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This paper presents an innovative approach, within the framework of distributional semantics, 

for the exploration of semantic similarity in a technical corpus. In complement to a previous 

quantitative semantic analysis conducted in the same domain of machining terminology, this 

paper sets out to discover fine-grained semantic distinctions in an attempt to explore the 

semantic heterogeneity of a number of technical items. Multidimensional scaling analysis 

(MDS) was carried out in order to cluster first-order co-occurrences of a technical node with 

respect to shared second-order and third-order co-occurrences. By taking into account the 

association values between relevant first and second-order co-occurrences, semantic 

similarities and dissimilarities between first-order co-occurrences could be determined, as well 

as proximities and distances on a graph. In our discussion of the methodology and results of 

statistical clustering techniques for semantic purposes, we pay special attention to the 

linguistic and terminological interpretation. 

 

Keywords: specialized corpora, distributional semantics, Multidimensional scaling (MDS), 

semantic similarity, second-order and third-order co-occurrences. 

 

1. Introduction and research objectives 

This paper describes an exploratory co-occurrence analysis of the specialized language used in 

a technical corpus of French machining terminology. This corpus of 1.7 million tokens was 

lemmatised and tagged with Cordial Analyseur and contains technical journals, technical data 

sheets, ISO standards and textbooks (1996-2002). The overall research goal is to extract 

semantic information from this corpus in order to explore the semantic heterogeneity of 



various technical items and refine a previous quantitative semantic analysis performed on the 

same data (Bertels et al. 2010; Bertels 2006 and 2011).   

The research described in this paper is part of a larger project involving theoretical 

research on term classification, but it is not intended as a tool for term extraction. In previous 

studies, we attempted to determine whether a number of typical lexical items in a technical 

corpus were monosemous, in line with traditional terminology (Wüster 1931 and 1991), or 

whether some technical items were in fact polysemous, as suggested by descriptive 

terminology (Cabré 2000; Temmerman 2000; Gaudin 2003). Various experiments on 

specialized corpora, both from a distributional and contextual perspective, have confirmed the 

polysemy of certain lexical items, even within a specialized domain (Arntz and Picht 1989; 

Condamines and Rebeyrolle 1997; Temmerman 2000; Eriksen 2002; Ferrari 2002). In this 

paper, we want to go more deeply into this classification, especially into semantic 

heterogeneity, in order to get a clearer picture of different types of polysemy and vagueness. 

Recent studies tend to focus on the application of cognitive linguistics to specialized language 

and promote the use of specialized corpora for the retrieval and extraction of semantic 

information (Geeraerts 2010; Faber 2012).  

A statistical regression analysis of about 5000 key items in our technical corpus put the 

traditional monosemy ideal (Wüster 1991) into question and showed that the most typical 

lexical items are not the most monosemous ones (Bertels et al. 2010; Bertels 2006 and 2011). 

In order to quantify monosemy, we developed a monosemy measure based on the formal 

overlap of second-order co-occurrences of a technical node. Second-order co-occurrences are 

defined as co-occurrences of first-order co-occurrences of a node. The basic idea behind this 

measure is to assess monosemy in terms of “semantic homogeneity” (Habert et al. 2005). 

Monosemous words appear in semantically homogeneous contexts, which means that their 

co-occurrences belong to similar semantic fields. Polysemous words, on the other hand, 



appear in semantically more heterogeneous contexts and their co-occurrences tend to belong 

to different semantic fields. Therefore, in order to gain insight into the semantics of the first-

order co-occurrences of a node, we analyse their co-occurrences, i.e. the second-order co-

occurrences of the node, more particularly the degree of formal overlap of these second-order 

co-occurrences.  

 A higher degree of formal overlap indicates semantic homogeneity of the first-order 

co-occurrences. Indeed, if more second-order co-occurrences are shared by more first-

order co-occurrences, the latter are semantically more closely related. As a 

consequence, the node is semantically more homogeneous and hence more 

monosemous.  

 A lower degree of formal overlap of second-order co-occurrences reveals semantic 

heterogeneity of the first-order co-occurrences, which means they are semantically 

less closely related or not related at all. Consequently, the node is semantically more 

heterogeneous.  

The results of our monosemy measure were validated by several specialized dictionaries and 

by a manual analysis of the most significant co-occurring items (Bertels et al., 2010). It proved 

to be capable of detecting semantic homogeneity of monosemous words, as well as semantic 

heterogeneity of polysemous words. Unfortunately, it was not successful in dissociating 

polysemous senses, nor in distinguishing between polysemy and vagueness, which are both 

considered “semantic heterogeneity”.  

Figure 1 shows the results of the non-linear LOESS regression for the 4717 key items 

(black points) with respect to their typicality rank (X-axis) and predicted monosemy rank (Y-

axis). The most typical lexical items of the technical corpus, displayed in the upper left part of 

the graph, prove to be less monosemous (e.g. usinage, tour). Their position on the Y-axis 

shows a lack of monosemy. Since technical items with 3 or 5 senses or homonymous items can 



all have the same coordinate on the Y-axis, the research described in this article aims to split 

the multidimensionality of the Y-axis. 

 

Figure 1. LOESS: non-linear regression (in the technical corpus) 

 

In this study, we try to obtain a clearer picture of the semantic characteristics of a technical 

item by investigating the semantic distances between its first-order co-occurrences. 

Previously, our monosemy measure provided a quantification of the degree of semantic 

homogeneity or heterogeneity of the first-order co-occurrences of a technical node. Now, we 

want to plot the semantic similarities and dissimilarities between the first-order co-



occurrences on a plot, by means of clustering techniques. This means that first-order co-

occurrences of a technical node are clustered with respect to the second-order and third-order 

co-occurrences they have in common. Third-order co-occurrences are defined as co-

occurrences of second-order co-occurrences of a node. As a result, first-order co-occurrences 

which often appear with the same second-order co-occurrences are semantically related and 

will cluster together on a plot. If the resulting graph shows, for example, two clear-cut groups 

of first-order co-occurrences, this implies that the technical node has two different meanings. 

A graph showing just one group of first-order co-occurrences represents monosemy, whereas 

an expanding cloud reflects vagueness.  

The objective of the research project is to obtain an accurate picture of the semantic 

distances and the corresponding semantic relations between significant first-order co-

occurrences of a technical node, in order to assess its semantic heterogeneity (or 

homogeneity). We do not aim either at word sense disambiguation or at word sense induction. 

The goal of this article is not yet to differentiate between polysemy and vagueness, but to 

provide a visual tool, which helps us to find indications for the difference between polysemy 

and vagueness. This article focuses on how useful clustering and positioning techniques can be 

in determining distributional, and thus semantic, proximities between first-order co-

occurrences, in order to refine our previous quantitative semantic analysis of these items.  

The structure of this paper is as follows. First, we explain the methodological approach for 

clustering, more particularly Multidimensional scaling analysis (MDS), within the framework of 

distributional semantics (Section 2). Section 3 describes various configurations used to build up 

a co-occurrence matrix and focuses on the distinction between word forms and lemmas. The 

impact of these configurations on the clustering and visualisation is discussed in Section 4. 

Finally, Section 5 presents conclusions and suggestions for further research. 

 



2. Methodological approach 

2.1. Distributional semantics 

The underlying idea of distributional semantics is that words with similar distributions have 

similar meanings. This is clearly expressed in Firth’s (1968) adage, “You shall know a word by 

the company it keeps” and Harris’ (1968) distributional hypothesis that words with similar 

meanings will occur in similar contexts (Clarke 2012).  

Recent studies in distributional semantics determine semantic similarities between 

words on the basis of their distributional properties observed in corpora, mostly very large 

general language corpora. Two words are semantically similar if they appear in similar 

contexts, i.e. if they share syntactic contexts (Morlane-Hondère 2013; Morardo and Villemonte 

de La Clergerie 2013) or if they share first-order co-occurrences (Sahlgren 2006 and 2008; 

Peirsman and Geeraerts 2009; Ferret 2010; Heylen et al. 2012; Wielfaert et al. 2013). The latter 

studies generally determine semantic similarity by means of word space models (Semantic 

Vector Spaces or SVS) (Turney and Pantel 2010). Their identification of the most interesting 

and statistically significant co-occurring items relies on association measures. Words can then 

be clustered with respect to the (first-order) co-occurrences they have in common. Based on a 

dissimilarity matrix and a distance measure, words that very often appear with the same (first-

order) co-occurrences cluster together in word space. Visualization of this word space shows 

groups of synonymous words (Ferret 2010) or semantically associated words (Peirsman and 

Geeraerts 2009). In case there is a problem of data sparseness on the level of first-order co-

occurrences, this can be addressed by using second-order co-occurrences (Schütze 1998; 

Lemaire and Denhière 2006). 

In this paper, however, the level of analysis is situated one level up in comparison with 

the studies mentioned above. Furthermore, the analysis is carried out on specialized language 

found in a technical corpus, rather than a general language corpus. Nevertheless, the most 



innovative aspect of our study lies in the fact that it determines semantic similarity or 

proximity not between words themselves, but between first-order co-occurrences of a 

technical word. First-order co-occurrences are clustered and plotted on a visualisation, based 

on the second-order co-occurrences they have in common, in order to find groups of 

semantically related first-order co-occurrences of the technical node and determine how they 

relate to each other. In this analysis, we not only consider the fact that certain second-order 

co-occurrences of a node are shared (as in the monosemy measure), but we also take into 

account additional semantic information, in the form of the association score between first-

order and second-order co-occurrences. If there is a problem of data sparseness on the level of 

second-order co-occurrences, we can still go one level up and look at the third-order co-

occurrences related to the node.  

These higher-order co-occurrences (Grefenstette 1994) are in fact second-order co-

occurrences in relation to the first-order co-occurrences we attempt to cluster and plot in our 

analysis. It is interesting to note that lexical co-occurrence in specialized language on the first 

and second-order level has already been studied before, within the framework of 

distributional semantics, but the purpose was to construct taxonomies of specialized domains 

from noisy corpora based on hypernymy relations (Nazar et al. 2012). 

 

2.2. Co-occurrence analysis 

The first step in our exploratory co-occurrence analysis is the identification of statistically 

significant first-order co-occurrences of the technical nodes whose semantic heterogeneity (or 

homogeneity) we intend to examine. A recurrent co-occurrence analysis identifies all 

significant first-order and second-order co-occurrences and stores them in a co-occurrence 

matrix, which will serve as the starting point of the clustering experiments.  



Several association measures can be used to assess the association strength between a 

node and its (first-order) co-occurrences, for example, the Log-Likelihood Ratio (LLR), 

Pointwise Mutual Information (PMI), Z-score, Dice Coefficient and Chi-squared (for a 

comprehensive overview, see Evert 2007). LLR (Dunning 1993) is a significance measure with 

its associated p-value. Although very often used as an association measure in co-occurrence 

analyses, the LLR tends to inflate the association score of co-occurring high-frequency words. 

PMI (Church and Hanks 1990) is an effect-size measure with a more intuitive interpretation. 

PMI is more reliable for high-frequency co-occurrences, but less reliable for co-occurrences 

involving low-frequency items, because it tends to overestimate the association score of 

infrequent items (Evert 2007).  

In a preliminary study, on a small subset of the technical corpus (320,000 occurrences), 

we compared the impact of the LLR and PMI on the results of the clustering and on the plot 

(Bertels and Speelman 2013). This confirmed our expectation that the LLR inflates the 

association scores of high-frequency first-order co-occurrences: they were plotted at larger 

distances, at outlying positions even, despite their semantic relatedness. As a consequence, in 

this analysis, all co-occurrences were identified by using PMI as an association measure. Since 

there is no significance level or probability value associated to the PMI association measure 

and because PMI is less reliable for low-frequency items, we only consider co-occurrences 

which co-occur sufficiently often. If they have a co-frequency of at least 5, they are statistically 

reliable (Evert 2007). The lower the co-frequency threshold (but always at least 5), the higher 

the number of extracted co-occurrences. If the node is more frequent, this co-frequency 

threshold must be higher (e.g. 10 or 20), in order to avoid an overload of first-order co-

occurrences on the plot. 

Significant first-order co-occurrences were identified within a context window of 5 

words to the left and right of a technical node. This span provides enough semantically 



significant input, without adding too much noise, which might pose a problem when using a 

larger span. Significant second-order co-occurrences were identified within a span of 5 words 

to the left and right of the significant first-order co-occurrences, and significant third-order co-

occurrences within the same span of the second-order co-occurrences. Co-occurring tokens 

can be extracted on the level of word forms or lemmas. Section 3 addresses these two distinct 

approaches and discusses various configurations to build up a co-occurrence matrix with either 

word forms or lemmas.  

 

2.3. Clustering techniques  

Different clustering techniques exist, e.g. Principal Components Analysis and Factor Analysis 

for tables with measurements, Correspondence Analysis for tables with counts and 

Multidimensional Scaling Analysis and Hierarchical Cluster Analysis for tables with distances 

(for a comprehensive overview, see Baayen (2008)). As will be discussed in the next section, 

we will use the technique of Multidimensional scaling, which involves dimension reduction 

prior to clustering. One example of an alternative approach to dimension reduction would 

have been the use of singular value decomposition as it is adopted in latent semantic analysis 

(Landauer and Dumais 1997). For a thorough discussion of the use of different dimension 

reduction techniques in distributional semantics, see Evert (2012).  

 

2.3.1. Multidimensional scaling (MDS) 

Since our aim is to explore the (semantic) distances between first-order co-occurrences on a 

plot, Multidimensional scaling (MDS) is an appropriate choice. We will use isoMDS, which is an 

implementation of non-metric MDS (Kruskal and Wish 1978; Cox and Cox 2001; Venables and 

Ripley 2002) in R, a freely available tool for statistical analysis. 1,2  

                                                 
1
 IsoMDS is an implementation of “Kruskal's Non-metric Multidimensional Scaling”. 



MDS takes as a starting point an item-by-item dissimilarity matrix, on the basis of 

which it attempts to visualise items in a low-dimensional space (typically in two dimensions) in 

such a way that the distances between the items in this low-dimensional space reflect the 

input dissimilarities as well as possible. The visual representation maximises the goodness-of-

fit and minimises the distortion, created by reducing all the dimensions to the two dimensions 

displayed on the graph. The quality of this representation is determined by a stress 

percentage. Overall, an excellent stress percentage should be lower than 10% and a stress 

percentage above 15% is often considered as unacceptable (Clarke 1993; Borg and Groenen 

2005).3 However, this is not a clear boundary, because some studies manage it in a flexible way 

and consider a percentage between 15% and 20% as “less reliable”, e.g. Borg and Groenen 

(2005, 47-48). Often, as is our case, the dissimilarity matrix that is the input for the MDS 

analysis is itself derived from an item-by-feature matrix, to which a distance measure is 

applied in order to obtain dissimilarities between the items with respect to their values in the 

columns. In our case this item-by-feature matrix has as its rows (=items) the first-order co-

occurrences and as its columns (=features) the second-order or third-order co-occurrences. 

 

2.3.2. Co-occurrence matrix  

MDS allows us to cluster and visualise the proximities and distances, or the semantic 

similarities and dissimilarities, between significant first-order co-occurrences (c) of a technical 

node (extracted with PMI as an association measure), with respect to their association score 

(PMI) with significant second-order co-occurrences (cc). As a starting point, we used a co-

occurrence matrix (used as a distance matrix) with all significant c of a technical node as rows, 

and all significant cc as columns. This c × cc co-occurrence matrix was generated by running 

Python scripts on the technical corpus of 1.7 million words. Since there is no probability value 

                                                                                                                                               
2
 The R Project for Statistical Computing: www.r-project.org [accessed June 2014]. 

3
 http://geai.univ-brest.fr/~carpenti/2006-2007/Documents-R/MDS-non-metrique.html. 

http://www.r-project.org/
http://geai.univ-brest.fr/~carpenti/2006-2007/Documents-R/MDS-non-metrique.html


associated with PMI, a lower threshold will be applied for co-frequency of c with the node and 

for co-frequency of cc with c. At a lower co-frequency threshold above 5, the number of c and 

cc included in the c × cc matrix is higher, but they co-occur less often with the node and the c, 

respectively.  

The more similar the association information in the columns is for the different rows, 

the more semantically similar the rows (or c) will be. Each entry in the c × cc matrix contains 

the association score between c and cc (see table 1). If there is no significant association 

between c and cc, the entry in the co-occurrence matrix is a very small number (0.00000001), 

which is nonetheless indispensable to calculate the values in the dissimilarity matrix (see 

Section 2.3.3). The main problem is that the c × cc matrix is often very sparse, because 

numerous cc are shared by very few c, which sometimes makes it impossible to generate 

graphs that are interesting from a linguistic point of view. However, this problem of data 

sparseness can be addressed by taking into account co-occurrences of a higher order, i.e. 

third-order co-occurrences of the node (or ccc) (Bieman et al. 2004; Lemaire and Denhière 

2006).  

Table 1. Simplified example of a c × cc co-occurrence matrix 

 cc1 cc2 cc3 cc4 cc5 cc6 

c1 association score (PMI) 

between c1 and cc1 

     

c2       

c3       

c4       

 

In the resulting c × ccc co-occurrence matrix for a technical node, the rows consist of all 

significant first-order co-occurrences (c) of the node, whereas the columns contain all 



significant third-order co-occurrences (ccc) of all significant c and all significant cc. The value of 

an entry in the c × ccc matrix is not a PMI association score, as a c does not co-occur directly 

with a ccc. Instead, this value corresponds to the column sum of a new cc  × ccc matrix for each 

c of a node, with the PMI association score between cc and ccc as the value of an entry. If 

there are n ccc for all significant cc of a c, the cc  × ccc matrix for a c provides a sum for each 

column, thus generating a vector with n dimensions. The elements of the n-dimensional vector 

represent all the entries for the c row in the c × ccc matrix. This results in a new c × ccc matrix 

which is less sparse and semantically more rich and therefore better suited for our clustering 

experiments (see table 2).  

Table 2. Simplified example of a c × ccc co-occurrence matrix 

 ccc1 ccc2 ccc3 ccc4 ccc5 ccc6 

c1 column sum for ccc1  

in cc  × ccc matrix for c1 

     

c2 column sum for ccc1  

in cc  × ccc matrix for c2 

     

c3       

c4       

 

2.3.3. Dissimilarity matrix 

Using the c × ccc co-occurrence matrix as a starting point, a dissimilarity matrix was created in 

R by calculating pairwise distances between the c. By default, isoMDS uses Euclidian distance 

to generate the dissimilarity matrix used to cluster and plot observations, in our case the first-

order co-occurrences of a technical node. Euclidian distance is the spatial distance or straight 

line between two observations on a graph. Previous experiments, however, showed that 

Euclidian distance is less appropriate as a distance measure for a co-occurrence matrix with 



both high and weak association scores, because on the plot, low scores lose all their weight 

compared to high scores (Bertels and Speelman 2013).  

An alternative metric used to generate a dissimilarity matrix is cosine angle, a distance 

measure for observations represented as vectors.4 Cosine angle determines (semantic) 

similarity by calculating the angle between the vectors. Observations with similar context 

vectors cluster together in multidimensional space, because the angle between them is small. 

Even if the magnitude of the values in the two vectors changes, the angle between them is not 

affected (van der Laan and Pollard 2003). Cosine angle is often used as a distance measure in 

distributional semantics (Padó and Lapata 2007; Sahlgren 2008), for example, to identify 

similarity between two text samples or between two words (Peirsman and Geeraerts 2009). In 

our previous experiments, cosine angle has yielded satisfactory results in plotting the MDS 

outcome for a technical node based on a small corpus (Bertels and Speelman 2013). The first-

order co-occurrences in the rows of the co-occurrence matrix are considered to be vectors 

with one value in each column. Based on the association information in the columns, it is then 

easy to calculate similarity or dissimilarity.  

 

3. Co-occurrences: word forms or lemmas? 

As previously mentioned, our study aims to cluster first-order co-occurrences of several 

technical nodes, qualified by the monosemy measure as either semantically heterogeneous 

(tour, usinage) or semantically more homogeneous (ISO). The main goal is to identify semantic 

similarities and dissimilarities between first-order co-occurrences, displayed as proximities and 

distances on a plot, in order to understand the semantic characteristics of the technical nodes. 

In this paper, we specifically focus on the distinction between word form and lemma in the 

identification of significant co-occurrences, which is an interesting distinction from both a 

                                                 
4
 In R, cosine angle is implemented in the function distancematrix in the library hopach.  



terminological and a semantic point of view. Moreover, this is an important issue in French, 

which is a moderately inflected language, more so than in languages like English.  

As part of our quantitative semantic analysis, we developed a monosemy measure 

which considered technical nodes at the level of lemma or canonical form. All inflected word 

forms of a noun or adjective, for example, were grouped under one lemma (e.g. the word 

forms tour and tours for the noun tour). Similarly, one lemma encompassed all conjugated 

forms of a verb (e.g. permettre, permet, permettent, permettant, etc. for the verb permettre). 

Significant first-order and second-order co-occurrences, however, were identified at the level 

of word form. The main advantage of word forms, within the context of the current procedure, 

is that they are semantically more rich, especially in French. Identification of co-occurrences at 

the level of word form accounts, for example, for the semantic difference between pièce 

usinée (manufactured piece, i.e. “result”) and pièce à usiner (piece to be manufactured, i.e. 

“intention”). If co-occurring items of pièce were extracted on the lemma-level (infinitive 

usiner), this semantic information would be lost. From a terminological point of view as well, 

word forms seem to be more interesting in co-occurrence identification, because they contain 

more precise information on how a term is formed. For the node usinage, for example, 

significant first-order co-occurrences reveal interesting multiword units such as usinage grande 

vitesse (high-speed machining) and usinage haute précision (high-precision machining). 

Although word forms are very useful for co-occurrences of some technical nodes (e.g. 

usinage), they do add considerable noise to the data. When considering co-occurrences at the 

level of word form, the number of co-occurrences is higher (because they are formally more 

diverse), but their frequency is lower. When co-occurrences are identified at the lemma level, 

the number of formally diverse co-occurrences is lower, but their frequency is higher. As a 

consequence, this is likely to have an impact on the plot of an MDS analysis, which will be 

discussed in Section 4. In this article, we want to look at the added value for both 



configurations of co-occurrences as word forms and lemmas. As a starting point, we take the 

configuration at the word-form level because our monosemy measure was based on the word 

forms of the first and second-order co-occurrences and not on the lemmas. For some nodes, 

this configuration provides useful information. For other nodes, however, lemmatisation 

provides a clearer picture of the displayed first-order co-occurrences. We want to check every 

node again in order to find the most interesting configuration. 

Note that for our monosemy measure, three configurations were compared in a subset 

of the technical corpus (320,000 occurrences) in order to assess the impact on monosemy 

degree and monosemy ranking. The three configurations were (1) lemma (node) – word form 

(c) – word form (cc), (2) lemma (node) – lemma (c) – word form (cc) and (3) lemma (node) – 

lemma (c) – lemma (cc) (for further details, see Bertels and Speelman 2012). When c and cc 

(configuration 3) or only cc (configuration 2) were considered on the lemma level, the degree 

of formal overlap of the cc of a node was higher, because the number of formally diverse cc 

was lower. As a result, the monosemy degree of all technical nodes was higher. Experiments 

showed, however, that semantically heterogeneous nodes were found to be semantically 

heterogeneous throughout the three configurations, showing a low degree of formal overlap 

in cc. Moreover, semantically homogeneous nodes were found to be semantically 

homogeneous in all three configurations as well. These forms, whether word forms or lemmas, 

therefore did not have a major impact on the outcome of the monosemy measure. Note that 

the quantitative analysis used monosemy rankings instead of monosemy degrees in order to 

determine the correlation between monosemy and typicality. Even when monosemy degree 

was higher for all considered nodes, this had no major impact either on their ranking or on the 

outcome of the regression analysis. 

 

4. Discussion of the results 



In order to evaluate the impact of the distinction between word forms and lemmas on the plot 

of the MDS analysis, several experiments were carried out, first on a subset of the technical 

corpus (Section 4.1) and then on the complete technical corpus (Section 4.2). In both sections, 

we focus on the technical node tour, not only because it is one of the most typical keywords in 

the technical corpus, but especially because it is semantically very heterogeneous and 

therefore particularly interesting for such comparative clustering experiments. The node tour 

in fact has two distinct technical meanings: “revolution” as in dix mille tours par minute (ENG. 

ten thousands revolutions per minute) and “tool for machining an object” as in tour à 

commande numérique (ENG. CNC lathe). It is used in several more general senses, depending 

on the context (“tower”, “round”, “lap”, “turn”, “tour or trip”). Sections 4.1 and 4.2 discuss the 

results for other technical nodes as well, i.e. usinage (“machining”) and ISO. For the 

experiments described in this paper, we will only consider a c × ccc co-occurrence matrix, 

because of a significant data sparseness problem in the c × cc co-occurrence matrix. We focus 

here on words which we know have different senses. Tour, usinage and ISO turned out to be 

semantically heterogeneous in our previous quantitative analysis. Now, this “semantic 

heterogeneity” will be further explored, to see if we can also get it out of the data with an MDS 

analysis, and even go a bit further. The long-term objective is to generate a new monosemy 

measure which takes into account other parameters as well. This MDS analysis can be 

regarded as a first step in that direction. 

 

4.1. MDS analysis of the technical journals 

The subset of the technical corpus consisting of online technical journals (320,000 words) has 

previously been used for various evaluation experiments (Bertels and Speelman 2012 and 

2013). As mentioned before, the nodes were considered at the lemma level. The first 

configuration discussed considers co-occurrences at the level of word form, while the second 



configuration considers them at the lemma level. Note that a lower threshold for co-frequency 

is applied (minimum co-frequency of 5), in order to avoid overestimation problems in the PMI 

for low-frequency items. Function words are preserved in the list of significant second-order 

and third-order co-occurrences, as some of them provide useful semantic information: 

pendant (ENG. during), for example, indicates a process. However, these function words were 

filtered out of the list of significant first-order co-occurrences. It is not the likelihood of a 

semantic contribution, but rather the impact these have on the complexity of the analysis and 

representation that is different. Preservation of function words is manageable in the first case 

but not in the second, because they would make the plot too dense and therefore unreadable. 

Table 3 shows a comparison of the characteristics of both configurations for the node tour, at a 

lower threshold of minimum co-frequency 5, without function words in the c rows. The 

number of significant c is similar in both configurations, although these c are not the same. For 

example, the list of significant c in the word form configuration contains both broche (ENG. 

spindle) and broches, whereas the list for lemmas only includes the lemma broche. On the 

other hand, some c are significant in the lemma configuration (higher co-frequency with node), 

but not in the word form configuration, for example frontal. As previously mentioned, a stress 

percentage lower than 15% is acceptable and useful for the interpretation of the resulting plot. 

Table 3 shows that the lemma configuration slightly outperforms the word form configuration. 

 

Table 3. Word form and lemma configurations in the technical journals (node tour) 

Configuration Number of significant c Stress of MDS analysis 

c – cc – ccc as word forms 38 14.81% 

c – cc – ccc as lemmas 37 14.48% 

 



Figure 2 shows the plot of the MDS analysis of word forms. The dispersion of the c reflects 

fairly clearly the semantic heterogeneity of tour. The most outlying c, horizon, refers to one of 

the general meanings of the node tour (as in tour d’horizon: “quick overview”). Furthermore, 

the outlying c mille indicates the more technical meaning “revolution” (as in dix mille tours par 

minute, “10,000 revolutions per minute”). CNC, commande and numérique cluster 

together and are clearly semantically related. In the upper right corner, the displayed c 

(bibroches, inversés) indicate a more specific meaning (“two-spindle machine”).  The cloud of c 

in the bottom left corner represents the technical meaning “machine tool for machining an 

object or work piece”. Several smaller clusters reveal the variety in usage contexts: a more 

specific usage (tour (à) deux broches) at the bottom left (axes, broches, broche, outils, deux, 

trois, quatre, centres), and more towards the centre of the plot (vertical and verticaux). The 

centre of the cloud contains gamme, série, type and a few less technical c. The more general c 

(manutention, ligne, générale, production, conception) are displayed in the upper left part of 

the cloud and reflect more general usage contexts of the node tour. What is striking is that 

some semantically identical word forms (e.g. the singular vertical and the plural verticaux or 

the adjectival forms inversé, inversée and inversées) are situated at quite a large distance from 

each other. This is due to the fact that they co-occur with other cc, that is to say, formally 

different cc. From a semantic point of view, this plot is not particularly useful and does not 

allow a coherent semantic interpretation. 

As shown in Figure 3, the lemma configuration somewhat resolves this problem. The 

word forms inversé, inversée and inversées in Figure 2 are all displayed as inverser. The 

outlying c horizon still accounts for a more general meaning. The item mille is also in an 

isolated position and reflects a more particular meaning. Furthermore, bibroche seems to be 

more outlying, mainly because all inflected and conjugated forms of inversé are grouped under 

the lemma inverser. The more general c are displayed in the upper left section of the plot 



(manutention, constructeur, production, ligne) and the more technical c in the lower section of 

the plot (see Figure 3). 

For the node usinage, the dispersion of the lexical c (word forms) reflects the semantic 

vagueness of the node: there are no clear groupings of c (see Figure 4). Since the node ISO has 

only 3 lexical c in the subset of the technical journals, MDS-analysis in this subset is not useful. 

 

Figure 2. MDS of c of the node tour in the technical journals: word forms 



Figure 3. MDS of c of the node tour in the technical journals: lemmas 



 

Figure 4. MDS of c of the node usinage in the technical journals: word forms 

 

4.2. MDS analysis on the technical corpus 

Similar experiments were carried out to detect semantic (dis)similarities between first-order 

co-occurrences in the complete technical corpus of 1.7 million words. The goal here is the 

comparison of the two variants of the approach (word forms and lemmas) rather than 

evaluating the method as a whole. Table 4 shows some interesting characteristics for several 

technical nodes in both configurations, i.e. co-occurrences as word forms and as lemmas.  



The experiments used various lower thresholds for the technical corpus, i.e. a 

minimum co-frequency of 10, 20, 50 and 100. These lower thresholds had to be adopted, given 

that all frequencies and co-frequencies are (much) higher in the complete technical corpus 

than in a smaller subset. If, on the one hand, the number of significant c is too high, for 

example 100 or more, too many c will be clustered and displayed on the plot, making it too 

dense and therefore unreadable. The stress percentage will also be too high to obtain a 

reliable representation of the observed similarities and dissimilarities. On the other hand, if 

the number of significant c is too small, for example 5 or 6, these very few c are not likely to 

reveal interesting semantic information on the plot. Depending on the frequency of the node 

and the number of significant c, the lower threshold will be adapted.  

 

Table 4. Configurations with word forms and lemmas in the technical corpus 

Configuration Number of significant c Stress % of MDS analysis 

Word forms tour   cofq ≥ 10 75  18.75%  

Lemmas  tour   cofq ≥ 10 90  17.67%  

Word forms usinage   cofq ≥ 100 18 17.97%  

Lemmas usinage   cofq ≥ 100 23 18.68%  

Word forms ISO   cofq ≥ 10 32 12.40%  

Lemmas ISO   cofq ≥ 10 39 13.63% 

 

For the node tour, the most interesting configurations have lower threshold 10. As shown in 

Figure 5 (for word forms) and, less convincingly, in Figure 6 (for lemmas), these configurations 

confirm the findings discussed in Section 4.1 for the technical journals. Again, horizon and mille 

are situated at outlying positions. Moreover, Figure 5 shows two other outliers (monobroche 

and frontaux), which have high values for some specific ccc in the columns of the c × ccc 



matrix. Since these values represent the column sum of association scores between cc and ccc, 

it is unfortunately rather difficult to trace the origin of their outlying position.  

However, the MDS analysis of these two configurations is only borderline reliable, as 

indicated by the rather high stress percentages of 18.75% and 17.67% (see Table 4). 

Furthermore, the semantic interpretation of the displayed c of tour extracted from the 

complete technical corpus is less clear and less convincing than those extracted from the 

subcorpus (see Section 4.1). The plot of the MDS analysis of the complete technical corpus 

could be considered as the superposition of 4 plots for each of the 4 subcorpora (technical 

journals, technical data sheets, ISO standards and textbooks). It therefore seems interesting to 

carry out an MDS analysis for each subcorpus. As suggested by Figures 2, 3, 5 and 6, significant 

first-order co-occurrences of tour, thematically slightly different in each subcorpus, seem to 

display a different co-occurrence behaviour, depending on the subcorpus.  

 



 

Figure 5. MDS of c of the node tour (in the technical corpus): word forms 



 

Figure 6. MDS of c of the node tour (in the technical corpus): lemmas 

 

The technical node usinage was qualified by the monosemy measure as semantically 

heterogeneous. In fact, this deverbal noun is semantically vague, because it has a rather 

general meaning (“machining”), which is further specified by the complement, for example 

usinage d’un trou (“taraudage” or “tapping”) versus usinage d’une pièce (“fraisage, 

rectification” or “milling, rectification”). At a lower threshold of 100, the stress percentage is 

rather high in both configurations (see Table 4). For both configurations, Figures 7 and 8 show 

a cloud of c which clearly reflects the semantic vagueness of usinage. Furthermore, for the 



word form configuration, Figure 7 shows several interesting groupings of c, in terms of the 

multiwords units that they constitute (enlèvement de copeaux, haute précision, grande 

vitesse). This suggests that an MDS analysis might be helpful for the identification and analysis 

of multiword units in future research. Note that we use MDS analysis as a way to find a robust 

method for discovering semantic clusters in all types of corpora, even in corpora without full 

sentences, as is the case in our technical corpus. 

 

 

Figure 7. MDS of c of the node usinage (in the technical corpus): word forms 

 



 

Figure 8. MDS of c of the node usinage (in the technical corpus): lemmas 

 

Finally, for the technical node ISO, which is semantically rather homogeneous, both 

configurations at lower threshold 10 are reliable: they have acceptable stress percentages of 

12.40% and 13.63%, respectively. Function words were filtered out of the rows in the co-

occurrence matrix, but numbers were kept in, because of the particular characteristics of the 

node ISO. In the configuration on word forms, numbers and references to the standards 

cluster together to the left of the plot (see Figure 9). The bottom section shows a specific use 

of the node ISO with the indications 9000, 9001, 9002, certifiée and certification: these c all 



refer to the well-known quality standards and certifications. In the plot for the lemma 

configuration (see Figure 10), numbers are displayed on the left section of the plot and c 

related to quality standards and certifications here too cluster together in the upper left 

section of the plot. 

 

 

Figure 9. MDS of c of the node ISO (in the technical corpus): word forms 



 

Figure 10. MDS of c of the node ISO (in the technical corpus): lemmas 

 

5. Conclusions and further research 

This paper presented the methodology of clustering for semantic purposes, and discussed its 

visual results both from a terminological and a semantic point of view. In several experiments, 

first-order co-occurrences of technical nodes were clustered based on shared-order second 

and third-order co-occurrences and by taking into account their respective association 

strength. The results of the statistical clustering techniques showed semantic similarities and 



dissimilarities between first-order co-occurrences by means of proximities and distances on a 

plot.  

MDS analysis was carried out on a subset of technical journals (320,000 words) as well 

as on the complete technical corpus (1.7 million words). Two configurations for the co-

occurrence matrix were generated, for word forms and for lemmas, in order to assess the 

impact of the identification of co-occurrences at the level of word form and lemma. For the 

node tour, the plots for the subcorpus showed, in both configurations, some groupings of co-

occurrences and some outliers, which indicated different meanings. For the complete technical 

corpus, the semantic interpretation of the plots was less convincing, and suggested that MDS 

analysis might be necessary for each specific subcorpus. The four subcorpora seem to have 

their own stylistic and thematic characteristics, even within the same technical domain of 

machining terminology.  

For the technical nodes discussed in this paper, the lemma configuration yields a more 

coherent semantic interpretation, as the various inflected and conjugated word forms are not 

all displayed on the resulting plot. Of course, the MDS analysis needs to be expanded to more 

numerous technical nodes in order to explore their semantic heterogeneity and confirm the 

findings so far.  

Finally, future MDS analysis should take into account word class information or POS-

tags for first-order co-occurrences intended to be clustered and plotted. This would also be 

relevant for second-order and third-order co-occurrences, which have an important 

disambiguation function in the underlying c × ccc co-occurrence matrix. This integration of 

statistical co-occurrence information with syntactic co-occurrence information could be a 

significant step towards the identification and analysis of multiword units, which are very 

important in specialized language. 
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