past is about 2% of the

total number of feature updates (i.e., feature additions, feature replacements, and feature

deprecations).

• Only one unique feature of Kubernetes, federated instantiations of the Kubernetes API objects, has

been halted and will probably be deprecated without a replacing feature update.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 53 of 76

 Main insights with respect to Docker Swarm

Although Docker Swarm is the youngest and also least generic framework among the three

leading CO frameworks, Docker Swarm has clearly contributed an innovative services networking

approach and networking plugin architecture.

Docker has actually separated services networking support from Docker Swarm. As such we

believe that Docker’s networking architecture is here to stay. Docker has also recently released an

enterprise edition with support for deploying and managing Kubernetes clusters next to Swarm

clusters. While the current release does not show any strong integration between Docker and

Kubernetes, support for Docker’s networking architecture in Kubernetes is a likely future feature

request.

 Main insights with respect to Kubernetes

Kubernetes is the most generic orchestration framework for 7 out of 27 of sub-aspects. Yet, in

many sub-aspects the absolute differences in number of supported features is small with respect to

the two other leading frameworks Docker EE and DC/OS.

Kubernetes has also the most unique features. This may be a higher source of vendor lock-in on

the one hand, but mainly constitutes a competitive edge. Our analysis of genericity has shown that

many unique features of Kubernetes are much stronger a source for increased genericity than a source

of vendor lock-in. When taking into account the total of common and unique features of Kubernetes,

it counts the highest number of features of 15 sub-aspects.

Kubernetes is also the most mature container orchestration framework as it has pioneered 12 out

of the 27 sub-aspects.

Kubernetes is in particular unique by its support for integrating with public cloud platform’s

load-balancing tier and offering a wide range of external service discovery options. As a result, a

large number of public cloud providers have offered a hosted solution or even a Kubernetes-as-a-

Service offering.

A weakness of the open source distribution of Kubernetes is that it does not offer support for

automated installation of a highly-available cluster with multiple master nodes. Kubernetes is also

less scalable than Mesos as it is currently limited to supporting not more than 5000 nodes in a single

cluster [405].

 Main insights with respect to Mesos and DC/OS

DC/OS, an extended Mesos+Marathon distribution is the second most generic framework.

Mesos+Marathon has pioneered also 10 out of the 27 aspects. A strength of Mesos is that it allows

fine-grained sharing of cluster resources across multiple scheduler frameworks, which include not

only CO frameworks but also non-CO frameworks like Hadoop, Kafka and NoSQL databases. This

decentralized scheduling architecture is the reason why Mesos-based clusters can support large-scale

clusters till the size of 50.000 nodes [41]. Mesos or DC/OS may also be a viable alternative to

companies who seek to setup a highly available cluster in a private cloud with the broadest range of

possibilities to integrate container-based applications with non-container based applications. After

all, DC/OS offers support for load balancing non-container orchestrated workloads such as databases

or high-performance computing applications.

 Main insights with respect to Docker Swarm alone and Apache Aurora

Docker Swarm stand-alone and Apache Aurora are relatively small CO frameworks that do

differ significantly in terms of genericity from DC/OS and Kubernetes. Indeed, Aurora is specifically

designed for running long-running jobs and cron jobs, while Docker Swarm stand-alone is also a

more simplified framework with substantial less automated management.

We only recommend Docker Swarm stand-alone as a possible starting point for developing one’s

own CO framework. This is a relevant direction because 28% of surveyed users in the most recent

OpenStack survey[4], responded that they have built their own CO framework instead of using

Appl. Sci. 2018, 8, x FOR PEER REVIEW 54 of 76

existing CO frameworks (see also Figure 4). We make such recommendation because the API of

Docker Swarm stand-alone is the least restrictive in terms of the range of offered options for common

commands such as creating, updating and stopping a container. For example, Docker Swarm stand-

alone is the only framework that allows to dynamically change resource limits without restarting

containers. Such less restrictive API is a more flexible starting point for implementing a custom

developed CO framework.

11. Conclusion

In this article, we have presented a descriptive feature comparison study of the three most

prominent orchestration frameworks: Docker Swarm, Kubernetes and Mesos that can be combined

with Marathon, Aurora or DC/OS. The goals of this study were tree-fold: (i) identifying the common

and unique features of all frameworks, (ii) comparing these frameworks qualitatively ánd

quantitatively with respect to genericity in terms of supported features, and (iii) investigating the

maturity and stability of the frameworks as well as the pioneering nature of each framework by

studying the historical evolution of the frameworks on GitHub.

We have identified 124 common features and 54 unique features that we divided into a

taxonomy of 9 functional aspects and 27 functional sub-aspects. Although, Kubernetes supports the

highest number of accumulated common and unique features for all 9 functional aspects, no evidence

has been found for significant differences in genericity with the other two leading frameworks, i.e.,

Docker Swarm and the Mesos-based DC/OS. Fifteen out of 27 sub-aspects have been identified as

mature and stable. These are pioneered in descending order by Kubernetes, Mesos and Marathon.

Finally, less than 2% of common feature implementation strategies have been deprecated without

introducing a replacing implementation strategy. We conclude therefore that a broad, mature and

stable foundation underpins the studied container orchestration frameworks.

The main differentiating characteristics between the three main types of vendors (Docker EE,

CNCF-certified Kubernetes solutions, and the Mesos-based DC/OS) are as follows. The large number

of unique features of Kubernetes, especially those for managing clusters in public clouds, is a strong

asset of Kubernetes without creating a risk of vendor lock-in. After all, not only all major public cloud

providers, but also Docker EE and DC/OS already offer support for Kubernetes. DC/OS is, like any

other Mesos-based framework, the best choice for large-scale cluster deployments from 5.000 till

50.000 nodes due to Mesos’ inherent decentralized scheduler architecture. Finally, Docker Swarm

stand-alone is expected to be used and customized for specific technology segments, such as the

domain of Internet of Things, due to its low memory footprint, its support for co-existing virtual

networks and its support for run-time updates of container images without the need to restart

containers. The future of Docker Swarm integrated mode depends on whether its extensive

networking features can be integrated with co-located Kubernetes clusters.

Likely areas for further evolution and innovation include system support for improved cluster

security and container security, performance isolation of GPU, disk and network resources, and

network plugin architectures. Two currently missing functional sub-aspects are price- and SLA-

aware selection of VMs for setting up clusters in hybrid or federated clouds and support for

controlling application-level tenancy so that SaaS providers can fully control the trade-off between

improved resource utilization and performance isolation between tenants. Open research challenges

include (i) correct estimation of required resources for individual containers and container replica

levels to meet a certain performance or scalability requirement, especially in micro-service based

applications, (ii) support for performance-sensitive instrumentations of CO framework functionality

and (iii) support for sub-linear auto-scaling in order to implement cost-effective elastic SLO

management that keeps the ratio of over-provisioned resources within a certain tolerance level.

Author Contributions: Conceptualization, Eddy Truyen and Dimitri Van Landuyt; Data curation, Eddy Truyen;

Funding acquisition, Bert Lagaisse and Wouter Joosen; Investigation, Eddy Truyen; Methodology, Eddy Truyen;

Project administration, Bert Lagaisse; Software, Eddy Truyen; Supervision, Bert Lagaisse and Wouter Joosen;

Validation, Eddy Truyen and Dimitri Van Landuyt; Visualization, Eddy Truyen; Writing – original draft, Eddy

Truyen; Writing – review & editing, Eddy Truyen, Dimitri Van Landuyt and Davy Preuveneers.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 55 of 76

Funding: “This research was funded by the Agency for Innovation and Entrepreneurship IWT, grant

DeCoMAdS, grant number 179K2315, and the Research Fund KU Leuven.

Acknowledgments: We thank the anonymous reviewers for their helpful comments and suggestions to improve

the quality of this article. We thank Bert Robben for his feedback and reviews of drafts of this article. We thank

the developers of the CO frameworks, especially the technical writers for the excellent documentation. Finally

we thank GitHub for offering the documentation of the CO frameworks in versioned format.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to

publish the results.

References

[1] M. G. Xavier, I. C. De Oliveira, F. D. Rossi, R. D. Dos Passos, K. J. Matteussi, and C. A. F. De Rose, “A

Performance Isolation Analysis of Disk-Intensive Workloads on Container-Based Clouds,” 2015 23rd

Euromicro Int. Conf. Parallel, Distrib. Network-Based Process., pp. 253–260, 2015.

[2] E. Truyen, D. Van Landuyt, V. Reniers, A. Rafique, B. Lagaisse, and W. Joosen, “Towards a container-

based architecture for multi-tenant SaaS applications,” in ARM 2016 Proceedings of the 15th International

Workshop on Adaptive and Reflective Middleware, 2016.

[3] N. Kratzke, “A Lightweight Virtualization Cluster Reference Architecture Derived from Open Source

PaaS Platforms,” Open J. Mob. Comput. Cloud Comput., vol. 1, no. 2, pp. 17–30, 2014.

[4] OpenStack, “User Survey -- A snapshot of the OpenStack users’ attitudes and deployments,” 2017.

[5] “Openstack user survey,” 2016. [Online]. Available:

https://www.openstack.org/assets/survey/October2016SurveyReport.pdf. [Accessed: 27-Oct-2016].

[6] OpenStack, “OpenStack User Survey Report November 2017.” 2017.

[7] Mesosphere, “mesos/docker-containerizer.md at 0.20.0 · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/0.20.0/docs/docker-containerizer.md. [Accessed: 09-Nov-2018].

[8] Pieter Noordhuis et al., “Kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/blob/release-0.4/README.md. [Accessed: 09-Nov-2018].

[9] “kubernetes/networking.md at v0.6.0 · kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/networking.md. [Accessed: 09-Nov-2018].

[10] “kubernetes/pods.md at release-0.4 · kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/pods.md. [Accessed: 09-Nov-2018].

[11] “kubernetes/volumes.md at v0.6.0 · kubernetes/kubernetes.” [Online]. Available:

https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/volumes.md. [Accessed: 09-Nov-2018].

[12] Docker Inc., “Manage data in containers.” [Online]. Available:

https://docs.docker.com/v1.10/engine/userguide/containers/dockervolumes/. [Accessed: 09-Nov-2018].

[13] Mesosphere, “mesos/docker-volume.md at 1.0.0 · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.0.0/docs/docker-volume.md. [Accessed: 09-Nov-2018].

[14] Mesosphere, “mesos/networking-for-mesos-managed-containers.md at 0.25.0 · apache/mesos.”

[Online]. Available: https://github.com/apache/mesos/blob/0.25.0/docs/networking-for-mesos-

managed-containers.md. [Accessed: 09-Nov-2018].

[15] Docker Inc., “swarm/networking.md at v1.0.0 · docker/swarm.” [Online]. Available:

https://github.com/docker/swarm/blob/v1.0.0/docs/networking.md. [Accessed: 09-Nov-2018].

[16] ClusterHQ, “ClusterHQ/flocker: Container data volume manager for your Dockerized application.”

[Online]. Available: https://github.com/ClusterHQ/flocker/. [Accessed: 09-Nov-2018].

[17] F. Lardinois, “ClusterHQ Raises $12M Series A Round To Expand Its Container Data Management

Service,” techcrunch.com, 2015. [Online]. Available: https://techcrunch.com/2015/02/05/clusterhq-raises-

12m-series-a-round-to-help-developers-run-databases-in-docker-containers/. [Accessed: 27-Mar-2018].

[18] ClusterHQ, “Flocker Integrations.” [Online]. Available: https://flocker.readthedocs.io/en/latest/.

[Accessed: 09-Nov-2018].

[19] F. Lardinois, “ClusterHQ, an early player in the container ecosystem, calls it quits,” techcrunch.com, 2016.

[Online]. Available: https://techcrunch.com/2016/12/22/clusterhq-hits-the-deadpool/. [Accessed: 27-

Mar-2018].

[20] “containerd – An industry-standard container runtime with an emphasis on simplicity, robustness and

portability.” [Online]. Available: https://containerd.io/. [Accessed: 09-Nov-2018].

[21] “Open Container Initiative.” [Online]. Available: https://github.com/opencontainers/. [Accessed: 09-

Nov-2018].

[22] “General Availability of containerd 1.0 is Here!,” The Cloud Native Computing Foundation, 2017. [Online].

https://www.openstack.org/assets/survey/October2016SurveyReport.pdf
https://github.com/apache/mesos/blob/0.20.0/docs/docker-containerizer.md
https://github.com/kubernetes/kubernetes/blob/release-0.4/README.md
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/networking.md
https://github.com/kubernetes/kubernetes/blob/release-0.4/docs/pods.md
https://github.com/kubernetes/kubernetes/blob/v0.6.0/docs/volumes.md
https://docs.docker.com/v1.10/engine/userguide/containers/dockervolumes/
https://github.com/apache/mesos/blob/1.0.0/docs/docker-volume.md
https://github.com/apache/mesos/blob/0.25.0/docs/networking-for-mesos-managed-containers.md
https://github.com/apache/mesos/blob/0.25.0/docs/networking-for-mesos-managed-containers.md
https://github.com/docker/swarm/blob/v1.0.0/docs/networking.md
https://github.com/ClusterHQ/flocker/
https://techcrunch.com/2015/02/05/clusterhq-raises-12m-series-a-round-to-help-developers-run-databases-in-docker-containers/
https://techcrunch.com/2015/02/05/clusterhq-raises-12m-series-a-round-to-help-developers-run-databases-in-docker-containers/
https://flocker.readthedocs.io/en/latest/
https://techcrunch.com/2016/12/22/clusterhq-hits-the-deadpool/
https://containerd.io/
https://github.com/opencontainers/

Appl. Sci. 2018, 8, x FOR PEER REVIEW 56 of 76

Available: https://www.cncf.io/blog/2017/12/05/general-availability-containerd-1-0/. [Accessed: 27-Mar-

2018].

[23] “Cloud Native Computing Foundation Launches Certified Kubernetes Program with 32 Conformant

Distributions and Platforms,” The Cloud Native Computing Foundation, 2017. [Online]. Available:

https://www.cncf.io/announcement/2017/11/13/cloud-native-computing-foundation-launches-certified-

kubernetes-program-32-conformant-distributions-platforms/. [Accessed: 27-Mar-2018].

[24] OpenStack, “OPENSTACK USER SURVEY : A snapshot of OpenStack users ’ attitudes and

deployments,” Openstack.org, no. October, 2015.

[25] GitHub, “The State of the Octoverse 2017 -- Ten most-discussed repositories.” 2018.

[26] Mesosphere, “Kubernetes - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/kubernetes/. [Accessed: 09-Nov-2018].

[27] Docker Inc., “Run Swarm and Kubernetes Interchangeably | Docker.” [Online]. Available:

https://www.docker.com/products/orchestration. [Accessed: 09-Nov-2018].

[28] Amazon Web Services (AWS), “Amazon EKS - Managed Kubernetes Service.” [Online]. Available:

https://aws.amazon.com/eks/. [Accessed: 09-Nov-2018].

[29] N. Kratzke, “A Brief History of Cloud Application Architectures,” Appl. Sci., vol. 8, no. 8, p. 1368, 2018.

[30] E. Truyen and D. Van Landuyt, “Structured feature comparison between container orchestration

frameworks,” 22-Nov-2018. [Online]. Available: https://zenodo.org/record/1494190#.XDh2ls17lPY.

[Accessed: 11-Jan-2019].

[31] E. Truyen, D. Van Landuyt, D. Preuveneers, B. Lagaisse, and W. Joosen, “A comprehensive feature

comparison study of open-source container orchestration frameworks,” 10-Jan-2019. [Online]. Available:

https://doi.org/10.5281/zenodo.2547979. [Accessed: 11-Jan-2019].

[32] S. Soltesz, S. Soltesz, H. Pötzl, H. Pötzl, M. E. Fiuczynski, M. E. Fiuczynski, A. Bavier, A. Bavier, L.

Peterson, and L. Peterson, “Container-based operating system virtualization: a scalable, high-

performance alternative to hypervisors,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 275–287, 2007.

[33] M. G. Xavier, M. V Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. a F. De Rose, “Performance

Evaluation of Container-based Virtualization for High Performance Computing Environments,” Proc.

2013 21st Euromicro Int. Conf. Parallel, Distrib. Network-Based Process., pp. 233–240, 2013.

[34] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs Containerization to Support PaaS,” in 2014 IEEE

International Conference on Cloud Engineering, 2014, pp. 610–614.

[35] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison of virtual

machines and Linux containers,” 2015 IEEE Int. Symp. Perform. Anal. Syst. Softw., pp. 171–172, 2015.

[36] A. Tosatto, P. Ruiu, and A. Attanasio, “Container-Based Orchestration in Cloud: State of the Art and

Challenges,” Complex, Intelligent, Softw. Intensive Syst. (CISIS), 2015 Ninth Int. Conf., pp. 70–75, 2015.

[37] E. Casalicchio, “Autonomic Orchestration of Containers: Problem Definition and Research Challenges,”

in Proceedings of the 10th EAI International Conference on Performance Evaluation Methodologies and Tools,

2017.

[38] P. Heidari, Y. Lemieux, and A. Shami, “QoS Assurance with Light Virtualization - A Survey,” in 2016

IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2016, pp. 558–563.

[39] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey and Research Challenges,” J. Netw.

Syst. Manag., vol. 23, no. 3, pp. 567–619, 2014.

[40] S. Costache, D. Dib, N. Parlavantzas, and C. Morin, “Resource management in cloud platform as a

service systems: Analysis and opportunities,” J. Syst. Softw., vol. 132, pp. 98–118, 2017.

[41] B. Hindman, A. Konwinski, A. Platform, F.-G. Resource, and M. Zaharia, “Mesos: A platform for fine-

grained resource sharing in the data center,” in Proceedings of the 8th USENIX conference on Networked

systems design and implementation (NSDI 2011), 2011.

[42] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale cluster

management at Google with Borg,” in Eurosys, 2015.

[43] C. Pahl, “Containerisation and the PaaS Cloud,” IEEE Cloud Comput., vol. 2, no. 3, pp. 24–31, 2015.

[44] N. Kratzke and R. Peinl, “ClouNS-a Cloud-Native Application Reference Model for Enterprise

Architects,” Proc. - IEEE Int. Enterp. Distrib. Object Comput. Work. EDOCW, vol. 2016–Septe, no. October

2017, pp. 198–207, 2016.

[45] P.-C. Quint and N. Kratzke, “Towards a Lightweight Multi-Cloud DSL for Elastic and Transferable

Cloud-native Applications,” in Proceedings of the 8th International Conference on Cloud Computing and

Services Science (CLOSER 2018), 2018.

[46] N. Kratzke, “Smuggling Multi-cloud Support into Cloud-native Applications using Elastic Container

Platforms,” Proc. 7th Int. Conf. Cloud Comput. Serv. Sci., vol. 2017, no. April, pp. 57–70, 2017.

[47] N. Kratzke and P. Quint, “Project CloudTRANSIT -- Transfer Cloud-native Applications at Runtime,”

2018.

https://www.cncf.io/blog/2017/12/05/general-availability-containerd-1-0/
https://www.cncf.io/announcement/2017/11/13/cloud-native-computing-foundation-launches-certified-kubernetes-program-32-conformant-distributions-platforms/
https://www.cncf.io/announcement/2017/11/13/cloud-native-computing-foundation-launches-certified-kubernetes-program-32-conformant-distributions-platforms/
https://docs.mesosphere.com/services/kubernetes/
https://www.docker.com/products/orchestration
https://aws.amazon.com/eks/
https://zenodo.org/record/1494190#.XDh2ls17lPY
https://doi.org/10.5281/zenodo.2547979

Appl. Sci. 2018, 8, x FOR PEER REVIEW 57 of 76

[48] “DeCoMAdS: Deployment and configuration middleware for adaptive Software-as-a-Service,” 2015.

[Online]. Available: https://distrinet.cs.kuleuven.be/research/projects/DeCoMAdS.

[49] E. Truyen, M. Bruzek, D. Van Landuyt, B. Lagaisse, and W. Joosen, “Evaluation of container

orchestration systems for deploying and managing NoSQL database clusters,” in Cloud Computing

(CLOUD), 2018 IEEE 11th International Conference on, 2018.

[50] W. Delnat, E. Truyen, A. Rafique, D. Van Landuyt, and W. Joosen, “K8-Scalar: a workbench to compare

autoscalers for container-orchestrated database clusters,” 13th Int. Symp. Softw. Eng. Adapt. Self-Managing

Syst. (SEAMS 2018), pp. 33–39, 2018.

[51] J. C. Campbell, C. Zhang, Z. Xu, A. Hindle, and J. Miller, “Deficient documentation detection: a

methodology to locate deficient project documentation using topic analysis,” in Proceedings of the 10th

Working Conference on Mining Software Repositories, 2013.

[52] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman, Y. Jia, and Y. Zhang, “Clustering Mobile

Apps Based on Mined Textual Features,” in Proceedings of the 10th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement - ESEM ’16, 2016, pp. 1–10.

[53] H. Mei, W. Zhang, and F. Gu, “A feature oriented approach to modeling and reusing requirements of

software product lines,” Proc. 27th Annu. Int. Comput. Softw. Appl. Conf. COMPAC 2003, pp. 250–256,

2003.

[54] K. C. Kang, S. G. Cohen, J. a Hess, W. E. Novak, and a S. Peterson, “Feature-Oriented Domain Analysis

(FODA) Feasibility Study,” 1990.

[55] D. Spencer and J. J. Garrett, Card sorting : designing usable categories. Rosenfeld Media, 2009.

[56] J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. Mach. Learn. Res., vol. 7,

2006.

[57] F. Khomh, T. Dhaliwal, Y. Zou, B. Adams, and C. Engineering, “Do Faster Releases Improve Software

Quality ? An Empirical Case Study of Mozilla Firefox,” pp. 179–188, 2012.

[58] E. Truyen, D. Van Landuyt, B. Lagaisse, and W. Joosen, “A comparison between popular open-source

container orchestration frameworks,” 2017.

[59] Red Hat, “Overview - Core Concepts | Architecture | OpenShift Container Platform 3.11.” [Online].

Available: https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/index.html.

[Accessed: 09-Nov-2018].

[60] Cloud Foundry, “Powered by Kubernetes - Container Runtime | Cloud Foundry.” [Online]. Available:

https://www.cloudfoundry.org/container-runtime/. [Accessed: 09-Nov-2018].

[61] “Kubernetes home page.” [Online]. Available: https://kubernetes.io/.

[62] Docker Inc., “Docker Swarm | Docker Documentation.” [Online]. Available:

https://docs.docker.com/swarm/. [Accessed: 09-Nov-2018].

[63] Docker Inc., “Swarm mode overview | Docker Documentation.” [Online]. Available:

https://docs.docker.com/engine/swarm/. [Accessed: 09-Nov-2018].

[64] Mesosphere, “Apache Mesos.” [Online]. Available: http://mesos.apache.org/. [Accessed: 09-Nov-2018].

[65] Apache, “Apache Aurora.” [Online]. Available: http://aurora.apache.org/. [Accessed: 09-Nov-2018].

[66] Mesosphere, “Marathon: A container orchestration platform for Mesos and DC/OS.” [Online]. Available:

https://mesosphere.github.io/marathon/. [Accessed: 09-Nov-2018].

[67] Mesosphere, “The Definitive Platform for Modern Apps | DC/OS.” [Online]. Available: https://dcos.io/.

[Accessed: 09-Nov-2018].

[68] U. Breitenbücher, T. Binz, O. Kopp, K. Képes, F. Leymann, and J. Wettinger, “Hybrid TOSCA

Provisioning Plans: Integrating Declarative and Imperative Cloud Application Provisioning

Technologies,” Springer International Publishing, 2016, pp. 239–262.

[69] Docker Inc., “docker.github.io/deploy-app.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose.

[Accessed: 09-Nov-2018].

[70] “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md.

[Accessed: 09-Nov-2018].

[71] Cloud Native Computing Foundation, “website/overview.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/configuration/overview.md. [Accessed: 09-Nov-2018].

[72] Apache, “Apache Aurora Configuration Reference.” [Online]. Available:

http://aurora.apache.org/documentation/latest/reference/configuration/. [Accessed: 09-Nov-2018].

[73] Mesosphere, “Marathon REST API.” [Online]. Available: https://mesosphere.github.io/marathon/api-

console/index.html. [Accessed: 09-Nov-2018].

https://distrinet.cs.kuleuven.be/research/projects/DeCoMAdS.%0d%5b49%5d%09E
https://distrinet.cs.kuleuven.be/research/projects/DeCoMAdS.%0d%5b49%5d%09E
https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/index.html
https://www.cloudfoundry.org/container-runtime/
https://kubernetes.io/.%0d%5b62%5d%09Docker%20Inc.,
https://kubernetes.io/.%0d%5b62%5d%09Docker%20Inc.,
https://docs.docker.com/swarm/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
http://aurora.apache.org/
https://mesosphere.github.io/marathon/
https://dcos.io/
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/swarm_at_scale/deploy-app.md#extra-credit-deployment-with-docker-compose
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/overview.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/overview.md
http://aurora.apache.org/documentation/latest/reference/configuration/
https://mesosphere.github.io/marathon/api-console/index.html
https://mesosphere.github.io/marathon/api-console/index.html

Appl. Sci. 2018, 8, x FOR PEER REVIEW 58 of 76

[74] Mesosphere, “Creating Services - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/deploying-services/creating-services/. [Accessed: 09-Nov-2018].

[75] Mesosphere, “mesos/architecture.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md. [Accessed: 09-Nov-2018].

[76] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Dominant Resource

Fairness : Fair Allocation of Multiple Resource Types Maps Reduces,” NSDI 2011, 2011.

[77] Mesosphere, “mesos/architecture.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md#example-of-resource-offer.

[Accessed: 09-Nov-2018].

[78] Mesosphere, “mesos/reservation.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/reservation.md#offeroperationunreserve. [Accessed:

09-Nov-2018].

[79] Mesosphere, “marathon/high-availability.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/high-availability.md. [Accessed: 09-

Nov-2018].

[80] Mesosphere, “mesos/reconciliation.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/reconciliation.md. [Accessed: 09-Nov-2018].

[81] Docker Inc., “docker.github.io/admin_guide.md at v17.06 · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/admin_guide.md.

[Accessed: 09-Nov-2018].

[82] Apache, “aurora/configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/configuration.md#replicated-log-

configuration. [Accessed: 09-Nov-2018].

[83] Mesosphere, “High Availability - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/overview/high-availability/. [Accessed: 09-Nov-2018].

[84] Cloud Native Computing Foundation, “website/highly-available-master.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/highly-available-master.md. [Accessed: 09-Nov-2018].

[85] Google LLC, “Google Kubernetes Engine | Kubernetes Engine | Google Cloud.” [Online].

Available: https://cloud.google.com/kubernetes-engine/. [Accessed: 09-Nov-2018].

[86] Canonical, “Kubernetes | Ubuntu.” [Online]. Available: https://www.ubuntu.com/kubernetes.

[Accessed: 09-Nov-2018].

[87] CoreOS, “coreos/tectonic-installer: Install a Kubernetes cluster the CoreOS Tectonic Way: HA, self-

hosted, RBAC, etcd Operator, and more.” [Online]. Available: https://github.com/coreos/tectonic-

installer. [Accessed: 09-Nov-2018].

[88] Apache, “aurora/constraints.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md. [Accessed: 09-Nov-

2018].

[89] Mesosphere, “marathon/constraints.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md#operators. [Accessed:

09-Nov-2018].

[90] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and S. Hand, “Firmament: Fast, Centralized Cluster

Scheduling at Scale Firmament: fast, centralized cluster scheduling at scale,” Osdi, pp. 99–115, 2016.

[91] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and QoS-aware cluster management,” …

19Th Int. Conf. …, vol. 42, no. 1, pp. 127-127-144–144, 2014.

[92] C. Delimitrou and C. Kozyrakis, “QoS-Aware scheduling in heterogeneous datacenters with paragon,”

ACM Trans. Comput. Syst., vol. 31, no. 4, pp. 1–34, 2013.

[93] S. Abdu, “Morpheus: Towards Automated SLAs for Enterprise Clusters.”

[94] A. Grillet, “Comparison of container schedulers,” 2016. [Online]. Available:

https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421. [Accessed: 31-

Oct-2017].

[95] Cloud Native Computing Foundation, “Home - Open Containers Initiative.” [Online]. Available:

https://www.opencontainers.org/. [Accessed: 09-Nov-2018].

[96] Cloud Native Computing Foundation, “kubernetes-sigs/cri-o: Open Container Initiative-based

implementation of Kubernetes Container Runtime Interface.” [Online]. Available:

https://github.com/kubernetes-sigs/cri-o/. [Accessed: 09-Nov-2018].

[97] Mesosphere, “[MESOS-5011] Support OCI image spec. - ASF JIRA.” [Online]. Available:

https://issues.apache.org/jira/browse/MESOS-5011. [Accessed: 09-Nov-2018].

[98] Cloud Native Computing Foundation, “opencontainers/runc: CLI tool for spawning and running

https://docs.mesosphere.com/1.10/deploying-services/creating-services/
https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md
https://github.com/apache/mesos/blob/1.4.x/docs/architecture.md#example-of-resource-offer
https://github.com/apache/mesos/blob/1.4.x/docs/reservation.md#offeroperationunreserve
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/high-availability.md
https://github.com/apache/mesos/blob/1.4.x/docs/reconciliation.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/admin_guide.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/configuration.md#replicated-log-configuration
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/configuration.md#replicated-log-configuration
https://docs.mesosphere.com/1.10/overview/high-availability/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/highly-available-master.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/highly-available-master.md
https://cloud.google.com/kubernetes-engine/
https://www.ubuntu.com/kubernetes
https://github.com/coreos/tectonic-installer
https://github.com/coreos/tectonic-installer
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md#operators
https://medium.com/@ArmandGrillet/comparison-of-container-schedulers-c427f4f7421
https://www.opencontainers.org/
https://github.com/kubernetes-sigs/cri-o/
https://issues.apache.org/jira/browse/MESOS-5011

Appl. Sci. 2018, 8, x FOR PEER REVIEW 59 of 76

containers according to the OCI specification.” [Online]. Available:

https://github.com/opencontainers/runc. [Accessed: 09-Nov-2018].

[99] Cloud Native Computing Foundation, “website/components.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/overview/components.md#container-runtime. [Accessed: 09-Nov-2018].

[100] Mesosphere, “mesos/containerizers.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/containerizers.md. [Accessed: 09-Nov-2018].

[101] Cloud Native Computing Foundation, “community/scheduler_extender.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/scheduling/scheduler_extender.md. [Accessed: 09-Nov-2018].

[102] Mesosphere, “mesos/allocation-module.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/allocation-module.md#writing-a-custom-allocator.

[Accessed: 09-Nov-2018].

[103] Apache, “aurora/RELEASE-NOTES.md at master · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0200. [Accessed: 09-Nov-2018].

[104] Apache, “aurora/scheduler-configuration.md at rel/0.20.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/scheduler-configuration.md.

[Accessed: 09-Nov-2018].

[105] Mesosphere, “marathon/plugin.md at v1.6.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/plugin.md#scheduler. [Accessed: 09-

Nov-2018].

[106] Cloud Native Computing Foundation, “website/configure-multiple-schedulers.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/administer-cluster/configure-multiple-schedulers.md. [Accessed: 09-Nov-

2018].

[107] Cloud Native Computing Foundation, “website/admission-controllers.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/reference/access-authn-authz/admission-controllers.md. [Accessed: 12-Nov-2018].

[108] Cloud Native Computing Foundation, “website/extensible-admission-controllers.md#initializers at

release-1.11 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-

authz/extensible-admission-controllers.md#initializers. [Accessed: 12-Nov-2018].

[109] Cloud Native Computing Foundation, “website/extensible-admission-controllers.md#admission

webhooks at release-1.11 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-

authz/extensible-admission-controllers.md#admission-webhooks. [Accessed: 12-Nov-2018].

[110] Mesosphere, “mesos/modules.md#hook at 1.6.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.6.x/docs/modules.md#hook. [Accessed: 12-Nov-2018].

[111] Mesosphere, “aurora/client-hooks.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/client-hooks.md. [Accessed: 12-Nov-

2018].

[112] Apache, “aurora/RELEASE-NOTES.md at master · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0190. [Accessed: 12-Nov-2018].

[113] Linux Virtual Server project, “IPVS Software - Advanced Layer-4 Switching.” [Online]. Available:

http://www.linuxvirtualserver.org/software/ipvs.html. [Accessed: 12-Nov-2018].

[114] Docker Inc., “docker.github.io/networking.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/networking.md.

[Accessed: 12-Nov-2018].

[115] Cloud Native Computing Foundation, “website/service.md at release-1.9 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/services-

networking/service.md. [Accessed: 12-Nov-2018].

[116] Mesosphere, “marathon/networking.md at v1.6.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#specifying-service-

ports. [Accessed: 12-Nov-2018].

[117] Mesosphere, “Networking - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/. [Accessed: 12-Nov-2018].

[118] Mesosphere, “Networking - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/#layer-7. [Accessed: 12-Nov-2018].

https://github.com/opencontainers/runc
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/components.md#container-runtime
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/components.md#container-runtime
https://github.com/apache/mesos/blob/1.5.x/docs/containerizers.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/scheduling/scheduler_extender.md
https://github.com/apache/mesos/blob/1.4.x/docs/allocation-module.md#writing-a-custom-allocator
https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0200
https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/scheduler-configuration.md
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/plugin.md#scheduler
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/configure-multiple-schedulers.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/administer-cluster/configure-multiple-schedulers.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/admission-controllers.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/admission-controllers.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md#initializers
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md#initializers
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md#admission-webhooks
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/extensible-admission-controllers.md#admission-webhooks
https://github.com/apache/mesos/blob/1.6.x/docs/modules.md#hook
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/client-hooks.md
https://github.com/apache/aurora/blob/master/RELEASE-NOTES.md#0190
http://www.linuxvirtualserver.org/software/ipvs.html
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/networking.md
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/services-networking/service.md
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/services-networking/service.md
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#specifying-service-ports
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/networking.md#specifying-service-ports
https://docs.mesosphere.com/1.11/networking/
https://docs.mesosphere.com/1.11/networking/#layer-7

Appl. Sci. 2018, 8, x FOR PEER REVIEW 60 of 76

[119] Docker Inc., “docker.github.io/overlay.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-

mesh-for-a-swarm-service. [Accessed: 12-Nov-2018].

[120] Apache, “aurora/service-discovery.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-

dns. [Accessed: 12-Nov-2018].

[121] Mesosphere, “marathon/service-discovery-load-balancing.md at v1.6.0 · mesosphere/marathon.”

[Online]. Available: https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/service-discovery-

load-balancing.md#mesos-dns. [Accessed: 12-Nov-2018].

[122] Cloud Native Computing Foundation, “website/overview.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/overview.md#services. [Accessed: 12-Nov-2018].

[123] Docker Inc., “docker.github.io/services.md at master · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/master/engine/swarm/services.md#publish-a-

services-ports-directly-on-the-swarm-node. [Accessed: 12-Nov-2018].

[124] Apache, “aurora/services.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md#ports. [Accessed: 12-Nov-

2018].

[125] Mesosphere, “marathon/ports.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/ports.md#random-port-assignment.

[Accessed: 12-Nov-2018].

[126] Docker Inc., “docker.github.io/services.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node. [Accessed:

12-Nov-2018].

[127] RedHat, “Default Scheduling - Scheduling | Cluster Administration | OKD Latest.” [Online]. Available:

https://docs.okd.io/latest/admin_guide/scheduling/scheduler.html#scheduler-sample-policies.

[Accessed: 12-Nov-2018].

[128] Cloud Native Computing Foundation, “containernetworking/cni: Container Network Interface -

networking for Linux containers.” [Online]. Available: https://github.com/containernetworking/cni.

[Accessed: 12-Nov-2018].

[129] Cloud Native Computing Foundation, “website/network-plugins.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/network-plugins.md#cni. [Accessed: 12-Nov-2018].

[130] Mesosphere, “mesos/cni.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/cni.md. [Accessed: 12-Nov-2018].

[131] Mesosphere, “CNI Plugin Support - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/networking/virtual-networks/cni-plugins/. [Accessed: 12-Nov-2018].

[132] Cloud Native Computing Foundation, “CNI Plugins Should allow hairpin traffic · Issue #476 ·

containernetworking/cni.” [Online]. Available: https://github.com/containernetworking/cni/issues/476.

[Accessed: 12-Nov-2018].

[133] Docker Inc., “docker/libnetwork: Docker Networking.” [Online]. Available:

https://github.com/docker/libnetwork. [Accessed: 12-Nov-2018].

[134] Mesosphere, “mesos/networking.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/networking.md. [Accessed: 12-Nov-2018].

[135] Mesosphere, “Virtual Networks - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/networking/virtual-networks/. [Accessed: 12-Nov-2018].

[136] Mesosphere, “DC/OS Overlay - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#replacing-or-adding-new-virtual-

networks. [Accessed: 12-Nov-2018].

[137] Mesosphere, “mesos/networking.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/networking.md#limitations-of-docker-containerizer.

[Accessed: 12-Nov-2018].

[138] Docker Inc., “docker.github.io/overlay.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-

data-traffic. [Accessed: 12-Nov-2018].

[139] Intel, “intel/multus-cni: Multi-homed pod cni.” [Online]. Available: https://github.com/intel/multus-cni.

[Accessed: 12-Nov-2018].

[140] C. Daboo and C. Daboo, “Use of SRV Records for Locating Email Submission/Access Services,” [[Internet

https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-mesh-for-a-swarm-service
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#bypass-the-routing-mesh-for-a-swarm-service
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/service-discovery.md#using-mesos-dns
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://github.com/mesosphere/marathon/blob/v1.6.0/docs/docs/service-discovery-load-balancing.md#mesos-dns
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/overview.md#services
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/overview.md#services
https://github.com/docker/docker.github.io/blob/master/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/docker/docker.github.io/blob/master/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/services.md#ports
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/ports.md#random-port-assignment
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#publish-a-services-ports-directly-on-the-swarm-node
https://docs.okd.io/latest/admin_guide/scheduling/scheduler.html#scheduler-sample-policies
https://github.com/containernetworking/cni
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/network-plugins.md#cni
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/network-plugins.md#cni
https://github.com/apache/mesos/blob/1.4.x/docs/cni.md
https://docs.mesosphere.com/1.10/networking/virtual-networks/cni-plugins/
https://github.com/containernetworking/cni/issues/476
https://github.com/docker/libnetwork
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md
https://docs.mesosphere.com/1.10/networking/virtual-networks/
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#replacing-or-adding-new-virtual-networks
https://docs.mesosphere.com/1.11/networking/SDN/dcos-overlay/#replacing-or-adding-new-virtual-networks
https://github.com/apache/mesos/blob/1.5.x/docs/networking.md#limitations-of-docker-containerizer
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-data-traffic
https://github.com/docker/docker.github.io/blob/v17.12/network/overlay.md#separate-control-and-data-traffic
https://github.com/intel/multus-cni

Appl. Sci. 2018, 8, x FOR PEER REVIEW 61 of 76

Engineering Task Force|IETF]], Mar. 2011.

[141] Cloud Native Computing Foundation, “website/dns-pod-service.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/services-networking/dns-pod-service.md#srv-records. [Accessed: 12-Nov-2018].

[142] Mesosphere, “Service Naming - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/DNS/mesos-dns/service-naming/#srv-records.

[Accessed: 12-Nov-2018].

[143] Cloud Native Computing Foundation, “website/service.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-

networking/service.md#headless-services. [Accessed: 12-Nov-2018].

[144] Mesosphere, “Edge-LB - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/edge-lb/. [Accessed: 13-Nov-2018].

[145] Mesosphere, “Service Docs - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/. [Accessed: 12-Nov-2018].

[146] Cloud Native Computing Foundation, “website/create-external-load-balancer.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/access-application-cluster/create-external-load-balancer.md. [Accessed: 12-Nov-2018].

[147] Docker Inc., “docker.github.io/services.md at v17.09-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.09-release/engine/swarm/services.md.

[Accessed: 13-Nov-2018].

[148] Mesosphere, “Load Balancing and Virtual IPs (VIPs) - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.11/networking/load-balancing-vips/. [Accessed: 12-Nov-

2018].

[149] Mesosphere, “DC/OS Domain Name Service - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/DNS/. [Accessed: 12-Nov-2018].

[150] Docker Inc., “swarmkit/task_model.md at master · docker/swarmkit.” [Online]. Available:

https://github.com/docker/swarmkit/blob/master/design/task_model.md. [Accessed: 12-Nov-2018].

[151] Cloud Native Computing Foundation, “website/pod.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/pods/pod.md. [Accessed: 12-Nov-2018].

[152] Mesosphere, “mesos/nested-container-and-task-group.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/nested-container-and-task-group.md. [Accessed: 12-

Nov-2018].

[153] Mesosphere, “marathon/pods.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md. [Accessed: 12-Nov-2018].

[154] Mesosphere, “Pods - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/deploying-services/pods/. [Accessed: 13-Nov-2018].

[155] Mesosphere, “mesos/mesos-containerizer.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md#posix-disk-isolator.

[Accessed: 12-Nov-2018].

[156] Cloud Native Computing Foundation, “website/jobs-run-to-completion.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/jobs-run-to-completion.md. [Accessed: 12-Nov-2018].

[157] Apache, “aurora/configuration-tutorial.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration-tutorial.md. [Accessed:

12-Nov-2018].

[158] Cloud Native Computing Foundation, “website/cron-jobs.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/workloads/controllers/cron-jobs.md. [Accessed: 12-Nov-2018].

[159] Apache, “aurora/cron-jobs.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/cron-jobs.md. [Accessed: 12-Nov-2018].

[160] Cloud Native Computing Foundation, “website/replicaset.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/replicaset.md. [Accessed: 12-Nov-2018].

[161] Cloud Native Computing Foundation, “website/labels.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-

with-objects/labels.md. [Accessed: 12-Nov-2018].

[162] Cloud Native Computing Foundation, “website/labels.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/dns-pod-service.md#srv-records
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/dns-pod-service.md#srv-records
https://docs.mesosphere.com/1.11/networking/DNS/mesos-dns/service-naming/#srv-records
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md#headless-services
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/service.md#headless-services
https://docs.mesosphere.com/services/edge-lb/
https://docs.mesosphere.com/services/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/create-external-load-balancer.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/create-external-load-balancer.md
https://github.com/docker/docker.github.io/blob/v17.09-release/engine/swarm/services.md
https://docs.mesosphere.com/1.11/networking/load-balancing-vips/
https://docs.mesosphere.com/1.11/networking/DNS/
https://github.com/docker/swarmkit/blob/master/design/task_model.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/pod.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/pods/pod.md
https://github.com/apache/mesos/blob/1.4.x/docs/nested-container-and-task-group.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md
https://docs.mesosphere.com/1.11/deploying-services/pods/
https://github.com/apache/mesos/blob/1.4.x/docs/mesos-containerizer.md#posix-disk-isolator
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/jobs-run-to-completion.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/jobs-run-to-completion.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration-tutorial.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/workloads/controllers/cron-jobs.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/workloads/controllers/cron-jobs.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/cron-jobs.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/replicaset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/replicaset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md#label-selectors

Appl. Sci. 2018, 8, x FOR PEER REVIEW 62 of 76

with-objects/labels.md#label-selectors. [Accessed: 12-Nov-2018].

[163] Cloud Native Computing Foundation, “website/horizontal-pod-autoscale.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/run-application/horizontal-pod-autoscale.md. [Accessed: 12-Nov-2018].

[164] Mesosphere, “Autoscaling with Marathon - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/tutorials/autoscaling/. [Accessed: 12-Nov-2018].

[165] Docker Inc., “docker.github.io/services.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/services.md#control-service-scale-and-placement. [Accessed: 09-Nov-2018].

[166] Cloud Native Computing Foundation, “website/daemonset.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/daemonset.md. [Accessed: 12-Nov-2018].

[167] Docker Inc., “docker.github.io/stack-deploy.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/stack-

deploy.md. [Accessed: 12-Nov-2018].

[168] Mesosphere, “marathon/application-groups.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/application-groups.md. [Accessed: 12-

Nov-2018].

[169] Cloud Native Computing Foundation, “helm/helm: The Kubernetes Package Manager.” [Online].

Available: https://github.com/helm/helm. [Accessed: 12-Nov-2018].

[170] Cloud Native Computing Foundation, “kubernetes/kompose: Go from Docker Compose to

Kubernetes.” [Online]. Available: https://github.com/kubernetes/kompose. [Accessed: 12-Nov-2018].

[171] Docker Inc., “docker.github.io/index.md at v18.03-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v18.03/engine/extend/index.md. [Accessed:

12-Nov-2018].

[172] Mesosphere, “mesos/docker-volume.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#motivation. [Accessed: 12-Nov-

2018].

[173] Mesosphere, “marathon/external-volumes.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/external-volumes.md. [Accessed: 12-

Nov-2018].

[174] Portworx, “Using Portworx volumes with DCOS.” [Online]. Available:

https://docs.portworx.com/scheduler/mesosphere-dcos/portworx-volumes.html. [Accessed: 12-Nov-

2018].

[175] Dell, “thecodeteam/mesos-module-dvdi: Mesos Docker Volume Driver Isolator module.” [Online].

Available: https://github.com/thecodeteam/mesos-module-dvdi. [Accessed: 12-Nov-2018].

[176] K. and M. Cloud Foundry, “container-storage-interface/spec: Container Storage Interface (CSI)

Specification.” [Online]. Available: https://github.com/container-storage-interface/spec. [Accessed: 12-

Nov-2018].

[177] Cloud Native Computing Foundation, “website/volumes.md at release-1.10 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.10/content/en/docs/concepts/storage/volumes.md#csi. [Accessed: 12-Nov-2018].

[178] Mesosphere, “mesos/csi.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/csi.md. [Accessed: 12-Nov-2018].

[179] Mesosphere, “Volume Plugins - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/services/beta-storage/0.3.0-beta/volume-plugins/. [Accessed: 12-Nov-

2018].

[180] Docker Inc., “docker.github.io/plugins_volume.md at v18.03-release · docker/docker.github.io.”

[Online]. Available:

https://github.com/docker/docker.github.io/blob/v18.03/engine/extend/plugins_volume.md. [Accessed:

12-Nov-2018].

[181] Cloud Native Computing Foundation, “website/downward-api-volume-expose-pod-information.md at

release-1.8 · kubernetes/website.” [Online]. Available:

https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/downward-

api-volume-expose-pod-information.md. [Accessed: 12-Nov-2018].

[182] Mesosphere, “marathon/networking.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#downward-api.

[Accessed: 12-Nov-2018].

[183] Docker Inc., “docker.github.io/configs.md at v17.06-release · docker/docker.github.io.” [Online].

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/overview/working-with-objects/labels.md#label-selectors
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/horizontal-pod-autoscale.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/horizontal-pod-autoscale.md
https://docs.mesosphere.com/1.10/tutorials/autoscaling/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#control-service-scale-and-placement
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#control-service-scale-and-placement
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/daemonset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/daemonset.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/stack-deploy.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/stack-deploy.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/application-groups.md
https://github.com/helm/helm
https://github.com/kubernetes/kompose
https://github.com/docker/docker.github.io/blob/v18.03/engine/extend/index.md
https://github.com/apache/mesos/blob/1.4.x/docs/docker-volume.md#motivation
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/external-volumes.md
https://docs.portworx.com/scheduler/mesosphere-dcos/portworx-volumes.html
https://github.com/thecodeteam/mesos-module-dvdi
https://github.com/container-storage-interface/spec
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/storage/volumes.md#csi
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/storage/volumes.md#csi
https://github.com/apache/mesos/blob/1.7.x/docs/csi.md
https://docs.mesosphere.com/services/beta-storage/0.3.0-beta/volume-plugins/
https://github.com/docker/docker.github.io/blob/v18.03/engine/extend/plugins_volume.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/networking.md#downward-api

Appl. Sci. 2018, 8, x FOR PEER REVIEW 63 of 76

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/configs.md.

[Accessed: 12-Nov-2018].

[184] Cloud Native Computing Foundation, “website/configmap.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-

container/configmap.md. [Accessed: 12-Nov-2018].

[185] Apache, “aurora/job-updates.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md. [Accessed: 12-Nov-

2018].

[186] Cloud Native Computing Foundation, “website/configure-liveness-readiness-probes.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-

probes. [Accessed: 12-Nov-2018].

[187] Mesosphere, “marathon/readiness-checks.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/readiness-checks.md. [Accessed: 12-

Nov-2018].

[188] Docker Inc., “docker.github.io/index.md at master · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-

file/index.md#update_config. [Accessed: 12-Nov-2018].

[189] Cloud Native Computing Foundation, “website/deployment.md at release-1.10 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.10/content/en/docs/concepts/workloads/controllers/deployment.md#proportional-scaling. [Accessed:

12-Nov-2018].

[190] Mesosphere, “marathon/deployments.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md#rolling-restarts.

[Accessed: 12-Nov-2018].

[191] Docker Inc., “docker service update | Docker Documentation.” [Online]. Available:

https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-

version-of-a-service. [Accessed: 12-Nov-2018].

[192] Cloud Native Computing Foundation, “website/deployment.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/deployment.md#rolling-back-to-a-previous-revision.

[Accessed: 12-Nov-2018].

[193] Apache, “aurora/configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#updateconfig-

objects. [Accessed: 12-Nov-2018].

[194] Mesosphere, “dcos marathon deployment rollback - Mesosphere DC/OS Documentation.” [Online].

Available: https://docs.mesosphere.com/1.10/cli/command-reference/dcos-marathon/dcos-marathon-

deployment-rollback/. [Accessed: 12-Nov-2018].

[195] T. A. Limoncelli, S. R. Chalup, and C. J. Hogan, “The Practice of Cloud System Administration:

Designing and Operating Large Distributed Systems, Volume 2,” 2014. [Online]. Available: http://the-

cloud-book.com/. [Accessed: 14-Jan-2016].

[196] G. Schermann, P. Leitner, and H. C. Gall, “Bifrost – Supporting Continuous Deployment with

Automated Enactment of Multi-Phase Live Testing Strategies,” in Proceedings of the 17th International

Middleware Conference (Middleware ’16), 2016.

[197] Cloud Native Computing Foundation, “website/manage-deployment.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/manage-deployment.md#canary-deployments. [Accessed: 12-

Nov-2018].

[198] Mesosphere, “marathon/blue-green-deploy.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/blue-green-deploy.md. [Accessed: 12-

Nov-2018].

[199] Mesosphere, “mesos/roles.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/roles.md. [Accessed: 12-Nov-2018].

[200] Cloud Native Computing Foundation, “website/resource-quotas.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/policy/resource-quotas.md#compute-resource-quota. [Accessed: 12-Nov-2018].

[201] Cloud Native Computing Foundation, “website/resource-quotas.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/policy/resource-quotas.md#storage-resource-quota. [Accessed: 12-Nov-2018].

https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/configs.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configmap.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configmap.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/job-updates.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-probes
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-probes
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/configure-liveness-readiness-probes.md#define-readiness-probes
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/readiness-checks.md
https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/index.md#update_config
https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/index.md#update_config
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/workloads/controllers/deployment.md#proportional-scaling
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/concepts/workloads/controllers/deployment.md#proportional-scaling
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/deployments.md#rolling-restarts
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://docs.docker.com/engine/reference/commandline/service_update/#roll-back-to-the-previous-version-of-a-service
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#rolling-back-to-a-previous-revision
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/deployment.md#rolling-back-to-a-previous-revision
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#updateconfig-objects
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/configuration.md#updateconfig-objects
https://docs.mesosphere.com/1.10/cli/command-reference/dcos-marathon/dcos-marathon-deployment-rollback/
https://docs.mesosphere.com/1.10/cli/command-reference/dcos-marathon/dcos-marathon-deployment-rollback/
http://the-cloud-book.com/
http://the-cloud-book.com/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#canary-deployments
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/manage-deployment.md#canary-deployments
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/blue-green-deploy.md
https://github.com/apache/mesos/blob/1.4.x/docs/roles.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#compute-resource-quota
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#compute-resource-quota
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#storage-resource-quota
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#storage-resource-quota

Appl. Sci. 2018, 8, x FOR PEER REVIEW 64 of 76

[202] Mesosphere, “mesos/quota.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/quota.md. [Accessed: 12-Nov-2018].

[203] Mesosphere, “mesos/operator-http-api.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/operator-http-api.md#get_roles. [Accessed: 12-Nov-

2018].

[204] Mesosphere, “mesos/weights.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/weights.md. [Accessed: 12-Nov-2018].

[205] Apache, “aurora/multitenancy.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#configuration-tiers.

[Accessed: 12-Nov-2018].

[206] Cloud Native Computing Foundation, “website/resource-quotas.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/policy/resource-quotas.md#object-count-quota. [Accessed: 12-Nov-2018].

[207] Docker Inc., “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/access-control/index.md. [Accessed: 12-Nov-2018].

[208] Docker Inc., “docker.github.io/isolate-nodes-between-teams.md at v17.06-release ·

docker/docker.github.io.” [Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/access-control/isolate-nodes-between-teams.md. [Accessed: 12-Nov-

2018].

[209] Docker Inc., “docker.github.io/isolate-volumes-between-teams.md at v17.06-release ·

docker/docker.github.io.” [Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/access-control/isolate-volumes-between-teams.md. [Accessed: 12-

Nov-2018].

[210] Mesosphere, “Tutorial – Restricting Access to DC/OS Service Groups - Mesosphere DC/OS

Documentation.” [Online]. Available: https://docs.mesosphere.com/1.10/security/ent/restrict-service-

access/#create-users-and-groups. [Accessed: 12-Nov-2018].

[211] Cloud Native Computing Foundation, “website/reserve-compute-resources.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/reserve-compute-resources.md. [Accessed: 12-Nov-2018].

[212] Mesosphere, “marathon/pods.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#executor-resources.

[Accessed: 12-Nov-2018].

[213] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-1.8

· kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/manage-compute-resources-container.md. [Accessed: 12-Nov-2018].

[214] Cloud Native Computing Foundation, “kubernetes/resource-qos.md at release-1.2 ·

kubernetes/kubernetes.” [Online]. Available: https://github.com/kubernetes/kubernetes/blob/release-

1.2/docs/proposals/resource-qos.md. [Accessed: 12-Nov-2018].

[215] Cloud Native Computing Foundation, “website/assign-memory-resource.md at release-1.12 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.12/content/en/docs/tasks/configure-pod-container/assign-memory-resource.md#exceed-a-containers-

memory-limit. [Accessed: 12-Nov-2018].

[216] Docker Inc., “docker.github.io/index.md at master · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/index.md#resources.

[Accessed: 12-Nov-2018].

[217] Mesosphere, “mesos/gpu-support.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/gpu-support.md. [Accessed: 12-Nov-2018].

[218] Apache, “aurora/resource-isolation.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md. [Accessed: 12-

Nov-2018].

[219] Mesosphere, “marathon/pod.json at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-

api/public/api/v2/examples/pod.json. [Accessed: 12-Nov-2018].

[220] Mesosphere, “Using GPUs - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/deploying-services/gpu/. [Accessed: 12-Nov-2018].

[221] Cloud Native Computing Foundation, “website/scheduling-gpus.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/manage-gpus/scheduling-gpus.md. [Accessed: 12-Nov-2018].

https://github.com/apache/mesos/blob/1.4.x/docs/quota.md
http-api.md%20at%201.4.x%20·%20apache/mesos.
http-api.md%20at%201.4.x%20·%20apache/mesos.
https://github.com/apache/mesos/blob/1.4.x/docs/weights.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#configuration-tiers
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#object-count-quota
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/resource-quotas.md#object-count-quota
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/isolate-nodes-between-teams.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/isolate-nodes-between-teams.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/isolate-volumes-between-teams.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/access-control/isolate-volumes-between-teams.md
https://docs.mesosphere.com/1.10/security/ent/restrict-service-access/#create-users-and-groups
https://docs.mesosphere.com/1.10/security/ent/restrict-service-access/#create-users-and-groups
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/reserve-compute-resources.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/reserve-compute-resources.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/pods.md#executor-resources
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md
https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/proposals/resource-qos.md
https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/proposals/resource-qos.md
https://github.com/kubernetes/website/blob/release-1.12/content/en/docs/tasks/configure-pod-container/assign-memory-resource.md#exceed-a-containers-memory-limit
https://github.com/kubernetes/website/blob/release-1.12/content/en/docs/tasks/configure-pod-container/assign-memory-resource.md#exceed-a-containers-memory-limit
https://github.com/kubernetes/website/blob/release-1.12/content/en/docs/tasks/configure-pod-container/assign-memory-resource.md#exceed-a-containers-memory-limit
https://github.com/docker/docker.github.io/blob/v17.06/compose/compose-file/index.md#resources
https://github.com/apache/mesos/blob/1.7.x/docs/gpu-support.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-api/public/api/v2/examples/pod.json
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/rest-api/public/api/v2/examples/pod.json
https://docs.mesosphere.com/1.11/deploying-services/gpu/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-gpus/scheduling-gpus.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-gpus/scheduling-gpus.md

Appl. Sci. 2018, 8, x FOR PEER REVIEW 65 of 76

[222] Apache, “aurora/resource-isolation.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#disk-space.

[Accessed: 12-Nov-2018].

[223] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-

1.11 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#local-

ephemeral-storage-alpha-feature. [Accessed: 12-Nov-2018].

[224] Docker Inc., “docker service update | Docker Documentation.” [Online]. Available:

https://docs.docker.com/v17.06/engine/reference/commandline/service_update/. [Accessed: 12-Nov-

2018].

[225] Cloud Native Computing Foundation, “website/assign-pod-node.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/assign-pod-node.md#step-one-attach-label-to-the-node. [Accessed: 12-

Nov-2018].

[226] Mesosphere, “marathon/constraints.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md. [Accessed: 12-Nov-

2018].

[227] Mesosphere, “Frequently Asked Questions - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/installing/installation-faq/#q-how-to-add-mesos-attributes-to-nodes-

to-use-marathon-constraints. [Accessed: 12-Nov-2018].

[228] Mesosphere, “mesos/attributes-resources.md at master · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/master/docs/attributes-resources.md#attributes. [Accessed: 12-

Nov-2018].

[229] Docker Inc., “docker.github.io/services.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref. [Accessed:

12-Nov-2018].

[230] Cloud Native Computing Foundation, “website/assign-pod-node.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/assign-pod-node.md#nodeselector. [Accessed: 12-Nov-2018].

[231] Cloud Native Computing Foundation, “website/assign-pod-node.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/assign-pod-node.md#inter-pod-affinity-and-anti-affinity-beta-feature.

[Accessed: 12-Nov-2018].

[232] Cloud Native Computing Foundation, “website/taint-and-toleration.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/taint-and-toleration.md. [Accessed: 12-Nov-2018].

[233] Cloud Native Computing Foundation, “website/pod-priority-preemption.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/pod-priority-preemption.md. [Accessed: 12-Nov-2018].

[234] Apache, “aurora/multitenancy.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#preemption.

[Accessed: 12-Nov-2018].

[235] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-

1.11 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-

with-resource-requests-are-scheduled. [Accessed: 12-Nov-2018].

[236] Mesosphere, “mesos/high-availability-framework-guide.md at 1.4.x · apache/mesos.” [Online].

Available: https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-

guide.md#dealing-with-partitioned-or-failed-agents. [Accessed: 12-Nov-2018].

[237] Mesosphere, “mesos/agent-recovery.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/agent-recovery.md. [Accessed: 12-Nov-2018].

[238] Docker Inc., “docker.github.io/configure-tls.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/configure-tls.md.

[Accessed: 12-Nov-2018].

[239] Docker Inc., “docker.github.io/pki.md at v17.06-release · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-

works/pki.md. [Accessed: 12-Nov-2018].

[240] Cloud Native Computing Foundation, “website/kubelet-tls-bootstrapping.md at release-1.8 ·

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/resource-isolation.md#disk-space
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#local-ephemeral-storage-alpha-feature
https://docs.docker.com/v17.06/engine/reference/commandline/service_update/
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#step-one-attach-label-to-the-node
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#step-one-attach-label-to-the-node
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/constraints.md
https://docs.mesosphere.com/1.10/installing/installation-faq/#q-how-to-add-mesos-attributes-to-nodes-to-use-marathon-constraints
https://docs.mesosphere.com/1.10/installing/installation-faq/#q-how-to-add-mesos-attributes-to-nodes-to-use-marathon-constraints
https://github.com/apache/mesos/blob/master/docs/attributes-resources.md#attributes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/services.md#specify-service-placement-preferences---placement-pref
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#nodeselector
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#nodeselector
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#inter-pod-affinity-and-anti-affinity-beta-feature
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/assign-pod-node.md#inter-pod-affinity-and-anti-affinity-beta-feature
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-toleration.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-toleration.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/pod-priority-preemption.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/pod-priority-preemption.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/multitenancy.md#preemption
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-requests-are-scheduled
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-requests-are-scheduled
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/configuration/manage-compute-resources-container.md#how-pods-with-resource-requests-are-scheduled
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-agents
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-agents
https://github.com/apache/mesos/blob/1.4.x/docs/agent-recovery.md
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/configure-tls.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-works/pki.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/how-swarm-mode-works/pki.md

Appl. Sci. 2018, 8, x FOR PEER REVIEW 66 of 76

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/admin/kubelet-tls-bootstrapping.md. [Accessed: 12-Nov-2018].

[241] Mesosphere, “mesos/authentication.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/authentication.md. [Accessed: 12-Nov-2018].

[242] Apache, “aurora/security.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#announcer-

authentication. [Accessed: 12-Nov-2018].

[243] Docker Inc., “docker.github.io/create-swarm.md at v17.06 · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-

tutorial/create-swarm.md. [Accessed: 12-Nov-2018].

[244] Cloud Native Computing Foundation, “website/bootstrap-tokens.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/admin/bootstrap-tokens.md. [Accessed: 12-Nov-2018].

[245] Cloud Native Computing Foundation, “website/node.md at release-1.11 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-

authn-authz/node.md. [Accessed: 14-Jan-2019].

[246] Mesosphere, “mesos/authorization.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md#authorizable-actions. [Accessed:

12-Nov-2018].

[247] Apache, “ZooKeeper Programmer’s Guide.” [Online]. Available:

https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#sc_ZooKeeperAccessControl.

[Accessed: 12-Nov-2018].

[248] Docker Inc., “docker.github.io/overlay-security-model.md at v17.06 · docker/docker.github.io.”

[Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/engine/userguide/networking/overlay-

security-model.md. [Accessed: 16-Nov-2018].

[249] Cloud Native Computing Foundation, “website/master-node-communication.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/architecture/master-node-communication.md#ssh-tunnels. [Accessed: 16-Nov-2018].

[250] Mesosphere, “DC/OS Enterprise Security - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/security/ent/#transport-layer-security-tls-encryption. [Accessed: 16-

Nov-2018].

[251] Docker Inc., “docker.github.io/networking.md at v17.06 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/networking.md#configure-

encryption-of-application-data. [Accessed: 16-Nov-2018].

[252] weaveworks, “Weave Net.” 2018.

[253] Docker Inc., “moby/swarm_init.md at 17.05.x · moby/moby.” [Online]. Available:

https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/swarm_init.md#--listen-

addr. [Accessed: 16-Nov-2018].

[254] Cloud Native Computing Foundation, “community/nodeport-ip-range.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/network/nodeport-ip-range.md. [Accessed: 16-Nov-2018].

[255] Mesosphere, “Node Types - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/overview/architecture/node-types/. [Accessed: 16-Nov-2018].

[256] R. Shu, X. Gu, and W. Enck, “A Study of Security Vulnerabilities on Docker Hub,” Proc. Seventh ACM

Conf. Data Appl. Secur. Priv. - CODASPY ’17, pp. 269–280, 2017.

[257] T. Combe, A. Martin, and R. Di Pietro, “To Docker or Not to Docker: A Security Perspective,” IEEE Cloud

Comput., vol. 3, no. 5, pp. 54–62, 2016.

[258] Docker Inc., “docker.github.io/secrets.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/secrets.md.

[Accessed: 16-Nov-2018].

[259] Cloud Native Computing Foundation, “website/secret.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/secret.md. [Accessed: 16-Nov-2018].

[260] Mesosphere, “mesos/secrets.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/secrets.md. [Accessed: 16-Nov-2018].

[261] Mesosphere, “marathon/secrets.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/secrets.md. [Accessed: 16-Nov-2018].

https://github.com/kubernetes/website/blob/release-1.8/docs/admin/kubelet-tls-bootstrapping.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/kubelet-tls-bootstrapping.md
https://github.com/apache/mesos/blob/1.4.x/docs/authentication.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#announcer-authentication
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/security.md#announcer-authentication
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-tutorial/create-swarm.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/swarm-tutorial/create-swarm.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/bootstrap-tokens.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/bootstrap-tokens.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/node.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/reference/access-authn-authz/node.md
https://github.com/apache/mesos/blob/1.4.x/docs/authorization.md#authorizable-actions
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html#sc_ZooKeeperAccessControl
https://github.com/docker/docker.github.io/blob/v17.06/engine/userguide/networking/overlay-security-model.md
https://github.com/docker/docker.github.io/blob/v17.06/engine/userguide/networking/overlay-security-model.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/architecture/master-node-communication.md#ssh-tunnels
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/architecture/master-node-communication.md#ssh-tunnels
https://docs.mesosphere.com/1.10/security/ent/#transport-layer-security-tls-encryption
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/networking.md#configure-encryption-of-application-data
https://github.com/docker/docker.github.io/blob/v17.06/engine/swarm/networking.md#configure-encryption-of-application-data
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/swarm_init.md#--listen-addr
https://github.com/moby/moby/blob/17.05.x/docs/reference/commandline/swarm_init.md#--listen-addr
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/network/nodeport-ip-range.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/network/nodeport-ip-range.md
https://docs.mesosphere.com/1.10/overview/architecture/node-types/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/secrets.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/secret.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/secret.md
https://github.com/apache/mesos/blob/1.4.x/docs/secrets.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/secrets.md

Appl. Sci. 2018, 8, x FOR PEER REVIEW 67 of 76

[262] Mesosphere, “Creating secrets - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/security/ent/secrets/create-secrets/. [Accessed: 16-Nov-2018].

[263] M. G. Xavier, M. V. Neves, and C. A. F. De Rose, “A Performance Comparison of Container-Based

Virtualization Systems for MapReduce Clusters,” 2014 22nd Euromicro Int. Conf. Parallel, Distrib. Network-

Based Process., pp. 299–306, 2014.

[264] SELinux Project, “SELinux Policy Analysis Tools.” [Online]. Available:

https://github.com/SELinuxProject/setools. [Accessed: 16-Nov-2018].

[265] “AppArmor / apparmor · GitLab.” [Online]. Available: https://gitlab.com/apparmor/apparmor.

[Accessed: 15-Nov-2018].

[266] Jonathan Corbet, “Yet another new approach to seccomp [LWN.net].” [Online]. Available:

https://lwn.net/Articles/475043/. [Accessed: 16-Nov-2018].

[267] bpf(4) Berkeley Packet Filter. FreeBSD, 2010.

[268] Linux Audit, “Linux capabilities 101 - Linux Audit.” [Online]. Available: https://linux-audit.com/linux-

capabilities-101/. [Accessed: 15-Nov-2018].

[269] Docker Inc., “docker.github.io/security.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/security/security.md#linux-kernel-capabilities. [Accessed: 15-Nov-2018].

[270] Cloud Native Computing Foundation, “website/security-context.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/configure-pod-container/security-context.md#set-capabilities-for-a-container. [Accessed:

15-Nov-2018].

[271] RedHat, “Chapter 6. Docker SELinux Security Policy - Red Hat Customer Portal.” [Online]. Available:

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_p

olicy. [Accessed: 15-Nov-2018].

[272] Cloud Native Computing Foundation, “website/security-context.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/configure-pod-container/security-context.md#assign-selinux-labels-to-a-container.

[Accessed: 15-Nov-2018].

[273] Docker Inc., “docker.github.io/apparmor.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/security/apparmor.md. [Accessed: 15-Nov-2018].

[274] Cloud Native Computing Foundation, “website/apparmor.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tutorials/clusters/apparmor.md. [Accessed: 15-Nov-2018].

[275] Docker Inc., “docker.github.io/seccomp.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/security/seccomp.md. [Accessed: 15-Nov-2018].

[276] RedHat, “Restricting Application Capabilities Using Seccomp | Cluster Administration | OpenShift

Container Platform 3.3.” [Online]. Available: https://docs.openshift.com/container-

platform/3.3/admin_guide/seccomp.html. [Accessed: 15-Nov-2018].

[277] Cloud Native Computing Foundation, “website/security-context.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/configure-pod-container/security-context.md. [Accessed: 15-Nov-2018].

[278] Docker Inc., “moby/libentitlement: Entitlements library for high level control of container permissions.”

[Online]. Available: https://github.com/moby/libentitlement. [Accessed: 15-Nov-2018].

[279] Docker Inc., “Entitlements on Moby and Kubernetes - Google Docs.” [Online]. Available:

https://docs.google.com/document/d/1j3BJUNBsgi-

nxJHoIJHsXRRtVWT5lrwsI2EN9WMQaes/edit#heading=h.yhnr195944yh. [Accessed: 15-Nov-2018].

[280] Docker Inc., “Universal Control Plane overview | Docker Documentation.” [Online]. Available:

https://docs.docker.com/v17.06/datacenter/ucp/2.2/guides/. [Accessed: 15-Nov-2018].

[281] Cloud Native Computing Foundation, “kubernetes/dashboard: General-purpose web UI for Kubernetes

clusters.” [Online]. Available: https://github.com/kubernetes/dashboard. [Accessed: 15-Nov-2018].

[282] Mesosphere, “GUI - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/gui/. [Accessed: 15-Nov-2018].

[283] Docker Inc., “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-

file/index.md#labels-1. [Accessed: 15-Nov-2018].

[284] Docker Inc., “docker.github.io/manage-nodes.md at v17.06-release · docker/docker.github.io.” [Online].

https://docs.mesosphere.com/1.10/security/ent/secrets/create-secrets/
https://github.com/SELinuxProject/setools
https://gitlab.com/apparmor/apparmor
https://lwn.net/Articles/475043/
https://linux-audit.com/linux-capabilities-101/
https://linux-audit.com/linux-capabilities-101/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/security.md#linux-kernel-capabilities
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/security.md#linux-kernel-capabilities
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#set-capabilities-for-a-container
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#set-capabilities-for-a-container
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/container_security_guide/docker_selinux_security_policy
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#assign-selinux-labels-to-a-container
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md#assign-selinux-labels-to-a-container
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/apparmor.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/apparmor.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tutorials/clusters/apparmor.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tutorials/clusters/apparmor.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/seccomp.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/security/seccomp.md
https://docs.openshift.com/container-platform/3.3/admin_guide/seccomp.html
https://docs.openshift.com/container-platform/3.3/admin_guide/seccomp.html
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/configure-pod-container/security-context.md
https://github.com/moby/libentitlement
https://docs.google.com/document/d/1j3BJUNBsgi-nxJHoIJHsXRRtVWT5lrwsI2EN9WMQaes/edit#heading=h.yhnr195944yh
https://docs.google.com/document/d/1j3BJUNBsgi-nxJHoIJHsXRRtVWT5lrwsI2EN9WMQaes/edit#heading=h.yhnr195944yh
https://docs.docker.com/v17.06/datacenter/ucp/2.2/guides/
https://github.com/kubernetes/dashboard
https://docs.mesosphere.com/1.10/gui/
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md#labels-1
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/index.md#labels-1

Appl. Sci. 2018, 8, x FOR PEER REVIEW 68 of 76

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-

nodes.md#add-or-remove-label-metadata. [Accessed: 15-Nov-2018].

[285] Mesosphere, “Apache Mesos 0.22.0 released - Mesosphere.” [Online]. Available:

https://mesosphere.com/blog/mesos-0-22-0-released/. [Accessed: 15-Nov-2018].

[286] Mesosphere, “Labeling Tasks and Jobs - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/tutorials/task-labels/. [Accessed: 15-Nov-2018].

[287] Apache, “aurora/observer-configuration.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/observer-configuration.md. [Accessed:

15-Nov-2018].

[288] Cloud Native Computing Foundation, “heapster/deprecation.md at master · kubernetes/heapster.”

[Online]. Available: https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md.

[Accessed: 15-Nov-2018].

[289] Cloud Native Computing Foundation, “Core metrics pipeline - Kubernetes.” [Online]. Available:

https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/. [Accessed: 15-Nov-

2018].

[290] Cloud Native Computing Foundation, “website/resource-usage-monitoring.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#full-metrics-

pipelines. [Accessed: 15-Nov-2018].

[291] Mesosphere, “mesos/statistics.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/endpoints/slave/monitor/statistics.md. [Accessed: 15-

Nov-2018].

[292] Mesosphere, “mesosphere/marathon-lb: Marathon-lb is a service discovery & load balancing tool

for DC/OS.” [Online]. Available: https://github.com/mesosphere/marathon-lb. [Accessed: 12-Nov-2018].

[293] Mesosphere, “mesos/port-mapping-isolator.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#monitoring-container-

network-statistics. [Accessed: 15-Nov-2018].

[294] Mesosphere, “[MESOS-5647] Expose network statistics for containers on CNI network in the

`network/cni` isolator. - ASF JIRA.” [Online]. Available: https://issues.apache.org/jira/browse/MESOS-

5647. [Accessed: 15-Nov-2018].

[295] Mesosphere, “Metrics - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/metrics/. [Accessed: 15-Nov-2018].

[296] Docker Inc., “docker.github.io/prometheus.md at v17.12 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v17.12/config/thirdparty/prometheus.md. [Accessed:

15-Nov-2018].

[297] Cloud Native Computing Foundation, “website/controller-metrics.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/cluster-administration/controller-metrics.md. [Accessed: 15-Nov-2018].

[298] Mesosphere, “mesos/monitoring.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md. [Accessed: 15-Nov-2018].

[299] Apache, “aurora/monitoring.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/monitoring.md. [Accessed: 15-Nov-

2018].

[300] Mesosphere, “marathon/metrics.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/metrics.md. [Accessed: 15-Nov-2018].

[301] Mesosphere, “Performance Monitoring - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/monitoring/performance-monitoring/. [Accessed: 15-Nov-2018].

[302] Cloud Native Computing Foundation, “community/accelerator-monitoring.md at master ·

kubernetes/community.” [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/node/accelerator-monitoring.md. [Accessed: 15-Nov-2018].

[303] Mesosphere, “mesos/monitoring.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md#resources. [Accessed: 15-Nov-2018].

[304] Docker Inc., “docker.github.io/troubleshoot-with-logs.md at v17.06-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/datacenter/ucp/2.2/guides/admin/monitor-and-troubleshoot/troubleshoot-with-logs.md.

[Accessed: 15-Nov-2018].

[305] Cloud Native Computing Foundation, “website/logging.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-

https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#add-or-remove-label-metadata
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/manage-nodes.md#add-or-remove-label-metadata
https://mesosphere.com/blog/mesos-0-22-0-released/
https://docs.mesosphere.com/1.10/tutorials/task-labels/
https://github.com/apache/aurora/blob/rel/0.18.0/docs/reference/observer-configuration.md
https://github.com/kubernetes/heapster/blob/master/docs/deprecation.md
https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#full-metrics-pipelines
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#full-metrics-pipelines
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/debug-application-cluster/resource-usage-monitoring.md#full-metrics-pipelines
https://github.com/apache/mesos/blob/1.4.x/docs/endpoints/slave/monitor/statistics.md
https://github.com/mesosphere/marathon-lb
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#monitoring-container-network-statistics
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md#monitoring-container-network-statistics
https://issues.apache.org/jira/browse/MESOS-5647
https://issues.apache.org/jira/browse/MESOS-5647
https://docs.mesosphere.com/1.11/metrics/
https://github.com/docker/docker.github.io/blob/v17.12/config/thirdparty/prometheus.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/controller-metrics.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/controller-metrics.md
https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/monitoring.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/metrics.md
https://docs.mesosphere.com/1.10/monitoring/performance-monitoring/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/accelerator-monitoring.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/accelerator-monitoring.md
https://github.com/apache/mesos/blob/1.4.x/docs/monitoring.md#resources
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/admin/monitor-and-troubleshoot/troubleshoot-with-logs.md
https://github.com/docker/docker.github.io/blob/v17.06-release/datacenter/ucp/2.2/guides/admin/monitor-and-troubleshoot/troubleshoot-with-logs.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/logging.md

Appl. Sci. 2018, 8, x FOR PEER REVIEW 69 of 76

administration/logging.md. [Accessed: 15-Nov-2018].

[306] Mesosphere, “mesos/logging.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/logging.md#containers. [Accessed: 15-Nov-2018].

[307] Mesosphere, “Logging - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/monitoring/logging/#service-task-and-node-logs. [Accessed: 15-Nov-

2018].

[308] Linux, “systemd-journald.service(8) - Linux manual page.” [Online]. Available:

http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html. [Accessed: 15-Nov-2018].

[309] logz.io, “Docker Swarm Logging with ELK and the Logz.io Log Collector.” [Online]. Available:

https://logz.io/blog/docker-swarm-logging/. [Accessed: 15-Nov-2018].

[310] Cloud Native Computing Foundation, “website/logging-elasticsearch-kibana.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana.md. [Accessed: 15-Nov-2018].

[311] Mesosphere, “Log Aggregation - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/monitoring/logging/aggregating/. [Accessed: 15-Nov-2018].

[312] Docker Inc., “docker.github.io/admin_guide.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/admin_guide.md#back-up-the-swarm. [Accessed: 15-Nov-2018].

[313] Mesosphere, “mesos/replicated-log-internals.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/replicated-log-internals.md. [Accessed: 15-Nov-2018].

[314] Apache, “aurora/backup-restore.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/backup-restore.md. [Accessed: 15-

Nov-2018].

[315] Mesosphere, “marathon/backup-restore.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/backup-restore.md. [Accessed: 15-

Nov-2018].

[316] https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-

toleration.md, “mhausenblas/reshifter: Kubernetes cluster state management.” [Online]. Available:

https://github.com/mhausenblas/reshifter. [Accessed: 15-Nov-2018].

[317] Cloud Native Computing Foundation, “website/cluster-management.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-a-cluster. [Accessed: 15-Nov-

2018].

[318] Mesosphere, “Upgrading - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/installing/production/upgrading/. [Accessed: 15-Nov-2018].

[319] Apache, “aurora/upgrades.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/upgrades.md. [Accessed: 15-Nov-

2018].

[320] Mesosphere, “marathon/index.md at v1.5.0 · mesosphere/marathon.” [Online]. Available:

https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/upgrade/index.md. [Accessed: 15-

Nov-2018].

[321] Docker Inc., “docker.github.io/drain-node.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-

tutorial/drain-node.md. [Accessed: 15-Nov-2018].

[322] Cloud Native Computing Foundation, “website/safely-drain-node.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/administer-cluster/safely-drain-node.md. [Accessed: 15-Nov-2018].

[323] Mesosphere, “mesos/maintenance.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/maintenance.md. [Accessed: 15-Nov-2018].

[324] Mesosphere, “marathon/maintenance-mode.md at v1.6.322 · mesosphere/marathon.” [Online].

Available: https://github.com/mesosphere/marathon/blob/v1.6.322/docs/docs/maintenance-mode.md.

[Accessed: 15-Nov-2018].

[325] Mesosphere, “Updating Nodes - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.10/administering-clusters/update-a-node/. [Accessed: 15-Nov-2018].

[326] Docker Inc., “docker.github.io/garbage-collection.md at v17.09-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.09-release/registry/garbage-

collection.md. [Accessed: 15-Nov-2018].

[327] Cloud Native Computing Foundation, “website/kubelet-garbage-collection.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/logging.md
https://github.com/apache/mesos/blob/1.4.x/docs/logging.md#containers
https://docs.mesosphere.com/1.10/monitoring/logging/#service-task-and-node-logs
http://man7.org/linux/man-pages/man8/systemd-journald.service.8.html
https://logz.io/blog/docker-swarm-logging/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana.md
https://docs.mesosphere.com/1.10/monitoring/logging/aggregating/
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#back-up-the-swarm
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#back-up-the-swarm
https://github.com/apache/mesos/blob/1.4.x/docs/replicated-log-internals.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/backup-restore.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/backup-restore.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-toleration.md,
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/taint-and-toleration.md,
https://github.com/mhausenblas/reshifter
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-a-cluster
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/cluster-management.md#upgrading-a-cluster
https://docs.mesosphere.com/1.10/installing/production/upgrading/
https://github.com/apache/aurora/blob/rel/0.18.0/docs/operations/upgrades.md
https://github.com/mesosphere/marathon/blob/v1.5.0/docs/docs/upgrade/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-tutorial/drain-node.md
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/swarm-tutorial/drain-node.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/safely-drain-node.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/safely-drain-node.md
https://github.com/apache/mesos/blob/1.4.x/docs/maintenance.md
https://github.com/mesosphere/marathon/blob/v1.6.322/docs/docs/maintenance-mode.md
https://docs.mesosphere.com/1.10/administering-clusters/update-a-node/
https://github.com/docker/docker.github.io/blob/v17.09-release/registry/garbage-collection.md
https://github.com/docker/docker.github.io/blob/v17.09-release/registry/garbage-collection.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/kubelet-garbage-collection.md

Appl. Sci. 2018, 8, x FOR PEER REVIEW 70 of 76

1.8/docs/concepts/cluster-administration/kubelet-garbage-collection.md. [Accessed: 15-Nov-2018].

[328] Mesosphere, “mesos/container-image.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/container-image.md#garbage-collect-unused-

container-images. [Accessed: 15-Nov-2018].

[329] Mesosphere, “Components - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/overview/architecture/components/#docker-gc. [Accessed: 15-Nov-

2018].

[330] Docker Inc., “docker.github.io/plan-for-production.md at v17.06-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/plan-for-

production.md#multiple-clouds. [Accessed: 15-Nov-2018].

[331] Docker Inc., “docker.github.io/admin_guide.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-

release/engine/swarm/admin_guide.md#distribute-manager-nodes. [Accessed: 15-Nov-2018].

[332] Cloud Native Computing Foundation, “website/multiple-zones.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/admin/multiple-

zones.md. [Accessed: 15-Nov-2018].

[333] Mesosphere, “mesos/high-availability-framework-guide.md at 1.4.x · apache/mesos.” [Online].

Available: https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-

guide.md#dealing-with-partitioned-or-failed-masters. [Accessed: 15-Nov-2018].

[334] Apache, “aurora/configuration.md at rel/0.20.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/configuration.md#job-objects.

[Accessed: 15-Nov-2018].

[335] Docker Inc., “docker.github.io/index.md at v17.06-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.06-release/docker-cloud/cloud-

swarm/index.md. [Accessed: 15-Nov-2018].

[336] Cloud Native Computing Foundation, “website/set-up-cluster-federation-kubefed.md at release-1.9 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.9/docs/tasks/federation/set-up-cluster-federation-kubefed.md. [Accessed: 15-Nov-2018].

[337] Mesosphere, “Multiple Clusters - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/. [Accessed: 15-Nov-2018].

[338] Cloud Native Computing Foundation, “website/set-up-cluster-federation-kubefed.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-

support. [Accessed: 15-Nov-2018].

[339] Mesosphere, “Cluster Links - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/cluster-links/. [Accessed:

15-Nov-2018].

[340] Mesosphere, “mesos/fault-domains.md at 1.6.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.6.x/docs/fault-domains.md. [Accessed: 15-Nov-2018].

[341] Apache, “aurora/constraints.md at rel/0.18.0 · apache/aurora.” [Online]. Available:

https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md#limit-constraints.

[Accessed: 15-Nov-2018].

[342] Mesosphere, “Fault Domain Awareness and Capacity Extension - Mesosphere DC/OS Documentation.”

[Online]. Available: https://docs.mesosphere.com/1.11/deploying-services/fault-domain-awareness/.

[Accessed: 15-Nov-2018].

[343] Cloud Native Computing Foundation, “website/federation.md at release-1.9 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/cluster-

administration/federation.md. [Accessed: 15-Nov-2018].

[344] Cloud Native Computing Foundation, “website/pick-right-solution.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/setup/pick-right-solution.md#hosted-solutions. [Accessed: 09-Nov-2018].

[345] Cloud Native Computing Foundation, “kubernetes-incubator/external-dns: Configure external DNS

servers (AWS Route53, Google CloudDNS and others) for Kubernetes Ingresses and Services.” [Online].

Available: https://github.com/kubernetes-incubator/external-dns. [Accessed: 12-Nov-2018].

[346] Cloud Native Computing Foundation, “website/ip-masq-agent.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-

cluster/ip-masq-agent.md. [Accessed: 12-Nov-2018].

[347] Cloud Native Computing Foundation, “website/extend-cluster.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/kubelet-garbage-collection.md
https://github.com/apache/mesos/blob/1.5.x/docs/container-image.md#garbage-collect-unused-container-images
https://github.com/apache/mesos/blob/1.5.x/docs/container-image.md#garbage-collect-unused-container-images
https://docs.mesosphere.com/1.11/overview/architecture/components/#docker-gc
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/plan-for-production.md#multiple-clouds
https://github.com/docker/docker.github.io/blob/v17.06-release/swarm/plan-for-production.md#multiple-clouds
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#distribute-manager-nodes
https://github.com/docker/docker.github.io/blob/v17.06-release/engine/swarm/admin_guide.md#distribute-manager-nodes
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/multiple-zones.md
https://github.com/kubernetes/website/blob/release-1.8/docs/admin/multiple-zones.md
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-masters
https://github.com/apache/mesos/blob/1.4.x/docs/high-availability-framework-guide.md#dealing-with-partitioned-or-failed-masters
https://github.com/apache/aurora/blob/rel/0.20.0/docs/reference/configuration.md#job-objects
https://github.com/docker/docker.github.io/blob/v17.06-release/docker-cloud/cloud-swarm/index.md
https://github.com/docker/docker.github.io/blob/v17.06-release/docker-cloud/cloud-swarm/index.md
https://github.com/kubernetes/website/blob/release-1.9/docs/tasks/federation/set-up-cluster-federation-kubefed.md
https://github.com/kubernetes/website/blob/release-1.9/docs/tasks/federation/set-up-cluster-federation-kubefed.md
https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-support
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-support
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/federation/set-up-cluster-federation-kubefed.md#basic-and-token-authentication-support
https://docs.mesosphere.com/1.11/administering-clusters/multiple-clusters/cluster-links/
https://github.com/apache/mesos/blob/1.6.x/docs/fault-domains.md
https://github.com/apache/aurora/blob/rel/0.18.0/docs/features/constraints.md#limit-constraints
https://docs.mesosphere.com/1.11/deploying-services/fault-domain-awareness/
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.9/docs/concepts/cluster-administration/federation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/pick-right-solution.md#hosted-solutions
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/pick-right-solution.md#hosted-solutions
https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/ip-masq-agent.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/administer-cluster/ip-masq-agent.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/extend-cluster.md

Appl. Sci. 2018, 8, x FOR PEER REVIEW 71 of 76

1.11/content/en/docs/concepts/extend-kubernetes/extend-cluster.md. [Accessed: 12-Nov-2018].

[348] Cloud Native Computing Foundation, “website/cloud-controller.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/architecture/cloud-controller.md. [Accessed: 12-Nov-2018].

[349] Cloud Native Computing Foundation, “website/annotations.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/overview/working-with-objects/annotations.md. [Accessed: 12-Nov-

2018].

[350] Cloud Native Computing Foundation, “website/custom-resources.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/extend-kubernetes/api-extension/custom-resources.md. [Accessed: 12-

Nov-2018].

[351] Cloud Native Computing Foundation, “website/apiserver-aggregation.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md. [Accessed:

12-Nov-2018].

[352] Cloud Native Computing Foundation, “website/device-plugins.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md. [Accessed:

12-Nov-2018].

[353] Cloud Native Computing Foundation, “autoscaler/vertical-pod-autoscaler at master ·

kubernetes/autoscaler.” [Online]. Available:

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler. [Accessed: 12-Nov-2018].

[354] Cloud Native Computing Foundation, “website/podpreset.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-

application/podpreset.md. [Accessed: 12-Nov-2018].

[355] Cloud Native Computing Foundation, “website/statefulset.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/workloads/controllers/statefulset.md. [Accessed: 12-Nov-2018].

[356] Cloud Native Computing Foundation, “website/persistent-volumes.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/storage/persistent-volumes.md#raw-block-volume-support. [Accessed:

12-Nov-2018].

[357] Cloud Native Computing Foundation, “website/persistent-volumes.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/storage/persistent-volumes.md#resizing-an-in-use-

persistentvolumeclaim. [Accessed: 12-Nov-2018].

[358] Cloud Native Computing Foundation, “website/storage-limits.md at release-1.11 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/concepts/storage/storage-limits.md. [Accessed: 12-Nov-2018].

[359] Cloud Native Computing Foundation, “website/scheduling-hugepages.md at release-1.11 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/tasks/manage-hugepages/scheduling-hugepages.md. [Accessed: 12-Nov-2018].

[360] Cloud Native Computing Foundation, “website/cpu-management-policies.md at release-1.10 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md. [Accessed: 12-Nov-2018].

[361] Cloud Native Computing Foundation, “website/manage-compute-resources-container.md at release-1.8

· kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources.

[Accessed: 12-Nov-2018].

[362] Cloud Native Computing Foundation, “website/audit.md at release-1.8 · kubernetes/website.” [Online].

Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-

cluster/audit.md. [Accessed: 16-Nov-2018].

[363] Cloud Native Computing Foundation, “website/kubelet-authentication-authorization.md at release-

1.10 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-

authorization.md. [Accessed: 16-Nov-2018].

[364] Cloud Native Computing Foundation, “website/network-policies.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/extend-cluster.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/architecture/cloud-controller.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/architecture/cloud-controller.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/working-with-objects/annotations.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/overview/working-with-objects/annotations.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/custom-resources.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/custom-resources.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins.md
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/podpreset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/inject-data-application/podpreset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/statefulset.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/workloads/controllers/statefulset.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#raw-block-volume-support
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#raw-block-volume-support
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#resizing-an-in-use-persistentvolumeclaim
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#resizing-an-in-use-persistentvolumeclaim
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/persistent-volumes.md#resizing-an-in-use-persistentvolumeclaim
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/storage-limits.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/concepts/storage/storage-limits.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-hugepages/scheduling-hugepages.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/tasks/manage-hugepages/scheduling-hugepages.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/tasks/administer-cluster/cpu-management-policies.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/configuration/manage-compute-resources-container.md#extended-resources
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/audit.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/debug-application-cluster/audit.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.10/content/en/docs/reference/command-line-tools-reference/kubelet-authentication-authorization.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md

Appl. Sci. 2018, 8, x FOR PEER REVIEW 72 of 76

1.8/docs/concepts/services-networking/network-policies.md. [Accessed: 16-Nov-2018].

[365] Cloud Native Computing Foundation, “website/pod-security-policy.md at release-1.8 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/concepts/policy/pod-security-policy.md#what-is-a-pod-security-policy. [Accessed: 15-Nov-

2018].

[366] Cloud Native Computing Foundation, “website/sysctl-cluster.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-

administration/sysctl-cluster.md. [Accessed: 15-Nov-2018].

[367] Cloud Native Computing Foundation, “autoscaler/cluster-autoscaler at master · kubernetes/autoscaler.”

[Online]. Available: https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler. [Accessed:

15-Nov-2018].

[368] Cloud Native Computing Foundation, “website/port-forward-access-application-cluster.md at release-

1.8 · kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.8/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md. [Accessed: 15-

Nov-2018].

[369] Cloud Native Computing Foundation, “website/configure-pdb.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-

application/configure-pdb.md. [Accessed: 15-Nov-2018].

[370] Cloud Native Computing Foundation, “website/federation.md at release-1.8 · kubernetes/website.”

[Online]. Available: https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-

administration/federation.md#api-resources. [Accessed: 15-Nov-2018].

[371] Cloud Native Computing Foundation, “website/federation-service-discovery.md at release-1.9 ·

kubernetes/website.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.9/docs/tasks/federation/federation-service-discovery.md. [Accessed: 15-Nov-2018].

[372] Mesosphere, “mesos/resource-provider.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md. [Accessed: 12-Nov-2018].

[373] Mesosphere, “Networking - Mesosphere DC/OS Documentation.” [Online]. Available:

https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise. [Accessed: 13-Nov-2018].

[374] Mesosphere, “mesos/shared-resources.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md. [Accessed: 12-Nov-2018].

[375] Mesosphere, “mesos/framework-rate-limiting.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/framework-rate-limiting.md. [Accessed: 12-Nov-

2018].

[376] Mesosphere, “mesosphere/dcos-commons: Simplifying stateful services.” [Online]. Available:

https://github.com/mesosphere/dcos-commons/. [Accessed: 12-Nov-2018].

[377] Mesosphere, “mesos/port-mapping-isolator.md at 1.4.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md. [Accessed: 12-Nov-2018].

[378] Mesosphere, “mesos/cgroups-net-cls.md at 1.5.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md. [Accessed: 12-Nov-

2018].

[379] Docker Inc., “docker.github.io/compose-file-v2.md at v17.06-release · docker/docker.github.io.”

[Online]. Available: https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-

file/compose-file-v2.md#init. [Accessed: 12-Nov-2018].

[380] Docker Inc., “docker.github.io/index.md at v18.03 · docker/docker.github.io.” [Online]. Available:

https://github.com/docker/docker.github.io/blob/v18.03/compose/compose-file/index.md#init.

[Accessed: 12-Nov-2018].

[381] Docker Inc., “Docker Engine API v1.37 Reference.” [Online]. Available:

https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate. [Accessed: 15-Nov-2018].

[382] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic Vertical Elasticity of Docker

Containers with ELASTICDOCKER,” in IEEE International Conference on Cloud Computing, CLOUD, 2017,

vol. 2017–June.

[383] Docker Inc., “docker.github.io/completion.md at v17.09-release · docker/docker.github.io.” [Online].

Available: https://github.com/docker/docker.github.io/blob/v17.09-release/compose/completion.md.

[Accessed: 15-Nov-2018].

[384] Cloud Native Computing Foundation, “Federation - Kubernetes.” [Online]. Available: https://v1-

11.docs.kubernetes.io/docs/concepts/cluster-administration/federation/. [Accessed: 16-Nov-2018].

[385] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthukumaran, D. O ’keeffe,

M. L. Stillwell, C. Fetzer, D. Goltzsche, D. Eyers, R. Kapitza, and P. Pietzuch, “SCONE: Secure Linux

Containers with Intel SGX SCONE: Secure Linux Containers with Intel SGX,” in Proceedings of the 12th

https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/services-networking/network-policies.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/pod-security-policy.md#what-is-a-pod-security-policy
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/policy/pod-security-policy.md#what-is-a-pod-security-policy
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/sysctl-cluster.md
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/access-application-cluster/port-forward-access-application-cluster.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.8/docs/tasks/run-application/configure-pdb.md
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/federation.md#api-resources
https://github.com/kubernetes/website/blob/release-1.8/docs/concepts/cluster-administration/federation.md#api-resources
https://github.com/kubernetes/website/blob/release-1.9/docs/tasks/federation/federation-service-discovery.md
https://github.com/kubernetes/website/blob/release-1.9/docs/tasks/federation/federation-service-discovery.md
https://github.com/apache/mesos/blob/1.7.x/docs/resource-provider.md
https://docs.mesosphere.com/1.11/networking/#edge-lb-enterprise
https://github.com/apache/mesos/blob/1.4.x/docs/shared-resources.md
https://github.com/apache/mesos/blob/1.4.x/docs/framework-rate-limiting.md
https://github.com/mesosphere/dcos-commons/
https://github.com/apache/mesos/blob/1.4.x/docs/port-mapping-isolator.md
https://github.com/apache/mesos/blob/1.5.x/docs/isolators/cgroups-net-cls.md
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#init
https://github.com/docker/docker.github.io/blob/v17.06-release/compose/compose-file/compose-file-v2.md#init
https://github.com/docker/docker.github.io/blob/v18.03/compose/compose-file/index.md#init
https://docs.docker.com/engine/api/v1.37/#operation/ContainerUpdate
https://github.com/docker/docker.github.io/blob/v17.09-release/compose/completion.md
https://v1-11.docs.kubernetes.io/docs/concepts/cluster-administration/federation/
https://v1-11.docs.kubernetes.io/docs/concepts/cluster-administration/federation/

Appl. Sci. 2018, 8, x FOR PEER REVIEW 73 of 76

USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16)., 2016.

[386] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira, A. Akella, S. Design, and I. Nsdi, “Iron:

Isolating Network-based CPU in Container Environments,” Nsdi ’18, pp. 313–328, 2018.

[387] C. Xu, K. Rajamani, and W. Felter, “NBWGuard: Realizing Network QoS for Kubernetes,” in Proceedings

of the 19th International Middleware Conference Industry on - Middleware ’18, 2018, pp. 32–38.

[388] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker, “Elastic Scaling of Stateful Network

Functions,” Proc. USENIX NSDI, 2018.

[389] E. Truyen, D. Van Landuyt, B. Lagaisse, and W. Joosen, “Performance overhead of container

orchestration frameworks for management of multi-tenant database deployments,” in Proceedings of The

34th ACM/SIGAPP Symposium on Applied Computing (SAC ’19).

[390] R. N. C. Rajkumar Buyya, Rajiv Ranjan, “InterCloud: Utility-Oriented Federation of Cloud Computing

Environments for Scaling of Application Services,” vol. 6081, pp. 13–31, 2010.

[391] Istio, “Istio: Connect, secure, control and oberve services.” [Online]. Available: https://istio.io/.

[Accessed: 23-Jan-2019].

[392] Joyce John and R. Curran, “Istio / Istio Soft Multi-tenancy Support.” [Online]. Available:

https://istio.io/blog/2018/soft-multitenancy/. [Accessed: 23-Jan-2019].

[393] J. Soldani, D. A. Tamburri, and W. J. Van Den Heuvel, “The pains and gains of microservices: A

Systematic grey literature review,” J. Syst. Softw., vol. 146, no. January 2019, pp. 215–232, 2018.

[394] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai, “SLA Decomposition: Translating Service Level

Objectives to System Level Thresholds,” in Fourth International Conference on Autonomic Computing

(ICAC’07), 2007, pp. 3–3.

[395] C. Barna, H. Khazaei, M. Fokaefs, and M. Litoiu, “Delivering Elastic Containerized Cloud Applications

to Enable DevOps,” Proc. - 2017 IEEE/ACM 12th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. SEAMS

2017, pp. 65–75, 2017.

[396] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale cluster

management at Google with Borg,” in EuroSys ’15 Proceedings of the Tenth European Conference on

Computer Systems, 2015.

[397] D. Berger, B. Berg, T. Zhu, M. Harchol-Balter, and S. Sen, “RobinHood: Tail Latency-Aware Caching —

Dynamically Reallocating from Cache-Rich to Cache-Poor Daniel,” in Osdi’18, 2018.

[398] A. Sriraman, T. F. Wenisch, I. Osdi, and T. F. Wenisch, “µTune : Auto-Tuned Threading for OLDI

Microservices,” in OSDI 2018, 2018.

[399] Cloud Native Computing Foundation, “cri-tools/crictl.md at release-1.11 · kubernetes-sigs/cri-tools.”

[Online]. Available: https://github.com/kubernetes-sigs/cri-tools/blob/release-1.11/docs/crictl.md.

[Accessed: 21-Jan-2019].

[400] Mesosphere, “mesos/mesos-containerizer.md at 1.7.x · apache/mesos.” [Online]. Available:

https://github.com/apache/mesos/blob/1.7.x/docs/mesos-containerizer.md#isolators. [Accessed: 09-

Nov-2018].

[401] C. Yang, “Checkpoint and Restoration of Micro-service in Docker Containers,” no. Icmii, pp. 915–918,

2015.

[402] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and X. Koutsoukos, “Performance Interference-

Aware Vertical Elasticity for Cloud-Hosted Latency-Sensitive Applications,” in 2018 IEEE 11th

International Conference on Cloud Computing (CLOUD), 2018.

[403] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, E. Zurich, M. Forshaw, and T. Roscoe, “Three steps

is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows,” Osdi’18,

2018.

[404] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan, “Towards multi-tenant performance SLOs,” IEEE Trans.

Knowl. Data Eng., vol. 26, no. 6, pp. 1447–1463, 2014.

[405] Cloud Native Computing Foundation, “website/cluster-large.md at release-1.11 · kubernetes/website ·

GitHub.” [Online]. Available: https://github.com/kubernetes/website/blob/release-

1.11/content/en/docs/setup/cluster-large.md. [Accessed: 11-Feb-2019].

[406] Rancher, “Your Enterprise Kubernetes Platform | Rancher Labs.” [Online]. Available:

https://rancher.com/. [Accessed: 16-Nov-2018].

[407] Canonical, “Juju solutions for container management | Juju.” [Online]. Available:

https://jujucharms.com/containers. [Accessed: 16-Nov-2018].

https://istio.io/
https://istio.io/blog/2018/soft-multitenancy/
https://github.com/kubernetes-sigs/cri-tools/blob/release-1.11/docs/crictl.md
https://github.com/apache/mesos/blob/1.7.x/docs/mesos-containerizer.md#isolators
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/cluster-large.md
https://github.com/kubernetes/website/blob/release-1.11/content/en/docs/setup/cluster-large.md
https://rancher.com/
https://jujucharms.com/containers

Appl. Sci. 2018, 8, x FOR PEER REVIEW 74 of 76

Appendix

Table 8. Unique features of Docker Swarm, Kubernetes, Mesos, Aurora, Marathon and DC/OS.

Aspects and Sub-aspects Container orchestration frameworks

Cluster architecture and
setup

Sa Si Ku Me Au Ma Dc

Configuration
management approach

Architectural patterns

Installation methods and
tools for setting up a
cluster

 Kubernetes-
as-a-Service

 GUI-based
installer

CO framework
customization

Sa Si Ku Me Au Ma Dc

Unified container
runtime architecture

Framework design of
orchestration engine

 install
plugins as

global
Swarm
services

cloud-
provider
plugin

custom API
objects

aggregation
of additional

APIs

annotations
to API
objects

discovery of
a node’s

hardware
features

dynamic
kubelet
reconfig

resource
provider

abstraction
to customize
how Mesos

agent
synchronizes

with the
Mesos

master about
available
resources

and
operations
on those
resources

custom
worker
agent

software

Container networking Sa Si Ku Me Au Ma Dc

Services networking

 SCTP
protocol
support

 load
balancing of

non-
containerized

services

Host ports conflict
management

Plugin architecture for
network services

Service discovery and
external access

 exposing
service via
LB of cloud

provider

synchronize
services with

external
DNS

providers

hide Pod’s
virtual IP

Column Legend:

• Sa: Docker Swarm stand-alone

• Si: Docker Swarm integrated mode

• Ku: Kubernetes

• Me: Mesos

• Au: Mesos+Aurora

• Ma: Mesos+Marathon

• Dc: DC/OS

Appl. Sci. 2018, 8, x FOR PEER REVIEW 75 of 76

behind Node
IP

override
DNS lookup
with custom

/etc/hosts
entries in

Pod

override
name server
with custom
/etc/resolv in

Pod

install
another DNS

server in
cluster

App configuration and
deployment Sa Si Ku Me Au Ma Dc

Supported workload
types

 Initial. of
containers

vertical pod
auto-scaler

Persistent volumes

 deploying
and

managing
stateful
services

raw block
volumes

dynamically
grow

volume size

dynamic
maximum

volume
count

local volume
can be
shared

between
tasks from
different

frameworks

 tools and
libraries for
integration
with and

deployment
of stateful
services

Reusable container
configuration

 system init
inside a

container

injection of
configs at

Pod creation
time

Service upgrades
 customizing

the rollback
of a service

Resource quota
management

Sa Si Ku Me Au Ma Dc
 request rate

limiting of
frameworks

Container QoS
management Sa Si Ku Me Au Ma Dc

Container CPU and
memory allocation with
support for
oversubscription

updating
resource
policies
without

restarting
the

container

Allocation of other
resources

 define
custom node
resources of

random kind

scheduling
of huge
pages

network
isolation for

routing
mesh

networks

network
isolation
between
virtual

networks

Controlling scheduling
behavior

Controlling preemptive
scheduling and re-
scheduling

 cpu-cache
affinity
policies

Securing clusters Sa Si Ku Me Au Ma Dc

Appl. Sci. 2018, 8, x FOR PEER REVIEW 76 of 76

User identity and access
management

 audit of
master API

requests

Cluster network security

 encryption
of master/
manager

logs

access
control for
the kubelet

network
policies for

Pods

Securing containers Sa Si Ku Me Au Ma Dc

Protection of sensitive
data and proprietary
software

Improved security
isolation

 customize
service

isolation
mode in

Windows

run-time
verification
of system-
wide Pod
security
policies

configuring
kernel

parameters
at run-time

App and cluster
management

Sa Si Ku Me Au Ma Dc

Creation, management
and inspection of cluster
and applications

 command-
line auto-
complete

Monitoring resource
usage and health

 auto-scaling
of cluster

 SLA metrics custom health
checks

Logging and debugging
of CO framework and
containers

 debug
running Pod

from local
work station

Cluster maintenance

 control the
number of

Pod
disruptions

automated
upgrade of

Google
Kubernetes

Engine

Multi-cloud support

 API for
using

externally
managed
services

federated
API objects

 discovery
of the closest

healthy
service
shard

© 2018 by the authors. Submitted for possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

	1. Introduction
	1.1 Research questions
	1.2 Contribution statement
	1.3 Structure of the article

	2. Related work
	3. Research method
	3.1 Qualitative assessement of genericity
	3.1.1 Identifying features in documentation of CO frameworks
	3.1.2 Discovering common and unique features
	3.1.3 Organizing features in functional aspects and sub-aspects

	3.2 Quantitative analysis with respect to genericity
	3.3 Study of maturity
	3.4 Assessment of stability
	3.5 Involvement and feedback from industry
	3.6 Dealing with continuous evolution of CO frameworks during the research

	4. Genericity: Qualitative assessment of common features
	4.1 Cluster architecture and setup
	4.2 CO framework customization
	4.3 Container networking
	4.4 Application configuration and deployment
	4.5 Resource quota management
	4.6 Container QoS management
	4.7 Securing clusters
	4.8 Securing containers
	4.9 Application and cluster management

	5. Genericity: Qualitative assessment of unique features
	5.1 Kubernetes
	1.1
	1.1
	1.1
	5.2 Mesos-based frameworks
	5.3 Docker Swarm

	6. Genericity: Quantitative analysis
	7. Assessment of maturity and stability
	1.
	8. A look-ahead, missing functionality and research challenges
	8.1 Further evolutions in the short term.
	8.2 Missing sub-aspects
	8.2.1 Monitoring dynamic cloud federations
	8.2.2 Support for application-level multi-tenancy

	8.3 Research challenges
	8.3.1 Accurate estimation of compute resources
	8.3.2 Performance-driven instrumentations of CO framework functionality
	8.3.3 Elastic SLO management

	1.
	1.
	9. Threats to validity and limitations of study
	9.1 Selection bias.
	9.2 Experimenter bias
	9.3 Limitations of the study

	10. Lessons learned
	10.1 Genericity
	10.2 Maturity
	10.3 Stability
	10.4 Main insights with respect to Docker Swarm
	10.5 Main insights with respect to Kubernetes
	10.6 Main insights with respect to Mesos and DC/OS
	10.7 Main insights with respect to Docker Swarm alone and Apache Aurora

	11. Conclusion
	References
	Appendix

