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Parametric equalization of an acoustic system aims to compensate for the deviations of
its response from a desired target response using parametric digital filters. An optimization
procedure is presented for the automatic design of a low-order equalizer using parametric
infinite impulse response (IIR) filters, specifically second-order peaking filters and first-order
shelving filters. The proposed procedure minimizes the sum of square errors (SSE) between the
system and the target complex frequency responses, instead of the commonly used difference
in magnitudes, and exploits a previously unexplored orthogonality property of one particular
type of parametric filter. This brings a series of advantages over the state-of-the-art proce-
dures, such as an improved mathematical tractability of the equalization problem, with the
possibility of computing analytical expressions for the gradients, an improved initialization
of the parameters, including the global gain of the equalizer, the incorporation of shelving
filters in the optimization procedure, and a more accentuated focus on the equalization of the
more perceptually relevant frequency peaks. Examples of loudspeaker and room equalization
are provided, as well as a note about extending the procedure to multi-point equalization and
transfer function modeling.

0 INTRODUCTION

Parametric equalization of an acoustic system aims to
compensate for the deviations of its response from a tar-
get response using parametric digital filters. The general
purpose is to improve the perceived audio quality by cor-
recting for linear distortions introduced by the system [1–4].
Linear distortions, usually perceived as spectral coloration
(i.e., timbre modifications) [5, 6], are related to changes
in the magnitude and phase of the complex frequency
response with respect to a target response. Even though
phase distortions are perceivable in some conditions [7],
their effect is usually small compared to large variations
in the magnitude of the frequency response [8]. Conse-
quently, a low-order equalizer should focus on correcting
the magnitude response of the system, rather than its phase
response.

Parametric equalizers using cascaded infinite impulse re-
sponse (IIR) filter sections consisting of peaking and shelv-
ing filters are commonly used [9–12], especially when a
low-order equalizer is required. Indeed, the possibility of
adjusting gain, central frequency, and bandwidth of each
section of the equalizer results in a greater flexibility and,
if the values of the parameters are well-chosen, in a re-
duced number of equalizer parameters w.r.t., for instance, a
graphic equalizer with fixed central frequencies and band-
widths, or a finite impulse response (FIR) filter. However,
since manually adjusting the values of the control parame-
ters, as often done, can be difficult or may lead to unsatisfac-
tory results, the availability of automatic design procedures
is beneficial.

For a parametric equalizer design procedure to be fully
automatic, various relevant aspects should be considered
such as the number of filter sections available, typically
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fixed between 3 and 30 based on the application, and the
structure of the filter sections, which can have different
characteristics and be parametrized in different ways, es-
pecially in terms of the bandwidth parameter [9]. Other
design choices pertain the definition of a target response,
based on a prototype or defined by the user, and its 0-dB
line, relative to which the global gain of the equalizer will be
set, as well as preprocessing operations, such as smoothing
of the system frequency response. Once all these aspects
are determined, an automatic design procedure requires the
definition of an optimization criterion (or cost function),
typically in terms of a distance between the equalized sys-
tem magnitude response and the target magnitude response,
as well as the choice of an optimization algorithm for the
estimation of the parameter values of the filter sections. The
focus of this paper is on automatic parametric equalizer de-
sign procedures operating in a sequential way, optimizing
one filter section at a time, starting with the one that reduces
the cost function the most, i.e., in order of importance in the
equalization [13, 14]. The idea is to select an initial filter
section, to search for better parameter values by minimizing
the cost function using an iterative optimization algorithm
and then move to the initialization and optimization of the
next filter section.

The choice of the cost function has a fundamental role in
determining the final performance of the design procedure.
The characteristics of the first- and second-order peaking
and shelving filters used in minimum-phase low-order para-
metric equalizers are well suited for the equalization of the
magnitude response and have only a small influence on the
phase response. As a consequence, the cost function gen-
erally chosen uses the difference between the magnitudes
of the equalized response and the target response, discard-
ing the phase response. The procedure described by Ramos
et al. [13] uses a cost function that is the average absolute
difference between the equalized magnitude response and
the target magnitude response, computed on a logarithmic
scale. More recently, Behrends et al. [14] proposed a series
of modifications to the aforementioned procedure, includ-
ing the evaluation of the cost function on a linear scale.
Such a choice is meant to favor the equalization of fre-
quency peaks, which are known to be more audible than
dips [15]. This is a desirable feature, especially for low-
order equalizers, which also limits the selection of filters
producing a sharp boost in the response that may cause
clipping in the audio system.

In the proposed procedure, the focus on equalizing peaks
is even more prominent. The cost function employed uses
the sum of squared errors (SSE) between the equalized and
the target complex frequency responses. Minimizing the
SSE does not explicitly aim at maximizing the “flatness”
of the equalized magnitude response, as for the procedures
cited above, but rather at compensating for the deviations
of the equalized response by putting more emphasis in the
equalization of energetic frequency peaks over dips. Even
though the use of the SSE may be a less intuitive way of
defining the equalization problem, it brings some advan-
tages over using the magnitude response error. Specifically,
the SSE gives the possibility of computing analytical ex-

pressions for the gradients of the cost function w.r.t. the pa-
rameters of the filter sections, such that efficient line search
optimization algorithms can be used, and of estimating the
global gain of the equalizer (i.e., the 0-dB line). Moreover,
if only the linear-in-the-gain structure of the parametric fil-
ters [9, 10] is used, the gain parameters can be estimated
in closed form using least squares (LS), thus enabling the
use of a grid search procedure for the initialization of the
other filter parameters, as well as the inclusion of first-order
shelving filters in the optimization procedure. It follows that
most of the design aspects to be considered are based on
the minimization of the cost function and not on arbitrary
choices or assumptions regarding the magnitude response
to be equalized, as in the procedures in [13] and [14] briefly
described in Sec. 1.

The present paper is organized as follows: Sec. 1 gives
an overview of the state-of-the-art procedures for automatic
equalizer design using parametric IIR filters. Sec. 2 formal-
izes and discusses the equalization problem defined in terms
of the SSE. In Sec. 3, linear-in-the-gain (LIG) parametric
IIR filters are described and the closed-form expression
for the gain parameter is derived. The proposed automatic
procedure for parameter estimation of a low-order paramet-
ric equalizer is detailed in Sec. 4. In Sec. 5 results of the
equalization of a loudspeaker response are evaluated us-
ing different error-based objective measures [4], as well as
objective measures of perceived audio quality [6, 16, 17].
In Sec. 6 application to room response equalization is also
considered. The modification to the proposed procedure for
multi-point equalization and transfer function modeling is
briefly discussed in Sec. 7. Sec. 8 concludes the paper.

0.1 Terminology
The following terms and conventions are defined and

used throughout the paper. The term system response H0(k)
indicates the frequency response to be equalized, which
could be either a loudspeaker response, a room response,
or a joint loudspeaker-room response. The radial frequency
index k refers to the evaluation of the transfer function on
the unit circle at the kth radial frequency bin ωk (k is short
for e jωk/ fs , with fs the sampling frequency). The equalized
response Hs(k) is defined as the system response filtered by
the parametric equalizer having s filter sections. The term
parametric equalizer refers to the cascade of S parametric
filters, while the term parametric filter refers to either a
peaking filter with filter order m = 2 or a shelving filter
with filter order m = 1. A parametric filter has two possible
implementation forms: a LIG form, typically used in the
literature with a positive gain (in dB) to generate a boost
in the filter response, and a nonlinear-in-the-gain (NLIG)
form, typically used with a negative gain (in dB) to generate
a cut in the filter response (see Sec. 3).

1 STATE-OF-THE-ART PROCEDURES

The purpose of parametric equalization is to compensate
for the deviations of the system frequency response H0(k)
from a user-defined target frequency response T(k) using
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a parametric equalizer of order M with overall response
FM(k). In other words, the purpose is to filter H0(k) with the
equalizer FM(k) in order to approximate the target response
as closely as possible based on the following error:

EM (k) = W (k)
{

H0(k) · FM (k) − T (k)
}
. (1)

with W(k) a weighting function used to give more or less
importance to the error at certain frequencies.

Different cost functions are possible. In the procedure
proposed by Ramos et al. [13], the mean absolute error
between the magnitudes in dB of the equalized response and
the target response, computed on a logarithmic frequency
scale, was chosen to account for the “double logarithmic
behavior of the ear,”

ϵd B
M = 20

N

∑

k

∣∣∣W (k)
{

log10 |H0(k) · FM (k)|

− log10 |T (k)|
}∣∣∣, (2)

with N the number of frequencies included in the frequency
range of interest. The system magnitude response |H0(k)|,
as commonly done in low-order parametric equalization, is
smoothed by a certain fractional-octave factor (usually 1

8th

or 1
12th ) in order to remove narrow peaks and dips that are

less audible [15] and to facilitate the search for the optimal
parameter values. For each filter section, the procedure in
[13] uses a heuristic algorithm to optimize the parameters.
The procedure was extended in [18] to include second-order
shelving and high-pass (HP) and low-pass (LP) filters in the
equalizer design. The decision of including shelving filters
has to be made by analyzing the error areas above and
below the target magnitude response at the beginning and
at the end of the frequency range of interest. A shelving
(or HP/LP) filter is then included if the error area is larger
than a predefined threshold, with the values of the filter
parameters optimized using the same heuristic algorithm.
Another extension proposed in [13] adds the possibility of
reducing the order of the parametric equalizer by removing
the peaking filters that are correcting for inaudible peaks
and dips, according to psychoacoustic considerations [15].

In Behrends et al. [14] the higher perceptual relevance of
spectral peaks is directly taken into account in the definition
of the cost function by considering the error on a linear
magnitude scale instead of a logarithmic scale, i.e.,

ϵlin
M = 1

N

∑

k

∣∣∣W (k)
{
|H0(k) · FM (k)| − |T (k)|

}∣∣∣. (3)

While the cost function used in Eq. (2) equally weights
the error produced by deviations of the equalized magnitude
response above and below the target response, the evalua-
tion of the cost function on a linear scale as in Eq. (3) gives
more importance to the portions of the equalized magnitude
response that lie above the target, thus favoring the removal
of frequency peaks, rather than the filling of the dips. In
[14] Behrends et al. also suggest to employ a derivative-
free algorithm, called the Rosenbrock method [19], which
offers a gradient-like behavior and thus faster convergence.

A critical aspect of the procedures by Ramos et al. [13]
and Behrends et al. [14] is the selection of the initial val-
ues of the parameters of each new parametric filter. The
selection is done by computing the areas of the magnitude
response above and below the target using either Eq. (2)
or Eq. (3). The largest area becomes the one to be equal-
ized, with the half-way point between the two zero-crossing
points and the negation of its level (in dB) defining the cen-
tral frequency and gain of the filter section, respectively, and
the –3 dB points defining the bandwidth (or Q-value). This
approach assumes that the system magnitude response is a
combination of peaks and dips above and below the target
magnitude response. The problem with such an assump-
tion is that, in case of highly irregular system magnitude
responses, the initial filter placement approach may pro-
vide initial values quite distant from a local minimizer. In
this case, the reduction in the cost function provided by the
initial filter may even be quite limited. Furthermore, the
placement of the 0-dB line becomes an important aspect of
the procedure for which a clear solution was not provided.

An example system magnitude response, similar to an
example in [14], is given in Fig. 1 also showing the filter
responses for the initial values computed with different
procedures. Between 100 Hz and 16 kHz, there are seven
error areas A1 − A7 above and below the predefined flat
target magnitude response. The procedure by Ramos et al.
[13] places the initial filter based on the largest error area
computed according to Eq. (2), which is A3 in the example;
the parameters of the initial filter are chosen as described
above; the irregularity of the system magnitude response
makes the selection based on the half-way point of the
area far from optimal, with the initial filter far from the
optimal solution (also shown in the figure). The largest
error area for the procedure in [14], computed according
to Eq. (3), is instead A2. As shown in the figure, using the
same approach as in [13] leads to similar problems. A peak
finding approach, as also suggested in [14], may provide
a better initialization in this particular example, but it may
not be effective in general and introduces the problem of
defining the initial value for the bandwidth. The initial filter
obtained with the proposed procedure is also shown in the
figure. The initialization, which will be described in Sec. 4,
is not based on the largest error area approach but on a grid
search with optimal gain (in LS sense) computed w.r.t. the
SSE. It can be seen that initial parameters are found quite
close to the optimal ones.

Other examples of automatic parametric equalizer de-
sign can be found in [20], where nonlinear optimization
is used to find the parameters of a parametric equalizer
starting from initial values selected using peak finding; in
[21], where the gains of a parametric equalizer with fixed
frequencies and bandwidths are estimated in closed form
exploiting a self-similarity property of the peaking filters
on a logarithmic scale; and in [22], where a gradient-based
optimization of the parameters of an equalizer is proposed,
which uses filters parametrized using the numerator and
denominator coefficients of the transfer function and not a
constrained form defined in terms of gain, frequency, and
bandwidth, as the one used in this paper.
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Fig. 1. Initialized (thick lines) and optimized (thin lines) responses of a single filter section using different procedures.

2 EQUALIZATION BASED ON THE SSE

In this paper a cost function is used based on the SSE
between the frequency responses, i.e.,

ϵSSE
M = 1

N

∑

k

(
W (k)

[
H0(k) · FM (k) − T (k)

])2
. (4)

Such formulation, even though less intuitive than
Eqs. (2) and (3), brings some advantages as will be de-
tailed later on: (i) it provides an improved mathematical
tractability of the equalization problem, with the possibil-
ity of computing analytical expressions for the gradients
w.r.t. the filter parameters; (ii) when the parametric filter is
in the LIG implementation form, it leads to a closed-form
expression for the gain parameters (see Sec. 3), which sim-
plifies the automatic design procedure; (iii) it provides a
better way to initialize a parametric filter prior to optimiza-
tion; (iv) it allows to include first-order shelving filters; (v)
to estimate the global constant gain in closed-form; and
(iv) it focuses on the equalization of the more perceptually
relevant frequency peaks rather than the dips.

The parametric equalizer considered, comprising a
cascade of minimum-phase parametric filters, has a
minimum-phase response. An interesting property of a
minimum-phase response is that its frequency response
H(ω) is completely determined by its magnitude response.
The phase φH(ω) is, indeed, given by the inverse Hilbert
transform H−1{·} = −H{·} of the natural logarithm of the
magnitude [23, 24]:

H (ω) = |H (ω)|e jφH (ω),

with φH (ω) = −H{ln |H (ω)|}.
(5)

This is a consequence of the fact that the log frequency
response is an analytic signal in the frequency domain

ln H (ω) = ln |H (ω)| + jφH (ω), (6)

whose time-domain counterpart is the so-called cepstrum
[23]. In the digital domain, the phase response of the
minimum-phase frequency response H(k) can be obtained
as the imaginary part I of the DFT of the folded real peri-
odic cepstrum ĥ(n) = IDFT{ln |H (k)|}

φH (k) = I{DFT{fold{ĥ(n)}}} (7)
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Fig. 2. Two peaking filters with gains G = 3 dB and G = 6
dB (thick lines) and the corresponding cut filter responses (thin
lines) with gain optimized to give equal error using different cost
functions.

where the DFT and IDFT operators indicate the discrete
Fourier transform and its inverse, and the fold operation
has the effect of folding the anti-causal part of ĥ(n) onto its
causal part. More details can be found in [25] or [26]. Thus,
given the relation between the magnitude and the phase of
a minimum-phase frequency response as given in Eq. (5),
minimizing the cost function in Eq.(4), remarkably, still
corresponds to a magnitude-only equalization.

The use of the SSE in Eq. (4) compared to the linear func-
tion in Eq. (3) puts more emphasis on the error generated
by strong peaks, as described in more detail in Appendix
A.2. Here an intuitive interpretation is given as follows. In
Fig. 2, the boost magnitude response of two peaking filters
with positive gains G = 3 dB and G = 6 dB is considered. A
cut in the filter magnitude response, having the same cen-
tral frequency and bandwidth, is obtained using a negative
gain. The negative gain parameter is optimized such that
the error w.r.t. the 0-dB line computed with the cost func-
tions in Eqs. (2), (3), and (4) is equal to the one obtained
for the boost response. For the cost function in Eq. (2), the
cut filter response is obviously specular to the boost filter
response on a logarithmic scale (the gain is −G), whereas
for the cost functions in Eq. (3) and Eq. (4) it is not. This is
the consequence of the fact that the evaluation of the error
on a linear scale puts more weight on values above the 0-dB
line. Whereas for the G = 3 dB gain case (left plot) the cost
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Fig. 3. The Regalia-Mitra parametric filter

functions in Eqs. (3) and (4) produce almost the same error;
for higher gains (see right plot for G = 6 dB) the SSE gives
more emphasis to errors above the 0-dB line.

3 LINEAR-IN-THE-GAIN PARAMETRIC FILTERS

Digital IIR filters used in parametric equalizers are first-
and second-order IIR filters, with constraints on the fil-
ter magnitude response defined at the zero frequency, at
the Nyquist frequency, and, for peaking filters, at the cen-
tral frequency. Different parameterizations satisfying these
constraints are possible, with different methods to compute
the filter coefficients. However, even though the various
parameterizations have different definitions for the band-
width parameter, all parameterizations satisfying the same
constraints are equivalent [9].

Among different possibilities, the structure of first- and
second-order parametric filters originally proposed by Re-
galia and Mitra [10] is chosen here. This structure, shown
in Fig. 3, comprises an all-pass (AP) filter Am(z) of order
m and a feed-forward path. If the AP filter is independent
from the gain parameter V, the parametric filter has a trans-
fer function Fm(z) which is linear in V,

Fm(z) = 1
2

[(1 + V ) + (1 − V )Am(z)] (8)

= 1
2

[(1 + Am(z)) + V (1 − Am(z))], (9)

where expression Eq. (9), corresponding to the equivalent
filter structure in Fig. 3b, highlights this linear depen-
dency [11, 12]. Given that for V > 0 the filter response
is minimum-phase, whereas for V < 0 it is maximum-
phase [10], only filters with positive linear gain will be
considered.

Another characteristic of this filter structure, which is
exploited in the proposed procedure, follows from the en-
ergy preservation property [27] of the AP filter: since the
energy of the output signal of the AP filter is equal to the
energy of its input signal, the signals yη(n) = x(n) + z(n),
corresponding to a notch, and yβ(n) = x(n) − z(n), corre-
sponding to a resonance, are found to be orthogonal to each
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Fig. 4. Shelving and peaking filters in LIG form

other. An intuitive proof is provided in Appendix A.3. It
follows that, when the gain parameter V does not appear
in the AP filter transfer function, the gain V is only acting
on the resonant response yβ(n), whereas the notch response
yη(n) is not changed when V is modified. This can be seen
in Fig. 4, showing the magnitude response of two shelving
filters (left) and two peaking (right) filters in LIG form with
gains V = 2 and V = 0.5, together with the corresponding
notch and resonance responses. If should be noticed that
the LIG filter structure is able to produce both a boost and
a cut in the response, even though the cut response tends to
have a reduced bandwidth [10], as discussed below.

3.1 First-Order Shelving Filters
A shelving filter is used whenever the lowest or highest

portion of the system frequency response has to be enhanced
or reduced. Shelving filters are described by a set of two
parameters, namely the gain V and the transition frequency
fc, defined as the –3 dB notch bandwidth. By using the
filter structure in Eq. (8) or Eq. (9), a first-order shelving
filter at low frequency (LFs) or at high frequencies (HFs),
respectively, by defining a first-order AP filter as

ALF
1 (z) = aLF − z−1

1 − aLFz−1
, AHF

1 (z) = aHF + z−1

1 + aHFz−1
. (10)

The LIG form is obtained by defining the parameter a
in terms of the transition frequency fc and the sampling
frequency fs as

ab
LF = 1 − tan(π fc/ fs)

1 + tan(π fc/ fs)
, ab

HF = tan(π fc/ fs) − 1
tan(π fc/ fs) + 1

. (11)

As a consequence, the AP filter does not depend on the
gain V. However, for 0 < V < 1, when the filter represents a
cut, the effective transition frequency of the filter response
tends towards lower (or higher for the HF case) frequencies
(see left plot of Fig. 4 or [10]). To obtain a cut response,
for 0 < V < 1, with response specular to the one obtained
with the LIG form when V is replaced by 1

V , the parameter
a has to be modified to be dependent on the gain [12],

ac
LF = V − tan(π fc/ fs)

V + tan(π fc/ fs)
, ac

HF = tan(π fc/ fs) − V
tan(π fc/ fs) + V

(12)

which yields the NLIG form of a shelving filter.
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Another option would be to redefine the parameter a in
order to obtain a single expression that provides specular
responses for a boost with gain V and a cut with gain 1

V [1,
9, 28]. However, the resulting filter structure of the propor-
tional shelving filter is nonlinear in the gain parameter.

Finally, it should be noticed, also from the left plot of
Fig. 4, that the notch response yη(n) of the LF shelving
filter corresponds to a first-order HP filter (i.e., when V =
0). The same is true also for the notch response of the HF
shelving filter, which corresponds to a first-order LP filter.

3.2 Second-Order Peaking Filters
Peaking filters are used to compensate for peaks or dips in

the system magnitude response. As for first-order shelving
filters, second-order peaking filters can be implemented
with the filter structure in Eq. (8) by defining a second-
order AP filter as

A2(z) = a + d(1 + a)z−1 + z−2

1 + d(1 + a)z−1 + az−2
, (13)

with d = −cos (2πf0/fs), where f0 is the central frequency
of the peaking filter. The LIG form is obtained by defining
the bandwidth parameter a as

ab = − tan(π fb/ fs) − 1
tan(π fb/ fs) + 1

, (14)

with fb defined as the –3 dB notch bandwidth obtained for
V = 0 [9, 10]. Similar to first-order shelving filters, peaking
filters do not show a specular response when replacing V
by 1

V (see right plot of Fig. 4 or [10]). In order to obtain
symmetric boost and cut responses, either the NLIG form
[12] for 0 < V < 1, with

ac = − tan(π fb/ fs) − V
tan(π fb/ fs) + V

, (15)

or the proportional filters in [1, 9, 28] could be used. In
both cases, the linear dependency w.r.t the gain parameter
is lost. Only the LIG form is used in the proposed automatic
equalization procedure. It is possible in any case to convert
the parameters of a filter, either shelving or peaking, from
the LIG form to the NLIG or the proportional form.

3.3 LS Solution for the Gain Parameter
The advantage of the LIG form is that the linearity and

orthogonality properties described above enable a closed-
form solution for the estimation problem of the gain param-
eter. When the equalizer is made of only one parametric
filter, the cost function in Eq. (4) can be written as

ϵSSE
m = 1

N

∑

k

(
W (k)

{1
2

H0(k)[Fη
m(k) + V Fβ

m(k)]

−T (k)
})2

, (16)

where Fη
m(k) = 1 + Am(k) and Fβ

m(k) = 1 − Am(k), re-
spectively, and k = 1, . . ., N. The minimization of the cost
function is performed by setting to zero the first-order par-

tial derivative of ϵSSE
M w.r.t. V. The LS solution is obtained

by

V̂ =
∑

k |W (k)|2 Fβ
m(k)H∗

0 (k)T (k)
∑

k |W (k)|2|H0(k)|2|Fβ
m(k)|2

(17)

with { · }* indicating complex conjugation, which is inde-
pendent from Fη

m(k) because of the orthogonality between
Fη

m(k) and Fβ
m(k) (see details in Appendix A.3 and A.4).

This feature will be also used in the parameter initialization
as described in Sec. 4. Indeed, if the equalizer is designed
one parametric filter at a time, the optimal value V̂s of the
gain parameter of the sth filter section, is obtained by sub-
stituting the system frequency response H0(z) in Eq. (17)
with the equalized response Hs−1(z).

4 PROPOSED DESIGN PROCEDURE

The aim of the proposed procedure is to design a para-
metric equalizer of order M as a cascade of S filter sections,
each consisting of a parametric filter of order ms = 1 (shelv-
ing) or ms = 2 (peaking) having frequency response Fms (k)
defined as in Eqs. (8–9), i.e.,

FM (k) = C
S∏

s=1

Fms (k), with M =
S∑

s=1

ms, (18)

where s indicates the filter section index and C a global gain.
The parameter values of the sth filter section are optimized
so as to minimize the cost function F(as, ds, Vs), defined
as

ϵSSE
s,ms

= 1
N

∑

k

(
W (k)

{
Hs−1(k)Fms (k) − T (k)

})2
, (19)

with Hs−1 the system response filtered by the equalizer
comprising the previous s − 1 filter sections.

The proposed design procedure consists of the steps de-
picted in Fig. 5 and detailed in the rest of the section. A
preliminary step is to define a target response T(k) and
a minimum-phase preprocessed version of the system re-
sponse H0(k). Optionally, the value of the global gain C can
be estimated in closed-form using LS. The design of each
new filter section can be divided into two stages. The first
stage provides initial parameter values by means of a grid
search, in which the optimal gain parameter for predefined
discrete values of the central frequency and bandwidth is
estimated as described above. The second stage consists
of a line search optimization, which is intended to itera-
tively refine the initial parameter values and reach a local
minimum of the cost function.

4.1 Spectral Preprocessing
The spectral preprocessing of the system frequency re-

sponse follows the steps outlined in [25]: first, the system
magnitude response |H0(k)| is smoothed according to the
Bark frequency scale, in order to approximate the critical
bands of the ear, using a moving-average (MA) filter with
bandwidth increasing with frequency. Apart for frequen-
cies below 500 Hz, at which the smoothing is performed
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Fig. 5. Schematics of the proposed design procedure.

over a fixed 100 Hz interval, the bandwidth of the filter
is set to an interval equal to 20% of the frequency. The
amount of smoothing can then be controlled by the length
of the window of the MA filter; either fractional critical
bandwidth smoothing or fractional-octave smoothing can
be easily used instead.

The second (and optional) step of the spectral prepro-
cessing in [25] is to warp the frequency axis in order to
approximate the Bark frequency scale, i.e., to allocate a
higher resolution to the LFs. An alternative, also adopted
in this paper, is to resample the frequency axis from linear
to logarithmic, by defining a logarithmically spaced axis,
e.g., with 1

48th -octave resolution as in [13] and thus evaluat-
ing the magnitude response at those frequency points (e.g.,
using Horner’s method [23], after the phase retrieval step
explained below). Yet another way of favoring the equal-
ization of a given frequency range, which can be used in
conjunction with the strategies above, is to tune the weight-
ing function W(k) in Eq. (19) accordingly.

Finally, the cost function in Eq. (19) requires the
minimum-phase response H0(k) to be retrieved from the
preprocessed system magnitude response. A common so-
lution, also suggested in [25], to create a minimum-phase
frequency response is by means of the cepstral method
[23, 25], where the smoothed (and/or warped) magnitude
response is used to retrieve the corresponding phase re-

sponse, as given in Eqs. (5–7). Notice that, in order to avoid
time-aliasing given by deep notches that can remain in the
magnitude response after smoothing (e.g., towards 0 Hz),
it is advisable to increase the FFT size to a high power of
two and to clip the response as suggested in [26].

4.2 Target Response
Although the choice of the target response is arbitrary,

it should be made cautiously. If the target response is too
distant from the system frequency response, the equaliza-
tion will be more difficult to be realized. For instance, if
the lower cut-off frequency of the target response is below
the lower cut-off frequency of the loudspeaker, the equal-
izer would contain a parametric filter with positive gain,
which would move the loudspeaker driver outside its work-
ing range.

There is no complete agreement on the optimal target
response for loudspeaker/room response equalization, and
no single target for all sound reproduction purposes and
all listeners can be defined [29]. It is out of the scope
of this paper to discuss the characteristics of an optimal,
according to some criterion, target response for different
sound reproduction systems and situations. Here only a
brief overview of different approaches and guidelines is
given. The target response can be defined in its magnitude
and then its phase can be retrieved with the cepstral method.

4.2.1 Prototype-Based
A prototype target magnitude response can be defined

as, e.g., a band-pass filter transfer function or the magni-
tude response of a different loudspeaker. In this case par-
ticular attention should be given to matching the cut-off
frequencies of the system magnitude response and of the
prototype target response, in order to avoid overloading of
the loudspeaker driver. Another option is to use a strongly
smoothed version of the system magnitude response, such
as the one-octave smoothed response [20] or smoothing
based on power averaged sound pressure [30], which elim-
inates peaks and dips while preserving the coarse spectral
envelope of the system response.

4.2.2 User-Defined
A target magnitude response can be obtained as an in-

terpolation of a set of points defined w.r.t. the system mag-
nitude response [14]. In this way it is easy to match the
cut-off frequencies of the system magnitude response and
to determine any desired characteristic of the response in
the pass-band.

4.2.3 Mixed Strategies
A combination of the two approaches can be used. For

instance, the target magnitude response may be obtained by
smoothing the system magnitude response in the LFs and
in the HFs, whereas the response in the middle range may
be defined by the user, e.g., a flat response or a boost at
LFs.
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4.3 Optimal Global Gain
Another aspect to consider is the optimization of the

global gain C of the parametric equalizer, or, equivalently,
the setting of the 0-dB line. Indeed, this has an influence
on the characteristics of the filters selected by the design
procedure. Centering a loudspeaker response around 0 dB
would most likely avoid the selection of wide-band filters.
However, in case of a room response, it is more difficult to
determine the level at which the response should be cen-
tered, so that wide-band filters, with possibly high gains, are
more likely to be selected, especially if the target response
is not chosen carefully.

As described in Sec. 1, the placement of the 0-dB line
is a critical aspect in the procedures proposed in [13] and
[14]; the requirement for the system magnitude response
to be centered around the 0-dB line of the target response
in order to create error areas to be equalized is somewhat
arbitrary. A possibility would be to place the 0-dB line by
visual inspection or as the mean of the magnitude response
of the system within a frequency range of interest (e.g.,
mid frequencies). This solution is not guaranteed to be an
optimal one.

The use of the cost function based on the SSE, instead,
allows the estimation of a global gain using LS, similarly
to the estimation of the linear gain described in Sec. 3.3;
by replacing the parametric equalizer FM(k) in Eq. (4) by a
constant C, an estimate for the global gain Ĉ is given as

Ĉ =
∑

k |W (k)|2 H∗
0 (k)T (k)∑

k |W (k)|2|H0(k)|2
(20)

This global gain C can be regarded as a scaling factor that
centers the system response around the 0-dB line that mini-
mizes the cost function in Eq. (4). Since the SSE puts more
emphasis on the peaks (see Sec. 2), the system magnitude
response will tend to have dips that are more prominent
than the peaks w.r.t. the target response. This may not be
desirable, as the design procedure may favor the boost of
spectral dips rather than the cut of spectral peaks. If de-
sired, this may be avoided by adding an offset of a few dB
to the global gain in order to restore the emphasis on the
equalization of peaks over dips.

4.4 Grid Search Initialization and Constraints
The initialization of the parameters of each new para-

metric filter in the cascade, as well as the selection of either
a peaking or a shelving filter, is performed in an auto-
matic way by means of a grid search using a discrete set
of possible frequency and bandwidth values. A pole grid
is defined, similarly to [31], where the radius and angle
of complex poles determine respectively the bandwidth fb
and central frequency f0 of the peaking filters. The radius
of the real poles defines the transition frequencies fc of LF
(positive real poles) and HF (negative real poles) shelving
filters. The gain for the filters built using each pole p in the
grid is defined by LS estimation as described in Sec. 3.3,
and the parameters of the filter that reduces the SSE the
most are selected as initial parameter values of the current
filter section. The gain can be limited based on hardware
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Fig. 6. Magnitude response of constant-Q (top) and constant
relative bandwidth (bottom) peaking filters.

specifications, by defining a minimum (e.g., Vmin = 0.25)
and a maximum value (e.g., Vmax = 4). Note that, being the
system response minimum-phase, the gain V will always be
positive [10]. The rest of this section discusses a strategy
for constructing the pole grid, of which an example is given
in Fig. 7 and a way to impose and check constraints on the
bandwidth in terms of the commonly used Q-factor.

Given the critical-band smoothing and the logarithmic
resolution of the frequency axis, the angle σ = 2πf0/fs of
the complex poles, which define peaking filters, can be
discretized according to a logarithmic or a Bark-scale dis-
tribution with minimum and maximum angles defined, for
instance, by the frequency limits of the equalization. The
radius ρ =

√
a of the complex poles p = ρejσ can be defined

between a lower and an upper limit determined by the con-
straints imposed on the gain and bandwidth parameters for
the different values of σ. It is common to define constraints
in terms of the Q-factor, which provides an indication of
the filter bandwidth relative to its central frequency [12].
The parameter a can be converted into the corresponding
Q-factor in closed form, but the two cases of V > 1 and V
< 1 must be addressed separately. Filters in the LIG form
defined in terms of the parameters a and d (see Sec. 3.2),
can be converted in the corresponding LIG boost form and
NLIG cut forms defined in terms of Q and the auxiliary
variable K = tan (πf0/fs) as in [12], respectively with

Qb = sin(2π f0/ fs)
2 tan(π fb/ fs)

= sin(σ)

2 1−ab

1+ab

if V > 1 , (21)

Qc = sin(2π f0/ fs)
2V tan(π fb/ fs)

= sin(σ)

2V 1−ab

1+ab

if V < 1 . (22)

The Q-factor can be limited as well in order to avoid
filters too narrow-band (e.g., Qmax = 10) or too wide-band
(e.g., Qmin = 0.5).

However, for given fixed values of Q and V, the band-
width (in octaves) of a peaking filter is not actually constant,
but it reduces for increasing frequencies so that the filter
response on a logarithmic scale becomes asymmetric when
f0 approaches fs

2 (top plot of Fig. 6).
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In order to keep the relative bandwidth approximately
constant over the whole frequency range (bottom plot of
Fig. 6), the radius ρ of the complex poles is set to decrease
exponentially with increasing angle σ, according to ρ =
R

σ
π , with R the value of the radius defined at the Nyquist

frequency [32]. The value for R can be computed to match
the response of a filter defined in terms of a given Q [12] at a
given angular frequency σq. The parameter aq is computed
from Eqs. (21–22) as

ab
q = 2Qb − sin(σq )

2Qb + sin(σq )
if V > 1, (23)

ac
q = 2V Qc − sin(σq )

2V Qc + sin(σq )
if V < 1, (24)

from which the corresponding R = a
π

2σq
q is obtained. The

limits for R are computed the same way inserting the con-
straints in Eqs. (23–24). The minimum and maximum ra-
dius at the Nyquist frequency for V > 1 (Rb

min, Rb
max) are

computed from Eq. (23) for Q = Qb
min and Q = Qb

max,
whereas for V < 1, Rc

min and Rc
max are computed from

Eq. (24) for Q = Qc
min and Q = Qc

max, with V = Vmin. This
results in two partially overlapping allowed areas of the
unit disc, one valid when V > 1 and the other when V < 1,
where generally Rc

min < Rb
min and Rc

max < Rb
max.

In general, the bandwidth constraints for filter with
V > 1 (Qb) and filters with V < 1 (Qc) can be chosen to be
different, with the limitation dictated by the requirement of
having a positive value for a (and thus ρ real). From Eq. (24)
with σq = π

2 , it is required that Qc
min > 1

2Vmin
, thus trading-

off between sharp cut filters with high gain and broader
cut filters with limited gain. Also, it is required from Eq.
(23) that Qb

min > 0.5 (which is anyway quite wide, approx-
imately 2.5 octaves). Notice that for very large bandwidths,
the filter responses tend to skew towards the Nyquist fre-
quency but less dramatically than for the filters with fixed
Q (see Fig. 6). A unique allowed area could be found by set-
ting Qc

min = Qb
min

Vmin
and Qc

max = Qb
max

Vmin
, but this would lead to

filters with cut responses (V < 1) much narrower compared
to boost responses (V > 1).

Regarding the values for R between Rc
min and Rb

max, it
is suggested in [31] to set the desired number of radii (for
each angle) and distribute them logarithmically in order
to increase density towards the unit circle (obtaining the
so-called Bark-exp grid [31]) and thus to increase the reso-
lution of narrow peaking filters. If the allowed areas do not
coincide, the complex poles with smaller radius are valid
only for V̂ < 1 (i.e., cut responses), whereas they would
produce too wide boost responses for V̂ > 1. On the other
hand, complex poles very close to the unit circle, valid
for V̂ > 1, would produce too narrow cut responses for
V̂ < 1. It is then necessary to check the constraints after
the estimation of the optimal gains V̂ and select the initial
filter as the one that minimizes the cost function within
the constraints. This can be done by checking that the pa-
rameter as = ρ2

s of the selected complex pole ps = ρse jσs

satisfies ab
min ≤ as ≤ ab

max or ac
min ≤ as ≤ ac

max, where ab
min

and ab
max are computed from Eq. (23) for Q = Qb

min and
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Fig. 7. A Bark-exp pole grid for the grid-search.

Q = Qb
max, and ac

min and ac
max from Eq. (24) for Q = Qc

min
and Q = Qc

max, with V = Vmin, where σq is replaced by σs.
Finally, the radius of the real poles, determining the tran-

sition frequency fc of the shelving filters, may be set arbitrar-
ily within the range of equalization. The effective transition
frequency corresponding to ρ can be easily computed from
Eq. (11) and Eq. (12), for V > 1 and V < 1, respectively. An
upper and a lower limit for the radius of real poles can be
imposed using Eq. (11) for V > 1 and using Eq. (12) with
V = Vmin for V < 1. It is also possible to include first-order
HP/LP filters in the grid search by forcing the gain of the
shelving filters to zero, effectively using only their notch
responses as mentioned in Sec. 3.

An example Bark-exp pole grid is shown in Fig. 7 with
Qc

min = Qb
min = 0.75 and Qc

max = Qb
max = 10, and with

Vmax = 1
Vmin

= 4, where ab
q and ac

q in Eq. (23) and Eq. (24)
are evaluated at σq = π

4 , giving a good balance between
narrow and wide band filters. The central frequencies f0 are
distributed between 100 Hz and 21 kHz, with poles hav-
ing 75 possible angles and 20 possible radii. The cut-off
frequencies fc of the candidate shelving and high/low-pass
filters are linearly distributed between 100 Hz and 1 kHz,
and between 18 kHz and 21 kHz.

4.5 Line Search
Once the pole ps = ρse jσs corresponding to the optimal

parametric filter in the grid search is selected, the param-
eters d (0)

s = − cos(σs) and a(0)
s = ρ2

s are used as the initial
conditions of a line search optimization [33], meant to re-
fine their value and reduce the cost function F(as, ds, Vs)
further. In the optimization, σ(0)

s is used instead of d (0)
s to

take into account its cosinusoidal nature, important in the
computation of the search direction. The cost function in
Eq. (19), indeed, allows the computation of the gradients
w.r.t. the filter parameters, thus enabling the use of gradient-
based algorithms, such as steepest descent (SD), quasi-
Newton or Gauss-Newton (GN) algorithms, which guaran-
tee fast convergence to a local minimum, provided that the
initial values are chosen properly. The assumption that the
initial filter parameters obtained with the grid search are
sufficiently close to a local minimum is reasonable, as long
as the density of the poles in the grid is sufficiently high.
The same assumption is required also for the derivative-free
algorithms in [13] and in [14], in order to guarantee con-
vergence in a relatively small number of iterations, with the
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exception that in those cases the initial filter parameters are
obtained by an indirect minimization of the cost function,
without verifying whether the initial values provide a good
starting point for the equalization.

The parameter vector, initialized as θ(0) = [a(0)
s , σ(0)

s ]T

for a complex pole (peaking filter), or θ(0)
s = a(0)

s for a real
pole (shelving filter), is updated at each iteration i = 0, 1,
2, . . . as

θ(i+1)
s = θ(i)

s + µ(i) p(i), (25)

where µ(i) indicates the step size, and p(i) the search direc-
tion along which the step is taken in order to reduce the cost
function in Eq. (19), such that

F(θ(i)
s + µ(i) p(i), V (i)

s ) < F(θ(i)
s , V (i)

s ), (26)

where V (0)
s is the gain estimated in the grid search, which

is updated by LS estimation at each evaluation of the
cost function. In other words, the search direction p(i)

has to be a descent direction, i.e., p(i)T ∇F (i)
s < 0 with

∇F (i)
s = ∇F(θ(i)

s , V (i)
s ) the gradient of the cost function

(i.e., the vector of its first-order partial derivatives) w.r.t.
the parameters in θ(i)

s ,

∇F (i)
s = ∂F (i)

s

∂θ
(i)
s

=
[
∂F (i)

s

∂a(i)
s

,
∂F (i)

s

∂σ
(i)
s

]T

, (27)

with { · }T indicating the vector transpose. The analytic
expressions for the gradient are given in Appendix A.5.

The search direction generally has the form

p(i) = −{B(i)}−1∇F (i)
s , (28)

where B(i) is a symmetric and nonsingular matrix, whose
form differentiates the different methods. When B(i) is an
identity matrix, p(i) is the SD and Eq. (28) corresponds to
the SD method. When B(i) is the exact Hessian ∇2F (i)

s
(i.e., the matrix of second-order partial derivatives) Eq.
(28) corresponds to the Newton method. The Hessian can
be approximated at each iteration without the need for
computing the second-order partial derivatives, leading
to quasi-Newton methods, such as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm. The GN method, in-
stead, computes the search direction by expressing the
derivatives of F (i)

s in terms of the Jacobians ∇e(i)
s , as

p(i) = −
(
∇e(i)H∇e(i)

)−1
∇e(i)H e(i), with

∇e(i) = ∂e(i)

∂θ
(i)
s

=
[

∂e(i)

∂a(i)
s

,
∂e(i)

∂σ
(i)
s

]T

,

e(i) = [e(1, θ(i)
s , V (i)

s ), . . . , e(N , θ(i)
s , V (i)

s )]T ,

e(k, θ(i)
s , V (i)

s ) = W (k)
{1

2
Hs−1(k)F (i)

ms
(k) − T (k)

}
,

F (i)
ms

(k) = Fms (k, θ(i)
s , V (i)

s ) (29)

with { · }H indicating Hermitian transpose, where the Jaco-
bians are obtained as an intermediate step in the calculation
of the gradients (see Appendix A.5). The GN method ap-
proximates the Hessian with ∇e(i)H∇e(i), thus having con-
vergence rate similar to the Newton method, i.e., faster than
the SD method.

The convergence rate of line search algorithms also de-
pends on the choice of the step size µ(i). In order to select
a value of µ(i) that achieves a significant reduction of F (i)

s
without the need to optimize for µ(i), backtracking with
Armijo’s sufficient decrease condition [33] is used. The
backtracking strategy consists in starting with a large step
size µ(i) < 1 (µ(i) = 1 for Newton and quasi-Newton meth-
ods) and iteratively reducing it by means of a contraction
factor κ ∈ (0, 1), such that µ(i) ← κµ(i). At each repe-
tition of the backtracking, a sufficient decrease condition
is evaluated to ensure that the algorithm gives reasonable
descent along p(i). The condition in Eq. (26) is, however,
not sufficient to ensure convergence to a local minimum. A
different condition is then required such as the commonly
used Armijo’s sufficient decrease condition

F(θ(i)
s + µ(i) p(i), V (i)

s ) ≤ γµ(i) p(i)T ∇F(θ(i)
s , V (i)

s ) (30)

with γ ∈ (0, 1), which states that a decrease in F (i)
s is

sufficient if proportional to both µ(i) and p(i)T ∇F (i)
s . A

final value for µ(i) is obtained when Armijo’s condition
is fulfilled or when it becomes smaller than a predefined
value µmin. Also, the parameters in θ(i)

s + µ(i) p(i) should be
checked to ensure that a(i)

s and σ(i)
s still satisfy the constraints

described in the previous section. Stability is guaranteed by
amax < 1.

The line search for the current stage terminates when
p(i)T ∇F (i)

s ≤ τ, with τ a specified tolerance or when a
maximum number of iterations I is reached. It should be
mentioned that it is possible to include a closed-form ex-
pression of V in terms of as and ds in the filter transfer func-
tion Fms (k) in Eq. (19), at the expense of more complicated
analytic expressions for the gradients. Another alternative
is to include the gain V in the vector of parameters θi and
perform the line-search without updating the gain parame-
ter between two iterations. However, experimental results
showed that the speed of convergence and the final result of
these two alternatives are comparable to the results of the
line-search algorithm described above.

5 LOUDSPEAKER EQUALIZATION EXAMPLE

In this section an example of parametric equalization of
a loudspeaker response is presented. The aim is to show the
performance of the proposed procedure described above, in
comparison to the state-of-the-art procedures presented in
Sec. 1. In an attempt to keep the comparison as fair as possi-
ble, the same target response, the same range of equalization
100 Hz–21 kHz, and the same pre-processing (logarithmic
frequency axis, Bark-scale smoothing, etc.) is used for the
three procedures considered. The target response is built
to match the pass-band characteristics of the loudspeaker
response, using second-order high-pass and low-pass But-
terworth filters with cut-off frequency of 250 Hz and
22 kHz, respectively. The loudspeaker response is scaled
so that the 0-dB line of the target response corresponds to
the response mean value between 400 Hz and 6 kHz, which
satisfies the requirement of the state-of-the-art procedures
of having peaks and dips to be equalized (see Fig. 8). The
same termination conditions are used for all procedures; the
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Fig. 8. Loudspeaker equalization. Top: the unequalized response
(solid) with the target response (dotted) and the ideal high-order
FIR equalizer (thick); From top to bottom (10 dB offset): the
equalized response (solid) and the corresponding equalizer (thick)
using procedures R, B, and P.

algorithm moves to the next filter section whenever either
a maximum number of iterations (e.g., I = 100) is reached,
or the step size gets smaller than a given value (e.g. µmin =
10−4), or the reduction in the cost function in a number of
previous iterations (e.g., 10) is less than a predefined toler-
ance value (e.g., τ = 10−8). The Rosenbrock method [19]
is applied for both the state-of-the-art procedures, using a
step expansion factor α = 1.5 and a step contraction factor
ζ = 0.75, starting from an initial variation of 0.5% of the
value of the initial filter parameters (see [14]). In the pro-
cedure by Ramos et al. (R) [13], the Q-factor of the filter
is initialized based on the bandwidth of the selected error
area, while in the one by Behrends et al. (B) [14] it is set to
Q0 = 2.

The Bark-exp grid used in the proposed procedure (P) is
the one in Fig. 7. In the example, the GN algorithm is used in
the line search, which provides very similar results as SD in
a much smaller number of iterations. The initial step size is
set to µ(i) = 0.9, the contraction factor for the backtracking
to κ = 0.8, and the Armijo’s condition constant to γ = 0.05.
The global gain C is estimated as explained in Sec. 4.

The error produced by the different procedures with in-
creasing number of filter sections s is shown in Fig. 9.
As expected, the proposed procedure (P) performs best in
minimizing the normalized SSE (NSSE), i.e., the error in

Table 1. Error-based objective measures.

measure procedure s = 0 s = 5 s = 10 s = 15

R 0 232 552 824
ni B 0 260 593 885

P 0 29 53 70
R 0.922 0.991 0.996 0.998

SFMs B 0.922 0.986 0.990 0.993
P 0.922 0.983 0.991 0.995
R 0.435 0.100 0.045 0.030

SDMs B 0.435 0.118 0.078 0.051
P 0.375 0.101 0.064 0.035

Eq. (19) normalized w.r.t. the error in Eq. (4) computed
without equalizer (FM(k) = 1) and converted to decibels;
the procedure by Ramos et al. (R), with cost function as
in Eq. (2), outperforms the other procedures in minimizing
the logarithmic error, whereas the procedure by Behrends
et al. (B) fails to minimize the linear cost function in Eq. (3)
more than the other procedures (at least in this example).
Procedure P is the one that, for all cost functions consid-
ered, is able to achieve the largest error reduction in the
first two stages. Also, the error for procedure P exhibits
a staircase-like behavior, which is due to the vicinity of
the initial parameter values to a local minimum and the
subsequent small improvement given by the line search. In
general, the different procedures for an increasing number
of stages are not too different from each other in terms of
equalization performance, all capable of attaining the target
response to a certain degree, as can be seen in Fig. 8 for s =
15. A difference is found in the total number of iterations
(ni), with procedure P using the GN algorithm having an or-
der of magnitude less than the other procedures, including
the backtracking (see Table 1), due to the efficiency of both
the initialization and the GN algorithm. However, the grid
search and each iteration of the line search are computation-
ally more demanding than the iterations of the Rosenbrock
algorithm, eventually obtaining similar execution times for
the different procedures.

Apart from the performance evaluation based on the dif-
ferent cost functions themselves, other measures are con-
sidered, namely the spectral flatness measure (SFM) and
the spectral distance measure (SDM) described in [4]. The
SFM is the ratio between the geometric mean and the
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Fig. 9. The error produced by the different procedures at each stage according to the different cost functions.
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arithmetic mean of the power spectrum (on a linear fre-
quency scale). The target response not necessarily being
flat in the range of equalization, the measure is computed
using the power spectrum of the equalized system response
divided by the target response H̃s(k) = Hs (k)

T (k)

SFMs = N
n
√∏

k |H̃s(k)|2
∑

k |H̃s(k)|2
, (31)

so that the ideal high-order FIR equalizer defined as D(k) =
T (k)
H0(k) has SFM=1. The SDM is also based on the power
spectrum of the responses, and it is given by

SDMs =

√√√√∑

k

∣∣∣∣
|H̄s(k)|2 − |T̄ (k)|2

N

∣∣∣∣
2

, (32)

where in this case H̄s(k) and T̄ (k) are the loudspeaker and
target responses resampled on a logarithmic frequency scale
with 1

5 octave resolution [4]. Results for these two mea-
sures are shown in Table 1 for the different procedures
using equalizers with 5, 10, and 15 parametric filters. For
both measures, the greatest improvement is achieved with 5
filters only, with smaller improvements for increasing num-
ber of filters. It is interesting to notice that, even though not
specifically designed to maximize the SFM of the loud-
speaker response as for procedures B and R, the proposed
procedure (P) achieves a good level of flatness. Regarding
the SDM, procedure P achieves a performance close to that
of procedure R. Also notice that the optimization of the
global gain (at s = 0) already contributes to a reduction of
the SDM.

From a subjective point of view, it is commonly
accepted that a flat (in the pass-band) frequency response is
perceived as more natural, and that deviations from this are
perceived as spectral coloration. Perceptual objective mea-
sures based on these assumptions are used here for speech
and music stimuli. These are the average log-spectral dif-
ference measure (LSDM) [16] and a measure based on a
linear distortion auditory model [17], referred to here as
perceptual linear distortion measure (PLDM).

The LSDM is the square difference between the loga-
rithm of the magnitude responses of a clean speech seg-
ment convolved with the target response ST (k) (reference)
and the same speech segment convolved with the equalized
loudspeaker response SHs (k),

LSDMs =
√

1
N

∑

k

[
log(SHs (k)) − log(ST (k))

]2 (33)

The average LSDM is then computed for those segments
(in this case of 25 ms with 15 ms overlap) where active
speech is detected. The PLDM is a measure of the per-
ceived subjective naturalness of speech or music w.r.t. lin-
ear distortions, represented by spectral ripples and tilts in
the magnitude response (see [17] for detailed information).

Results obtained using a male voice speech signal [34]
and a music signal consisting of the instrumental introduc-
tion of a rock song [35] (having a wide-band spectrum) are
shown in Table 2. For both measures considered, a strong

Table 2. Perception-based objective measures.

measure procedure s = 0 s = 5 s = 10 s = 15

R 0.350 0.144 0.118 0.099
LSDMspeech B 0.350 0.158 0.143 0.135

P 0.350 0.160 0.142 0.118
R 0.308 0.165 0.143 0.127

LSDMmusic B 0.308 0.171 0.163 0.159
P 0.296 0.146 0.136 0.110
R 0.785 0.349 0.222 0.178

PLDMspeech B 0.785 0.366 0.258 0.174
P 0.785 0.399 0.259 0.217
R 0.960 0.380 0.267 0.224

PLDMmusic B 0.960 0.414 0.314 0.257
P 0.960 0.405 0.278 0.238

improvement for the low-order equalizers (s = 5) is shown,
with procedure R slightly better than procedure P, except for
the LSDM using the music signal. For the LSDM, the use of
higher-order equalizers improves the scores only slightly,
whereas a more consistent improvement is still visible for
the PLDM with s = 10. Notice, however, that small differ-
ences in the score values will most likely not be perceived
as a difference in sound quality.

6 ROOM EQUALIZATION EXAMPLE

The proposed procedure can be applied to the equaliza-
tion of the combined loudspeaker/room response without
major modifications. Differently from loudspeaker equal-
ization, the purpose of room transfer function (RTF) equal-
ization is not only to obtain a more balanced response w.r.t.
a target response but also to compensate (as much as pos-
sible) for strong resonances at LFs. Thus, the smoothing
should be less prominent with fractional-octave smoothing
(e.g., 1

6th ) preferred over Bark-scale smoothing, which has
constant resolution below 500 Hz. Based on the amount
of smoothing, which determines the level of detail in the
spectral envelope of the response, the number of parametric
filters required to attain the target response with a certain
accuracy may vary.

The definition of the target response is a critical issue.
RTFs have a more irregular frequency structure than loud-
speaker responses, which cannot be easily recognized as
deviations from a flat response. Moreover, spectral com-
plexity combined with a less aggressive smoothing result
in less smooth error surfaces produced by the cost func-
tions, presenting a large number of local minima. In order
to obtain a target response that produces peaks and dips in
the RTF to be equalized, as required by the state-of-the-
art procedures, one could use a strongly smoothed (e.g.,
one-octave resolution) version of the response as the target,
which however may not provide a desired response. These
procedures can be still used in general but are more likely
to incur into problems.

The proposed procedure is instead less sensitive to the
selection of the target response and will always start opti-
mizing a new filter section from an initial point reasonably
close to a useful local minimum, provided that the density
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Fig. 10. Room equalization. Top: the unequalized response (solid)
with the target response (dotted) and the ideal high-order FIR
equalizer (thick); From top to bottom (15 dB offset): the equalized
response (solid) and the corresponding equalizer (thick) using
procedures R, B, and P.

of the poles in the grid is proportional to the amount of
smoothing applied. In this example, the number of possible
angles was increased to 300. This, however, makes the grid
search at each stage more computationally demanding. If
efficiency is an issue, an option is to start from a dense grid
and effectively use only a subset of the grid points, differ-
ent for every filter section (e.g., by taking one every n = 4
angles and shift over one angle for the following n − 1 filter
sections). Simulation results show that this solution leads
to very similar results to those obtained with the solution
based on the full grid.

In the example shown here, the magnitude of an RTF
measured in the parliament hall of the Provinciehuis Oost-
Vlaanderen in Ghent, Belgium, having a reverberation time
of 1.5 s, has been smoothed with 1

6 octave resolution and the
equalization is evaluated in the range 30 Hz–18 kHz. The
target response used is a combination of a forth-order high-
pass Butterworth filter with cut-off frequency of 45 Hz and
a first-order low-pass Butterworth filter with cut-off fre-
quency of 3 kHz, which produces a slight roll-off at higher
frequencies (see Fig. 10). Table 3 provides results of the
different error functions and other error measures produced
by the different procedures. Given the more complicated
error function surfaces, the GN algorithm in the proposed
procedure (P) now needs more iterations than in the previ-
ous example but still two or three times fewer than the other
two procedures. As in the loudspeaker example, all proce-
dures are able to achieve equalization with a comparable
accuracy (see also Fig. 10 for s = 30), with the strongest
improvement obtained in the first 10 stages. The proposed
procedure achieves better results in terms of NSSE and of
SDM and slightly worse performances in the error mea-
sures related to the flatness of the equalized response. Also
in this example, procedure B is slightly outperformed by the
other procedures in its own cost function but has better per-
formance in terms of the SFM. It should also be noted that
procedure R does not achieve any improvement with the
inclusion of the last 10 filter sections (s = 30). In this par-
ticular case, the Rosenbrock method gets stuck into a local
minimum and is unable to correct for the largest error area,

Table 3. Error-based objective measures (RTF).

measure procedure s = 0 s = 10 s = 20 s = 30

R 0 642 1150 1584
ni B 0 668 1353 2026

P 0 231 595 792
R 0 –12.6 –14.6 –14.6

NSSEs B 0 –9.4 –13.9 –16.5
P 0 –11.9 –15.7 –18.3
R 3.91 0.80 0.54 0.54

ϵdB
s /N Eq. (2) B 3.91 0.96 0.57 0.42

P 3.91 0.94 0.65 0.51
R 0.402 0.077 0.051 0.051

ϵlin
s /N Eq. (3) B 0.402 0.082 0.052 0.037

P 0.402 0.077 0.048 0.037
R 0.915 0.966 0.979 0.978

SFMs Eq. (31) B 0.915 0.986 0.992 0.995
P 0.915 0.960 0.966 0.979
R 1.146 0.176 0.106 0.104

SDMs Eq. (32) B 1.146 0.186 0.106 0.066
P 1.146 0.146 0.078 0.049

which is then selected at each new filter initialization thus
failing to produce any further performance improvement.

7 NOTE ON MULTI-POINT EQUALIZATION AND
TRANSFER FUNCTION MODELING

When the aim is to improve the response of a loudspeaker
at multiple listening angles or the room response at multi-
ple positions, a single equalizer can be designed based on a
prototype response that contains the common acoustic fea-
tures of the multiple responses. Averaging and smoothing
the magnitude responses was proven to offer an effective
solution [36], which also increases robustness to spatial
variations. The proposed procedure can then be extended
to multi-point equalization by including an averaging oper-
ation in the prepocessing step.

A very similar procedure to the one described for auto-
matic design of a parametric equalizer can be applied to
the problem of transfer function modeling. This idea can
be useful, for instance, to model the ideal FIR equalizer
D(k) = T (k)

H0(k) using a low order parametric filter, the re-
sponse of a graphic equalizer [21], or more generally any
minimum-phase transfer function. For the modeling prob-
lem, the cost function becomes

ϵSSE
M = 1

N

∑

k

(
W (k)

[
D(k) − FM (k)

])2
. (34)

Also in this case, LIG parametric filters can be used with
the possibility of computing the gradients w.r.t. the other
filter parameters.

8 CONCLUSION

An automatic procedure for the design of a low-order
parametric equalizer has been proposed, which uses a se-
ries of second-order peaking filters and first-order shelv-
ing filters. The proposed procedure minimizes the SSE
in Eq. (4) between the complex-valued minimum-phase
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system and target responses, instead of the commonly used
difference in the magnitude responses, bringing some ad-
vantages, such as an improved mathematical tractability of
the equalization problem, with the possibility of comput-
ing analytical expressions for the gradients w.r.t. the filter
parameters and a closed-form solution for the estimation
of the gain parameters, an improved parameter initializa-
tion, the inclusion of shelving filters in the optimization
procedure, and a more accentuated focus on the equaliza-
tion of frequency peaks over dips. Examples of loudspeaker
and room response equalization have shown that effective
equalization using a small number of parametric filters can
be achieved. The proposed procedure can be extended to
multi-point equalization, by means of a prototype average
response, and to transfer function modeling.
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APPENDIX A

A.1 SSE Minimum-Phase Cost Function
Here the SSE cost function in Eq. (4) for the minimum-

phase equalization problem is analyzed using the relation by
which the frequency response of a minimum-phase transfer
function H(k) can be written as

H (k) = |H (k)|e− jH{ln |H (k)|} (A.1)

For simplicity, the weighting matrix in Eq. (4) is set to
W(k) = 1 and the notation is simplified. The cost function
in Eq. (4) can be elaborated in terms of magnitude and
phase of the frequency responses involved, as shown in
Eq. (A.2), where the Euler’s rule and the linear property
of the Hilbert transform have been used ({ · }* indicates
complex conjugation). It can be noticed that the optimal
equalizer, for which E2(k) = 0, is defined as F(k) = T (k)

H (k) =
|T (k)|
|H (k)|e

j(φT (k)−φH (k)).
This cost function has a quadratic form, which assumes

large values whenever the power of the equalized magni-
tude response is significantly larger than the power of the
target response, and whenever the difference between their
magnitude responses on a natural logarithmic scale is large
(i.e., when the value of cos is far from one).

E2(k) = (H (k)F(k) − T (k))∗(H (k)F(k) − T (k))

= (F∗(k)H∗(k) − T ∗(k))(H (k)F(k) − T (k))

= |F(k)H (k)|2 + |T (k)|2 − |F(k)H (k)T (k)|
×

(
e− j(φF (k)+φH (k)−φT (k)) − e j(φF (k)+φH (k)−φT (k)))

= |F(k)H (k)|2 + |T (k)|2

− 2|F(k)H (k)T (k)| cos(φF (k)

+φH (k) − φT (k))

= |F(k)H (k)|2 + |T (k)|2

− 2|F(k)H (k)T (k)| cos(− jH{ln |F(k)|}
− jH{ln |H (k)| + jH{ln |T (k)|})

= |F(k)H (k)|2 + |T (k)|2

− 2|F(k)H (k)T (k)| cos(− jH{ln |F(k)|
+ ln |H (k)| − ln |T (k)|})

= |H̃ (k)|2 + |T (k)|2

− 2|H̃ (k)T (k)| cos(− jH{ln |H̃ (k)|
− ln |T (k)|}) (A.2)

To simplify the analysis even further, a zero-phase, flat
target response (T(k) = 1) is considered, for which the cost
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function assumes the form

E2(k) = |H̃ (k)|2 + 1 − 2|H̃ (k)| cos(− jH{ln |H̃ (k)|})
(A.3)

In this case, it is easy to see that the error is larger when
the equalized magnitude response of H̃ (k) has values larger
than one, with the error increasing more than linearly for in-
creasing magnitude, which explains the focus on the equal-
ization of strong peaks.

A.2 The Orthogonality Property of the
Regalia-Mitra Parametric Filters

A brief explanation of the property introduced in Sec. 3
is provided here. Define a vector x containing N samples of
the input signal x(n) and the vector z containing N samples
of the output signal z(n) of the all-pass filter Am(z). A known
property of an all-pass filter is the preservation of the energy,
such that the energy of the input signal is equal to the energy
of the output signal

∞∑

n=−∞
|z(n)|2 =

∞∑

n=−∞
|x(n)|2 (A.4)

or, in terms of vector inner products, ⟨z, z⟩ = ⟨x , x ⟩. With
reference to Fig. 3b, the output of the filter ym(n) is formed
from the weighted summation of two signals, yη(n) = x(n)
+ z(n) and yβ(n) = x(n) − z(n). The orthogonality of these
two signals can be assessed from their inner product,

⟨ yn, yr ⟩ = ⟨x + z, x − z⟩ (A.5)

= ⟨x , x ⟩ − ⟨x , z⟩ + ⟨z, x ⟩ − ⟨z, z⟩ = 0, (A.6)

which follows from the equality stated above, ⟨z, z⟩ =
⟨x , x ⟩, and from ⟨x , z⟩ = ⟨z, x ⟩.

A.3 Gain LS Estimation
The first-order partial derivative of the cost function in

Eq. (19) w.r.t. the gain parameter V is given by Eq. (A.7).

∂ϵSSE
m

∂V

= 1
N

∑

k

(1
2

W (k)Hs(k)Fβ
m(k)

)∗

×
(

W (k)
[
Hs(k) · Fm(k) − T (k)

])

= 1
N

∑

k

(1
2

Fβ
m

∗(k)H∗
s (k)W ∗(k)

)(1
2

W (k)Hs(k)Fη
m

)

+ 1
N

∑

k

(1
2

Fβ
m

∗(k)H∗
s (k)W ∗(k)

)( V
2

W (k)Hs(k)Fβ
m

)

− 1
N

∑

k

(1
2

Fβ
m

∗(k)H∗
s (k)W ∗(k)

)(
W (k)T (k)

)
. (A.7)

Since orthogonality in the time domain (see Appendix A.3)
implies orthogonality also in the frequency domain, the first
summation in the equation equals zero (Fη

m(k) and Fβ
m(k) are

orthogonal). By setting ∂ϵSSE
m

∂V = 0, the following equation is
obtained

V
∑

k

(1
2

Fβ
m

∗(k)H∗
s (k)W ∗(k)

)(1
2

W (k)Hs(k)Fβ
m

)

=
∑

k

(1
2

Fβ
m

∗(k)H∗
s (k)W ∗(k)

)(
W (k)T (k)

)
.

(A.8)

which provides an estimate for the gain as

V̂ =
∑

k

[
Fβ

m
∗(k)H∗

s (k)W ∗(k)
][

W (k)T (k)
]

∑
k

[
Fβ

m
∗(k)H∗

s (k)W ∗(k)
][

W (k)Hs(k)Fβ
m(k)

] (A.9)

which is equivalent to the expression in Eq. (17).

A.4 Gradients and Jacobians Expressions
Based on the method chosen to perform the line search

at each stage, the search direction p i requires the compu-
tation of the gradients ∇F (i)

s = ∂F (i)
s

∂θ
(i)
s

(in the SD and quasi-

Newton methods) or of the Jacobians ∇e(i)
s = ∂e(i)

s

∂θ
(i)
s

(in the
GN method), where1

F (i)
s = 1

N

∑

k

e(k, θ(i)
s , V (i)

s )2 = 1
N

e(i)H
s e(i)

s (A.10)

The gradient of the cost function can be written as

∇F (i)
s = 2

N

∑

k

∂e(i)
s (k)

∂θ
(i)
s

e(i)
s (k) = 2

N
∇e(i)H

s e(i)
s , (A.11)

where the Jacobian is given by, for k = 1, . . ., N,

∂e(i)
s (k)

∂θ
(i)
s

= 1
2

W (k)Hs−1(k)
∂ Fms (k, θ(i)

s , V (i)
s )

∂θ
(i)
s

, (A.12)

so that the partial derivatives ∂ F (i)
ms (k)

∂θ
(i)
s

for peaking and shelv-
ing filters are required. In order to use the Newton method,
the exact Hessian ∇2F (i)

s = ∂2F (i)
s

∂θ
(i)2
s

should be computed. An-
alytic expressions for the second-order partial derivatives
can be obtained, but the advantages of using the Newton
method are outweighed by a higher complexity.

Peaking Filters
The frequency response of peaking filters in the LIG

form can be written, substituting Eq. (13) in Eq. (9), as

F2(k) = (1 + a)(1 + 2dk + k2) + V (1 − a)(1 − k2)
2(1 + d(1 + a)k + ak2)

,

(A.13)

and its first-order partial derivatives w.r.t. the parameters a
and σ = cos −1( − d) as

∂ F2(k)
∂a

= (1 − V )(1 − k2)(1 + 2dk + k2)
2(1 + d(1 + a)k + ak2)2

(A.14)

1For convenience here k stands for e− j
ωk
fs , so that the transfer

functions are evaluated at z = e j
ωk
fs , and z−1 can be substituted by

k. { · }H indicates Hermitian transpose.
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∂ F2(k)
∂σ

= sin(σ)(1 − V )(1 − k2)(1 − a2)k
2(1 + d(1 + a)k + ak2)2

. (A.15)

Shelving and HP/LP Filters
The frequency response of low frequency (LF) and high

frequency (HF) shelving filters in the LIG form can be
written, substituting Eq. (10) in Eq. (9), respectively as

FLF
1 (k) = (1 + a)(1 − k) + V (1 − a)(1 + k)

2(1 − ak)
(A.16)

FHF
1 (k) = (1 + a)(1 + k) + V (1 − a)(1 − k)

2(1 + ak)
, (A.17)

and its partial derivatives w.r.t. the parameter a as

∂ FLF
1 (k)
∂a

= (1 − V )(1 − k2)
2(1 − ak)2

(A.18)

∂ FHF
1 (k)
∂a

= (1 − V )(1 − k2)
2(1 + ak)2

. (A.19)

The frequency response for HP and LP filters is obtained
by setting V = 0 in Eqs. (A.16) and (A.17), respectively,
and their partial derivatives w.r.t. a by setting V = 0 in
Eqs. (A.18) and (A.19).

THE AUTHORS

Giacomo Vairetti Enzo De Sena Michael Catrysse Søren Holdt Jensen Marc Moonen Toon van Waterschoot

Giacomo Vairetti received the B.Sc. in 2010 and the M.Sc.
(cum laude) in 2012, both in computer engineering at
Politecnico di Milano (Italy). In 2018, he received the
Ph.D. in electrical engineering at KU Leuven (Belgium),
where he was a Marie Curie Fellow. He was a visiting
student at the Signal Processing and Acoustics Dept. of
Aalto University (Finland) in 2012 and at the Electronic
Systems Dept. of Aalborg University (Denmark) in 2014.
His research interests are in signal processing and system
identification applied to room acoustic modeling, sound
synthesis, and audio reproduction.

•
Enzo De Sena received the B.Sc. in 2007 and M.Sc.

(cum laude) in 2009, both from the Universita degli Studi
di Napoli “Federico II” (Italy) in telecommunication engi-
neering. In 2013, he received the Ph.D. degree in electronic
engineering from Kings College London (UK), where
he was also a Teaching Fellow from 2012 to 2013. Be-
tween 2013 and 2016 he was a Postdoctoral Research
Fellow at the Katholieke Universiteit Leuven (Belgium).
Since September 2016 he is a Lecturer in audio at the
Institute of Sound Recording at the University of Sur-
rey (UK). He held visiting positions at Stanford Univer-
sity (USA), Aalborg University (Denmark), and Imperial
College London (UK). He is a former Marie Curie Fel-
low. His current research interests include room acous-
tics modeling, surround sound, microphone beam form-
ing, and binaural modeling. For more information see
www.desena.org.

•
Michael Catrysse received the M.Sc. and Ph.D. degrees

in electronic engineering from Katholieke Universiteit Leu-
ven, Leuven, Belgium, in 1998 and 2004, respectively. He
joined Televic, Izegem, Belgium, in 2013 as the Director
of Technology and Innovation. Before joining Televic, he
was an R&D Manager and Plant Manager with Picanol
Group, Ieper, Belgium. Prior to this he held positions as a
Researcher (FMTC, Belgium), an Innovation Consultant,
a Project Manager (Centexbel, Belgium), and Innovation

Manager (Domo). He has been involved in several nation-
ally and European-funded research projects, both as a Par-
ticipant and a Project Coordinator. He has (co)authored
more than 30 publications. Since 2017 he is the owner of
CoEnCo Micro Breweries, Oostkamp, Belgium.

•
Søren Holdt Jensen received the M.Sc. degree in electri-

cal engineering from Aalborg University (AAU), Denmark,
in 1988, and the Ph.D. degree (in signal processing) from
the Technical University of Denmark (DTU) in 1995. He is
Full Professor in signal processing at Aalborg University.
Before joining the Electronic Systems Dept. (AAU), he was
with the Telecommunications Laboratory of Telecom Den-
mark, Ltd., Copenhagen; the Electronics Institute of Tech-
nical University of Denmark; the Scientific Computing
Group of Danish Computing Center for Research and Ed-
ucation (UNI C), Lyngby; the Electrical Engineering Dept.
of KU Leuven, Belgium; and the Center for PersonKommu-
nikation (CPK) of AAU. His current research interest are
in statistical signal processing, numerical algorithms, op-
timization engineering, machine learning, and digital pro-
cessing of acoustic, audio, communication, image, multi-
media, speech, and video signals. He is co-author of the
textbook Software-Defined GPS and Galileo Receiver—
A Single-Frequency Approach, Birkhäuser, Boston, USA,
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