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ABSTRACT

A typical weighted compact nonlinear scheme (WCNS) uses a convex combination of several
low-order polynomials approximated over selected candidate stencils of same width, achieving
non-oscillatory interpolation near discontinuities and high order accuracy for smooth solutions.
In this paper, we present a new multi-resolution fifth-order WCNS by making use of the in-
formation of polynomials on three nested central spatial sub-stencils having first-, third- and
fifth-order accuracy, respectively. The new scheme is capable of obtaining high-order spatial
interpolation in smooth regions, and it is characterized by the feature of gradually degrading
from fifth-order down to first-order accuracy as large stencils deemed to be crossing strong
discontinuities. The advantages of the present scheme include the superior resolution for high-
wavenumber fluctuations and the flexibility of implementing different numerical flux functions.

KEYWORDS
weighted compact nonlinear schemes; multi-resolution; nested central stencil; hyperbolic
conservation laws; compressible flows

1. Introduction

Second-order accurate schemes are no doubt the dominating tools for most industrial computa-
tional fluid dynamics (CFD) applications Wang et al. (2013). High-order schemes (third order
accurate or higher), however, have received considerable attention in the CFD research com-
munity over the past decades, not only because they can effectively reduce numerically-induced
dissipation and dispersion errors compared with low-order schemes Lele (1992), but yield high-
resolution properties which are essential for the simulation of complex flow problems Johnsen
et al. (2010); Ritos et al. (2018); Dong et al. (2019).

Besides the well-known WENO schemes Liu et al. (1994); Jiang and Shu (1996); Borges
et al. (2008); Sun et al. (2016), another popular family of high-order numerical methods is the
weighted compact nonlinear schemes (WCNSs) proposed by Deng and Zhang (2000). Being an
extension of the compact nonlinear scheme (CNS) Deng and Maekawa (1997), a WCNS combines
the advantages of both the nonlinear weighting technique in WENO schemes Liu et al. (1994),
and the spectral-like resolution of compact schemes proposed by Lele (1992), therefore yields
its great success by achieving robust shock-capturing properties and excellent resolution for
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high-frequency waves.
Application of the classical WCNS consists of three steps Deng and Zhang (2000): (1) node-

to-midpoint weighted nonlinear interpolation of flow variables – primitive variables for instance,
(2) evaluation of flux terms at midpoints, and (3) midpoint-to-node centered flux differencing.
As aforementioned, the strategy of nonlinear weighting, originating from WENO schemes Liu
et al. (1994), is commonly used, in the first step, thereby the classical WCNS using the nonlinear
weight of Jiang and Shu (1996) is often referred to as WCNS-JS. Moreover, among the three steps
listed above, the node-to-midpoint interpolation procedure is essential for the shock capturing
capability and multi-scale wave resolution of WCNSs Yan et al. (2016); Zheng et al. (2019). It
has therefore been attracting much attention.

Recently, focusing on improving the performance of the nonlinear interpolation, a stencil
selection method was incorporated in WCNS, resulting in a new compact nonlinear scheme
Zhang et al. (2019), exhibiting reduced numerical dissipation and dispersion. In particular,
the flux differencing used in the third step is performed using an explicit scheme, as in the
WCNS-E-5 of Deng (2002). As suggested by Deng et al. (2005), for a WCNS, the nonlinear
interpolation in step (1) dominates the resolution property; and explicit centered differencing,
which does not need tridiagonal inversion for derivative calculations, is favored due to simplic-
ity of implementation and superior computational efficiency. Further work of Nonomura and
Fujii (2009) demonstrated that the type of flux differencing employed does not significantly
change resolution, even for higher-order WCNSs. Therefore, in the present work, only the non-
linear interpolation is discussed, and an explicit differencing formula is applied without further
investigating the details.

Despite that much of the attention was given to improved nonlinear weighting itself, some
efforts were focused on strong robustness of numerical schemes especially for compressible flow
problems involving severe discontinuities. One typical instance is the so-called multi-dimensional
optimal order detection (MOOD) strategy Clain et al. (2011), which is promising to obtain
oscillation-free results, since strongly stable first-order interpolation is allowed in case high-
order interpolations fail to do so. Recently, Zhu and Shu (2018) proposed a multi-resolution
strategy that instead of using sub-stencils of equal-size, the high-order scheme is developed
using polynomials on a set of nested central spatial sub-stencils. These polynomials have first-,
third-, fifth-, and even higher order of accuracy if any, respectively. This strategy allows the
variable interpolation gradually degrading from high-order down to first-order accuracy as large
stencils deemed to be crossing strong discontinuities. Thus, strong stability can be achieved in
such cases. Zhang et al. (2018) also designed a ENO-type framework to exploit the potential
of using gradually degraded stencils. In this work, we develop a new WCNS by incorporating
this specific multi-resolution strategy of Zhu and Shu (2018), to achieve robustness without
losing high-resolution properties. Moreover, several commonly used numerical flux functions
are implemented with the present scheme, showing the flexibility of WCNSs. The influence of
variant flux functions is investigated accordingly.

For introducing the ideas of this work, the remainder of this article is organized as follows.
In the next section, the fundamentals and basic equations of compact nonlinear schemes are
introduced, and the proposed schemes are derived in Section 3. Section 4 presents solutions of
scalar equations and the Euler equations, and concluding remarks are given in the last section.

2. Fundamentals

The governing equations of compressible flows are hyperbolic systems. Without loss of generality,
the one-dimensional scalar hyperbolic conservation law can be first used to discuss numerical
methods modelling compressible flows; this takes the form

∂u

∂t
+
∂f(u)

∂x
= 0 , (1)
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which is subject to the initial condition

u(x, 0) = u0(x) , (2)

where u is the dependent variable, and f(u) is the flux term. The governing equation (Eq. (1)),
together with its initial condition (Eq. (2)), composes an initial-value problem (IVP), which is
assumed to be well-posed in the sense that the solution u continuously depends on the initial
field, and the solution is piecewise smooth with a finite number of discontinuities.

Here, Eq. (1) is discretized on an equally-spaced grid in one dimension with distance between
two adjacent grid nodes denoted h. At each node i, xi = ih, and ui = u(xi, t). The characteristic
velocity in Eq. (1) is ∂f(u)/∂u, which is assumed to be positive, without loss of generality.
Therefore, at each node, a semi-discrete solution can be constructed:(

∂u

∂t

)
i

= −f̂ ′i , i = 1, · · · , n , (3)

where f̂ ′i is the approximation to the first spatial derivative of the numerical flux function fi .

In WCNSs, f̂ ′i can be approximated using a centered compact scheme Deng (2002), repre-
sented in a generic form

κf̂ ′i−1 + f̂ ′i + κf̂ ′i+1 =
a1
h

(
f̃i+ 1

2
− f̃i− 1

2

)
+
a2
h

(
f̃i+ 3

2
− f̃i− 3

2

)
+
a3
h

(
f̃i+ 5

2
− f̃i− 5

2

)
, (4)

the solution of the above equation involves tridiagonal inversions if κ 6= 0, resulting into an
implicit compact scheme. An explicit formula is preferred in this work due to its low computa-
tional cost, and thus κ = 0 is set for the following discussions. The corresponding coefficients
on the right hand side of Eq. (4) have values a1 = 75/64, a2 = −25/384, and a3 = 3/640,
respectively. It is worth to note that this explicit scheme is not strictly a compact scheme, but
can be taken as a special case of the general WCNS. Moreover, the nonlinear interpolation to
be implemented in the following work can also be used by the implicit version of Eq. (4).

Midpoint flux terms in Eq. (4) are unknown and can be usually evaluated using numerical
upwind flux functions. The scalar upwind flux function is given in a generic form as

f̃i± 1

2
=

1

2

[(
f(uR,i± 1

2
) + f(uL,i± 1

2
)
)
− |â|

(
uR,i± 1

2
− uL,i± 1

2

)]
, (5)

where the subscripts, viz., L and R, indicate, respectively, the variables on the left- and right-
hand sides of the midpoint xi± 1

2
; and â is the approximate eigenvalue of the flux Jacobian matrix.

The method calculating the midpoint variables uL/R,i± 1

2
is described in the next section, which

is the major concern of this work.
Once the numerical approximation f̂ ′i is given, temporal intgration of Eq. (3) is performed

using the third-order strongly stable Runge–Kutta method Gottlieb et al. (2001). Detailed
discussions are omitted here, since it is beyond the scope of the present work.

3. Nonlinear interpolation strategies

For simplicity, we only consider the evaluation of variables on the left-hand side of xi+ 1

2
, i.e.,

uL,i+ 1

2
. The interpolations of uR,i+ 1

2
are performed by using a symmetrical form of uL,i+ 1

2
with

minor index shift. The subscript L is thus dropped for simplicity in the discussions of the
following work.

3.1. The classical WCNS-JS

For the purpose of comparison, we first introduce the classical fifth-order node-to-midpoint
interpolation of WCNS-JS Deng and Zhang (2000), whereby given a five-point full stencil Si+ 1

2
=

{xi−2, xi−1, xi, xi+1, xi+2}, a fifth-order linear approximation of the midpoint variable can be
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constructed, represented by

ui+ 1

2
= ui +

1

128
(3ui−2 − 20ui−1 − 38ui + 60ui+1 − 5ui+2) . (6)

This linear approximation is also noted as the optimal fifth-order accurate interpolation, which
on the other hand can be equivalently represented as a combination of three third-order poly-
nomials, each carried out over the sub-stencil

Si+ 1

2
,k = {xi+k−3, xi+k−2, xi+k−1}, k = 1, 2, 3. (7)

The three third-order polynomials aforementioned can be represented generically, by using
the first- and second-order derivatives, in the form of

ui+ 1

2
,k = ui (xi + ∆x) = ui + u

(1)
i,k∆x+ u

(2)
i,k

∆x2

2
, k = 1, 2, 3. (8)

where ∆x = xi+ 1

2
− xi = h

2 , and the derivative terms are

u
(1)
i,1 =

1

2h
(ui−2 − 4ui−1 + 3ui),

u
(1)
i,2 =

1

2h
(ui+1 − ui−1),

u
(1)
i,3 =

1

2h
(−3ui + 4ui+1 − ui+2),

(9)

and

u
(2)
i,1 =

1

h2
(ui−2 − 2ui−1 + ui),

u
(2)
i,2 =

1

h2
(ui−1 − 2ui + ui+1),

u
(2)
i,3 =

1

h2
(ui − 2ui+1 + ui+2),

(10)

respectively. The linear scheme in Eq. (6) is therefore expressed in an equivalent form as

ui+ 1

2
=

3∑
k=1

dkui+ 1

2
,k, (11)

where the optimal weights are

d1 =
1

16
, d2 =

10

16
, d3 =

5

16
. (12)

Nonlinear weights are used to take the place of optimal weights in order to alleviate non-
physical oscillations when sub-stencils are crossing discontinuities. For instance, the nonlinear
weights of Jiang and Shu (1996) are given by

ωk =
αk∑3
k=1 αk

, αk =
dk

(βk + ε)2
, (13)

where the small parameter ε = 10−6 is used to prevent division by zero, and βk is the local
smoothness indicator in the form of

βk =
(
hu

(1)
i,k

)2
+
(
h2u

(2)
i,k

)2
. (14)

It has been found that the corresponding JS weight can adaptively approach 0 for a sub-stencil
crossing discontinuities, thus diminishing possible numerical oscillations, and continuously ap-
proximate the optimal weight in smooth regions, therefore achieving high-order accuracy.
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3.2. The multi-resolution strategy

Classical WCNSs use sub-stencils of equal-size for midpoint interpolation, as the WCNS-JS
introduced in the last subsection. A multi-resolution strategy of Zhu and Shu (2018), however,
makes use of one 1-point sub-stencil, one 3-point sub-stencil, and one 5-point sub-stencil for the
construction of a fifth-order scheme. This strategy is employed for the midpoint interpolation
in the proposed work, and its procedure is summarized as follows.
Step 1. Construct optimal linear polynomials of different degrees for the selected 1-point sub-
stencil Si+ 1

2
,1 = {xi}, 3-point sub-stencil Si+ 1

2
,2 = {xi−1, xi, xi+1}, and 5-point sub-stencil

Si+ 1

2
,3 = {xi−2, xi−1, xi, xi+1, xi+2}, given by

q1 = ui,

q2 = −1

8
ui−1 +

3

4
ui +

3

8
ui+1,

q3 =
3

128
ui−2 −

5

32
ui−1 +

45

64
ui +

15

32
ui+1 −

5

128
ui+2.

(15)

Step 2. Construct a new set of polynomials by combining the above optimal linear approx-
imations, which will be used as a base for nonlinear convex combinations to interpolate the
midpoint values. Each of the new polynomials are computed successively, and can be expressed
as

p1 = q1,

p2 =
1

γ2,2
q2 −

γ1,2
γ2,2

p1,

p3 =
1

γ3,3
q3 −

γ1,3
γ3,3

p1 −
γ2,3
γ3,3

p2.

(16)

For simplicity, the polynomial ps for s > 1 can be represented in a generic form

ps =
1

γs,s
qs −

s−1∑
l=1

γl,s
γs,s

pl for s = 2, 3. (17)

Coefficient γl,s is linear weight to be determined, and is first required to satisfy
∑s

l=1 γl,s = 1
and γs,s 6= 0 for s = 2, 3.

Choices of γl,s are not unique. An equation for these parameters of a fifth-order scheme
are provided in the work of Zhu and Shu (2018), which is based on the compromise between
essentially non-oscillatory behavior near discontinuities and accuracy in smooth flow regions,
given by

γl,s =
γl,s∑s

m=1 γm,s
for l = 1, · · · , s, and s = 2, 3, (18)

where

γl,s = 10l−1. (19)

Therefore, it can be readily determined that γ1,2 = 1/11, and γ2,2 = 10/11; γ1,3 = 1/111,
γ2,3 = 10/111, and γ3,3 = 100/111.
Step 3. Evaluate the local smoothness indicator βs of each sub-stencil. Here, we follow the same
recipe of the classical WCNS by Deng and Zhang (2000) for the construction of smoothness
indicators, which are different than used in the WENO scheme by Jiang and Shu (1996). It is
possible that this difference can affect the performance of numerical schemes. The generic form
of the smoothness indicators is given by

βs =

s−1∑
n=1

(
hnu

(n)
i,s

)2
, s = 2, 3, (20)
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where u
(n)
i,s denotes the (approximated) n-th derivative at xi for each sub-stencil. More specifi-

cally, β2 are evaluated by using

u
(1)
i,2 =

1

2h
(ui+1 − ui−1) ,

u
(2)
i,2 =

1

h2
(ui−1 − 2ui + ui+1) ,

(21)

and for β3, derivatives are given by

u
(1)
i,3 =

1

12h
(ui−2 − 8ui−1 + 8ui+1 − ui+2) ,

u
(2)
i,3 =

1

12h2
(−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2) ,

u
(3)
i,3 =

1

2h3
(−ui−2 + 2ui−1 − 2ui+1 + ui+2) ,

u
(4)
i,3 =

1

h4
(ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2) .

(22)

β1 is an exception, which is particularly computed by

β1 =
1

σ2
[σ0(ui − ui−1) + σ1(ui+1 − ui)]2 . (23)

Thereinto, σ, σ0 and σ1 are given by

σ0 = γ0,1

(
1 +
|ζ0 − ζ1|q

ζ0 + ε

)
, σ1 = γ1,1

(
1 +
|ζ0 − ζ1|q

ζ1 + ε

)
, and σ = σ0 + σ1, (24)

where

ζ0 = (ui − ui−1)2 , ζ1 = (ui+1 − ui)2 , (25)

γ0,1 =
γ0,1
11

, γ1,1 = 1− γ0,1, and γ0,1 =

{
1, ζ0 ≥ ζ1
10, otherwise.

(26)

The integer power exponent q = 2 is used for the proposed fifth-order scheme. Different values,
however, are suggested for higher-order schemes as in the work Zhu and Shu (2018). The small
threshold value for the reported studies was suggested as ε = 10−10 to avoid the influence of
round-off error.
Step 4. Calculate the nonlinear weights for the following convex combinations of polynomials
reconstructed in Step 2. Inspired by the form of nonlinear weights of Borges et al. (2008), an
absolute difference among local smoothness indicators is defined as

τ3 =

(
|β3 − β1|+ |β3 − β2|

2

)2

. (27)

The nonlinear weights are then given by

ωk =
αk∑3

m=1 αm
, αk = γk,3

(
1 +

τ3
ε+ βk

)
, k = 1, 2, 3. (28)

Here, ε = 10−10 is also used to avoid the denominator becoming zero. Linear weights γk,3 were
given in Step 2.
Step 5. Perform convex combinations of polynomials obtained in Eq. (16) by using nonlinear
weights given in Eq. (28) such that

ui+ 1

2
=

3∑
m=1

ωmpm. (29)

6



Without difficult derivations, one can readily see that if the full stencil is smooth enough,
all local smoothness indicators satisfy βk ≈ 0 as a consequence, further yielding ωk = γk,3. The
fifth-order optimal polynomials q3 is then perfectly recovered in Eq. (29), so is the third-order
linear scheme q2 when the 1-point sub-stencil and 3-point sub-stencil are both smooth, yet the
5-point sub-stencil is regarded oscillatory. Similarly, ui+ 1

2
can further degrade down to first-

order accurate if the 3- and 5-point sub-stencils are both oscillatory. For this reason, numerical
robustness is obtained as expected by this method when dealing with severe discontinuities.

4. Numerical results and analyses

A variety of canonical problems are simulated to assess the performance of the present method.
The one-dimensional linear advection equation, the one-dimensional inviscid Burgers’ equation
and the Euler equations of gas dynamics are used as model equations in this section. We note
that a CFL number equal to 0.4 has been used in computing all of the test cases reported
herein, except that in the scalar problem, the CFL numbers are sufficiently small to achieve
temporally stable and converged results. A different number, i.e. CFL= 0.1, is also used for the
verification of high-order accuracy in the simulation of the 2D isentropic vortex propagation
problem to avoid possible spatial resolution deterioration caused by the temporal scheme. For
each test case, the solution of the multi-resolution WENO scheme Zhu and Shu (2018) using
the Lax-Friedrichs splitting, is used as a reference for the comparison purpose.

4.1. Approximate dispersion relation

Before doing the case-by-case investigation, a numerical error metric for smooth wave prop-
agation is presented at first. Dispersion and dissipation properties of the numerical scheme
proposed in this work, denoted as WCNS-MR, are evaluated by using the approximate disper-
sion relation (ADR) analysis of Pirozzoli (2006). We also provide the spectral behaviors of the
multi-resolution WENO scheme, denoted as WENO-MR, for the comparison purpose. The ADR
analysis evaluates the dissipation and dispersion errors of numerical schemes in wave-number
space by solving a linear advection equation with a smooth sinusoidal initial condition including
different Fourier modes supported on a given grid Pirozzoli (2006). A reduced wave-number ξ
(normalized to lie in the interval [0, π]) is defined for all supported modes, and its real (ξR)
and imaginary (ξI) parts represent dispersion and dissipation properties, respectively, for the
numerical schemes being evaluated.

Figure 1 shows that the proposed WCNS-MR yields better dispersion properties compared
with the WENO-MR scheme, in a wide range of wave-numbers. The difference is more sig-
nificant within the intermediate wave-number regime. In the high wave-number regime, larger
dissipation error of WCNS-MR is found, compared with WENO-MR. However, this minor large
dissipation for the high wave-number mode is not necessarily a bad feature since it helps to
damp the increased phase error therein. In general, the present method shows comparable or
better performance in resolving linear smooth waves of high frequency.

4.2. Scalar equations

4.2.1. Linear advection problem

The one-dimensional Gaussian pulse advection problem of Shu and Osher (1989), is used to
assess the order of accuracy of the proposed scheme when solutions are smooth. This problem
is governed by the linear advection equation

∂u

∂t
+
∂u

∂x
= 0 , x ∈ [0, 1] , (30)
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(a) (b)

Figure 1.: Approximate dispersion and dissipation properties of various fifth-order schemes; (a)
dispersion, and (b) dissipation.

with periodic boundary conditions and initial condition

u(x, 0) = e−300(x−xc)2, xc = 0.5 . (31)

Temporal integration is performed up to t = 1, corresponding to one period of the single
wave propagation in time. Uniformly-spaced grids are progressively refined by a factor of two
from the coarsest grid of N = 51 points. As noted above, the numerical simulation on each grid
is conducted using sufficiently small time steps so as to achieve temporally converged results.

Table 1, Table 2 and Fig. 2 illustrate numerical errors and convergence rates of the various
numerical schemes used. The order of accuracy of WENO-MR and WCNS-MR achieves approx-
imately fifth-order, during the mesh refinement. The L1- and L∞-errors of WCNS-MR, however,
coincide with those of the background linear (compact) scheme as the meshes are progressively
refined, demonstrating its improved resolution compared with the WENO-MR scheme.

Table 1.: L1-error and convergence rates of fifth-order schemes solving the linear advection
equation at t = 1 .

N
Linear5 WENO-MR WCNS-MR

Error Order Error Order Error Order
51 6.82E-03 * 9.50E-03 * 9.14E-03 *
101 3.31E-04 4.36 9.70E-04 3.29 1.23E-03 2.89
201 1.10E-05 4.91 2.42E-05 5.32 2.55E-05 5.60
401 3.48E-07 4.99 4.94E-07 5.61 3.48E-07 6.19
801 1.09E-08 5.00 1.55E-08 4.99 1.09E-08 5.00
1601 3.41E-10 5.00 4.85E-10 5.00 3.41E-10 5.00

4.2.2. Inviscid Burgers’ equation

The one-dimensional inviscid Burgers’ equation is used to assess the order of accuracy of the
nonlinear schemes being investigated when they are applied to solving a nonlinear scalar equa-
tion. The governing equation is

∂u

∂t
+

1

2

∂u2

∂x
= 0 , x ∈ [0, 2] , (32)
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Table 2.: L∞-error and convergence rates of fifth-order schemes solving the linear advection
equation at t = 1 .

N
Linear5 WENO-MR WCNS-MR

Error Order Error Order Error Order
51 5.22E-02 * 9.09E-02 * 8.95E-02 *
101 3.30E-03 3.98 1.68E-02 2.43 2.27E-02 1.98
201 1.16E-04 4.83 6.50E-04 4.69 8.00E-04 4.83
401 3.69E-06 4.97 6.84E-06 6.57 5.91E-06 7.08
801 1.16E-07 4.99 1.74E-07 5.29 1.29E-07 5.52
1601 3.63E-09 5.00 5.22E-09 5.06 3.71E-09 5.12

(a) L1 error (b) L∞ error

Figure 2.: Convergence rates of fifth-order schemes at t = 1 for L1- and L∞-errors in solutions
to the linear advection equation.
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with periodic boundary conditions and initial condition

u(x, 0) =
1

2
+ sin (πx) . (33)

The exact solution is computed by solving the derived general characteristic relation given in
Harten et al. (1987). The solution is smooth for 0 ≤ t < 1/π. L1- and L∞-errors and convergence
rate of each scheme at t = 0.2 are presented in Table 3 and Table 4, and also shown in Fig. 3.
Perfect agreement can be found for WCNS-MR and the underlying fifth-order linear scheme as
the mesh is progressively refined, indicating the optimal linear (compact) schemes are recovered
by the proposed scheme. WENO-MR yields results with formal order of accuracy higher than
five. However, this is because that the WENO-MR scheme produces large numerical errors on
coarse meshes.

Table 3.: L1-error and convergence rates of fifth-order schemes solving the 1-D inviscid Burgers
equation at t = 0.2.

N
Linear5 WENO-MR WCNS-MR

Error Order Error Order Error Order
21 5.89E-04 * 2.49E-03 * 1.67E-03 *
41 7.72E-05 2.93 2.18E-04 3.51 1.43E-04 3.54
81 3.33E-06 4.53 7.34E-06 4.89 3.48E-06 5.37
161 1.18E-07 4.82 1.90E-07 5.27 1.18E-07 4.88
321 3.86E-09 4.93 4.77E-09 5.31 3.86E-09 4.93

Table 4.: L∞-error and convergence rates of fifth-order schemes solving the 1-D inviscid Burgers
equation at t = 0.2.

N
Linear5 WENO-MR WCNS-MR

Error Order Error Order Error Order
21 3.94E-03 * 1.06E-02 * 1.00E-02 *
41 9.98E-04 1.98 2.95E-03 1.84 1.00E-03 3.32
81 9.06E-05 3.46 1.34E-04 4.46 9.06E-05 3.47
161 3.24E-06 4.81 4.49E-06 4.90 3.24E-06 4.81
321 1.04E-07 4.96 1.16E-07 5.27 1.04E-07 4.96

4.3. Euler equations

For the gas dynamic problems simulated here, the governing equations are 2D Euler equations,
which are introduced as follows, and 1D Euler equations can be then obtained by a straightfor-
ward simplification, i.e. assuming v = 0. The equations are

∂ρ

∂t
+
∂
(
ρu
)

∂x
+
∂
(
ρv
)

∂y
= 0 ,

∂
(
ρu
)

∂t
+
∂
(
ρu2
)

∂x
+
∂
(
ρuv

)
∂y

= −∂p
∂x

,

∂
(
ρv
)

∂t
+
∂
(
ρuv

)
∂x

+
∂
(
ρv2
)

∂y
= −∂p

∂y
,

∂E

∂t
+
∂
(
uE
)

∂x
+
∂
(
vE
)

∂y
= −

∂
(
up
)

∂x
−
∂
(
vp
)

∂y
.
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(a) L1 error (b) L∞ error

Figure 3.: Convergence rates of fifth-order schemes at t = 0.2 for L1- and L∞-errors in solutions
to the one-dimensional inviscid Burgers’ equation.

where E = e + 1
2u

2 is the total energy per unit mass, and e is internal energy. The dependent
variables are related through the perfect gas equation of state given by p = (γ − 1)ρe with
γ = 1.4, except for the Rayleigh-Taylor instability problem (γ = 5

3), thus closing the Euler
equations system.

Node-to-midpoint interpolation is performed on characteristic fields to alleviate spurious
oscillations Deng and Zhang (2000). While solving the Euler equations, a robust and high-
resolution numerical flux scheme is also an essential component of the numerical solver Zhang
et al. (2016, 2017); Qu et al. (2018). For high-order methods the numerical flux schemes can
be influential for the overall robustness and resolution Drikakis and Tsangaris (1993); Wang
et al. (2016). Here, three classical schemes, viz. the Rusanov scheme Rusanov (1961), van Leer
scheme van Leer (1982) and HLL scheme Harten et al. (1983), are employed for the computation
of numerical fluxes. The multi-resolution WENO scheme is denoted as WENO-MR-LF in the
following work.

4.3.1. Sod and Lax shock tube problems

Riemann initial-value problems of Sod (1978) and Lax (1954) are used to evaluate the shock-
capturing capability of the proposed scheme employing discretization of the 1-D Euler equations.

The Sod shock tube problem involves a right-moving shock of Mach number 1.7, while for
the Lax shock tube problem, the right-moving shock has Mach number 2.0. Initial conditions
for the Sod problem are

(ρ, u, p) =

{
(1, 0, 1) x ∈ [0, 0.5],

(0.125, 0, 0.1) x ∈ (0.5, 1] ,
(34)

and the results at t = 0.2 are given by solving the problem on an evenly-distributed grid of
N = 101 points.

Density and velocity distributions obtained by all schemes are close to each other, as shown
in Fig. 4. The results are free of spurious oscillations near the shock both for density and velocity
profiles, and the shock-capturing capability of all WCNS-MRs is somewhat shown to be better
than the WENO-MR scheme.

Initial conditions for the Lax shock-tube problem are

(ρ, u, p) =

{
(0.445, 0.698, 3.528) x ∈ [0, 0.5],

(0.5, 0, 0.571) x ∈ (0.5, 1] .
(35)
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(a) (b)

(c)

Figure 4.: Numerical and exact solutions of the Sod problem at t = 0.2; (a) density, (b) zoom
in of density, (c) velocity.
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This case is also simulated on an evenly distributed grid of N = 101 points, and the density
and velocity distributions at t = 0.14 are shown in Fig. 5.

(a) (b)

Figure 5.: Numerical and exact solutions of the Lax problem at t = 0.14; (a) density, and (b)
velocity.

Overall, the solutions of all nonlinear schemes are rather close and reasonably decent. Again,
the shock profile is sharply captured in the Lax problem by all schemes used. Minor overshoot is
noticeable in the density profile near the contact discontinuity, and in the velocity distribution
near the tail of the expansion fan; but such overshoots, are considered to be acceptable in this
work since similar behaviors are also seen in various other high-order schemes.

4.3.2. Shock/density-wave interaction of Osher and Shu

The shock/density-wave interaction problem of Shu and Osher (1989) is characterized by a
right-moving shock wave of Mach number 3 interacting with high-frequency sine waves in the
density field. This problem is initialized by

(ρ, u, p) =

{
(3.857, 2.629, 10.333), x ∈ [0, 1],

(1 + 0.2sin(5x), 0, 1) , x ∈ (1, 10] .
(36)

A multi-scale wave structure evolves after the shock wave interacts with the oscillating
density wave, and both shock-capturing and wave-resolution capabilities are evaluated for the
methods considered herein via this problem. This case is run on a grid of N = 201 points
which are uniformly distributed, and the final computing time is t = 1.8. Since there is no
theoretical solution for this problem, a fine-grid numerical solution via the WENO-MR on a
grid of N = 2001 points is used as a reference.

As shown in Fig. 6, all WCNS-MRs produce considerably better resolved density waves
behind the shock wave compared with WENO-MR-LF. Solutions among WCNS-MRs agree
with each other closely, implying that the multi-scale wave structure in this case is not sensitive
to the type of flux functions used for WCNS-MR.

4.3.3. Propagation of a strong vortex in two dimensions

A test case involving an isentropic vortex propagating at a supersonic Mach number Balsara and
Shu (2000) is used to evaluate the high-order accuracy of the numerical schemes considered in
2D. The initial flow state properties are carefully manipulated in the domain [−20, 20]×[−20, 20]
so that the vortex propagates along the diagonal of the domain. The mean flow properties
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(a) (b)

Figure 6.: Shock/density-wave interaction problem; numerical solutions and the exact solution
at t = 1.8; (a) full spatial domain, and (b) zoom in on high-amplitude region.

are specified initially as (ρ, u, v, p) = (1, 1, 1, 1) for the whole computational domain, and the
perturbation variables which define the vortex are given by

ũ = − yε
2π
e0.5(1−r

2)

ṽ =
xε

2π
e0.5(1−r

2)

T̃ = −(γ − 1)ε2

8γπ2
e(1−r

2)

S̃ = 0

, (37)

where it can be found that the superposition is performed through perturbations on velocity
(u, v), temperature T , given by T = p/ρ, and entropy S, defined as S = (p/ργ) in this specific
case. In addition, r2 = x2 + y2, and the vortex strength is determined by ε = 5.

Computations are run up to t = 2, and in such a case, the moving vortex has not reached any
boundaries of the computational domain. Fixed flow state properties (ρ, u, v, p) = (1, 1, 1, 1) can
be therefore used for boundary conditions. As aforementioned, CFL= 0.1 is used for the time-
stepping. Tables 5 and 6 show L1, and L∞ norm errors of the numerical solutions, respectively,
along with their convergence rates with respect to a sequence of progressively refined grids.
All WCNS-MRs exhibit better convergence rates than the WENO-MR scheme. WCNS-MRs
also yield more accurate solutions than the WENO-MR scheme on the same grid. For instance,
the solution is nearly one order of magnitude more accurate on the finest mesh when using
WCNS-MRs. Among three WCNS-MRs, WCNS-MR-Rosanov is less accurate than the other
two schemes. The resolutions of WCNS-MR-HLL and WCNS-MR-Vanleer, however, are close.

Table 5.: L1-error and convergence rate of fifth-order schemes simulating the propagation of a
strong vortex in 2D (t = 2).

N
WENO-MR-LF WCNS-MR-Rusanov WCNS-MR-HLL WCNS-MR-Vanleer
Error Order Error Order Error Order

81 2.45E-04 * 1.37E-04 * 1.33E-04 * 1.38E-04 *
161 2.30E-05 3.41 1.29E-05 3.40 1.01E-05 3.72 1.05E-05 3.71
321 1.29E-06 4.16 4.27E-07 4.92 3.34E-07 4.91 3.47E-07 4.92
641 2.47E-08 5.70 9.37E-09 5.51 6.16E-09 5.76 5.63E-09 5.95
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Table 6.: L∞-error and convergence rate of fifth-order schemes simulating the propagation of a
strong vortex in 2D (t = 2).

N
WENO-MR-LF WCNS-MR-Rusanov WCNS-MR-HLL WCNS-MR-Vanleer
Error Order Error Order Error Order

81 7.77E-02 * 4.14E-02 * 3.99E-02 * 3.88E-02 *
161 1.08E-02 2.84 5.73E-03 2.85 4.74E-03 3.07 6.60E-03 2.55
321 8.46E-04 3.68 2.31E-04 4.63 2.49E-04 4.25 3.73E-04 4.15
641 2.50E-05 5.08 2.47E-06 6.55 1.91E-06 7.03 1.93E-06 7.59

4.3.4. Two-dimensional Riemann problems

In this section, the configurations 3 and 6 out of 19 2-D Riemann problems used by Lax and Liu
(1998) are employed to evaluate performance of the currently investigated numerical schemes.
In particular, these two configurations are characterized by rich small scales in the flow fields,
and thus are specifically chosen to evaluate the ability of the proposed numerical schemes to
resolve fine flow structures. These 2-D Riemann problems are widely-solved canonical problems
in the present context, analogous to the 1-D Sod shock tube problem of the previous section.

Configuration 3

Initial conditions for configuration 3 are given by

(ρ, u, v, p) =


(1.5, 0, 0, 1.5) (x, y) ∈

[
1
2 , 1
]
×
[
1
2 , 1
]
,

(0.5323, 1.206, 0, 0.3) (x, y) ∈
[
0, 12
]
×
[
1
2 , 1
]
,

(0.138, 1.206, 1.206, 0.029) (x, y) ∈
[
0, 12
]
×
[
0, 12
]
,

(0.5323, 0, 1.206, 0.3) (x, y) ∈
[
1
2 , 1
]
×
[
0, 12
]
,

(38)

and the boundary conditions are

∂u(x, y, t)

∂x
= 0, x = 0, 1, ∀ y, t,

∂u(x, y, t)

∂y
= 0, y = 0, 1, ∀ x, t,

(39)

where the vector of primitive variables is given by u = (ρ, u, v, p)T . Ghost nodes are used
adjacent to boundary nodes of the domain to implement these conditions. It should be noted
that computations are terminated before the shock structures interact with boundaries, and
thus the discussion will focus on the central part of the flow field.

Solutions obtained on a mesh of 10242 grid points with uniform spacing by WCNS-MRs
and WENO-MR at t = 0.3 are shown in Fig 7. All WCNS-MRs capture more vortices along
contact lines than does the WENO-MR-LF scheme. The solutions computed using variant flux
functions for WCNS-MRs, however, are different. In particular, the WCNS-MR-Vanleer resolves
a few small features not seen in the other figures.

Without physical results for comparisons, one must question whether these flow structures
actually represents physics. In fact, Shi et al. (2003) suggested that during a mesh refinement
slip lines usually are non-physical and depend on numerical schemes being used. However,
these simulations are important for identifying the magnitude of numerical viscosities; and the
small numerical viscosity indicated by these delicate structures in the flow field is a necessity to
guarantee that the physical viscosity in Navier–Stokes simulation is not overwhelmed. Moreover,
in this numerical case, expected symmetries are lost in all solutions. Similar behaviors were
also found in references Shi et al. (2003); Zhao et al. (2018). A thorough investigation into
the occurrence of symmetry breaking was carried out by Fleischmann et al. (2019) in their
recent work. They demonstrated that the asymmetric flow behavior is mainly triggered by the
floating-point truncation error. Several useful strategies were reported to improve the CFD code
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with symmetry preserving property. With the consistent floating-point arithmetic implemented,
symmetry of the flow state variables can be recovered both in two and three dimensions.

Figure 7.: Configuration 3 of 2-D Riemann problems in Lax and Liu (1998) computed on a grid
of 1024×1024 points; 30 density contour lines ranging from 0.1 to 1.8 at t = 0.3.

Configuration 6

The equations of motion are the same as those used for configuration 3, the 2-D Euler equations,
but now with initial conditions given by

(ρ, u, v, p) =


(1, 0.75,−0.5, 1) (x, y) ∈

[
1
2 , 1
]
×
[
1
2 , 1
]
,

(2, 0.75, 0.5, 1) (x, y) ∈
[
0, 12
)
×
[
1
2 , 1
]
,

(1,−0.75, 0.5, 1) (x, y) ∈
[
0, 12
)
×
[
0, 12
)
,

(3,−0.75,−0.5, 1) (x, y) ∈
[
1
2 , 1
]
×
[
0, 12
)
,

(40)

and the boundary conditions are the same as in the preceding test case.
Results obtained by using WENO-MR-LF, WCNS-MR-Rusanov, WCNS-MR-Vanleer and

WCNS-MR-HLL on a uniform mesh of 10242 grid points at t = 0.3 are shown in Fig. 8. All
WCNS-MRs resolve abundant small-scale flow structures along contact lines in the first and
third quadrants. In the second quadrant, however, several small features along the contact
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line are better captured by the WENO-MR-LF scheme, which are not seen in the solutions
of WCNS-MR-Rusanov and WCNS-MR-HLL. Again, similar to the findings for the previous
configuration, noticeable differences can be seen by comparing all results of WCNS-MRs in this
test case–probably due to different numerical dissipation.

In the absence of physical results or demonstrably accurate simulations, we do not discuss
the physical correctness of the results here. So is only numerical, as has been noted by various
other investigations.

Figure 8.: Configuration 6 of 2-D Riemann problems in Lax and Liu (1998) computed on a grid
of 1024×1024 points; 40 density contour lines ranging from 0.1 to 2.9 at t = 0.3.

4.3.5. Rayleigh–Taylor instability

The Rayleigh–Taylor instability problem containing both discontinuities and complex vortex
structures, has been widely studied, experimentally and computationally, and it is used here as
a final example for examining performance of the presently-studied methods. Again, the 2-D
Euler equations comprise the basic mathematical model. In the present case, initial conditions
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are given by

(ρ, u, v, p) =

{
(2, 0,−0.025 a cos (8πx), 1 + 2y) (x, y) ∈ [0, 0.25]×[0, 0.5) ,

(1, 0,−0.025 a cos (8πx), y + 3/2) (x, y) ∈ [0, 0.25]×[0.5, 1] ,
(41)

where a is the speed of sound, given by a =
√
γp/ρ and a different γ = 5

3 is used for this specific
case. Reflecting boundary conditions are imposed at the left- and right-hand sides of the domain;
i.e., velocity u adjacent to boundary nodes is assigned the value of corresponding image nodes
with sign reversed, and ρ, v, and p are straightforwardly assigned. Constant boundary conditions
are given for the top and bottom sides, expressed as

(ρ, u, v, p) =

{
(1, 0, 0, 2.5) y = 1, ∀ t, x ,
(2, 0, 0, 1) y = 0, ∀ t, x .

(42)

Two source terms, ρ and ρv, are added to the right-hand side of the third and the fourth
equations, respectively, of the 2-D Euler system given at the beginning of this subsection, as
done by Shi et al. (2003), among others. (Note: this does not correctly adhere to dimensional
consistency of terms in the equations of motion, so any correspondence with actual physics
would be accidental. Moreover, the Rayleigh–Taylor problem is 3D, so again, not much actual
physics can be expected from these simulations, but only the numerical dissipation properties
are investigated.) A uniformly distributed mesh of 128×512 grid points is used. Density profiles
at the final time t = 1.95, computed using the WENO-MR, and three WCNS-MR techniques,
are shown in Fig. 9.

Figure 9.: Rayleigh–Taylor instability problem; 30 density contour lines ranging from 0.9 to 2.2.
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Overall, WENO-MR, WCNS-MR-Rusanov, and WCNS-MR-HLL obtain similar flow struc-
tures. In the solution of WCNS-MR-Vanleer, a unique second pair of vortices rolling up along
the slip lines, and more complex flow structures in the “mushroom cap” region are resolved.
Moreover, symmetric density profiles are produced with all methods, as should be expected. It
is worth to note again, that for this problem, a more accurate Riemann solver would be quite
helpful for improving resolution of the present methods, as investigated by San and Kara (2015)
for a somewhat different problem.

Moreover, in Table 7, we provide the comparison of CPU timing per time step using variant
fifth-order schemes in this test case. In general, the computing time is close, since WCNS-MRs
use an explicit form of Eq. 4, which does not require the time consuming tridiagonal inversion.
This insignificant difference between WENO-MR and WCNS-MRs can also be changed by
improving the coding performance of each scheme and the solver.

Table 7.: CPU timing (in seconds) per time step using variant fifth-order schemes in the
Rayleigh–Taylor instability problem.

Grid size WENO-MR-LF WCNS-MR-Rusanov WCNS-MR-HLL WCNS-MR-Vanleer
128× 512 0.319 0.313 0.325 0.297

5. Conclusions

Following the fundamental concept of WCNSs, a new multi-resolution strategy is introduced
to construct the nonlinear interpolation procedure of WCNSs using three nested central spatial
sub-stencils. The nonlinear interpolation still uses the convex combination concept of WENO
schemes, but the strategy of using sub-stencils of equal-width is abandoned, and thus allowing
the present scheme to gradually reduce the order of accuracy if discontinuous solution occurs.
In fact, the proposed scheme can degrade to first-order interpolation for a closely located severe
discontinuity. Therefore, strong robustness can be guaranteed in such a case. Moreover, as
shown in the test cases above, high-resolution has been achieved by the proposed scheme both
in capturing shocks and resolving complex flow structures.

In the present work, we also exploit one of the advantages of WCNSs, i.e., the flexibility
of using different numerical flux functions. While the type of flux functions does not seem to
affect the specific multi-scale wave structure of shock/density-wave interaction problem, the rich
small scales in the 2D test cases are sensitive to the flux function selected. The key may be the
capability of resolving different wave structures governed by the Euler equations, and thus it is
favored to use such a high-resolution numerical flux scheme.

In conclusion, due to the advantages mentioned above, the proposed scheme is a promising
alternative solution, which possesses high-resolution and low-dissipation properties, for simu-
lating compressive flows with discontinuities.
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