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Abstract

In this paper we will investigate how to sequence surgical cases in a day-care facility so
that multiple objectives are simultaneously optimized. The limited availability of resources
and the occurrence of medical precautions, such as an additional cleaning of the operating
room after the surgery of an infected patient, are taken into account. A branch-and-price
methodology will be introduced in order to develop both exact and heuristic algorithms.
In this methodology, column generation is used to optimize the linear programming formu-
lation of the scheduling problem. Both a dynamic programming approach and an integer
programming approach will be specified in order to solve the pricing problem. The column
generation procedure will be combined with various branching schemes in order to guarantee
the integrality of the solutions. The resulting solution procedures will be thoroughly tested
and evaluated using real-life data of the surgical day-care center at the university hospital
Gasthuisberg in Leuven (Belgium). Computational results will be summarized and conclu-

sions will eventually be formulated.
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1 Introduction

In a hospital environment, the operating theater is often identified as a major cost driver. Al-
though these costs typically point at financial issues, they could also be expressed as quality
of care or stakeholder satisfaction. Unfortunately, the surgery scheduling process unites many
stakeholders, like surgeons, patients or nurses, who may have conflicting preferences and pri-
orities (Hamilton and Breslawski 1994). Due to this complexity, health managers can hardly
manage to integrate individual surgeries into a coherent surgery schedule solely based on their
experience. At this point, the field of operations research and operations management should
assist in the development of an effective and efficient surgery schedule and consequently con-

tribute to the performance of a hospital as a whole (Carter 2002).



In the literature, the surgery scheduling process for elective cases is often seen as a three
stage process (Blake and Donald 2002, Belién and Demeulemeester 2007). In a first stage, one
has to determine how much operating room time is assigned to the different surgeons or surgical
groups. This stage is often referred to as case mix planning and is situated on a strategic level
(Blake and Carter 2002). The second stage, which is tactically oriented, concerns the develop-
ment of a master surgery schedule. This schedule can be seen as a cyclic timetable that defines
the number and type of operating rooms available, the hours that rooms will be open, and the
surgeons or surgical groups to whom the operating room time is assigned (Blake, Dexter and
Donald 2002). In the third and final stage, individual patients or cases can be scheduled on a
daily base. It is on this operational level that our research should be situated.

Methodologies for scheduling individual surgical cases are often based on a two-step proce-
dure. The first step is referred to as advance scheduling (assignment step) and describes the
assignment of patients to surgery days. When surgeons are not allowed to switch between op-
erating rooms on a specific surgery day, advance scheduling implicitly determines the operating
room in which the surgery of interest will be performed. In the second step, which is referred
to as allocation scheduling (sequencing step), the patient population for a specific surgery day
has to be sequenced. Solution procedures that distinguish between these two phases can, for
instance, be found in Jebali, Alouane and Ladet (2006), Guinet and Chaabane (2003), Mar-
con, Kharraja and Simonnet (2003), Sier, Tobin and McGurk (1997) or Hsu, de Matta and
Lee (2003). A summary of these approaches can be found in Cardoen, Demeulemeester and
Belién (2006). Although we acknowledge the two-step approach, this research will only focus on
allocation scheduling. Since we will allow for switches of surgeons between operating rooms, our
second step comprises both the assignment of surgeries to operating rooms and the consecutive
sequencing of the surgeries within each operating room. This is in correspondence with the
surgical case scheduling problem (SCSP) that was examined in Cardoen, Demeulemeester and
Belién (2006). Since this NP-hard optimization problem will also constitute the focus of this
paper, we will introduce a short description in Section 2. In this paper, however, we will develop
a branch-and-price solution approach instead of generating pure integer programming models
and dedicated branch-and-bound algorithms. To the best of our knowledge, the application of
column generation and branch-and-price techniques to the scheduling of ambulatory surgical

cases on the operational level has not yet been addressed in the literature.



In order to augment the applicability and relevance of the developed algorithms, we main-
tained a steady cooperation with the surgical day-care center of the university hospital Gasthuis-
berg in Leuven (Belgium). This medical facility has already been the subject of research in a
case study of Belién, Demeulemeester and Cardoen (2006) and yearly accounts for about 15000
hours of total net operating time and 25000 ambulatory surgeries. De Lathouwer and Poullier
(2000) define an ambulatory surgery as a non-emergency procedure which is undertaken with all
its constituent elements, i.e. admission, surgery and discharge. Furthermore, this procedure is
performed during the time span of a normal working day, thus not exceeding 12 hours including
the post-surgical recovery. Using a questionnaire, they revealed a rising trend in ambulatory
surgery amongst the OECD members. Although the results are characterized by huge intercoun-
try disparities, Belgium in particular exhibits an increase of 27.6% in the number of ambulatory
surgery cases performed between 1995 and 1997. In other words, the increasing share of ambu-
latory treatments highlights the need for an efficient planning system of the day-care facility.

The remainder of this paper is structured as follows. In Section 2, we will briefly discuss the
SCSP and capture its multiple objectives and constraints in a pattern-based integer program-
ming (IP) formulation. Section 3 describes a column generation approach in order to optimize
the subsequent linear relaxation. Since column generation cannot guarantee variables to be
integer, we will extend this methodology to a broad branch-and-price framework in Section 4.
Multiple branching schemes will be developed and combined with the column generation algo-
rithm. In Section 5, a detailed computational experiment will be conducted using data from the
surgical day-care center of Gasthuisberg. Finally, in Section 6, conclusions will be formulated

and ideas for future research will be mentioned.

2 Problem statement

The current scheduling practice at the day-care center of Gasthuisberg implies that the final
surgery schedule is made only one day in advance. Although patients know on which day their
surgery will be performed, they are unaware of the time they should enter the hospital until
the sequencing step of the scheduling process is finished. This sequencing step, in which the
workload of one surgery day is handled, actually boils down to determining for each surgery

both its surgery start time and the according operating room in which it will be performed.



Numerous types of decision variables can now be introduced to assist in formulating the multiple
objectives and the constraints of the SCSP. The type of decision variables furthermore determines
the strategy for constructing the surgery schedules and will hence influence the construction of
solution procedures. One strategy, for instance, consists of treating surgeries individually. In
particular, a binary decision variable z;,s could be introduced that would be equal to 1 if a
surgery of type ¢ starts on period p by surgeon s. A detailed overview of this modeling approach
can be found in Cardoen, Demeulemeester and Belién (2006) and will hence not be discussed.
The strategy that will be highlighted in this research paper consists of assigning patterns to
the operating theater. A pattern, which we will also refer to as a column, can be defined as a
sequenced group in which all surgeries for one specific surgeon are represented. In particular,
the choice whether a pattern will be assigned to the surgery schedule will be determined by

the value of its binary decision variable zs. This variable equals 1 when pattern ¢ is chosen for

surgeon S.
PATTERN 1 PATTERN 2 PATTERN 3
3<2<1 3<C1<2 2<3<1
I | 1
2 3 3 3 2
2 1 3
1 2 1
. Operating | Operating
| Period | | room 1 | room 2 | ﬂ ﬂ ﬂ
Period 0 2
Period 1 3 3
Period 2 3
Period 3 2 1 3
Period 4 2
Period 5 1 1
Feasible Infeasible Infeasible

Figure 1: Visualizing patterns as decision variables for building surgery schedules.

We will clarify the concept of patterns by means of the illustrative example that is depicted
in Figure 1. In this figure, three surgeries have to be scheduled during the available operating

room time of a specific surgeon s. We will assume that the surgery of type 1 represents the



surgery of an infected patient (e.g. carrier of the contagious hospital bacteria) so that the
operating room needs additional cleaning afterwards. This cleaning, however, is not required
when the next patient carries exactly the same infection. Moreover, when an infected patient is
the last one to be treated in an operating room, no additional cleaning needs to be performed
since the entire operating theater is thoroughly cleaned at closing time. However, when an
infected patient is scheduled in a surgery block that is followed by a surgery block of a different
surgeon, the cleaning is obligatory and should be entirely performed in the surgery block of the
infected patient. In other words, we do assume that with regard to infections, surgeons work
independently. As can be seen from the master surgery schedule in Figure 1, the available time
for the specific surgeon is divided into two major operating room blocks. The first block in which
surgeries can be scheduled is situated in operating room 1 (period 0 to 2), whereas the second
major surgery block is situated in operating room 2 (period 3 to 5). Note that if a surgeon
is active in multiple operating rooms, his or her operating room blocks are sequential, i.e. the
surgeon does not perform multiple surgeries simultaneously. Moreover, if every surgeon is only
assigned to one operating room, the sequencing step is restricted to deciding on the surgery
start times. Recall that we balance the workload of a pattern with the available operating room
time of the surgeon determined by the master surgery schedule. This implies that the patterns
we will develop in the example will always contain three surgeries. In a first illustrative pattern,
the surgery of type 3 precedes the surgery of type 2. This latter surgery, on its turn, precedes
the surgery of type 1 (3 <2 < 1). When we graphically represent this pattern as shown in the
upper representation of the figure, the resemblance with a column becomes apparent. However,
for ease of interpretation, we will also visualize the surgeon switch. The first pattern tends to
be feasible since the surgeries are nicely spread over the major surgery blocks and the infected
patient is scheduled as the last patient. The second pattern, in which 3 < 1 < 2, fails to
comply with the additional cleaning obligation and is hence infeasible. The third pattern, in
which 2 < 3 < 1, tends to be infeasible too since a switch in operating rooms takes place while
a surgery is ongoing. In other words, there is a dissatisfying spread of the surgeries over the
operating rooms. Although the number of restrictions discussed in Figure 1 is limited to 3,
namely the incorporation of infections, the spread of surgeries over the operating rooms when
surgeon switches occur and the obligation to schedule a surgeon’s entire patient population in

a pattern, additional restrictions are included in the SCSP. It is, for instance, essential that



surgeries do not overlap. This means that surgeries cannot start when the operating room is
occupied by any other surgery. Furthermore, it is possible that some patients still have to do
some pre-surgical tests (e.g. X-ray) on the day of the surgery. It is, in other words, necessary
to schedule the surgery start of these patients after a certain reference period in order to create
time to do the required tests. In Section 3, we will return to the generation of patterns and
discuss the restrictions that have to be taken into account in detail.

Now that we have an idea of how patterns look like, we can state the SCSP as the integer
programming formulation described by Equations 1 to 8 . We refer to Appendix A for a complete
overview of the symbols used throughout the equations in this paper.
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Under the assumption that only feasible patterns are added to the mathematical model, a surgery
schedule is built by choosing for each surgeon exactly one pattern (Eq. 7). However, picking
feasible patterns does not necessarily lead to the generation of a feasible surgery schedule due
to the common use of the limited resources. In order to know the aggregate demand per period
for a specific resource, we should know this demand for each pattern individually. Since we
know the sequence of the surgeries in a pattern, these demands can easily be calculated and are

represented by the data parameter a,ps. This parameter indicates how many units of resource



type o are needed in period p when pattern ¢ is chosen for surgeon s. Three types of resources are
explicitly incorporated in the formulation. First, surgeries possibly require medical equipment or
instruments during their execution. This implies that the demand per period for each instrument
e over all the operating rooms cannot exceed cap,, which is the total number of instruments of
type e available (Eq. 4). We want to stress, however, that the demand for instruments does not
solely depend on the simultaneous use of a type of instrument over the different operating rooms.
After use, instruments possibly need to be sterilized for several periods and hence cannot be
used for subsequent surgeries. This sterilization duration is incorporated during the calculation
of the data parameter a,ps:. Second, when a patient’s surgery is finished, he or she is transferred
to a first recovery room (recovery phase 1) to get through the critical awakening phase. Since
the number of beds in this recovery room is limited, we have to construct a surgery schedule
so that the peak demand for recovery beds in phase 1 (=as) does not exceed the available
capacity cap; (Eq. 5). A similar reasoning applies to Equation 6. When the patient is conscious
and the awakening process in the first recovery phase tends to be normal, the patient is moved
to a second recovery room (recovery phase 2) where the patient stays until the surgeon gives
permission to leave the day-care hospital. The peak demand for recovery beds in recovery phase
2 (=) cannot exceed its available capacity cap,,. Equations 2 and 3 will assist in determining
the peak number of beds that are used in recovery phase 1 and recovery phase 2.

When a combination of patterns can be found that satisfies the above constraints, a feasible
surgery schedule is constructed. We are, however, interested in finding the best surgery schedule

with respect to multiple objectives. In particular, we want to generate a schedule in which
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are performed as early as possible. Furthermore, we want to incorporate the travel distance
of patients. In particular, we will try to schedule the surgery start of travel patients after a
certain reference period in order to provide sufficient time to get to the day-care center (as =
> N o, <travelref 9222221) We also want to minimize the number of periods that patients have to
stay in recovery after the closure of the day-care center, since this would result in unplanned (and
hence costly) hospitalizations or overtime for the nursing personnel (ay = ), .y maz[0, v, +
Etypen + liypen + Miype, —1 — Pub]). Finally, we are interested in minimizing the peak number of
beds used in recovery phase 1 (= aj) and recovery phase 2 (= «ag) in order to smoothen the bed

occupancy and hence level the workload for the nursing personnel. Although > ._;«a; would
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be a straightforward function to optimize, we opt to combine the 6 objectives as represented in

Equation 9.

ij ) RFIJ _ ij . ( Qg —be.stvalue]- > (9)

: - worstvalue; —bestvalue;
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Since several objectives are expressed in different units, a trade-off has to be defined between the
units. This decision, however, can be very subjective and hence difficult to argument. Therefore,
we propose in Equation 9 a multi-objective function that is based on the room for improvement
for each objective j (RFI;). Since we know the population of surgeries that has to be scheduled
(including the idle periods), we are able to calculate for each single objective the best and the
worst possible value that could be obtained. These extreme values can consecutively be used as
indicated in Equation 9 to generate a relative measure of quality. This implies that we do not
have to struggle with units anymore: we get for each objective a value that is in the range [0,1]
and is easy to interpret since the RF'I; indicates how much worse the value for objective j is
with regard to its best value. If RF'I; equals 0, we cannot improve objective j any further. Cal-
culation of the extreme values for a; (j € J) is done during instance generation using the ILOG
CPLEX 8.1 optimization library. Further information on this topic can be found in Cardoen,
Demeulemeester and Belién (2006). Using the transformation described above, all objectives
will be gradually optimized to the same level and will somehow be comparable to each other. It
is unlikely, however, that the objectives are of equal importance to the human planner. Thus,
we should incorporate a possibility for the planner to express the relevance of the different ob-
jectives. This can easily be done by assigning a weight w; to objective j. Note that the weights
only indicate the preferences of the scheduler. Note that when the sum of the weights equals 1,
the multiple objective function still has a value that is in the range [0, 1]. As can be seen below,
Equation 1 can now easily be deducted from Equation 9. Since the last term in Equation 1 is
a constant, it will be neglected during optimization. Note that only objective j € J : j < 4
is incorporated in cg. For these objectives, we have that o = > g ZteTS (Gjst - zst). This,
though, does not apply to the bed leveling objectives. When a surgery schedule, for instance,
consists of two columns and each column has a peak demand for beds in recovery phase 1 equal
to 3, it is not guaranteed that a5 = 34+ 3 = 6. Actually, a5 = 6 only occurs when both peak

demands are established simultaneously for at least one period.
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In order to solve the integer programming formulation that is described by Equations 1 to 8,
we could enumerate for each surgeon all the feasible columns, calculate for each column the
corresponding aqpst and cg and consecutively add the columns to the model. However, when
the number of surgeries that have to be scheduled is substantial, the number of columns easily
explodes. When the workload for one surgeon is, for instance, equal to 10 surgeries, we possibly
have to enumerate 10! = 3628800 columns. With up to 8 operating rooms, the number of
variables is too large to be handled efficiently. A better approach would be to generate and add
only those variables to the model that seem promising with respect to the objective function.

This can be done using a column generation approach, as will be explained in the next section.

3 Linear relaxation through column generation

In order to solve the linear relaxation of the SCSP to optimality using a column generation
approach, the scheduling problem is decomposed into a master problem and a subproblem
(Barnhart et al. 1998, Desaulniers et al. 2005). This decomposition, which constitutes the
spine of the column generation optimization loop, is depicted in Figure 2. The master problem
corresponds with the formulation stated by Equations 1 to 8, though now we will relax the
integrality constraint of Equation 8. Since this formulation will be solved using only a subset

of the existing columns, we will refer to this problem as the restricted master problem (RMP).



Get initial set of columns

l

Add new column(s) to restricted | Solve restricted master
master problem problem

3 column: reduced cost < 0 ?

Solve pricing problem

Yes No 1
| Solution (LP) is optimal

Figure 2: Visualizing a column generation optimization loop.

In order to verify whether the solution obtained by solving the RMP also optimizes the linear
relaxation of the SCSP (i.e. when we would take all existing columns into account), a subproblem
needs to be solved. We will refer to this subproblem as the pricing problem. In particular, we
will try to generate a column that is characterized by a negative reduced cost. When we assume
that p,, op, mep and A respectively represent the dual prices of restrictions 2, 3, 4 and 7, the

reduced cost of a column ¢ for a surgeon s can be specified by Equation 10.

mrp mammPﬂsb
RC = cot — As — E (Pp “Q1pst + Op - CL2pst) - § E Tep * Q(e42)pst (10)
p=min,s P eCE p=min,s P}

When such a column can be found, it should be added to the subset of variables and the
optimization loop should be repeated. However, when no column prices out (i.e. has a negative
reduced cost), the solution to the RMP also optimizes the linear relaxation of the SCSP and the
column generation loop terminates.

Since we can only obtain the dual prices of the restrictions when a feasible solution can be
found for the RMP, this master problem will be initiated with a set of binary dummy variables
or supercolumns. In particular, a supercolumn z is added for each surgeon s and is similar
to an ordinary column, except that Vp : minnsPﬁg < p <mrpand Ve € E: a1ps1 = aps1 =

A(et2)pst = 0. Furthermore, Vs € S : ¢s1 = oo. In other words, since these columns do not

10



consume any resources, their value can easily be adapted (0 < z5; < 1) in order to satisfy the
convexity constraints (Eq. 7) and hence to ensure feasible solutions. This, however, comes at
a very high cost since a schedule built with supercolumns is unrealistic in nature, i.e. we will
eventually have to find a schedule in which z4; equals 0 for each surgeon.

In Figure 2, there is no need to solve the pricing problem for every s € S. We could resolve
the RMP whenever at least one column ¢ for a certain surgeon s could be found with RCy < 0.
However, many variations are allowed in order to solve the linear relaxation to optimality. When
multiple columns price out, one can choose on the number of columns to be added to the RMP.
We could, for instance, try to solve the pricing problem for every s € S and consequently add for
each surgeon s a column t to the RMP when RC; < 0. Since it is even allowed to add multiple
columns for one specific surgeon, it should be clear that the set of newly generated columns does
not have to be limited to those exhibiting the most negative reduced cost. In Section 5.2, we will
compare several pricing strategies on their computational efficiency. In the remainder of this
section, we will elaborate on two algorithmic approaches to solve the pricing problem, namely
a dynamic programming approach and an integer programming approach. Both algorithms

generate, for a given surgeon, the column that results in the most negative reduced cost.

3.1 The pricing problem: dynamic programming

3.1.1 A recursive formulation

Dynamic programming (DP) is a solution methodology that decomposes a problem into a nested
family of smaller and hence more tractable subproblems (Bellman 1957). In order to solve the
pricing problem of a surgeon s, we will distinguish between |N;| + 1 stages (0 < g < |Ns|). The
numerical index of a stage represents the number of surgeries that are already scheduled at that
point. Each stage has a number of states associated with it which indicate the types of surgeries
that are already scheduled. This combinatorial problem can be regarded as a permutation. Since
multiple patients can have the same surgery type (i.e. there are duplicates), describing states
in terms of surgery types diminishes the symmetry and hence contributes to the computational
efficiency of the algorithm since less permutations have to be considered (Skiena 1998). In
Table 1, the enumeration of stages and states is illustrated by means of an example. In the
example, 4 surgeries need to be scheduled for surgeon s (|Ns|type,=1 = 1, |Ns|typen=2 = 2 and

| Ns|type,—3 = 1), which results in 5 stages and 12 states. In general, stage 0 only contains the
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Table 1: Enumerating stages and states of a dynamic programming example.

Stage States

{

{1}, {2}, {3}

{1,2}, {1,3}, {2,2}, {2,3}
(1,2,2}, {1,2,3}, {2,2,3}
{1,2,2,3}

B W N = O

empty state h?: Hy = {h?}, whereas stage |N,| only consists of a state in which all surgeries
are scheduled. It should be clear that the transition from a state h at stage g to a state A’
at stage g + 1 corresponds to adding one specific surgery of type ¢ to the surgery schedule:
i € I : |1 |vatue=i — |Plvaiue=i = 1. In Table 1, the transition {} — {1}, for instance, corresponds
with starting a surgery of type 1 at period p = min, P%. Note that h — A’ is only allowed when
Vi € Is ¢ |hvatwe=i < |P |vaiue—i- In order to determine for surgeon s a column ¢ that exhibits

the most negative reduced cost RC}, we can now formulate a recursive function:

RC* = min {C(h@, h) + Fl(h)} Y (11)
h € Hy
Fy(h) = min {C(h, B + Fgﬂ(h')} (12)

h' € Hyy1:h CH

In general, F;(h) represents the minimum cost incurred for the completion of the surgery sched-
ule with surgery types that still have to be scheduled during stages g+ 1 up to stage |Ng|, given
that state h at stage g is realized. Note that for state h € H|y,| : F|Ns‘(h) = 0. When we return
to Table 1 and assume that state {1,2} at stage 2 is realized, we could complete the surgery
schedule by either adding the sequence 2 < 3 (i.e. adding a surgery of type 2 at stage 3 and a
surgery of type 3 at stage 4) or either adding the sequence 3 < 2 (i.e. adding a surgery of type 3
at stage 3 and a surgery of type 2 at stage 4). Once both alternatives are evaluated, F»({1,2})
could be set equal to the cost of the alternative characterized by the lowest cost. Registering

these minimum costs entails an important contribution to the computational efficiency of the
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algorithm. During the algorithmic search, a state h at stage g could possibly be visited multiple
times. The state {1,2}, for instance, could be reached from two states at stage 1, namely {1}
and {2}. Saving the values of F;;(h) during the enrolment of the algorithm consequently avoids
the need to recompute subproblems that already have been solved once. Michie (1968) referred
to this concept as memoization.

The transition from state h to state h’ comes at a cost equal to C(h,h') and reflects
the cost for starting a surgery of type i € Is : |W|vatuwe=i — |Plvalue=i = 1 at period p =
min, P+ Y., |Plvatue=i - ki. Two major cost components can be distinguished in C(h, #'). On
the one hand, there are costs related to the change in the objective function. Since only one
patient n with a surgery type equal to ¢ and v, = p is scheduled, these costs are calculated as
> jerj<a(wj-aj)/(worstvalue; —bestvaluej). With respect to the calculations of a;j, we assume

that N = {n}. On the other hand, C(h,h’) should also reflect costs associated with the non-

ptkitli—1

positive dual prices of restrictions 2, 3 and 4, so that C'(h, k') is augmented by — Zp,:p Py

/

- Zg,ﬁ;jﬁiﬁﬁl oy = Y oecE Zgﬁ;“tere Tep- However, when i € Ipresurg and p < presurgref,
we have that C(h,h’) = oo. This implies that we are not allowed to start a surgery before
the reference period presurglimit when pre-surgical tests are incomplete on the day of surgery.
Furthermore, C'(h,h') = co when surgeon s has to switch between operating rooms when the
surgery of the patient is still ongoing.

The dynamic programming formulation of Equations 11 and 12 is accurate for optimizing
pricing problems in which infections do not occur. This formulation, however, does not hold
when infections come into play. One problem, for instance, arises with the application of the
memoization feature. We can illustrate this using the example introduced in Table 1 once again.
Suppose we arrived in state {1,2} at stage 2 and Iy, = 0. Furthermore F5({1,2}) is already
calculated and equals the cost associated with the sequence 3 < 2. No matter how we arrived
in state {1,2} (i.e. by {} — {1} — {1,2} or {} — {2} — {1,2}), F»({1,2}) can always be
used as the optimal value of the subsequent subproblem. However, when I, = {1}, the addi-
tional cleaning time equals 1 period and the surgeries of type 2 represent idle periods, it would
be incorrect to use F»({1,2}) as the optimal value of the subproblem according to the path
{} — {2} — {1,2}, since the infected surgery would immediately precede a surgery of type 3
instead of the obliged idle period. One other problem of scheduling infected patients would be

that these decisions do not only restrict the states that can be reached in the next stage, but
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also those in further stages (i.e. as long as the obliged cleaning session is not finished). In order
to incorporate infections accurately, Equations 11 and 12 should hence be thoroughly modified.
A formulation of this generalized dynamic programming formulation can be found in Appendix

B.

3.1.2 Time complexity

In order to determine the efficiency of the DP algorithm, we will identify the appropriate com-
plexity class. In this section, we assume that no patients n € Ny can be identified for which the
surgery type is equal. It should be noted that this assumption leads to a worst-case analysis,
since duplicate surgeries would further reduce the calculation effort needed to solve the pricing
problem.

We will focus on the number of recursive calls, which clearly depends on the problem size
|Ns|, in order to determine the running time of the algorithm. Since a recursive call can be
interpreted as a visit to a state at a further stage, defining the running time boils down to
determining how much progressive state visits are executed during the algorithmic search. In
particular, two components need to be calculated. On the one hand, we have to determine the
number of states present at stage g (= |Hy|). On the other hand, we have to determine the
number of visits to a state h at stage g. We assume that no visit is required to the empty state
h? at stage 0, since this is the starting point of the algorithm.

With respect to the first component, the number of states at stage ¢ is calculated as
INg|!/[(INs| — g)! - g!]. Since the state space is divided into |Ng| 4+ 1 stages, the total num-
ber of states needed to solve the entire pricing problem is equal to ZLZSO‘ ING|'/[(|Ns] — g)! - ¢1].
Since this number actually represents the enumeration of all possible subsets of surgeries, it
is equal to 2/Ns|. With respect to the second component, the number of visits to a state at
stage g equals g. This is a consequence of saving intermediate results, i.e. a consequence of the
memoization feature. Note that when this feature is turned off, the number of visits to a state
at stage ¢ increases to g!. This latter approach would result in a complete enumeration of all the
paths and could hence be seen as a brute-force approach with a running time equal to O(n!).
Since we do apply the memoization feature, the number of computational steps needed to solve

a pricing problem of size |Ng| can be determined through Equation 13.
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From Equation 13, we may conclude that the dynamic programming algorithm runs in
exponential time. Although algorithms with an exponential running time are globally considered
to be inefficient, it should be noted that if the problem size is small, the complexity class might
not matter very much (Standish 1994). This implies that satisfying computational results can
still be obtained for the pricing problem since |Ng| is limited to 15 surgeries (see Section 5.2).
Moreover, although the running time is exponential, it is far more efficient than the factorial
approach. Solving a pricing problem of size |Ng| = 15 results in 245760 computational steps in

the former case, whereas about 3.5 x 102 steps are needed in the latter case.

3.2 The pricing problem: integer programming

Alternatively, we can also state the pricing problem as an integer programming formulation and
solve it using a commercial IP solver. The IP formulation is actually a restricted version of the
preprocessed IP model introduced in Cardoen, Demeulemeester and Belién (2006). Note that
the binary decision variable z;,s, which equals 1 if a surgery of type 4 starts on period p by
surgeon s, also exhibits the advantage of symmetry tackling since it is based on surgery types
and not on patients.

There are two main reasons why we developed, next to the dynamic programming approach,
this second pricing algorithm. First, we want to use it as a benchmark in order to investigate
the efficiency of the dynamic programming formulation (see Section 5.2). Second, when the
IP pricing formulation itself turns out to perform well, we could use it in the branch-and-price
algorithms in order to branch on the column variables z5;;. When we can prevent columns to
price out multiple times only by making slight modifications (e.g. changing cost coefficients),
the structure of the pricing problem remains stable. One major inconvenience that is related
to branching on the column variables, though, is that the pricing structure has to be adapted.
This, however, is a complicated task with respect to the dynamic programming formulation,
whereas it can easily be done for the IP pricing algorithm. When we prohibit a column z4 (i.e.

Vn € Ny : vy, is known) to be generated during the column generation optimization loop, we only
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have to add Equation 14 to the mathematical formulation of the according pricing problem.

Z xtypemvn,s S ‘NS| -1 (14)
nENg

4 A branch-and-price approach

Since the column generation loop is optimizing the linear relaxation of the SCSP, the optimal
values for the column variables do not necessarily equal 0 or 1. In order to get integer values
for these column variables, we will embed the column generation optimization loop within an
enumerative branch-and-bound framework. This methodology is referred to as branch-and-price
(Desaulniers et al. 2005).

The solution of the initial column generation optimization loop corresponds to solving the
root node. When the solution values of the column variables are integer and Vs € S : z531 = 0
(i.e. no supercolumns are chosen), the SCSP is immediately solved to optimality. Any other
solution that does not incorporate the presence of supercolumns, on the contrary, leads to the
introduction of new nodes on a next level (two nodes when the decision scheme is binary). The
initiation of a new node coincides with the introduction of a new branching restriction. Column
variables zg that do not comply with the appropriate restrictions (i.e. restrictions introduced
in the path from the root node to the current node) will have a solution value equal to 0. In the
current node, a new column generation optimization loop is executed. Columns that price out
must satisfy the set of restrictions. When the LP solution surpasses the objective value of the
provisional best solution, the algorithm backtracks. Note that backtracking also occurs whenever
supercolumns are present in the optimal LP solution of a node. When both backtracking rules
do not apply, the algorithm will check the variables for integrality. Integrality will lead to the
registration of the surgery schedule and is followed by backtracking. When the variables are
fractional, new branching restrictions are added, leading to the introduction of new nodes. In
the remainder of this section, specific features of the branch-and-price methodology, related to

the branching strategy, branching schemes and speed-up techniques, will be discussed.

4.1 Branching strategy

Based on the selection of the node to branch from next, two general strategies can be defined,

namely a depth-first or backtracking strategy and a best-first or skiptracking strategy. Since
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both approaches tend to have their strengths and their weaknesses (Demeulemeester and Her-
roelen 2002), we will implement the depth-first as well as the best-first strategy during the
computational experiment (see Section 5.3). However, since the occurrence of at least one fea-
sible solution is crucial on the operational surgery level, we can question whether a best-first
strategy will be effective. When the discrepancy between the optimal linear relaxation of the
root node and the optimal solution of the SCSP is large, there is an increased probability that
time will be too short to search the entire tree and consequently even find a feasible solution.
In Table 2, we compare the absolute gap between the linear relaxation of the SCSP and its
optimal solution with respect to 3 different mathematical formulations. Both the basic IP and
the preprocessed IP were introduced in Cardoen, Demeulemeester and Belién (2006), whereas
the column IP corresponds to the formulation described in this paper. The test set used for this
experiment will be described in Section 5.1. Both the average and the median gap are the small-
est when the SCSP is formulated in terms of patterns or columns. Moreover, the optimal linear
relaxation of the column IP tends to be more stable. These findings are in line with Barnhart
et al. (1998), who state that the relaxation of a MIP can often be tightened by a reformulation
that involves a huge number of variables. In short, when the relaxation is tight, the optimal
solution could be near and the search of a best-first algorithm could potentially be finished in
time. Note that feasible solutions could be encountered even when a best-first branch-and-price
algorithm ends prematurely. This is the case when the intermediate solution of the RMP during

the column generation optimization loop is constituted by integer variables.

4.2 Branching schemes

In Section 3.2, we proposed to branch on the column variables in order to partition the solution

space and eliminate the occurrence of fractional column variables. This would imply that we

Table 2: Absolute gap between the linear relaxation of the SCSP and the optimal solutions.

average median standard deviation

Basic 1P 0.056 0.042 0.051
Preprocessed IP  0.043 0.035 0.039
Column IP 0.027 0.018 0.031
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need to identify a column zg : 0 < zg < 1 and fix z4 either to 1 (left branch) or to 0 (right
branch). However, thorough testing of the IP pricing algorithm revealed a weak performance
(see Section 5.2), so that we will limit the focus on branching schemes in which the pricing
problem is only slightly modified using the cost coefficients and thus the same algorithmic so-
lution approach can be applied. In particular, four binary branching schemes will be presented
and implemented in which branching restrictions will be formulated in terms of the individual
surgeries. It can be shown that these schemes are complete.

In a first scheme, we will fix a surgery of type i to start on a period p for a surgeon s (z,s = 1)
in the left branch, whereas z;,s = 0 in the right branch. Since there are far more columns for
which the proposition of the right branch holds, this branching scheme will result in a highly
unbalanced tree. Although this restricts the ability to prove the optimality of a solution, it
should allow for a quick detection and improvement of feasible solutions. The second branching
scheme is similar to the first, except that we do not oblige a surgery to start on a specific period
but that a surgery of type i for surgeon s should be in process on period p (left branch). The
contrary obviously holds for the right branch. Although the freedom to slightly shift the start-
ing period of the surgery type should favor the balancing of the tree, this branching scheme is
still unbalanced. Therefore, we thought of a third branching scheme in which a surgery of type
i for surgeon s has to be started before or on period p (left branch), whereas it should start
after period p in the right branch. In this branching scheme, however, a problem occurs when
multiple patients have the same type of surgery since the branching restriction would apply to
all patients with a surgery type equal to 7. In order to overcome this problem, we specified t