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Abstract. In many applications it is necessary to compute the time-
dependent distribution of an ensemble of particles subject to transport
and collision phenomena. Kinetic equations are PDEs that model such
particles in a position-velocity phase space. In the low collisional regime
explicit particle-based Monte Carlo methods simulate these high dimen-
sional equations efficiently, but, as the collision rate increases, these
methods suffer from severe time-step constraints. In the high collision
regime, asymptotic-preserving particle schemes are able to produce sta-
ble results. However, this stability comes at the cost of a bias in the
computed results. In earlier work, the multilevel Monte Carlo method
was used to reduce this bias by combining simulations with large and
small time steps. This multilevel scheme, however, still has large vari-
ances when correlating fine and coarse simulations, which leads to sub-
optimal multilevel performance. In this work, we present an improved
correlation approach that decreases the variance when bridging the gap
from large time steps to time steps of the order of magnitude of the col-
lision rate. We further demonstrate that this reduced variance results in
a sharply reduced simulation cost at the expense of a small bias.

Keywords: Multilevel Monte Carlo · Kinetic Equations · Diffusive Scal-
ing · Particle Methods

1 Introduction

In many application domains, one encounters kinetic equations that model parti-
cle behavior in a high dimensional position-velocity phase space. One such moti-
vating application for this work is modelling neutral transport in plasma simula-
tions of Tokamak fusion reactors, as is done in the simulation code EIRENE [19].

? This work was funded by the Research Foundation - Flanders (FWO) under fel-
lowship numbers 1SB1919N and 1189919N. The computational resources and ser-
vices used in this work were provided by the VSC (Flemish Supercomputer Center),
funded by the Research Foundation - Flanders (FWO) and the Flemish Government
- department EWI.
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Often, one is interested in low-dimensional moments of the particle distribution,
which are computed as averages over velocity space. The time-scale at which
these quantities of interest change is often much slower than that of the particle
dynamics, making these models very stiff: a naive simulation requires small time
steps to capture the fast dynamics, but long time horizons to capture the evo-
lution of the macroscopic quantities of interest. The exact nature of the macro-
scopic behavior depends on the problem scaling, which can be hyperbolic or
diffusive [4].

We consider a diffusively-scaled, spatially homogeneous kinetic equation mod-
elling a distribution of particles f(x, v, t) as a function of space x ∈ Dx ⊂ Rd,
velocity v ∈ Dv ⊂ Rd and time t ∈ R+. The scaling is captured the parameter
ε, which represents the particle mean free path, i.e., the expected time between
collisions. Simultaneously re-scaling time by ε, gives a model equation

∂tf(x, v, t) +
v

ε
∇xf(x, v, t) =

1

ε2
(M(v)ρ(x, t)− f(x, v, t)) , (1)

with ρ(x, t) =

∫
Dv

f(x, v, t) dv the particle density.

The right-hand side of (1) consists of the BGK operator [1], which linearly drives
the velocity to a steady-state distribution M(v) with characteristic velocity ṽ.

Individual particles in the distribution f(x, v, t) follow a velocity-jump pro-
cess, i.e., they travel in a straight line with a fixed velocity for an exponentially
distributed time interval E(1/ε), at which point a collision is simulated by re-
sampling their velocity from the distribution M(v). Taking the diffusion limit
ε→ 0 in (1) drives the collision rate to infinity, while simultaneously increasing
the velocity. In this limit, it can be shown that the particle density resulting
from (1) converges to the heat equation [11],

∂tρ(x, t) = ∇2
xρ(x, t). (2)

Equation (1) can be simulated using a wide selection of methods, which
broadly fall into two categories. Deterministic methods solve (1) for f(x, v, t) on
a grid over the position-velocity phase space (using, for instance, finite differences
or finite volumes). This approach quickly becomes computationally infeasible
when the dimension grows, since a grid must be formed over the 2d-dimensional
domain, Dx × Dv. Stochastic methods, on the other hand, perform simulations
of individual particle trajectories, with each trajectory sampling the probability
distribution f(x, v, t). These methods do not suffer from the dimensionality of the
phase space, but introduce a statistical error in the computed solution. When
using explicit time steps, both approaches become prohibitively expensive for
small values of ε due to the time step restriction.

To avoid the issues when ε becomes small, one can use asymptotic-preserving
schemes [9]. Such methods preserve the macroscopic limit equation, in our case
given by (2), as ε tends to zero, while avoiding time step constraints. Many
such methods have been developed in literature for deterministic methods in the
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diffusive limit. For more information, we refer to a recent review paper [4] and
the references therein. In the particle setting, only a few asymptotic-preserving
methods exist, mostly in the hyperbolic scaling [3, 6, 7, 16–18]. In the diffusive
scaling, we are only aware of three works [2, 5, 14]. We use the approach taken
in [5], which uses operator splitting to produce an unconditionally stable fixed
time step particle method. This stability comes at the cost of an extra bias in
the model, proportional to the size of the time step.

In [13] the multilevel Monte Carlo method [8] was applied to the scheme pre-
sented in [5]. Multilevel Monte Carlo methods first compute an initial estimate,
using a large number of samples with a large time step (low cost per sample).
This estimate has low variance, but is expected to have a large bias. Next, the
bias of the initial estimate is reduced by performing corrections using a hierar-
chy of simulations with increasingly smaller time steps. Under correct conditions,
far fewer samples with small time steps are needed, compared to a direct Monte
Carlo simulation with the smallest time step. This approach results in a reduced
computational cost for a given accuracy. One of these conditions is the ability
to generate samples with different time step sizes which are correlated, i.e., they
approximate the same continuous particle trajectory. This paper presents a strat-
egy for improving the correlation developed in [13] and thus further reducing the
computational cost of particle based simulations of (1).

The remainder of this paper is structured as follows. In Section 2 we present
a naive particle based Monte Carlo scheme for simulating the kinetic equation
(1) and show why this approach fails. In Section 3, we show how combining the
asymptotic-preserving scheme from [5] and the multilevel Monte Carlo method
can be used to combat these issues. In Section 4, we show where the correlation
of the existing method is sub-optimal and introduce our improved correlation.
In Section 5, we present experimental results using the new correlation, demon-
strating computational speed-up. In Section 6, we summarize our results and list
further challenges.

2 Monte Carlo Simulation near the Diffusive Limit

For the sake of exposition, we limit this work to one spatial dimension, i.e.,
d = 1 but, our approach can be applied straightforwardly in more dimensions.
Equation (1) now becomes

∂tf(x, v, t) +
v

ε
∂xf(x, v, t) =

1

ε2
(M(v)ρ(x, t)− f(x, v, t)) . (3)

We also restrict this paper to simulations with two discrete velocities, i.e.,
M(v) ≡ 1

2 (δv,−1 + δv,1), with δ the Kronecker delta function.
We focus on computing a quantity of interest Y (t∗), which takes the form

of an integral over a function F (x, v) of the particle position X(t) and velocity
V (t) at time t = t∗, with respect to the measure f(x, v, t) dx dv, i.e.,

Y (t∗) = E [F (X(t∗), V (t∗))] =

∫
Dv

∫
Dx

F (x, v)f(x, v, t∗) dxdv.
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Equation (3) can be simulated using a particle scheme with a fixed time step
size ∆t. Each particle p has a state

(
Xn
p,∆t, V

n
p,∆t

)
in the position-velocity phase

space at each time step n, with Xn
p,∆t ≈ Xp(n∆t) and V np,∆t ≈ Vp(n∆t). We

represent the distribution f(x, v, t) of particles at time n∆t by an ensemble of
P particles, with indices p ∈ {1, . . . , P},{(

Xn
p,∆t, V

n
p,∆t

)}P
p=1

. (4)

A classical Monte Carlo estimator Ŷ (t∗) for Y (t∗) averages over such an ensemble

Ŷ (t∗) =
1

P

P∑
p=1

F
(
XN
p,∆t, V

N
p,∆t

)
, t∗ = N∆t. (5)

To generate an ensemble (4) we perform forward time stepping based on
operator splitting, which is first order in the time step ∆t [15]. For (3), operator
splitting results in two actions for each time step:

1. Transport step. Each particle’s position is updated based on its velocity

Xn+1
p,∆t = Xn

p,∆t +∆tV np,∆t. (6)

2. Collision step. Between transport steps, each particle’s velocity is either
left unchanged (no collision) or re-sampled from M(v) (collision), i.e.,

V n+1
p,∆t =

{
V n,′p,∆t ∼M(v), with collision probability pc,∆t = ∆t/ε2,

V np,∆t, otherwise.
(7)

Scheme (6)–(7) has a severe time step restriction ∆t = O(ε2) when approaching
the limit ε → 0. This time step restriction results in unacceptably high simula-
tion costs, despite the well-defined limit (2) [5]. Given that the variance of the
estimator Ŷ (t∗) scales with 1

P , a high individual simulation cost will severely
constrain the precision with which we can approximate Y (t∗).

3 Multilevel Monte Carlo using AP Schemes

In the previous section, we demonstrated that a time step ∆t = O(ε2) is needed
to resolve the collision dynamics of the kinetic equation (3). As ε becomes small,
this causes a naive Monte Carlo estimator to be computationally infeasible. In
this section, we first present an asymptotic-preserving Monte Carlo scheme which
maintains stability for large time steps by reducing the contribution of collision
dynamics for larger time steps. We will then present a multilevel Monte Carlo
estimator, using this scheme, to combine simulations with different time step
sizes, reducing the overall computational cost of the estimator Ŷ (t∗).
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3.1 Asymptotic-preserving Monte Carlo scheme

We use the asymptotic-preserving scheme from [5] as an alternative to (6)–(7).
This asymptotic-preserving scheme has no time step constraints, so ε and ∆t
can be chosen independently. The scheme simulates a modified version of (3):

∂tf +
εv

ε2 +∆t
∂xf =

∆t

ε2 +∆t
∂xxf +

1

ε2 +∆t
(M∆t(v)ρ− f) . (8)

In (8), we have omitted the space, velocity and time dependency of f(x, v, t)
and ρ(x, t), for conciseness. Note that the steady-state distributionM∆t(v) now

has a time step dependent characteristic velocity ṽ∆t =
ε

ε2 +∆t
and that the

coefficients of (8) explicitly contain the simulation time step ∆t.
Equation (8) has the following properties [5]:

1. When ε→ 0, (8) converges to the heat equation (2).
2. When ∆t→ 0, (8) converges to the original kinetic equation (3) O(∆t).
3. When ∆t→∞, (8) converges to the heat equation (2) with a rate O

(
1
∆t

)
.

The first property states that (8) has the same asymptotic limit in ε as (3).
The second and third properties provide us with an intuitive understanding
of (8). We can interpret the modified equation as a combination of the heat
equation (2) and the original kinetic equation (3), where the two contributions
are weighted in function of ∆t. For large time steps the heat equation dominates
over the kinetic equation. At the particle level, the heat equation corresponds
with Brownian motion, which has no time constraints, hence the stability of (8).

Particle trajectories are now simulated as follows:

1. Transport-diffusion step. The position of the particle is updated based
on its velocity and a Brownian increment

Xn+1
p,∆t = Xn

p,∆t + V np,∆t∆t+
√

2∆t
√
D∆tξ

n
p , (9)

in which we generate ξnp ∼ N (0, 1) and introduce a ∆t-dependent velocity

V np,∆t ∼M∆t(v) and a diffusion coefficient D∆t = ∆t
ε2+∆t .

2. Collision step. During collisions, each particle’s velocity is updated as:

V n+1
p,∆t =

V n,′p,∆t ∼M∆t(v), with probability pc,∆t =
∆t

ε2 +∆t
,

V np,∆t, otherwise.
(10)

The considered time step dependent distributionM∆t(v) can be decomposed
as a characteristic velocity multiplied with a time step independent velocity
distribution M̄(v̄) with unit variance and expected value zero

M∆t(v) = ṽ∆tM̄(v̄). (11)

The scheme (9)–(10) stably generates trajectories for large ∆t. However, these
trajectories are biased with O(∆t) compared to those generated by (6)–(7).
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3.2 Multilevel Monte Carlo

The key idea behind the multilevel Monte Carlo method (MLMC) [8] is to com-
bine simulations with different time step sizes to simulate many trajectories (low
variance), while also simulating accurate trajectories (low simulation bias).

First, a coarse Monte Carlo estimator Ŷ0(t∗) with a time step ∆t0 is used

Ŷ0(t∗) =
1

P0

P0∑
p=1

F
(
XN0

p,∆t0
, V N0

p,∆t0

)
, t∗ = N0∆t0. (12)

Estimator (12) is based on a large number of trajectories P0, but has a low
computational cost as few time steps N0 are required to reach time t∗.

Next, Ŷ0(t∗) is refined upon by a sequence of L difference estimators at levels
` = 1, . . . , L. Each difference estimator uses an ensemble of P` particle pairs

Ŷ`(t
∗) =

1

P`

P∑̀
p=1

(
F
(
XN`

p,∆t`
, V N`

p,∆t`

)
− F

(
X
N`−1

p,∆t`−1
, V

N`−1

p,∆t`−1

))
, t∗ = N`∆t`.

(13)
Each correlated particle pair consists a particle with a fine time step ∆t` and a
particle with a coarse time step ∆t`−1 = M∆t`, with M a positive integer. The
particles in each pair undergo correlated simulations, which intuitively can be
understood as making both particles follow the same qualitative trajectory for
two different simulation accuracies. One can interpret the difference estimator
(13) as using the fine simulation to estimate the bias in the coarse simulation.

Given a sequence of levels ` ∈ {0, . . . , L}, with decreasing step sizes, and
the corresponding estimators given by (12)–(13), the multilevel Monte Carlo
estimator for the quantity of interest Y (t∗) is computed by the telescopic sum

Ŷ (t∗) =

L∑
`=0

Ŷ`(t
∗). (14)

It is clear that the expected value of the estimator (14) is the same as that of
(5), with the finest time step ∆t = ∆tL. Given a sufficiently fast reduction in
the number of simulated (pairs of) trajectories P` as ` increases, it can be shown
that the multilevel Monte Carlo estimator requires a lower computational cost
than a classical Monte Carlo estimator to achieve the same mean square error.

3.3 Term-by-term correlation approach

The differences in (13) will only have low variance if the simulated paths up to

XN`

p,∆t`
and X

N`−1

∆tp,`−1
, with time steps related by ∆t`−1 = M∆t` are correlated.

To discuss these correlated pairs of trajectories, we define a sub-step index m ∈
{1, . . . ,M}, i.e., Xn,m

p,∆t`
≈ Xp(n∆t`−1 +m∆t`) ≡ Xp((nM +m)∆t`). In order to
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span a time interval of size ∆t`−1, the coarse simulation requires a single time
step of size ∆t`−1 while the fine simulation requires M time steps of size ∆t`:

Xn+1
p,∆t`−1

= Xn
p,∆t`−1

+∆t`−1V
n
p,∆t`−1

+
√

2∆t`−1

√
D∆t`−1

ξnp,`−1

Xn+1,0
p,∆t`

= Xn,0
p,∆t`

+

M∑
m=1

(
∆t`V

n,m
p,∆t`

+
√

2∆t`
√
D∆t`ξ

n,m
p,`

) ,

with ξnp,`−1, ξ
n,m
p,` ∼ N (0, 1), V np,∆t`−1

∼M∆t`−1
(v) and V n,mp,∆t`

∼M∆t`(v).
There are two sources of stochastic behavior in the asymptotic-preserving

scheme (9)–(10). On the one hand, a new Brownian increment ξnp is generated
at each time step. On the other hand, each time step has a finite collision prob-
ability. Collisions produce a new particle velocity V n+1

p,∆t for the next time step.
To correlate these simulations we first perform M independent time steps of

the fine simulation. We then combine the M sets of random numbers in the fine
path into one set of random numbers which can be used in a single time step for
the coarse simulation. If the fine simulation random numbers are combined in
such a way that the resulting coarse simulation random numbers are distributed
as if they had been generated independently, then the coarse simulation statistics
will be preserved, while also being dependent on the fine simulation.

In [13], an approach was developed for independently correlating Brownian
increments and collision phenomena, which we briefly describe here. For a full
derivation and an analysis of the correlation we refer to [12, 13].

Correlating Brownian increments In each fine sub-step m ∈ {1, . . . ,M} a
Brownian increment ξn,mp,` ∼ N (0, 1) is generated. The sum of these M incre-
ments is distributed as N (0,M). This means that a Brownian increment for the
corresponding coarse simulation step can be generated as

ξnp,`−1 =
1√
M

M∑
m=1

ξn,mp,` ∼ N (0, 1). (15)

Correlating collisions Implementing (10) requires simulating a collision in a
fine sub-step m ∈ {1, . . . ,M}, with the collision probability pc,∆t` . In practice
this is achieved by drawing a uniformly distributed random number un,mp,` ∼
U([0, 1]) and performing a collision if this number is larger than the probability
pnc,∆t` = 1− pc,∆t` that no collision has occurred in the the time step

un,mp,` ≥ pnc,∆t` =
ε2

ε2 +∆t`
. (16)

At least one collision has taken place in the fine simulation if the largest of the
generated un,mp,` , m ∈ {1, . . . ,M}, satisfies (16), i.e.,

un,max
p,` = max

m
un,mp,` ≥ pnc,∆t` . (17)
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When (17) is satisfied, the probability of a collision taking place in the correlated
coarse simulation should be large. This is the case if we compare

unp,`−1 =
(
un,max
p,`

)M
∼ U([0, 1]), (18)

with pnc,∆t`−1
in the coarse simulation.

If a collision is performed in the simulation at level `−1 using (18), then the
coarse simulation velocity should be correlated with that of the fine simulation,
at the end of the time interval. We consider the decomposition ofM(v) given in
(11). In those of the M fine sub-steps that contain a collision, we draw a time
step independent velocity v̄n,mp,` to generate V n,mp,` . Given that the v̄n,mp,` are i.i.d.,
we can select one freely to use as v̄np,`−1. To maximize the correlation of the

velocities at the end of the time interval, we take the last generated v̄n,mp,` , i.e.,

v̄np,`−1 = v̄n,ip,` , i = arg max
1≤m≤M

(
m
∣∣∣un,mp,` ≥ pnc,∆t`) . (19)

4 Improved Coupling of Particle Trajectories

4.1 Limitations of term-by-term correlation

In [12], it was demonstrated that a multilevel Monte Carlo scheme, based on the
correlation in Section 3.3 achieves an asymptotic speed-up O

(
E−2 log2(E)

)
in

the root mean square error bound E for the following sequence of levels:

1. At level 0, generate an initial estimate of Ŷ (t∗) by simulating with ∆t0 = t∗.
2. At level 1, perform correlated simulations to t∗ using ∆t0 = t∗ and ∆t1 = ε2.
3. Continue to generate a geometric sequence of levels ∆tl = ε2M1−l for l > 1

until an acceptably low bias has been achieved.

This result only holds when ∆t` � ε2, however, meaning that the scheme only
significantly reduces computational cost when calculating very accurate results.

To demonstrate this phenomenon, we present a multilevel simulation with a
two-speed velocity distribution using the scheme from Section 3.3 to estimate
the squared particle displacement F (x, v) = x2. The results for ε = 0.1, a RMSE
E = 0.1, f(x, v, 0) ≡ δx,0

1
2 (δv,−1 + δv,1), and t∗ = 0.5 are shown in Table 1. In

this table, we list the fine time step size ∆t`, number of samples P`, expected
value E [F` − F`−1] and variance V [F` − F`−1] of the differences of simulations,
estimated variance of the estimator V[Ŷ`], cost per sample C` and level cost
P`C`. We define F−1 ≡ 0 and define C` relative to a simulation with ∆t = ε2.

Looking at the values of V [F` − F`−1] in Table 1, it is clear that the vari-
ance at level 1 is almost as large as that at level 0. Comparing the values of
V [F` − F`−1] with those of E [F` − F`−1], we see, contrastingly, that the ex-
pected value of the estimator at level 1 is an order of magnitude smaller than
that at level 0. This indicates that the lack of decreasing variance from level 0
to level 1 is due to insufficient correlation between the trajectories used in the



Improved MLMC for kinetic equations in the diffusive scaling 9

Table 1. Computing Ŷ (t∗) for ε = 0.1 and E = 0.1.

Level ∆t` P` V
[
F̂`

]
E
[
F̂` − F`−1

]
V [F` − F`−1] V[Ŷ`] C` P`C`

0 5.00× 10−1 17 716 2.02 1.01× 100 2.02× 100 1.14× 10−4 0.02 354
1 1.00× 10−2 2 157 1.43 −1.17× 10−1 1.48× 100 6.85× 10−4 1.02 2 200
2 5.00× 10−3 602 1.49 −1.36× 10−2 3.71× 10−1 6.16× 10−4 3 1 806
3 2.50× 10−3 489 1.65 3.55× 10−2 4.10× 10−1 8.39× 10−4 6 2 934
4 1.25× 10−3 345 1.44 −3.94× 10−2 4.43× 10−1 1.29× 10−3 12 4 140
5 6.25× 10−4 185 1.61 3.88× 10−2 1.84× 10−1 9.94× 10−4 24 4 440
6 3.13× 10−4 50 2.87 −5.41× 10−2 1.31× 10−1 2.62× 10−3 48 2 400∑

8.60× 10−1 7.16× 10−3 18 274

estimator at level 1. As a result a large number of samples P1 are needed with
cost C1, making the total cost P1C1 of level 1 much higher than that of level 0.

The reason for this poor correlation can be found in the intuitive interpreta-
tion given to equation (8) in Section 3.1. For large time steps, the diffusion term
becomes dominant over the transport and collision effects, whereas the inverse is
true for smaller time steps. At level 1, the coarse diffusive simulation is being gen-
erated from a simulation with a ∆t = ε2, which contains a significant transport
component. The correlation approach in Section 3.3 correlates the Brownian in-
crements independently from the collisions and resulting velocity changes. Hence
the transport-collision effects from the fine simulation, which form a significant
part of the particle behavior, are ignored in the coarse simulation.

4.2 Improved correlation approach

In this section, we present an improved correlation approach for particles simu-
lating the scheme (9)–(10). This scheme will let the velocities generated in the
fine simulation v̄n,mp,1 influence the Brownian increments ξn,mp,0 in the correlated
coarse simulation, avoiding the correlation issues described in Section 4.1.

We start from [10], which shows how one can simulate Brownian motion in the
weak sense, using an approximate weak Euler scheme. The lower order moments
of the approximate Brownian increments in this scheme must be bounded by∣∣E [ξnp,`−1]∣∣+

∣∣∣E [(ξnp,`−1)3]∣∣∣+
∣∣∣E [(ξnp,`−1)2]− 1

∣∣∣ ≤ K∆t`−1, (20)

for some constant K. If this condition is satisfied, the same weak convergence is
achieved as the classical Euler-Maruyama scheme. The new, improved, correla-
tion approach generates ξnp,0 as a weighted sum of a contribution ξnp,`−1,W from
the fine simulation diffusion and a contribution ξnp,`−1,T from the fine simulation

re-scaled velocities v̄n,mp,`

ξnp,`−1 =
√
θ` ξ

n
p,`−1,W +

√
1− θ` ξnp,`−1,T , (21)

with θ` ∈ [0, 1]. If both ξnp,`−1,W and ξnp,`−1,T have mean zero and variance one,
the same holds for ξnp,`−1. This means that K = 0 in (20). The correlation of the
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transport increments (18)–(19) is left unaltered, to maintain the correlation of
the simulation velocities. We now discuss each value in (21):

Diffusive contribution ξnp,`−1,W The coupling of Brownian increments is
done in a way identical to (15) from the correlation approach in Section 3.3:

ξnp,`−1,W =
1√
M

M∑
m=1

ξn,mp,` . (22)

Transport contribution ξnp,`−1,T We can generate a value ξnp,`−1,T with ex-

pected value zero and unit variance from the v̄n,mp,` as

ξnp,`−1,T =

(
V

[
M∑
m=1

v̄n,mp,`

])− 1
2 M∑
m=1

v̄n,mp,` .

As subsequent v̄n,mp,` are correlated, computing this variance is slightly more
involved than in the case of ξnp,`−1,W , but still straightforward

V

[
M∑
m=1

v̄n,mp,`

]
=

M∑
m=1

V
[
v̄n,mp,`

]
+ 2

M−1∑
m=1

M∑
m′=m+1

Cov
(
v̄n,mp,` , v̄

n,m′

p,`

)

= M + 2

M∑
∆m=1

(M −∆m) (pnc,∆t`)
∆m

= M + 2
pnc,∆t`

(
(pnc,∆t`)

M −M(pnc,∆t` − 1)− 1
)

(pnc,∆t` − 1)2

= M + 2
pnc,∆t`

(
(pnc,∆t`)

M
+Mpc,∆t` − 1

)
(pc,∆t`)

2 , (23)

where pc,∆t` is the collision probability as defined in (10) and pnc,∆t` = 1−pc,∆t` .
We want to improve the correlation of level 1 where a large time step ∆t0 is
correlated with ∆t1 = ε2. In that case pnc,∆t1 = pc,∆t1 = 1

2 so (23) simplifies to

V

[
M∑
m=1

v̄n,mp,1

]
= 3M + 22−M − 4 ≈ 3M − 4, (24)

where the approximation quickly becomes more accurate for larger values of M .

Contribution weight θ` What remains is to choose the weight between the
two contributions from the simulation with ∆t` to the diffusion in the simulation
with ∆t`−1. We aim to pick θ` so that (22) has an equally large contribution
when simulating over a time interval of size ∆t`−1 at both level ` and ` − 1.
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At level ` the variance contribution of (22) relative to the variance of the total
simulation spanning ∆t`−1 with M steps is given by

V
[∑M

m=1

√
2∆t`

√
D`ξ

n,m
p,`

]
V
[∑M

m=1

√
2∆t`

√
D`ξ

n,m
p,` +∆t`ṽ`v̄

n,m
p,`

] . (25)

The contribution of (22) when spanning the same time interval of size ∆t`−1
with a single step is given by

V
[√

2∆t`−1
√
D`−1

√
θ`ξ

n
p,`−1,W

]
V
[√

2∆t`−1
√
D`−1ξnp,`−1 +∆t`−1ṽ`−1v̄np,`−1

] . (26)

Equating (25) and (26) and solving for θ` gives

θ` =
V
[∑M

m=1

√
2∆t`

√
D`ξ

n,m
p,`

]
V
[√

2∆t`−1
√
D`−1ξ

n
p,`−1 +∆t`−1ṽ`−1v̄

n
p,`−1

]
V
[√

2∆t`−1
√
D`−1ξnp,`−1,W

]
V
[∑M

m=1

√
2∆t`

√
D`ξ

n,m
p,` +∆t`ṽ`v̄

n,m
p,`

] .

Given (23) and the unit variance of ξnp,`−1,W , ξ
n
p,`−1, ξ

n,m
p,` and v̄np,`−1, we get

θ` =
D`

(
2∆t`−1D`−1 +∆t2`−1ṽ

2
`−1
)

D`−1

(
2M∆t`D` +∆t2` ṽ

2
`

(
M + 2

pnc,∆t`(p
M
nc,∆t`

+Mpc,∆t` − 1)

p2c,∆t`

)).
(27)

At level 1, a very large time step ∆t0 is correlated with ∆t1 = ε2. Here, we can

use approximations D0 ≈ 1, ṽ0 ≈ ε
∆t0

, pnc,∆t0 ≈ ε2

∆t0
and (24) to simplify (27) to

θ1 ≈
4M + 1

7M − 4
.

It is important to note that (21) does not produce true Brownian increments,
in contrast to the independent simulation at level 0. On the one hand, the dis-
tribution of (21) is not Gaussian. On the other hand, subsequent coarse time
steps will be correlated. Both issues become more pronounced for higher levels
and for that reason we only apply this approach in level 1. In the next section,
numerical experiments asses whether this mismatch produces biased results.

5 Experimental Results

5.1 Application to a low-precision case

We re-do the simulation in Table 1, using the new correlation (21) at level 1.
Comparing Tables 1–2 we see that the variance V [F1 − F0] reduces by a factor of
30. This reduced variance causes the overall computational cost of the simulation
to decrease by a factor of 3.9. Given the low tolerance E = 0.1, it is not possible
to observe whether the improved correlation produces biased results. For this,
more accurate simulations are needed.
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Table 2. Repeating the simulation in Table 1 with the new correlation at level 1.

Level ∆t` P` V
[
F̂`

]
E
[
F̂` − F`−1

]
V [F` − F`−1] V[Ŷ`] C` P`C`

0 5.00× 10−1 8 123 1.88 9.76× 10−1 1.88× 100 2.31× 10−4 0.02 162
1 1.00× 10−2 189 1.74 −1.44× 10−1 4.89× 10−2 2.59× 10−4 1.02 193
2 5.00× 10−3 315 1.76 −1.74× 10−2 4.30× 10−1 1.36× 10−3 3 945
3 2.50× 10−3 152 1.28 −5.32× 10−2 2.71× 10−1 1.78× 10−3 6 912
4 1.25× 10−3 102 3.16 6.78× 10−2 1.58× 10−1 1.55× 10−3 12 1 224
5 6.25× 10−4 50 1.08 3.61× 10−2 1.76× 10−1 3.52× 10−3 24 1 200∑

8.65× 10−1 8.70× 10−3 4 636

5.2 Application to a high-precision case

In Table 3, we repeat the simulations in Tables 1 and 2 for E = 0.01. Despite
the variance decrease at level 1, both simulation costs are of the same order of
magnitude. This is due to the high cost of levels ` > 1, reducing the impact of the
improvement at level 1. At first sight, this seems a major setback, however the
penultimate column of Table 3 shows that V [F` − F`−1] > V [F1 − F0] for many
of these levels. This indicates that we can skip levels by correlating ∆t0 with

∆t1 � ε2 at level 1. In Table 4, we do this with ∆t1 = ε2

128 . For a fair comparison,
we also apply the same sequence of levels to the term-by-term correlation.

Table 3. Computing Ŷ (t∗) for ε = 0.1 and E = 0.01.

Term-by-term correlation Improved correlation
Level ∆t` P` E [F` − F`−1] V [F` − F`−1] P`C` P` E [F` − F`−1] V [F` − F`−1] P`C`

0 5.0× 10−1 3 420 716 9.91× 10−1 1.96× 100 68 414 3 436 293 9.89× 10−1 1.96× 100 68 726
1 1.0× 10−2 406 158 −1.23× 10−1 1.42× 100 414 281 78 377 −1.36× 10−1 5.25× 10−2 79 945
2 5.0× 10−3 130 658 8.34× 10−3 4.36× 10−1 391 974 132 725 1.06× 10−2 4.38× 10−1 398 175
3 2.5× 10−3 88 941 2.57× 10−2 4.02× 10−1 533 646 90 310 3.02× 10−2 4.03× 10−1 541 860
4 1.3× 10−3 55 692 3.05× 10−2 3.12× 10−1 668 304 55 124 2.65× 10−2 3.04× 10−1 661 488
5 6.3× 10−4 31 140 2.29× 10−2 1.96× 10−1 747 360 30 906 2.49× 10−2 1.91× 10−1 741 744
6 3.1× 10−4 16 680 8.53× 10−3 1.15× 10−1 800 640 16 510 9.44× 10−3 1.10× 10−1 792 480
7 1.6× 10−4 8 006 9.38× 10−3 5.21× 10−2 768 576 8 559 4.06× 10−3 5.98× 10−2 821 664
8 7.8× 10−5 3 842 1.88× 10−3 2.35× 10−2 737 664 4 514 2.64× 10−3 3.12× 10−2 866 688
9 3.9× 10−5 2 175 3.07× 10−4 1.23× 10−2 835 200 2 754 5.54× 10−3 1.86× 10−2 1 057 536
10 2.0× 10−5 1 000 3.54× 10−3 1.74× 10−2 768 000 1 000 1.88× 10−3 1.08× 10−2 768 000∑

9.79× 10−1 6 734 059 9.69× 10−1 6 798 305

Comparing Tables 3 and 4, shows that leaving out levels reduces the com-
putational cost when using the improved correlation at level 1, while the term-
by-term correlation becomes more expensive. The simulation with term-by-term
correlation in Table 4 requires a factor 2 less computation than that with im-
proved correlation in Table 3.

As a reference for the bias, we note that a simulation with E = 0.001 in [12],
computed an estimate of 9.80 × 10−1 for Ŷ (t∗). Tables 3 and 4 indicate that
the results using the term-by-term correlation are consistently within the set
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tolerance E = 0.01. Those using the new correlation are consistently too small.
Twenty repetitions of the simulation with term-by-term correlation in Table 3
and that with improved correlation in Table 4 estimatess a bias of 2.31 × 10−2

with standard deviation 1.14× 10−2. This shows that the improved correlation
comes with the cost of an additional bias.

6 Conclusion

We presented a new, improved particle based multilevel Monte Carlo scheme
for simulating the Boltzmann-BGK equation in diffusive regimes. This scheme
improves upon earlier work by introducing a correlation between the kinetic
transport in the fine simulation and the diffusion in the coarse simulation. The
approach reduces the difference estimator variance at level 1 by an order of mag-
nitude. In turn, the reduced variance significantly decreases the computation re-
quired for low accuracy simulations. For more accurate simulations, the reduced
variance allows for several computationally expensive levels to be skipped, result-
ing in a greatly improved computational efficiency. A caveat is the inter time-step
correlation and non-normal distribution of the coarse random numbers, result-
ing in biased results. Resolving these inconsistencies is the topic of future work,
which will aid the extension of the improved correlation to all levels.

Table 4. Computing Ŷ (t∗) for ε = 0.1 and E = 0.01 with skipped levels.

Term-by-term correlation Improved correlation
Level ∆t` P` E [F` − F`−1] V [F` − F`−1] P`C` P` E [F` − F`−1] V [F` − F`−1] P`C`

0 5.0× 10−1 4 937 922 9.91× 10−1 1.96× 100 98 758 1 848 883 9.89× 10−1 1.95× 100 36 978
1 7.8× 10−5 85 415 −4.93× 10−3 3.76× 100 10 934 828 3 171 −3.12× 10−2 3.76× 10−2 405 951
2 3.9× 10−5 3 683 1.55× 10−4 1.57× 10−2 1 414 272 1 114 −5.25× 10−3 1.42× 10−2 427 776
3 2.0× 10−5 1 000 3.01× 10−3 3.16× 10−3 768 000 1 146 2.68× 10−4 2.58× 10−2 880 128
4 9.8× 10−6 - - - - 1 000 −1.25× 10−3 6.75× 10−3 1 536 000∑

9.89× 10−1 13 215 858 9.51× 10−1 3 286 833
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