
Scheduling surgical cases in a day-care environment:
a branch-and-price approach

Brecht Cardoen, Erik Demeulemeester and Jeroen Beliën

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Economics and Applied Economics

KBI 0724

Scheduling surgical cases in a day-care environment: a

branch-and-price approach

Brecht Cardoen, Erik Demeulemeester, Jeroen Beliën

Katholieke Universiteit Leuven, Faculty of Economics and Applied Economics, Department of Decision Sciences and

Information Management, Naamsestraat 69, B-3000 Leuven, Belgium, brecht.cardoen@econ.kuleuven.be,

erik.demeulemeester@econ.kuleuven.be, jeroen.belien@econ.kuleuven.be

Abstract

In this paper we will investigate how to sequence surgical cases in a day-care facility so
that multiple objectives are simultaneously optimized. The limited availability of resources
and the occurrence of medical precautions, such as an additional cleaning of the operating
room after the surgery of an infected patient, are taken into account. A branch-and-price
methodology will be introduced in order to develop both exact and heuristic algorithms.
In this methodology, column generation is used to optimize the linear programming formu-
lation of the scheduling problem. Both a dynamic programming approach and an integer
programming approach will be specified in order to solve the pricing problem. The column
generation procedure will be combined with various branching schemes in order to guarantee
the integrality of the solutions. The resulting solution procedures will be thoroughly tested
and evaluated using real-life data of the surgical day-care center at the university hospital
Gasthuisberg in Leuven (Belgium). Computational results will be summarized and conclu-
sions will eventually be formulated.

Keywords: health care operations, scheduling, column generation, branch-and-price

1 Introduction

In a hospital environment, the operating theater is often identified as a major cost driver. Al-

though these costs typically point at financial issues, they could also be expressed as quality

of care or stakeholder satisfaction. Unfortunately, the surgery scheduling process unites many

stakeholders, like surgeons, patients or nurses, who may have conflicting preferences and pri-

orities (Hamilton and Breslawski 1994). Due to this complexity, health managers can hardly

manage to integrate individual surgeries into a coherent surgery schedule solely based on their

experience. At this point, the field of operations research and operations management should

assist in the development of an effective and efficient surgery schedule and consequently con-

tribute to the performance of a hospital as a whole (Carter 2002).

1

In the literature, the surgery scheduling process for elective cases is often seen as a three

stage process (Blake and Donald 2002, Beliën and Demeulemeester 2007). In a first stage, one

has to determine how much operating room time is assigned to the different surgeons or surgical

groups. This stage is often referred to as case mix planning and is situated on a strategic level

(Blake and Carter 2002). The second stage, which is tactically oriented, concerns the develop-

ment of a master surgery schedule. This schedule can be seen as a cyclic timetable that defines

the number and type of operating rooms available, the hours that rooms will be open, and the

surgeons or surgical groups to whom the operating room time is assigned (Blake, Dexter and

Donald 2002). In the third and final stage, individual patients or cases can be scheduled on a

daily base. It is on this operational level that our research should be situated.

Methodologies for scheduling individual surgical cases are often based on a two-step proce-

dure. The first step is referred to as advance scheduling (assignment step) and describes the

assignment of patients to surgery days. When surgeons are not allowed to switch between op-

erating rooms on a specific surgery day, advance scheduling implicitly determines the operating

room in which the surgery of interest will be performed. In the second step, which is referred

to as allocation scheduling (sequencing step), the patient population for a specific surgery day

has to be sequenced. Solution procedures that distinguish between these two phases can, for

instance, be found in Jebali, Alouane and Ladet (2006), Guinet and Chaabane (2003), Mar-

con, Kharraja and Simonnet (2003), Sier, Tobin and McGurk (1997) or Hsu, de Matta and

Lee (2003). A summary of these approaches can be found in Cardoen, Demeulemeester and

Beliën (2006). Although we acknowledge the two-step approach, this research will only focus on

allocation scheduling. Since we will allow for switches of surgeons between operating rooms, our

second step comprises both the assignment of surgeries to operating rooms and the consecutive

sequencing of the surgeries within each operating room. This is in correspondence with the

surgical case scheduling problem (SCSP) that was examined in Cardoen, Demeulemeester and

Beliën (2006). Since this NP-hard optimization problem will also constitute the focus of this

paper, we will introduce a short description in Section 2. In this paper, however, we will develop

a branch-and-price solution approach instead of generating pure integer programming models

and dedicated branch-and-bound algorithms. To the best of our knowledge, the application of

column generation and branch-and-price techniques to the scheduling of ambulatory surgical

cases on the operational level has not yet been addressed in the literature.

2

In order to augment the applicability and relevance of the developed algorithms, we main-

tained a steady cooperation with the surgical day-care center of the university hospital Gasthuis-

berg in Leuven (Belgium). This medical facility has already been the subject of research in a

case study of Beliën, Demeulemeester and Cardoen (2006) and yearly accounts for about 15000

hours of total net operating time and 25000 ambulatory surgeries. De Lathouwer and Poullier

(2000) define an ambulatory surgery as a non-emergency procedure which is undertaken with all

its constituent elements, i.e. admission, surgery and discharge. Furthermore, this procedure is

performed during the time span of a normal working day, thus not exceeding 12 hours including

the post-surgical recovery. Using a questionnaire, they revealed a rising trend in ambulatory

surgery amongst the OECD members. Although the results are characterized by huge intercoun-

try disparities, Belgium in particular exhibits an increase of 27.6% in the number of ambulatory

surgery cases performed between 1995 and 1997. In other words, the increasing share of ambu-

latory treatments highlights the need for an efficient planning system of the day-care facility.

The remainder of this paper is structured as follows. In Section 2, we will briefly discuss the

SCSP and capture its multiple objectives and constraints in a pattern-based integer program-

ming (IP) formulation. Section 3 describes a column generation approach in order to optimize

the subsequent linear relaxation. Since column generation cannot guarantee variables to be

integer, we will extend this methodology to a broad branch-and-price framework in Section 4.

Multiple branching schemes will be developed and combined with the column generation algo-

rithm. In Section 5, a detailed computational experiment will be conducted using data from the

surgical day-care center of Gasthuisberg. Finally, in Section 6, conclusions will be formulated

and ideas for future research will be mentioned.

2 Problem statement

The current scheduling practice at the day-care center of Gasthuisberg implies that the final

surgery schedule is made only one day in advance. Although patients know on which day their

surgery will be performed, they are unaware of the time they should enter the hospital until

the sequencing step of the scheduling process is finished. This sequencing step, in which the

workload of one surgery day is handled, actually boils down to determining for each surgery

both its surgery start time and the according operating room in which it will be performed.

3

Numerous types of decision variables can now be introduced to assist in formulating the multiple

objectives and the constraints of the SCSP. The type of decision variables furthermore determines

the strategy for constructing the surgery schedules and will hence influence the construction of

solution procedures. One strategy, for instance, consists of treating surgeries individually. In

particular, a binary decision variable xips could be introduced that would be equal to 1 if a

surgery of type i starts on period p by surgeon s. A detailed overview of this modeling approach

can be found in Cardoen, Demeulemeester and Beliën (2006) and will hence not be discussed.

The strategy that will be highlighted in this research paper consists of assigning patterns to

the operating theater. A pattern, which we will also refer to as a column, can be defined as a

sequenced group in which all surgeries for one specific surgeon are represented. In particular,

the choice whether a pattern will be assigned to the surgery schedule will be determined by

the value of its binary decision variable zst. This variable equals 1 when pattern t is chosen for

surgeon s.

Period
Operating

room 1

Operating

room 2

Period 0

Period 1

Period 2

Period 3

Period 4

Period 5

1

2 3

1

2

3

1

2

3

3

1

2

3
1

3

2

1

3

2
1

2

3

PATTERN 1

3 2 1

Feasible

PATTERN 2

3 1 2

Infeasible

PATTERN 3

2 3 1

Infeasible

Figure 1: Visualizing patterns as decision variables for building surgery schedules.

We will clarify the concept of patterns by means of the illustrative example that is depicted

in Figure 1. In this figure, three surgeries have to be scheduled during the available operating

room time of a specific surgeon s. We will assume that the surgery of type 1 represents the

4

surgery of an infected patient (e.g. carrier of the contagious hospital bacteria) so that the

operating room needs additional cleaning afterwards. This cleaning, however, is not required

when the next patient carries exactly the same infection. Moreover, when an infected patient is

the last one to be treated in an operating room, no additional cleaning needs to be performed

since the entire operating theater is thoroughly cleaned at closing time. However, when an

infected patient is scheduled in a surgery block that is followed by a surgery block of a different

surgeon, the cleaning is obligatory and should be entirely performed in the surgery block of the

infected patient. In other words, we do assume that with regard to infections, surgeons work

independently. As can be seen from the master surgery schedule in Figure 1, the available time

for the specific surgeon is divided into two major operating room blocks. The first block in which

surgeries can be scheduled is situated in operating room 1 (period 0 to 2), whereas the second

major surgery block is situated in operating room 2 (period 3 to 5). Note that if a surgeon

is active in multiple operating rooms, his or her operating room blocks are sequential, i.e. the

surgeon does not perform multiple surgeries simultaneously. Moreover, if every surgeon is only

assigned to one operating room, the sequencing step is restricted to deciding on the surgery

start times. Recall that we balance the workload of a pattern with the available operating room

time of the surgeon determined by the master surgery schedule. This implies that the patterns

we will develop in the example will always contain three surgeries. In a first illustrative pattern,

the surgery of type 3 precedes the surgery of type 2. This latter surgery, on its turn, precedes

the surgery of type 1 (3 ≺ 2 ≺ 1). When we graphically represent this pattern as shown in the

upper representation of the figure, the resemblance with a column becomes apparent. However,

for ease of interpretation, we will also visualize the surgeon switch. The first pattern tends to

be feasible since the surgeries are nicely spread over the major surgery blocks and the infected

patient is scheduled as the last patient. The second pattern, in which 3 ≺ 1 ≺ 2, fails to

comply with the additional cleaning obligation and is hence infeasible. The third pattern, in

which 2 ≺ 3 ≺ 1, tends to be infeasible too since a switch in operating rooms takes place while

a surgery is ongoing. In other words, there is a dissatisfying spread of the surgeries over the

operating rooms. Although the number of restrictions discussed in Figure 1 is limited to 3,

namely the incorporation of infections, the spread of surgeries over the operating rooms when

surgeon switches occur and the obligation to schedule a surgeon’s entire patient population in

a pattern, additional restrictions are included in the SCSP. It is, for instance, essential that

5

surgeries do not overlap. This means that surgeries cannot start when the operating room is

occupied by any other surgery. Furthermore, it is possible that some patients still have to do

some pre-surgical tests (e.g. X-ray) on the day of the surgery. It is, in other words, necessary

to schedule the surgery start of these patients after a certain reference period in order to create

time to do the required tests. In Section 3, we will return to the generation of patterns and

discuss the restrictions that have to be taken into account in detail.

Now that we have an idea of how patterns look like, we can state the SCSP as the integer

programming formulation described by Equations 1 to 8 . We refer to Appendix A for a complete

overview of the symbols used throughout the equations in this paper.

MIN

(∑

s∈S

∑

t∈Ts

cst · zst

)
+

∑

j∈J :j≥5

wj · αj

worstvaluej−bestvaluej

−
∑

j∈J

wj ·bestvaluej

worstvaluej−bestvaluej

(1)

S.T.

(∑

s∈S

∑

t∈Ts

a1pst · zst

)
− α5 ≤ 0 ∀p : minr,sP

lb
rs ≤ p ≤ mrp (2)

(∑

s∈S

∑

t∈Ts

a2pst · zst

)
− α6 ≤ 0 ∀p : minr,sP

lb
rs ≤ p ≤ mrp (3)

∑

s∈S

∑

t∈Ts

a(e+2)pst · zst ≤ cape ∀e ∈ E, ∀p : minr,sP
lb
rs ≤ p ≤ maxr,sP

ub
rs (4)

α5 ≤ capl (5)

α6 ≤ capm (6)
∑

t∈Ts

zst = 1 ∀s ∈ S (7)

zst ∈ {0, 1} ∀s ∈ S,∀t ∈ Ts (8)

Under the assumption that only feasible patterns are added to the mathematical model, a surgery

schedule is built by choosing for each surgeon exactly one pattern (Eq. 7). However, picking

feasible patterns does not necessarily lead to the generation of a feasible surgery schedule due

to the common use of the limited resources. In order to know the aggregate demand per period

for a specific resource, we should know this demand for each pattern individually. Since we

know the sequence of the surgeries in a pattern, these demands can easily be calculated and are

represented by the data parameter aopst. This parameter indicates how many units of resource

6

type o are needed in period p when pattern t is chosen for surgeon s. Three types of resources are

explicitly incorporated in the formulation. First, surgeries possibly require medical equipment or

instruments during their execution. This implies that the demand per period for each instrument

e over all the operating rooms cannot exceed cape, which is the total number of instruments of

type e available (Eq. 4). We want to stress, however, that the demand for instruments does not

solely depend on the simultaneous use of a type of instrument over the different operating rooms.

After use, instruments possibly need to be sterilized for several periods and hence cannot be

used for subsequent surgeries. This sterilization duration is incorporated during the calculation

of the data parameter aopst. Second, when a patient’s surgery is finished, he or she is transferred

to a first recovery room (recovery phase 1) to get through the critical awakening phase. Since

the number of beds in this recovery room is limited, we have to construct a surgery schedule

so that the peak demand for recovery beds in phase 1 (=α5) does not exceed the available

capacity capl (Eq. 5). A similar reasoning applies to Equation 6. When the patient is conscious

and the awakening process in the first recovery phase tends to be normal, the patient is moved

to a second recovery room (recovery phase 2) where the patient stays until the surgeon gives

permission to leave the day-care hospital. The peak demand for recovery beds in recovery phase

2 (=α6) cannot exceed its available capacity capm. Equations 2 and 3 will assist in determining

the peak number of beds that are used in recovery phase 1 and recovery phase 2.

When a combination of patterns can be found that satisfies the above constraints, a feasible

surgery schedule is constructed. We are, however, interested in finding the best surgery schedule

with respect to multiple objectives. In particular, we want to generate a schedule in which

surgeries of children (α1 =
∑

n∈N Θchild
typen

· vn) or prioritized patients (α2 =
∑

n∈N Θprior
typen

· vn)

are performed as early as possible. Furthermore, we want to incorporate the travel distance

of patients. In particular, we will try to schedule the surgery start of travel patients after a

certain reference period in order to provide sufficient time to get to the day-care center (α3 =
∑

n∈N :vn<travelref Θtravel
typen

). We also want to minimize the number of periods that patients have to

stay in recovery after the closure of the day-care center, since this would result in unplanned (and

hence costly) hospitalizations or overtime for the nursing personnel (α4 =
∑

n∈N max[0, vn +

ktypen + ltypen + mtypen − 1−P ub]). Finally, we are interested in minimizing the peak number of

beds used in recovery phase 1 (= α5) and recovery phase 2 (= α6) in order to smoothen the bed

occupancy and hence level the workload for the nursing personnel. Although
∑

j∈J αj would

7

be a straightforward function to optimize, we opt to combine the 6 objectives as represented in

Equation 9.

∑

j∈J

wj ·RFIj =
∑

j∈J

wj ·
(

αj −bestvaluej

worstvaluej−bestvaluej

)
(9)

Since several objectives are expressed in different units, a trade-off has to be defined between the

units. This decision, however, can be very subjective and hence difficult to argument. Therefore,

we propose in Equation 9 a multi-objective function that is based on the room for improvement

for each objective j (RFIj). Since we know the population of surgeries that has to be scheduled

(including the idle periods), we are able to calculate for each single objective the best and the

worst possible value that could be obtained. These extreme values can consecutively be used as

indicated in Equation 9 to generate a relative measure of quality. This implies that we do not

have to struggle with units anymore: we get for each objective a value that is in the range [0,1]

and is easy to interpret since the RFIj indicates how much worse the value for objective j is

with regard to its best value. If RFIj equals 0, we cannot improve objective j any further. Cal-

culation of the extreme values for αj (j ∈ J) is done during instance generation using the ILOG

CPLEX 8.1 optimization library. Further information on this topic can be found in Cardoen,

Demeulemeester and Beliën (2006). Using the transformation described above, all objectives

will be gradually optimized to the same level and will somehow be comparable to each other. It

is unlikely, however, that the objectives are of equal importance to the human planner. Thus,

we should incorporate a possibility for the planner to express the relevance of the different ob-

jectives. This can easily be done by assigning a weight wj to objective j. Note that the weights

only indicate the preferences of the scheduler. Note that when the sum of the weights equals 1,

the multiple objective function still has a value that is in the range [0, 1]. As can be seen below,

Equation 1 can now easily be deducted from Equation 9. Since the last term in Equation 1 is

a constant, it will be neglected during optimization. Note that only objective j ∈ J : j ≤ 4

is incorporated in cst. For these objectives, we have that αj =
∑

s∈S

∑
t∈Ts

(c̃jst · zst). This,

though, does not apply to the bed leveling objectives. When a surgery schedule, for instance,

consists of two columns and each column has a peak demand for beds in recovery phase 1 equal

to 3, it is not guaranteed that α5 = 3 + 3 = 6. Actually, α5 = 6 only occurs when both peak

demands are established simultaneously for at least one period.

8

∑

j∈J

wj ·
(

αj −bestvaluej

worstvaluej−bestvaluej

)

=
∑

j∈J :j≤4

wj ·
(
∑

s∈S

∑
t∈Ts

c̃jst · zst)−bestvaluej

worstvaluej−bestvaluej

+
∑

j∈J :j≥5

wj · αj −bestvaluej

worstvaluej−bestvaluej

=
∑

j∈J :j≤4

wj ·
(
∑

s∈S

∑
t∈Ts

c̃jst · zst)
worstvaluej−bestvaluej

+
∑

j∈J :j≥5

wj · αj

worstvaluej−bestvaluej

−
∑

j∈J

wj ·bestvaluej

worstvaluej−bestvaluej

=
∑

s∈S

∑

t∈Ts

(∑

j∈J :j≤4

wj · c̃jst

worstvaluej−bestvaluej

· zst

)
+

∑

j∈J :j≥5

wj · αj

worstvaluej−bestvaluej

−
∑

j∈J

wj ·bestvaluej

worstvaluej−bestvaluej

=

(∑

s∈S

∑

t∈Ts

cst · zst

)
+

∑

j∈J :j≥5

wj · αj

worstvaluej−bestvaluej

−
∑

j∈J

wj ·bestvaluej

worstvaluej−bestvaluej

In order to solve the integer programming formulation that is described by Equations 1 to 8,

we could enumerate for each surgeon all the feasible columns, calculate for each column the

corresponding aopst and cst and consecutively add the columns to the model. However, when

the number of surgeries that have to be scheduled is substantial, the number of columns easily

explodes. When the workload for one surgeon is, for instance, equal to 10 surgeries, we possibly

have to enumerate 10! = 3628800 columns. With up to 8 operating rooms, the number of

variables is too large to be handled efficiently. A better approach would be to generate and add

only those variables to the model that seem promising with respect to the objective function.

This can be done using a column generation approach, as will be explained in the next section.

3 Linear relaxation through column generation

In order to solve the linear relaxation of the SCSP to optimality using a column generation

approach, the scheduling problem is decomposed into a master problem and a subproblem

(Barnhart et al. 1998, Desaulniers et al. 2005). This decomposition, which constitutes the

spine of the column generation optimization loop, is depicted in Figure 2. The master problem

corresponds with the formulation stated by Equations 1 to 8, though now we will relax the

integrality constraint of Equation 8. Since this formulation will be solved using only a subset

of the existing columns, we will refer to this problem as the restricted master problem (RMP).

9

Solve restricted master

problem

column: reduced cost < 0 ?

Solve pricing problem

Yes No

Get initial set of columns

Solution (LP) is optimal

Add new column(s) to restricted

master problem

Figure 2: Visualizing a column generation optimization loop.

In order to verify whether the solution obtained by solving the RMP also optimizes the linear

relaxation of the SCSP (i.e. when we would take all existing columns into account), a subproblem

needs to be solved. We will refer to this subproblem as the pricing problem. In particular, we

will try to generate a column that is characterized by a negative reduced cost. When we assume

that ρp, σp, πep and λs respectively represent the dual prices of restrictions 2, 3, 4 and 7, the

reduced cost of a column t for a surgeon s can be specified by Equation 10.

RCst = cst − λs −
mrp∑

p=minrsP lb
rs

(ρp · a1pst + σp · a2pst)−
∑

e∈E

maxrsP ub
rs∑

p=minrsP lb
rs

πep · a(e+2)pst (10)

When such a column can be found, it should be added to the subset of variables and the

optimization loop should be repeated. However, when no column prices out (i.e. has a negative

reduced cost), the solution to the RMP also optimizes the linear relaxation of the SCSP and the

column generation loop terminates.

Since we can only obtain the dual prices of the restrictions when a feasible solution can be

found for the RMP, this master problem will be initiated with a set of binary dummy variables

or supercolumns. In particular, a supercolumn zs1 is added for each surgeon s and is similar

to an ordinary column, except that ∀p : minr,sP
lb
rs ≤ p ≤ mrp and ∀e ∈ E: a1ps1 = a2ps1 =

a(e+2)ps1 = 0. Furthermore, ∀s ∈ S : cs1 = ∞. In other words, since these columns do not

10

consume any resources, their value can easily be adapted (0 ≤ zs1 ≤ 1) in order to satisfy the

convexity constraints (Eq. 7) and hence to ensure feasible solutions. This, however, comes at

a very high cost since a schedule built with supercolumns is unrealistic in nature, i.e. we will

eventually have to find a schedule in which zs1 equals 0 for each surgeon.

In Figure 2, there is no need to solve the pricing problem for every s ∈ S. We could resolve

the RMP whenever at least one column t for a certain surgeon s could be found with RCst < 0.

However, many variations are allowed in order to solve the linear relaxation to optimality. When

multiple columns price out, one can choose on the number of columns to be added to the RMP.

We could, for instance, try to solve the pricing problem for every s ∈ S and consequently add for

each surgeon s a column t to the RMP when RCst < 0. Since it is even allowed to add multiple

columns for one specific surgeon, it should be clear that the set of newly generated columns does

not have to be limited to those exhibiting the most negative reduced cost. In Section 5.2, we will

compare several pricing strategies on their computational efficiency. In the remainder of this

section, we will elaborate on two algorithmic approaches to solve the pricing problem, namely

a dynamic programming approach and an integer programming approach. Both algorithms

generate, for a given surgeon, the column that results in the most negative reduced cost.

3.1 The pricing problem: dynamic programming

3.1.1 A recursive formulation

Dynamic programming (DP) is a solution methodology that decomposes a problem into a nested

family of smaller and hence more tractable subproblems (Bellman 1957). In order to solve the

pricing problem of a surgeon s, we will distinguish between |Ns|+ 1 stages (0 ≤ g ≤ |Ns|). The

numerical index of a stage represents the number of surgeries that are already scheduled at that

point. Each stage has a number of states associated with it which indicate the types of surgeries

that are already scheduled. This combinatorial problem can be regarded as a permutation. Since

multiple patients can have the same surgery type (i.e. there are duplicates), describing states

in terms of surgery types diminishes the symmetry and hence contributes to the computational

efficiency of the algorithm since less permutations have to be considered (Skiena 1998). In

Table 1, the enumeration of stages and states is illustrated by means of an example. In the

example, 4 surgeries need to be scheduled for surgeon s (|Ns|typen=1 = 1, |Ns|typen=2 = 2 and

|Ns|typen=3 = 1), which results in 5 stages and 12 states. In general, stage 0 only contains the

11

Table 1: Enumerating stages and states of a dynamic programming example.

Stage States

0 {}
1 {1}, {2}, {3}
2 {1,2}, {1,3}, {2,2}, {2,3}
3 {1,2,2}, {1,2,3}, {2,2,3}
4 {1,2,2,3}

empty state h∅: H0 = {h∅}, whereas stage |Ns| only consists of a state in which all surgeries

are scheduled. It should be clear that the transition from a state h at stage g to a state h′

at stage g + 1 corresponds to adding one specific surgery of type i to the surgery schedule:

i ∈ Is : |h′|value=i−|h|value=i = 1. In Table 1, the transition {} → {1}, for instance, corresponds

with starting a surgery of type 1 at period p = minr P lb
rs. Note that h → h′ is only allowed when

∀i ∈ Is : |h|value=i ≤ |h′|value=i. In order to determine for surgeon s a column t that exhibits

the most negative reduced cost RC∗
s , we can now formulate a recursive function:

RC∗
s = min

h ∈ H1

{
C(h∅, h) + F1(h)

}
− λs (11)

Fg(h) = min
h′ ∈ Hg+1 : h ⊂ h′

{
C(h, h′) + Fg+1(h′)

}
(12)

In general, Fg(h) represents the minimum cost incurred for the completion of the surgery sched-

ule with surgery types that still have to be scheduled during stages g +1 up to stage |Ns|, given

that state h at stage g is realized. Note that for state h ∈ H|Ns| : F|Ns|(h) = 0. When we return

to Table 1 and assume that state {1, 2} at stage 2 is realized, we could complete the surgery

schedule by either adding the sequence 2 ≺ 3 (i.e. adding a surgery of type 2 at stage 3 and a

surgery of type 3 at stage 4) or either adding the sequence 3 ≺ 2 (i.e. adding a surgery of type 3

at stage 3 and a surgery of type 2 at stage 4). Once both alternatives are evaluated, F2({1,2})
could be set equal to the cost of the alternative characterized by the lowest cost. Registering

these minimum costs entails an important contribution to the computational efficiency of the

12

algorithm. During the algorithmic search, a state h at stage g could possibly be visited multiple

times. The state {1, 2}, for instance, could be reached from two states at stage 1, namely {1}
and {2}. Saving the values of Fg(h) during the enrolment of the algorithm consequently avoids

the need to recompute subproblems that already have been solved once. Michie (1968) referred

to this concept as memoization.

The transition from state h to state h’ comes at a cost equal to C(h, h′) and reflects

the cost for starting a surgery of type i ∈ Is : |h′|value=i − |h|value=i = 1 at period p =

minr P lb
rs +

∑
i∈h |h|value=i ·ki. Two major cost components can be distinguished in C(h, h′). On

the one hand, there are costs related to the change in the objective function. Since only one

patient n with a surgery type equal to i and vn = p is scheduled, these costs are calculated as
∑

j∈J :j≤4(wj ·αj)/(worstvaluej−bestvaluej). With respect to the calculations of αj , we assume

that N = {n}. On the other hand, C(h, h′) should also reflect costs associated with the non-

positive dual prices of restrictions 2, 3 and 4, so that C(h, h′) is augmented by −∑p+ki+li−1
p′=p+ki

ρp′

−∑p+ki+li+mi−1
p′=p+ki+li

σp′ −
∑

e∈E

∑p+ki+stere

p′=p πep′ . However, when i ∈ Ipresurg and p < presurgref ,

we have that C(h, h′) = ∞. This implies that we are not allowed to start a surgery before

the reference period presurglimit when pre-surgical tests are incomplete on the day of surgery.

Furthermore, C(h, h′) = ∞ when surgeon s has to switch between operating rooms when the

surgery of the patient is still ongoing.

The dynamic programming formulation of Equations 11 and 12 is accurate for optimizing

pricing problems in which infections do not occur. This formulation, however, does not hold

when infections come into play. One problem, for instance, arises with the application of the

memoization feature. We can illustrate this using the example introduced in Table 1 once again.

Suppose we arrived in state {1, 2} at stage 2 and Ibact = ∅. Furthermore F2({1,2}) is already

calculated and equals the cost associated with the sequence 3 ≺ 2. No matter how we arrived

in state {1, 2} (i.e. by {} → {1} → {1, 2} or {} → {2} → {1, 2}), F2({1,2}) can always be

used as the optimal value of the subsequent subproblem. However, when Ibact = {1}, the addi-

tional cleaning time equals 1 period and the surgeries of type 2 represent idle periods, it would

be incorrect to use F2({1,2}) as the optimal value of the subproblem according to the path

{} → {2} → {1, 2}, since the infected surgery would immediately precede a surgery of type 3

instead of the obliged idle period. One other problem of scheduling infected patients would be

that these decisions do not only restrict the states that can be reached in the next stage, but

13

also those in further stages (i.e. as long as the obliged cleaning session is not finished). In order

to incorporate infections accurately, Equations 11 and 12 should hence be thoroughly modified.

A formulation of this generalized dynamic programming formulation can be found in Appendix

B.

3.1.2 Time complexity

In order to determine the efficiency of the DP algorithm, we will identify the appropriate com-

plexity class. In this section, we assume that no patients n ∈ Ns can be identified for which the

surgery type is equal. It should be noted that this assumption leads to a worst-case analysis,

since duplicate surgeries would further reduce the calculation effort needed to solve the pricing

problem.

We will focus on the number of recursive calls, which clearly depends on the problem size

|Ns|, in order to determine the running time of the algorithm. Since a recursive call can be

interpreted as a visit to a state at a further stage, defining the running time boils down to

determining how much progressive state visits are executed during the algorithmic search. In

particular, two components need to be calculated. On the one hand, we have to determine the

number of states present at stage g (= |Hg|). On the other hand, we have to determine the

number of visits to a state h at stage g. We assume that no visit is required to the empty state

h∅ at stage 0, since this is the starting point of the algorithm.

With respect to the first component, the number of states at stage g is calculated as

|Ns|!/[(|Ns| − g)! · g!]. Since the state space is divided into |Ns| + 1 stages, the total num-

ber of states needed to solve the entire pricing problem is equal to
∑|Ns|

g=0 |Ns|!/[(|Ns| − g)! · g!].

Since this number actually represents the enumeration of all possible subsets of surgeries, it

is equal to 2|Ns|. With respect to the second component, the number of visits to a state at

stage g equals g. This is a consequence of saving intermediate results, i.e. a consequence of the

memoization feature. Note that when this feature is turned off, the number of visits to a state

at stage g increases to g!. This latter approach would result in a complete enumeration of all the

paths and could hence be seen as a brute-force approach with a running time equal to O(n!).

Since we do apply the memoization feature, the number of computational steps needed to solve

a pricing problem of size |Ns| can be determined through Equation 13.

14

|Ns|∑

g=0

g · |Ns|!
(|Ns| − g)! · g!

= |Ns| · 1
2
· 2|Ns| = |Ns| · 2|Ns|−1 (13)

From Equation 13, we may conclude that the dynamic programming algorithm runs in

exponential time. Although algorithms with an exponential running time are globally considered

to be inefficient, it should be noted that if the problem size is small, the complexity class might

not matter very much (Standish 1994). This implies that satisfying computational results can

still be obtained for the pricing problem since |Ns| is limited to 15 surgeries (see Section 5.2).

Moreover, although the running time is exponential, it is far more efficient than the factorial

approach. Solving a pricing problem of size |Ns| = 15 results in 245760 computational steps in

the former case, whereas about 3.5× 1012 steps are needed in the latter case.

3.2 The pricing problem: integer programming

Alternatively, we can also state the pricing problem as an integer programming formulation and

solve it using a commercial IP solver. The IP formulation is actually a restricted version of the

preprocessed IP model introduced in Cardoen, Demeulemeester and Beliën (2006). Note that

the binary decision variable xips, which equals 1 if a surgery of type i starts on period p by

surgeon s, also exhibits the advantage of symmetry tackling since it is based on surgery types

and not on patients.

There are two main reasons why we developed, next to the dynamic programming approach,

this second pricing algorithm. First, we want to use it as a benchmark in order to investigate

the efficiency of the dynamic programming formulation (see Section 5.2). Second, when the

IP pricing formulation itself turns out to perform well, we could use it in the branch-and-price

algorithms in order to branch on the column variables zst. When we can prevent columns to

price out multiple times only by making slight modifications (e.g. changing cost coefficients),

the structure of the pricing problem remains stable. One major inconvenience that is related

to branching on the column variables, though, is that the pricing structure has to be adapted.

This, however, is a complicated task with respect to the dynamic programming formulation,

whereas it can easily be done for the IP pricing algorithm. When we prohibit a column zst (i.e.

∀n ∈ Ns : υn is known) to be generated during the column generation optimization loop, we only

15

have to add Equation 14 to the mathematical formulation of the according pricing problem.

∑

n∈Ns

xtypen,vn,s ≤ |Ns| − 1 (14)

4 A branch-and-price approach

Since the column generation loop is optimizing the linear relaxation of the SCSP, the optimal

values for the column variables do not necessarily equal 0 or 1. In order to get integer values

for these column variables, we will embed the column generation optimization loop within an

enumerative branch-and-bound framework. This methodology is referred to as branch-and-price

(Desaulniers et al. 2005).

The solution of the initial column generation optimization loop corresponds to solving the

root node. When the solution values of the column variables are integer and ∀s ∈ S : zs1 = 0

(i.e. no supercolumns are chosen), the SCSP is immediately solved to optimality. Any other

solution that does not incorporate the presence of supercolumns, on the contrary, leads to the

introduction of new nodes on a next level (two nodes when the decision scheme is binary). The

initiation of a new node coincides with the introduction of a new branching restriction. Column

variables zst that do not comply with the appropriate restrictions (i.e. restrictions introduced

in the path from the root node to the current node) will have a solution value equal to 0. In the

current node, a new column generation optimization loop is executed. Columns that price out

must satisfy the set of restrictions. When the LP solution surpasses the objective value of the

provisional best solution, the algorithm backtracks. Note that backtracking also occurs whenever

supercolumns are present in the optimal LP solution of a node. When both backtracking rules

do not apply, the algorithm will check the variables for integrality. Integrality will lead to the

registration of the surgery schedule and is followed by backtracking. When the variables are

fractional, new branching restrictions are added, leading to the introduction of new nodes. In

the remainder of this section, specific features of the branch-and-price methodology, related to

the branching strategy, branching schemes and speed-up techniques, will be discussed.

4.1 Branching strategy

Based on the selection of the node to branch from next, two general strategies can be defined,

namely a depth-first or backtracking strategy and a best-first or skiptracking strategy. Since

16

both approaches tend to have their strengths and their weaknesses (Demeulemeester and Her-

roelen 2002), we will implement the depth-first as well as the best-first strategy during the

computational experiment (see Section 5.3). However, since the occurrence of at least one fea-

sible solution is crucial on the operational surgery level, we can question whether a best-first

strategy will be effective. When the discrepancy between the optimal linear relaxation of the

root node and the optimal solution of the SCSP is large, there is an increased probability that

time will be too short to search the entire tree and consequently even find a feasible solution.

In Table 2, we compare the absolute gap between the linear relaxation of the SCSP and its

optimal solution with respect to 3 different mathematical formulations. Both the basic IP and

the preprocessed IP were introduced in Cardoen, Demeulemeester and Beliën (2006), whereas

the column IP corresponds to the formulation described in this paper. The test set used for this

experiment will be described in Section 5.1. Both the average and the median gap are the small-

est when the SCSP is formulated in terms of patterns or columns. Moreover, the optimal linear

relaxation of the column IP tends to be more stable. These findings are in line with Barnhart

et al. (1998), who state that the relaxation of a MIP can often be tightened by a reformulation

that involves a huge number of variables. In short, when the relaxation is tight, the optimal

solution could be near and the search of a best-first algorithm could potentially be finished in

time. Note that feasible solutions could be encountered even when a best-first branch-and-price

algorithm ends prematurely. This is the case when the intermediate solution of the RMP during

the column generation optimization loop is constituted by integer variables.

4.2 Branching schemes

In Section 3.2, we proposed to branch on the column variables in order to partition the solution

space and eliminate the occurrence of fractional column variables. This would imply that we

Table 2: Absolute gap between the linear relaxation of the SCSP and the optimal solutions.

average median standard deviation

Basic IP 0.056 0.042 0.051
Preprocessed IP 0.043 0.035 0.039

Column IP 0.027 0.018 0.031

17

need to identify a column zst : 0 < zst < 1 and fix zst either to 1 (left branch) or to 0 (right

branch). However, thorough testing of the IP pricing algorithm revealed a weak performance

(see Section 5.2), so that we will limit the focus on branching schemes in which the pricing

problem is only slightly modified using the cost coefficients and thus the same algorithmic so-

lution approach can be applied. In particular, four binary branching schemes will be presented

and implemented in which branching restrictions will be formulated in terms of the individual

surgeries. It can be shown that these schemes are complete.

In a first scheme, we will fix a surgery of type i to start on a period p for a surgeon s (xips = 1)

in the left branch, whereas xips = 0 in the right branch. Since there are far more columns for

which the proposition of the right branch holds, this branching scheme will result in a highly

unbalanced tree. Although this restricts the ability to prove the optimality of a solution, it

should allow for a quick detection and improvement of feasible solutions. The second branching

scheme is similar to the first, except that we do not oblige a surgery to start on a specific period

but that a surgery of type i for surgeon s should be in process on period p (left branch). The

contrary obviously holds for the right branch. Although the freedom to slightly shift the start-

ing period of the surgery type should favor the balancing of the tree, this branching scheme is

still unbalanced. Therefore, we thought of a third branching scheme in which a surgery of type

i for surgeon s has to be started before or on period p (left branch), whereas it should start

after period p in the right branch. In this branching scheme, however, a problem occurs when

multiple patients have the same type of surgery since the branching restriction would apply to

all patients with a surgery type equal to i. In order to overcome this problem, we specified the

branching restrictions on the patient level instead of on the surgery type level. This implies,

for instance, that the surgery of patient n for surgeon s has to be started before or on period

p (left branch). Moreover, precedence relations between patients with a common surgery type

were introduced in order to avoid symmetry. Next to the time-based branching schemes, we

will also introduce a sequence-based branching scheme. In particular, we will oblige a surgery

type to be scheduled in a specific position, e.g. a surgery of type 10 has to be scheduled as the

fifth surgery (left branch). In the right branch, only columns are taken into account in which

the surgery type does not appear on the specific position. We should mention that many other

branching schemes, for instance hybrid or non-binary schemes, could be developed and tested.

This, however, constitutes an area for future research.

18

The information needed in order to specify the appropriate branching restriction is deter-

mined through the comparison of two fractional columns for a common surgeon. We do have to

decide, though, which columns will be picked and which i− p combination will be chosen when

the surgery sequences of the fractional columns differ on multiple places. Intuitively, it seems

reasonable to select columns characterized by the most fractional value (i.e. close to 0.5 and thus

balanced) or highest value (i.e. close to 1 and thus an extremely valuable column). Preliminary

computational results indicated that selecting the columns with the highest fractional value and

choosing the i−p information that corresponds with the earliest conflict, performed better than

a branch-and-price approach in which choices (most fractional value, highest fractional value,

earliest conflict and latest conflict) were made randomly.

4.3 Speed-up techniques

In order to upgrade the performance of the branch-and-price algorithms, several speed-up tech-

niques could be developed and implemented. The techniques introduced in this paper consist of

an initial solution, a lower bound in the column generation optimization loop and the elimination

of columns along the branching tree.

4.3.1 Initial solution

The expected contribution of introducing an initial solution is twofold. On the one hand, it

should enable the algorithm to fathom branches that lead to a solution value that is larger than

the initial solution value (depth-first). On the other hand, it should augment the probability of

finding at least one feasible solution to the SCSP. This last feature is especially complementary

with the best-first branching strategies.

Different initial solution algorithms can be conceived. One could, for instance, introduce the

iterated branch-and-bound procedure described in Cardoen, Demeulemeester and Beliën (2006).

In this paper, however, we opt for a column based heuristic, i.e. we will generate a limited set

of columns and try to combine them into a feasible schedule using a commercial IP solver.

The computation time for generating an initial solution is limited to 60 seconds and should

be divided over the column generation part and the schedule generation part. The impact of

this time allocation on the initial solution quality will be examined in Section 5.3.1. Moreover,

attention will be paid to the number of columns to be generated. Often, a feasible schedule

19

cannot be determined solely based on the columns generated during the column generation

optimization loop of the root node. In Section 5.3.2, we will examine the performance of this

initial solution heuristic when the allowed computation time is increased to 300 seconds, which

is comparable to all other exact procedures introduced in this paper.

4.3.2 Lower bound calculation

One of the well-known difficulties with column generation is that a large number of iterations is

required in order to prove that the RMP is solved to optimality. In the literature, one often refers

to this phenomenon as the tailing-off effect (e.g. Vanderbeck and Wolsey 1996). A lower bound,

though, can be specified in order to prematurely stop the column generation optimization loop

without any risk of missing the LP optimum (e.g. Hans 2001 or Beliën 2006). The calculation

of the lower bound, which is also referred to as the Lagrangian lower bound, starts with solving

the RMP. Next, for each surgeon s ∈ S, a pricing problem needs to be solved in which the

column with the most negative reduced cost has to be determined. When the pricing problem of

surgeon s results in a column t: RCst < 0, its value is added to the solution value of the RMP.

Remark that this summation decreases the LP solution value and that at most |S| summations

will be performed. If the modified LP solution value is larger than the best integer solution

value that was already obtained along the tree, the column generation optimization loop can be

safely terminated.

4.3.3 Column elimination

When we focus on the depth-first branching strategy, columns that have been generated along

the tree may become superfluous at a certain point in time. In other words, no better surgery

schedule will be detected in which one of the superfluous columns is chosen. This can easily be

shown by the branching tree of Figure 3. In this figure, the numbers of the nodes indicate the

tree generation process. Arriving in node 5, for instance, implies that all column variables zst

that are generated by transition to grey nodes are set to 0 since they do not comply with the

active branching restriction. Moreover, we will never need them in the further development of

the tree. Loading the RMP with a considerable amount of variables (even when they are set

equal to 0) increases the required solution time. It should hence be beneficial to remove the

superfluous columns from the list instead of fixing the values to 0.

20

1

2

3 4

5

Figure 3: Branching tree for visualizing superfluous columns.

With respect to the best-first branching strategy, the elimination of columns is less inter-

esting at first sight. A trade-off will exist between the time gained by solving a RMP with few

columns and the time needed to regenerate columns that were already deleted during the tree

generation process. In Section 5, though, we will indicate that the column elimination feature

could be beneficial for intertwining branch-and-price algorithms, especially when they are best-

first oriented, with an intermediate and recurrent heuristic procedure without losing the exact

nature of the algorithms.

5 Computational experiment

A detailed computational study of the column generation optimization loop and the branch-

and-price procedures will constitute the focus of this section. All algorithms are written in MS

Visual C++.NET and are linked with the ILOG CPLEX 8.1 optimization library when needed

(ILOG, 2002). The computational experiment was executed on a 2.8 GHz Pentium 4 PC with

the Windows XP operating system.

5.1 Test set

In total, 8 design patterns · 2 instances · 14 sizes = 224 test instances were generated using

patient-related data of the surgical day-care center of the university hospital Gasthuisberg in

Leuven. The size of an instance indicates the number of surgeries that has to be scheduled

(i.e. 20, 25,... up to 85 surgeries), whereas the design pattern adds a specific structure to the

21

instance. This structure may differ on 3 levels (23 = 8 design patterns). First, a distinction is

made in the assignment of surgeries over the operating theater. On the one hand, the workload

can be unequally divided over the operating rooms or the surgeons. Note that the number of

surgeries that can be performed by a single surgeon s is limited to 15. On the other hand,

surgeries can be nicely spread over the entire operating room complex. Second, we distinguish

between master surgery schedules with frequent switches of surgeons in the operating rooms and

schedules in which a switch is rare. Third, the objectives can be equally weighted or not. The

sum of the weights, however, always equals 1.

We will use patient-related data gathered in 2005 and make a distinction between 17 of the

most important medical disciplines or entities (e.g. orthopaedics, gynaecology, dermatology,...).

For each medical discipline and their surgery types we can calculate the probability of occurrence.

Furthermore, for each surgery type, the planned surgical duration (including anaesthesia, skin-

to-skin time, after care and cleaning), the planned time in recovery phase 1 and phase 2, the

required bottleneck instruments and the corresponding sterilization time is known. All time-

related data are expressed in five-minute periods. In contrast with the recovery length, the

duration of a surgery is at least equal to one period. Probabilities concerning children, priority,

travel distance, pre-surgical tests and infections, however, are only occasionally registered up to

now and hence suggested by the health manager, based on his experience. Further information

on the instance generation process can be found in Cardoen, Demeulemeester and Beliën (2006).

5.2 Column generation evaluation

In Section 3, we proposed either a dynamic programming approach (DP) or an integer program-

ming approach (IP) in order to solve the pricing problems. We also indicated that there are

many ways to combine the pricing problems and the RMP into a column generation optimiza-

tion loop. In this section, multiple combinations will be tested on their computational efficiency,

though most will be dynamic programming oriented. A summary of the diverse versions can be

found in the list below:

� DP1: Within each iteration of the column generation optimization loop, a pricing problem

is solved for each s ∈ S in which the column with the most negative reduced cost is

generated. Columns zst: RCst < 0 are added to the RMP, which is consecutively resolved.

22

� DP2: For a surgeon s, the column zst with the most negative reduced cost is generated

and added to the RMP (when RCst < 0) which is instantly resolved. New dual prices are

introduced for generating a column for a next surgeon.

� DP3: For a surgeon s, the column zst with the most negative reduced cost is generated

and added to the RMP (when RCst < 0) which is instantly resolved. New dual prices are

introduced for generating a new column for the same surgeon s. This sequence is repeated

until no further columns price out for this surgeon. Next, columns are generated for a

subsequent surgeon.

� DP4: A pricing problem is solved for each s ∈ S in which a set of columns with negative

reduced costs is generated. During the generation phase, only columns will be added to

the set with a reduced cost that is smaller than the minimum of the reduced costs related

to columns that are already present in the set. This implies that the column with the most

negative reduced cost will always be included in the set. Next, the columns in the set are

added to the RMP which is then resolved.

� DP5: A pricing problem is solved for each s ∈ S in which a set of columns with negative

reduced costs is generated. The column with the most negative reduced cost is included

in this set. In contrast with DP4, no restriction applies to the magnitude of the reduced

costs. Next, the columns in the set are added to the RMP which is then resolved.

� IP: Within each iteration of the column generation optimization loop, a pricing problem is

solved for each s ∈ S in which the column with the most negative reduced cost is generated.

Columns zst: RCst < 0 are added to the RMP, which is consecutively resolved.

In Table 3, some descriptive statistics can be found to compare the approaches on their com-

putational efficiency. In particular, interest is given to the solution time for solving the column

generation optimization loop of the root node, i.e. when no branching has yet occurred. It is

clear that all dynamic programming algorithms outperform the integer programming approach.

Since the solution times for the IP procedure are in general quite high, it cannot be used to

build efficient branch-and-price algorithms and will hence be omitted for further analysis. With

respect to the dynamic programming procedures, DP1 outperforms the other algorithms and

will consequently be used in the branch-and-price approaches of Section 5.3.2. It also allows

23

Table 3: Comparing the computational efficiency of the column generation optimization loop
(seconds).

DP1 DP2 DP3 DP4 DP5 IP

average 0.393 0.597 1.057 0.403 0.471 21.505
Q1 0.031 0.062 0.063 0.047 0.031 0.297

median 0.125 0.203 0.274 0.125 0.110 2.298
Q3 0.391 0.640 0.907 0.407 0.516 10.641

minimum 0.000 0.015 0.015 0.000 0.000 0.015
maximum 5.281 7.500 18.297 5.297 6.140 679.885

for an easy incorporation of the lower bound of Section 4.3.2 since this algorithmic approach

returns for each surgeon the column with the most negative reduced cost. It should be noted

that DP1 and IP represent the conventional way to price out columns and to structure the

column generation optimization loop.

In about 17% of the instances, solving the linear relaxation of the SCSP results in the op-

timal solution for the SCSP, i.e. all column variables have an integer value. We refer to Table

2 to have some statistics on the absolute gap between the linear relaxation value of the SCSP

and the optimal solutions.

5.3 Branch-and-price evaluation

5.3.1 Speed-up techniques

Before we discuss the diverse branch-and-price procedures in detail, we need to examine whether

the speed-up techniques of Section 4.3 contribute to the solution quality. With respect to the

initial solution heuristic, though, we still have to decide on its configuration. In Figure 4,

36 configurations are tested and evaluated. All configurations have in common that the set

of columns, needed by the commercial IP solver to develop surgery schedules, is generated by

building a limited tree based on a branch-and-price methodology. Further configuration, though,

may differ on three levels. First, the depth of the tree is limited and varies from level 1 to level 6.

In the former case, the tree is equal to the root node, whereas the tree maximally consists of 63

nodes in the latter case. Second, the branching strategy of the branch-and-price algorithm may

be depth-first or best-first. Third, the allocation of the allowed computation time may differ. In

24

Figure 4, 15/45 denotes that maximally 15 seconds are devoted to the generation of columns,

whereas minimally 45 seconds are allocated to generating surgery schedules by the commercial

IP solver.
A

v
e
ra

g
e
 a

b
s
o
lu

te
 s

o
lu

ti
o
n
 g

a
p

0.010

0.015

0.020

0.025

0.030

0.035

1 2 3 4 5 6

Depth - 15/45 Depth - 30/30 Depth - 45/15

Best - 15/45 Best - 30/30 Best - 45/15

Maximum allowed level of decision tree

Figure 4: Visualizing the contribution of the diverse initial level-constrained heuristics on the
average absolute solution gap.

When the branching tree does not exceed level 2, Figure 4 indicates that all configurations

have an equal performance. Since the depth-first and best-first branching strategy only differ

from level 2 on, and since the nodes could be explored in less than 15 seconds, this result could

be expected. In general, increasing the depth of the tree results in an increased variety in

columns and hence leads to smaller solution gaps. This trend, however, does not apply for the

algorithms in which the time setting is equal to 45/15. These configurations are from a certain

level on characterized by decreasing performance. When more columns are allowed, but schedule

generation time is quite limited, the commercial IP solver encounters difficulties in finding good

solutions. Within each time allocation pattern, the best-first approach tends to perform better

than the depth-first approach when the tree has considerable depth. Moreover, along with the

depth of the tree, it seems better to allocate time according to a 15/45 pattern. This implies

that it is more important to save time for schedule generation than for column generation.

25

In the experiment, we only considered the first branching scheme (see Section 4.2), though we

believe that the main conclusions will hold for the other branching schemes, i.e. better solutions

can be obtained by increasing the number of columns on the one hand and saving enough

computation time for the schedule generation phase on the other hand. The initial solution

heuristics applied in the remainder of this paper will follow a 15/45 time allocation pattern and

the depth of the initial column tree will be limited to level 6. The branching strategy will be in

correspondence with the branching strategy of the main branch-and price procedure that will

be tested in order to avoid miscellaneous effects.

In Table 4, the impact of an initial solution heuristic (a), the Lagrangian lower bound (b)

and the elimination of columns (c) can be found for a depth-first branch-and-price algorithm

that incorporates branching scheme 1. The results indicate that incorporating the lower bound

only leads to minor improvements, whereas the initial solution heuristic has a major beneficial

impact. The contribution of the column elimination feature is somehow moderate. Since all

speed-up techniques seem to be profitable, we will integrate them all in the branch-and-price

approaches with a depth-first branching strategy.

When we turn our interest to the best-first procedures, the same properties hold for the use

of the initial heuristic and the lower bound calculation. In Section 4.3, though, we mentioned

that eliminating columns in a best-first environment may end up in regenerating columns that

were discarded from the column pool. One advantage of eliminating the set of columns from

time to time is that this set remains small. This implies that the set is suited for generating

surgery schedules using a commercial IP solver. In other words, without losing the exact nature

of the branch-and-price algorithms, column elimination leads to the ability to intertwine the tree

generation process with an easy heuristic and should hence improve the quality of the surgery

schedules. Moreover, the best-first nature implies that nodes from different regions of the tree

are explored and should increase the variety of columns in the set. In the next section, we will

notice from Table 5 that the exact branch-and-price algorithms in which a depth-first branching

strategy was applied generate on average less columns than the best-first procedures. This is a

consequence of resetting the column pool of the best-first procedures after a 5-node exploration.

The allowed computation time of the commercial IP solver, which immediately precedes the

deletion of the columns, is limited to 15 seconds. The column pool will only be reset when at

least one feasible solution is already encountered during the tree search.

26

Table 4: Evaluation of speed-up techniques with respect to the absolute solution gap (depth-first,
branching scheme 1).

average standard deviation

/ 0.02741 0.08950
(a) 0.00945 0.02323
(b) 0.02703 0.08935
(c) 0.02398 0.08915

(a)+(b) 0.00914 0.02289
(a)+(c) 0.00895 0.02272
(b)+(c) 0.02397 0.08894

(a)+(b)+(c) 0.00890 0.02272

5.3.2 Comparing the algorithmic procedures

The computational results of the branch-and-price algorithms of this paper are summarized in

Table 5. Note that the heuristic algorithm Best - Scheme 1 - MIP reflects the generation of a

set of columns (allowed level is 10, time allocation pattern equals 50/250) which is consecutively

solved using the ILOG IP solver.

From the table, we can see that none of the branch-and-price algorithms succeeds in proving

the optimality of the solution in at least 50% of the instances. This is a rather poor result which

indicates that the applied branching schemes may not be very restrictive and may not result in a

well-balanced tree. However, for about 70% of the instances, the branch-and price methodology

leads to a solution value that equals the optimal solution (zero solution gap), which is a steady

performance. Except for Depth - Scheme 4, at least one feasible surgery schedule can be found

for each instance. This is a valuable result when it comes to the practical implementation of the

algorithms.

The smallest average solution gap is encountered for the Best - Scheme 1 algorithm and

equals 0.007. This result equals the average solution gap of the iterated IP, which was the best

performing algorithm that was introduced in Cardoen, Demeulemeester and Beliën (2006). This

implies that a similar result can now be obtained through the application of an exact algo-

rithm instead of a heuristic. Moreover, when we compare the standard deviation of the absolute

solution gap, the branch-and-price approach tends to be more stable in delivering qualitative

27

Table 5: Computational results for the branch-and-price procedures.

solution time abs gap solution nr columns

Depth - Scheme 1 average 0.100 166.280 0.009 11616
49% opt - 0% no sol median 0.079 300.000 0.000 9138

69% zero sol gap st. dev. 0.086 143.399 0.023 12427

Depth - Scheme 2 average 0.100 171.655 0.010 12082
47% opt - 0% no sol median 0.080 300.000 0.000 11008

67% zero sol gap st. dev. 0.086 143.177 0.026 12736

Depth - Scheme 3 average 0.099 180.819 0.009 9183
49% opt - 0% no sol median 0.080 300.000 0.000 6145

67% zero sol gap st. dev. 0.085 215.145 0.023 10518

Depth - Scheme 4 average 0.109 176.676 0.019 19699
48% opt - 1% no sol median 0.081 300.000 0.000 16886

65% zero sol gap st. dev. 0.122 165.367 0.083 19919

Best - Scheme 1 average 0.098 171.377 0.007 22890
47% opt - 0% no sol median 0.079 300.000 0.000 7887

71% zero sol gap st. dev. 0.085 142.286 0.021 31834

Best - Scheme 2 average 0.098 176.690 0.008 24906
46% opt - 0% no sol median 0.079 300.000 0.000 7925

69% zero sol gap st. dev. 0.084 142.831 0.024 35158

Best - Scheme 3 average 0.098 176.177 0.008 20212
45% opt - 0% no sol median 0.079 300.000 0.000 6555

69% zero sol gap st. dev. 0.084 142.993 0.024 30946

Best - Scheme 4 average 0.098 178.403 0.008 24951
44% opt - 0% no sol median 0.079 300.000 0.000 8101

69% zero sol gap st. dev. 0.086 143.143 0.022 34707

Best - Scheme 1 - MIP average 0.099 / 0.009 741
0% no sol median 0.079 / 0.000 794

70% zero sol gap st. dev. 0.085 / 0.026 640

28

schedules. Recall that the absolute solution gap is within the range [0, 1], so that values varying

from 0 to 0.010 are good. The development of an iterated branch-and-price approach, similar

to the iterated IP, constitutes an area for future research.

We can summarize the computational results by stating that the branch-and-price procedures

definitively guarantee a qualitative surgery schedule. The algorithms tend to have a comparable

performance and steadily outperform most of the approaches introduced in Cardoen, Demeule-

meester and Beliën (2006) when the goal is to minimize the absolute solution gap. With respect

to the proof of optimality, however, the performance should still be upgraded. In a daily oper-

ational setting, though, priority is given to stable algorithms that result in qualitative, but not

necessarily optimal, surgery schedules.

6 Conclusions and future research

In this paper, a surgical case scheduling problem was introduced and solved using a branch-

and-price methodology. The problem was formulated using patterns or columns that represent

groups of sequenced surgeries. A column generation optimization loop was specified in which

the restricted master problem was solved to optimality by pricing out profitable columns. Two

pricing algorithms were developed, yet only the dynamic programming procedure succeeded in

generating favorable columns within a minimum of computation time. Since column generation

cannot guarantee that variables have integer values, the column generation approach was inter-

twined with branching schemes and upgraded through speed-up techniques. This resulted in

both exact and heuristic algorithms for which the performance was evaluated through a realistic

test set. Although many satisfying results could be obtained, solving instances to optimality re-

mains difficult for this NP-hard optimization problem. Furthermore, parameter settings should

be closely examined and intelligent branching schemes should be introduced and further tested.

Since the application of even a simple heuristic during the tree generation process seemed to

be beneficial, we should further explore this opportunity and check whether, for instance, local

branching (Fischetti and Lodi 2003), guided dives or relaxation induced neighborhood search

(Chabrier et al. 2004) could be embedded in the branch-and-price setting of the SCSP.

The cooperation with the surgical day-care center of the university hospital Gasthuisberg in

Leuven (Belgium) added a realistic and practical dimension to the problem. The development

29

of effective algorithms obviously contributes to the progress towards a health care sector that is

focused on quality and profitability. The applicability of the algorithms and thus the valoriza-

tion of these practical scheduling instruments, though, could be significantly increased through

the introduction of a graphical user interface (GUI) that assists the health manager in his or

her scheduling process. The design of such a GUI for scheduling surgical cases in a day-care

environment constitutes an area for future development.

Next to the sequencing of individual patients on a surgery day, attention should be paid to

the assignment of patients to a particular surgery day. It should be clear that the quality of the

sequencing step clearly depends on these assignment policies. Therefore, we want to enlarge the

surgical case scheduling problem and try to develop simple online assignment policies that lead

to a daily patient population for which a qualitative surgery schedule can be found.

Acknowledgements

We are grateful to Pierre Luysmans of the surgical day-care center at Gasthuisberg for introduc-

ing this practical scheduling problem and providing the data in order to build a structured test

set. His suggestions and experience contributed to the practical value of this research. We ac-

knowledge the support given to this project by the Bijzonder Onderzoeksfonds of the Katholieke

Universiteit Leuven.

30

Appendix A

In this Appendix we will state the symbols used throughout the equations of the paper. We will

distinguish between indices, sets, decision variables, help variables and data parameters.

Indices:

i : surgery type e: instrument type r : operating room

n: patient j : objective b: infection

p, p’ : period t : column or pattern s: surgeon

h, h’, h∅: state q, q’, q∅: sequenced set g : stage

o: resource

Note that a state h and a sequenced set q actually represent sets of surgery types and that

h∅ and q∅ are equal to the empty set.

Sets:

I : set of surgery types

Is: set of surgery types for surgeon s

Ir: set of surgery types that can be performed in operating room r

Ie: set of surgery types for which instrument e is needed

Ibact: set of surgery types with bacterial infection (b 6= 0)

Ipresurg: set of surgery types with pre-surgical tests

R: set of operating rooms

Rs: set of operating rooms for surgeon s

S : set of surgeons

E : set of instrument types

Ts: set of columns for surgeon s

J : set of objectives: ∀j ∈ J : worstvaluej 6= bestvaluej

N : set of patients to be scheduled

Ns: set of patients to be scheduled for surgeon s

31

Hg: set of states at stage g

Qb: set of sequenced surgery sets for bacteria b

Bs: set of infections represented in patient population of surgeon s

Decision variables:

xips =





1 if a surgery of type i starts on period p by surgeon s

0 otherwise

zst =





1 if column t is chosen for surgeon s

0 otherwise

Help variables and functions:

α1:
∑

n∈N Θchild
typen

· υn (=periods)

α2:
∑

n∈N Θprior
typen

· υn (=periods)

α3:
∑

n∈N :υn<travelref Θtravel
typen

(=patients)

α4:
∑

n∈N max[0, υn + ktypen + ltypen + mtypen − 1− P ub] (=periods)

α5: peak number of beds used in recovery phase 1 (=beds)

α6: peak number of beds used in recovery phase 2 (=beds)

υn: starting period of surgery of patient n

λs, ρp, σp, πep: dual prices

RFIj : room for improvement of objective j

RCst: reduced cost of column t for surgeon s

RC∗
s : most negative reduced cost for surgeon s

Φ(h, q): value determining feasibility of adding sequence q to state h

Ψ(h, q): stage reached after addition sequence q to state h

βg(h): infection introduced at stage g

Fg(h): minimum cost of surgery completion given that state h in stage g is realized

C(h, h′): state transition cost function

|Set|: number of elements in Set

|Set|condition: number of elements in Set for which condition is true

32

Data parameters:

θchild
i =





1 if i ∈ Ichild

0 otherwise
θprior
i =





1 if i ∈ Iprior

0 otherwise
θtravel
i =





1 if i ∈ Itravel

0 otherwise

P lb: opening period of the day-care center

P ub: closing period of the day-care center

P lb
rs: starting period for surgeon s in operating room r

P ub
rs : closing period for surgeon s in operating room r

ki: length of surgery of type i (periods)

li: length of recovery phase 1 for surgery type i (periods)

mi: length of recovery phase 2 for surgery type i (periods)

clean: cleaning type (= merger of kclean idle types)

stere: periods needed to sterilize instrument of type e

capl: capacity of recovery phase 1 (patients)

capm: capacity of recovery phase 2 (patients)

cape: number of instruments of type e available

idle: idle type (kidle=1 period)

mrp: latest period on which any patient can possibly be in recovery

bestvaluej : best possible value for αj

worstvaluej : worst possible value for αj

aopst: units of resource o needed in period p when column t is chosen for surgeon s

typen: surgery type of patient n

wj : weight of objective j

cst:
∑

j∈J :j≤4(wj · c̃jst)/(worstvaluej − bestvaluej)

c̃1st:
∑

n∈Ns
Θchild

typen
· υn when column t is chosen for surgeon s

c̃2st:
∑

n∈Ns
Θprior

typen
· υn when column t is chosen for surgeon s

c̃3st:
∑

n∈Ns:υn<travelref Θtravel
typen

when column t is chosen for surgeon s

c̃4st:
∑

n∈Ns
max[0, υn + ktypen + ltypen + mtypen − 1− P ub] when t is chosen for s

bacti: infection for surgery type i, if bacti = 0: no infection occurs

presurgref : reference period for pre-surgical tests

33

Appendix B

In this Appendix we will elaborate on the dynamic pricing problem introduced in Section 3.1

in order to handle the occurrence of infections. The modified recursive dynamic programming

formulation is stated as follows:

RC∗
s = min

h ∈ H1

{
min

q ∈ Qβ1(h) : Φ(h, q) 6= 0

{
C(h∅, q∅, h, q) + FΨ(h,q)(h, q)

}}
− λs (15)

FΨ(h,q)(h, q) = min
h′ ∈ HΨ(h,q)+1 :

(h ∪ q) ⊂ h′

{
min

q′ ∈ QβΨ(h,q)+1(h′) :

Φ(h′, q′) 6= 0

{
C(h, q, h′, q′) + FΨ(h′,q′)(h

′, q′)
}}

(16)

When the transition from state h at stage g to state h′ at stage g +1 coincides with the decision

to schedule the surgery of a patient with infection b, we will try to add an eligible and sequenced

set of surgeries q ∈ Qb to the schedule so that the supplementary restrictions introduced by the

infection cannot influence future decisions anymore. However, when such a transition denotes

the scheduling of a regular patient (i.e. without infection so that b = 0), we will apply the logic

of the original DP formulation of Equations 11 and 12. It will become clear that this is actually

equivalent with the addition of the only sequenced set in Q0, namely q∅. Note that, due to the

addition of the sequenced sets, decisions possibly will not have to be made in every stage now.

Before we can initiate the recursive function, some calculations need to be done. First,

we will try to aggregate idle periods into a cleaning type (clean) since this would reduce the

number of surgeries to be scheduled. Such aggregation is only allowed, though, when no other

surgery schedules can be developed in which the maximum number of successive idle periods

is smaller than the duration of the cleaning type (kclean). When, for instance, 4 surgeries need

to be scheduled for surgeon s (|Ns|typen=1 = 1, |Ns|typen=2 = 2 and |Ns|typen=3 = 1) and we

assume that Ibact = {1}, the additional cleaning time equals 2 periods and the surgeries of type

2 represent idle periods, we can only merge the idle periods into a cleaning type when surgeon

s is not the last surgeon who will perform surgeries in the specific operating room. Second, for

each infection b, represented in the patient population of surgeon s, we have to enumerate the

sequenced sets of surgeries q ∈ Qb. Except for q∅ ∈ Qb : 0 ≤ b ≤ |Bs|, each sequenced set q

34

consists of a combination of idle periods, infected surgery types and cleaning types. Although

we will not discuss the enumeration algorithm in detail, it is important to know that these

sequenced sets either end on an infected surgery type or on a cleaning type. Moreover, multiple

types of infections do not occur in a particular sequenced set. Formulating the DP using the

sequenced sets implies that the occurrence of infections is mainly handled by choosing eligible

paths through the stages, instead of assigning costs for infeasibilities.

0)(, qh
YES

idlevalueidlevalueidletypes qhN
n

\

qi

iivalue
hi

iivalue
Nn

type kqkhk
s

n
..

qclean

cleanidlevalueidlevalueidletypes kqhN
n

\

qhqhqh)(,0)(,,

cleankqhqhqh)(,0)(,,

itypesivalueivalues
n

NqhIi :

0)(, qh

NO

YES

YES

NO

NO

NO

YES

(a)

(c)

(b)

(d)

Figure 5: Decision scheme for determining value of Φ(h, q) and Ψ(h, q).

When state h is realized by scheduling a surgery type for which b 6= 0, we can use the decision

scheme depicted in Figure 5 in order to determine whether the choice of a sequenced set q after

realization of state h would lead to a feasible path (Φ(h, q) 6= 0). Otherwise, i.e. when a surgery

is scheduled for which b equals 0, we add the empty sequenced set q∅, set Φ(h, q) = 0 and take

the next decision at stage Ψ(h, q) + 1 = |h| + 1. From Figure 5 (a), we can see that it is not

allowed to schedule a sequenced set q when this would lead to a schedule in which more patients

35

of a certain surgery type are scheduled than represented in the patient population of the surgeon.

Next, three situations can occur so that the infection is neutralized. First, it is possible that no

more surgeries have to be scheduled or that the remaining surgery types, i.e. those that still

have to be scheduled, only consist of idle types (Figure 5 b). This implies that we could reach

the end of the surgery session for that surgeon. Second, it might be possible that the sequenced

set q ends on a cleaning type (Figure 5 c). Finally, when clean /∈ I, we allow the consequences

of the infection to be fully neutralized by idle periods, though now without reaching the end of

the session (Figure 5 d). When none of the above situations apply, the sequenced set q cannot

be added to the surgery schedule and a next sequenced set should be consulted.

The cost function C(h, q, h′, q′) is constructed in a similar way as in the original DP for-

mulation of Section 3.1, except that we possibly have to incorporate objective costs, duality

costs and infeasibility costs of multiple surgeries. The number of surgeries introduced to the

schedule during a stage transition is equal to Ψ(h′, q′)-Ψ(h, q). Since q′ is sequenced, we can

easily associate a start time with each surgery. With respect to the infeasibility costs, we want

to stress that C(h, q, h′, q′) could be equal to ∞ not only due to pre-surgical tests or a switch

in operating rooms when a surgery is performed, but also due to infections when the additional

cleaning of the operating room affects the surgical block of the subsequent surgeon, given that

there is a surgeon switch in the operating room.

36

References

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and Vance, P. H. 1998.

Branch-and-price: Column generation for solving huge integer programs, Operations Research

46: 316–329.

Beliën, J. 2006. Exact and Heuristic Methodologies for Scheduling in Hospitals: Problems,

Formulations and Algorithms, Ph.D. dissertation, Katholieke Universiteit Leuven, Belgium.

Beliën, J. and Demeulemeester, E. 2007. Building cyclic master surgery schedules with leveled

resulting bed occupancy, European Journal of Operational Research 176: 1185–1204.

Beliën, J., Demeulemeester, E. and Cardoen, B. 2006. Visualizing the demand for various

resources as a function of the master surgery schedule: A case study, Journal of Medical

Systems 30: 343–350.

Bellman, R. 1957. Dynamic Programming, Princeton University Press, Princeton, NJ.

Blake, J. T. and Carter, M. W. 2002. A goal programming approach to strategic resource

allocation in acute care hospitals, European Journal of Operational Research 140: 541–561.

Blake, J. T., Dexter, F. and Donald, J. 2002. Operating room manager’s use of integer pro-

gramming for assigning block time to surgical groups: A case study, Anesthesia and Analgesia

94: 143–148.

Blake, J. T. and Donald, J. 2002. Mount Sinai hospital uses integer programming to allocate

operating room time, Interfaces 32: 63–73.

Cardoen, B., Demeulemeester, E. and Beliën, J. 2006. Optimizing a multiple objective sur-

gical case scheduling problem, Research Report KBI 0625, Katholieke Universiteit Leuven,

Department of Decision Sciences and Information Management.

Carter, M. 2002. Health care: Mismanagement of resources, ORMS Today 19: 26–32.

Chabrier, A., Danna, E., Le Pape, C. and Perron, L. 2004. Solving a network design problem,

Annals of Operations Research 130: 217–239.

37

De Lathouwer, C. and Poullier, J. 2000. How much ambulatory surgery in the world in 1996-1997

and trends, Ambulatory Surgery 8: 191–210.

Demeulemeester, E. and Herroelen, W. S. 2002. Project scheduling - A research handbook, Kluwer

Academic Publishers, Boston, MA.

Desaulniers, G., Desrosiers, J. and Solomon, M. 2005. Column generation, Springer, New York.

Fischetti, M. and Lodi, A. 2003. Local branching, Mathematical Programming 98: 23–47.

Guinet, A. and Chaabane, S. 2003. Operating theatre planning, International Journal of Pro-

duction Economics 85: 69–81.

Hamilton, D. M. and Breslawski, S. 1994. Operating room scheduling: Factors to consider,

Association of Operating Room Nurses Journal 59: 665–680.

Hans, E. W. 2001. Resource loading by branch-and-price techniques, Ph.D. dissertation, Twente

University Press, Enschede, The Netherlands.

Hsu, V., de Matta, R. and Lee, C.-Y. 2003. Scheduling patients in an ambulatory surgical center,

Naval Research Logistics 50: 218–238.

ILOG 2002. ILOG CPLEX 8.1 User’s Manual.

Jebali, A., Alouane, A. B. H. and Ladet, P. 2006. Operating rooms scheduling, International

Journal of Production Economics 99: 52–62.

Marcon, E., Kharraja, S. and Simonnet, G. 2003. The operating theatre planning by the follow-

up of the risk of no realization, International Journal of Production Economics 85: 83–90.

Michie, D. 1968. Memo functions and machine learning, Nature 218: 19–22.

Sier, D., Tobin, P. and McGurk, C. 1997. Scheduling surgical procedures, Journal of the Oper-

ational Research Society 48: 884–891.

Skiena, S. 1998. The Algorithm Design Manual, Springer-Veralg, New York.

Standish, T. 1994. Data Structures, Algorithms & Software Principles in C, Addison Wesley.

38

Vanderbeck, F. and Wolsey, L. 1996. An exact algorithm for ip column generation, Operations

Research Letters 19: 151–159.

39

