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Abstract  
 
Clinical risk prediction models are increasingly being developed and validated on 

multicenter datasets. In this paper, we present a comprehensive framework for the 

evaluation of the predictive performance of prediction models at the center level 

and the population level, considering population-averaged predictions, center-

specific predictions and predictions assuming an average random center effect. We 

demonstrated in a simulation study that calibration slopes do not only deviate from 

one because of over- or underfitting of patterns in the development dataset, but 

also as a result of the choice of the model (standard versus mixed effects logistic 

regression), the type of predictions (marginal versus conditional versus assuming 

an average random effect), and the level of model validation (center versus 

population). In particular, when data is heavily clustered (ICC 20%), center-

specific predictions offer the best predictive performance at the population level 

and the center level. We recommend that models should reflect the data structure, 

while the level of model validation should reflect the research question.  

 
Keywords  
Mixed model, logistic regression, clinical prediction model, calibration, 

discrimination, predictive performance, bias 
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Introduction 

 

Clinical risk prediction models estimate the probability that an individual 

experiences a certain event (diagnostic model), or will experience it in the future 

(prognostic model).1, 2 They can be used as tools for clinical decision support in the 

context of evidence-based medicine, and to discuss risks and treatment options 

with patients. Risk models are often built using regression techniques, such as 

logistic regression (for diagnosis) and Cox regression (for prognosis).  

Increasingly, multicenter data is collected to construct or validate risk 

prediction models.  The main advantages of collecting data at multiple sites are the 

increased generalizability of the results and reduced recruitment times.3 Despite 

these advantages, the clustered nature of multicenter data poses additional 

methodological challenges.4 Since patients from one center may be more similar 

than patients from different centers, patients can no longer be assumed to be 

independent. Mixed effects models (also known as hierarchical or multilevel 

models) can be used to analyze the clustered data properly.4 In the context of 

prediction, a mixed effects model with center-specific intercepts (random intercept 

model) and possibly also center-specific slopes (random slope model), has the 
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additional advantage of yielding conditional predictions, tailored to the center a 

patient belongs to.5-7 

An important aspect of a clinical prediction model is its performance in 

new individuals. The literature available to date has not yet provided evidence that 

a mixed effects model’s predictive performance is superior to a standard regression 

model’s, nor is it clear how exactly predictions for individuals from new centers 

should be obtained from mixed effect models. In previous research comparing a 

standard logistic regression model and a mixed effects logistic regression model, 

the random intercept was substituted with zero in order to make predictions for 

new centers which were not included in the dataset used for model development.5  

In this way, predictions for new individuals assume an average random center 

effect. The mixed effects model produced miscalibrated results at the population 

level, that is, the predicted probabilities of experiencing the event did not reflect 

the observed probabilities. Calibration slopes deviated from one, and the 

miscalibration was worse when the degree of clustering (the intraclass correlation) 

increased. Pavlou et al.  recently pointed out that calibrated results can be obtained 

with the mixed effects logistic regression model if marginal predictions are used.8 

These are obtained by integrating over the estimated random effects distribution, 

rather than substituting the random intercept by zero.7  However, Pavlou focused 
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solely on the predictive performance of the model at the population level, while 

others have distinguished between performance at the population level and at the 

center level, and stressed the relevance of the latter.9, 10  

In this paper, we investigate whether a mixed effects logistic regression 

model has a better predictive performance in terms of calibration and 

discrimination than a standard logistic regression model in clustered data. In the 

first section we present a generalized framework for performance evaluation at the 

population level and the center level, which incorporates marginal predictions, 

predictions assuming an average random effect, and conditional predictions with a 

known center effect. In the second section we review what is known about the 

difference between marginal and conditional regression coefficients, and deduct 

what this implies for model calibration. In the third section we present a simulation 

study, in which we investigate the performance of mixed effect logistic regression 

models and standard logistic regression models within the framework proposed in 

the first section. In the fourth section, we present an example on the prediction of 

the risk of tumor malignancy, using clinical data from the International Ovarian 

Tumor Analysis Group.11 Finally, we discuss the implications of our findings and 

formulate recommendations for practice with respect to the development and 
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validation of clinical risk prediction models in clustered data using logistic 

regression analysis. 

A framework of performance evaluation of prediction 

models in clustered data 

 
In this section, we first review how to obtain predictions from the standard logistic 

regression model and the mixed effects logistic regression model. Then, we review 

population-level and center-level measures of predictive performance. Finally, we 

present a framework of the different options to evaluate predictive performance in 

multicenter data.  

Logistic regression is a common technique for estimating risk prediction 

models for diagnosis. Let Yij be the event indicator for individual i (i=1,…,nj) from 

center j (j=1,…J) with a value of 1 for an event and a value of 0 for a non-event, Xkij 

the kth predictor (k=1,…,K), and pij=P(Yij=1) the probability that the individual 

experiences the event of interest. The logistic regression model expresses pij as a 

linear combination of predictors Xkij, using the logit as a link function: 

(1) 

Yij~bin(1, p
ij
) 
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log (
p

ij

1-p
ij

) =αm+ ∑ βk mXkij

K

k=1

.  

The intercept αm and regression coefficients βk m are estimated using maximum 

likelihood.  

The standard logistic regression model is fitted on patients from different 

centers without taking clustering into account. It is a population-averaged or 

marginal model: its regression coefficients βk m represent the average effects in the 

population, and the predicted probability for an individual patient reflects the 

average probability of patients with the same observed values of predictors, 

ignoring the centers the patients came from. The predicted probability of an event 

is computed by taking the inverse logit of the linear predictor (LP) of the estimated 

model: 

(2) 

LPLR ij=α̂m+ ∑ β̂
k m

Xkij

K

k=1

 

(3) 

p̂
LR ij

=
1

1+exp(-LPLR ij)
. 
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In clustered data, a mixed effects logistic regression model can be used for model 

development.4-6 The simplest version is a random intercept model, which models 

heterogeneity of the event rate across centers by allowing the intercepts to vary. In 

this case, one extra parameter needs to be estimated, alongside the beta coefficients 

of fixed effect predictors and the overall intercept: the random intercept variance 

τ2. The random center intercepts aj are assumed to be normally distributed with 

mean zero.  

(4) 

Yij~bin(1, p
ij
) 

log (
p

ij

1-p
ij

) =αc+aj+ ∑ βk cXkij

K

k=1

 

aj~N(0,τ2) 

The mixed effects model is a center-specific model and the regression coefficients 

βk c reflect the predictor effects within a center. The conditional linear predictor 

given the random intercept for the jth center is 

(5) 

LPMLR c ij=α̂c+âj+ ∑ β̂k cXkij

K

k=1

. 
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The âj are typically estimated using empirical Bayes estimation, which shrinks 

them to zero. The degree of shrinkage is higher if less center-level information is 

available (e.g., stronger shrinkage for small centers) or if the between-center 

variance τ2 is lower (i.e., uniform shrinkage for all centers in homogeneous 

populations).4 Conditional predicted probabilities p̂MLR c ij are obtained by taking 

the inverse logit of the conditional linear predictor.  

To obtain a prediction for a patient of a center not included in the 

development set, one can replace the random intercept by the average random 

intercept, (âj =0).  

(6) 

 LPMLR a ij=α̂c+0+ ∑ β̂k cXkij

K

k=1

. 

 

Predicted probabilities assuming an average random center intercept (0), p̂
MLR a ij

 , 

are obtained by taking the inverse logit of the linear predictor. This will yield the 

prediction for an individual from a center with an average intercept. Due to the 

nonlinearity of the logit transformation, this does not correspond to the average 
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but to the median probability of patients with the same observed values of 

predictors across centers. 

Although the mixed effects logistic regression model is a center-specific 

model, one can obtain marginal predictions by integrating over the distribution of 

the random effects: 

(7) 

p̂MLR m ij= ∫
1

1+exp(-LPMLR cond ij)

∞

-∞

f(âj)dâj 

p̂MLR m ij= ∫
1

1+exp[-(α̂c+âj+ ∑ β̂k cXkij
K
k=1 )]

f(âj)
∞

-∞

dâj, 

where f(âj) is the density function of a normal distribution with mean zero and 

variance τ̂2. The integral often cannot be solved analytically and must be evaluated 

by numerical averaging after sampling a large number of random effects from their 

fitted distribution. The marginalized linear predictor of the mixed effects model 

LPMLR m ij can be obtained by performing a logit transformation on the marginal 

predicted probabilities.8 These predictions are very similar to the marginal 

predictions obtained by the standard logistic regression model, as shown in Web 

Appendix 1. In summary, the mixed effects model yields three types of predictions: 
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conditional predictions, predictions for an individual in a center with an average 

random intercept, and marginal predictions. 7 

The predictive performance of a model is crucial and needs extensive 

evaluation, preferably using data from new clinical settings. Key aspects of 

predictive performance are discrimination and calibration, with or without 

considering the clustered nature of multicenter data. Discrimination refers to the 

ability of the model to distinguish between events and non-events. The C-index 

expresses the probability that for a randomly selected pair of an event and a non-

event, the event has a higher predicted probability.12 For the computation of the 

standard C-index, pairs of events and non-events belonging to different clusters are 

compared, as well as pairs from the same cluster. It is estimated by 

(8) 

Ĉ=
∑ ∑ ∑ ∑ I(p̂ij>p̂i'j' and yij=1 and yi'j'=0)

nj'

i'=1
J
j'=1

nj

i=1
J
j=1

∑ ∑ ∑ ∑ I(yij=1 and yi'j'=0)
nj'

i'=1
J
j'=1

nj

i=1
J
j=1

. 

In multicenter data, the within-center C-index is computed by only comparing 

pairs of events and non-events within the J centers10: 

(9) 
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Ĉw=
∑ ∑ ∑ I (p̂

ij
>p̂

i'j
 and y

ij
=1 and y

i'j
=0)

nj

i'=1

nj

i=1
J
j=1

∑ ∑ ∑ I ( y
ij
=1 and y

i'j
=0)

nj

i'=1

nj

i=1
J
j=1

. 

This corresponds to the average center-specific C-index, weighted by the number of 

pairs of events and non-events per center. Other weights may be used as well.9 

Calibration refers to the ability of the model to provide accurate risk 

estimates for individual patients. This can be checked with logistic calibration.2, 13, 14 

Consider, for the standard logistic regression model, a linear predictor LP, obtained 

by applying formula (2). To perform logistic calibration one fits the following 

model to a validation dataset: 

(10) 

log (
p

ij

1-p
ij

) =αcal+β
cal

LPij. 

The estimated calibration slope deviates from one if the predicted probabilities are 

too extreme (too close to zero or one) (β̂cal<1) or not extreme enough (β̂cal>1). A 

calibration slope smaller than one typically indicates overfitting, which often occurs 

when models are fitted in small datasets.15-18 We elaborate on the effect of sample 

size in Appendix 2. Calibration-in-the-large assesses whether predicted 

probabilities are correct on average and is checked by including LPij as an offset in 



 

13 
 

equation 10, instead of estimating its effect. 2, 13, 14 The calibration intercept deviates 

from zero if the predicted probabilities are on average overestimated 

(α̂cal|(β
cal

=1)<0) or underestimated (α̂cal|(β
cal

=1)>0). 

 Mixed effects logistic calibration evaluates the predictions conditionally, 

reflecting differences in model calibration between centers,5 using  

(11) 

log (
p

ij

1-p
ij

) =αcal w +aj cal+β
cal w

LPij+bj calLPij 

(
aj cal

bj cal
) ~N ([

0
0

] , [
τa

2 τab

 τab τb
2 ]) . 

β
cal w

 now is the average within-center calibration slope. The random effects aj cal 

and bj cal  follow a bivariate normal distribution, with τb
2 the variance of the within-

center calibration slopes bj cal and τab the covariance between calibration intercepts 

and calibration slopes. Calibration-in-the-large is assessed by fixing β
cal w

 to one, τb
2 

to zero, and estimating αcal w and the variance of the random calibration intercepts  

τa
2. 

Figure 1 shows the different options to evaluate predictive performance in a 

comprehensive framework. Prediction models can be developed with standard or 
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mixed effects regression analysis; validation data can be obtained from a single 

center or from multiple centers. Conditional predictions and predictions assuming 

an average random intercept are only available for mixed effects models, while 

marginal predictions can be derived from both types of models. It may seem 

natural to use conditional (within-center) measures only for conditional 

predictions and standard (population level) performance measures for marginal 

predictions. However, the choice of performance measure in multicenter validation 

data should depend on the use of the prediction model and the research question. 

The conditional performance measures should be used to assess the performance 

within centers. Consider a model predicting the risk that an ovarian mass in a 

patient is malignant.19 The treatment decision is made in the center the patient is 

treated in, requiring adequate conditional performance of the prediction model. 

Conditional performance measures are not useful when the validation dataset 

contains data from a single center. For this reason, we will not focus on that 

situation the remainder of this work, although Figure 1 includes this option for 

completeness. When a model is validated in a single center, the validation results 

may not be generalizable to other centers. When multicenter data is available, 

standard performance measures will quantify how well the model performs in the 

entire population of individuals, as an overall measure of performance. This is 
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useful, for example, for the recommendation of a prediction model in national 

guidelines. Web Appendix 3 presents an overview of the formulas for the C-index 

and logistic calibration in this comprehensive framework.  

  



 

16 
 

Model   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Validation data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance 

measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interpretation of 

performance 

 

Standard logistic 

regression 

 

 

 

Mixed effects 

logistic regression 

 

1 center 

 

Multicenter 

 

Marginal 

Marginal 

 

Marginal 

 

Population level 

 Center level 

Center level 

 

Center level 

 
Population level 

 

Population level 

 

Center level 

 

Center level 

 

Center level 

 

Center level 

 

Center level 

 

Population level 

 

Average center effect 

Conditional 

 

Marginal 

 

Average center effect 

Conditional 

 

Standard 

 

Standard 

 Conditional 

 

Standard 

 Standard 

Standard 

 

1 center 

 

Multicenter 

 

Standard 

 Conditional 

 
Standard 

 Conditional 

 
Standard 

 Conditional 

Figure 1. A comprehensive framework of options for model validation, subject to the type of prediction model that is being evaluated 
(standard or mixed effects logistic regression) and the available validation dataset (one center or multicenter) 
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Calibration slopes for marginal and center-specific logistic 

regression models 

 
Marginal effect estimates (denoted by subscript m) are typically closer to zero than 

conditional effect estimates (denoted by subscript c).20-22  Using a cumulative 

Gaussian approximation to the logistic function leads to the following 

approximation:20 

(12) 

αm≈ αc f⁄  

βm≈ βc f⁄ ,  

with f = √1+τ2c2 

and c =
16√3

15π
. 

This implies that, when a standard logistic regression model has an overall 

calibration slope β
cal

, the overall calibration slope of the corresponding mixed 

effects model using the average random intercept could be approximated by β
cal

/f: 

(13) 

log (
p

ij

1-p
ij

) =αcal+β
cal

LPLR ij 
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=αcal+βcal(α̂m+ ∑ β̂k mXki)

l

k=1

 

≈αcal+
βcal

f
(α̂c+ ∑ β̂k c Xki)

l

k=1

. 

Likewise, when a mixed effects model has within-center calibration slope β
cal w

 

assuming an average random center effect (aj cal = bj cal = aj =bj =0), the calibration 

slope of the corresponding standard model would be approximated by β
cal w

× f : 

(14) 

log (
p

ij

1-p
ij

) =αcal w+ aj cal+β
cal w

LPMLR a ij + bj calLPMLR a ij 

=αcal w+β
cal w

(α̂c+ ∑ β̂
k c

Xkij)

l

k=1

 

≈αcal+βcal wf(α̂m+ ∑ β̂
k m 

Xkij)

l

k=1

. 

 

This demonstrates how the calibration slope may deviate from one due to the 

choice of modelling technique. For example, if a prediction model was fitted using 

mixed effects logistic regression, and this model was perfectly calibrated in a center 

with an average random effect, the corresponding standard model would have a 
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within-center calibration slope larger than one in a center within an average 

random effect. 

 In practice, the random effect variance τ2 will often be estimated with error. 

As shown in Web Appendix 4, overestimation will decrease the estimated 

calibration slope, while underestimation has the opposite effect. Fitting a standard 

model can be seen as an extreme case of the latter, setting the estimated between-

center variance to zero 

Simulation study 

Design 

 
In this simulation study, we compare the performance of mixed effect and standard 

logistic regression models in multicenter validation data. We first created source 

populations, from which samples with different sizes were drawn. We fitted a 

random intercept model and a standard logistic regression model in each sample 

and tested them in the remaining part of the source population, within the 

framework for performance evaluation presented in the first section.  

We generated two source populations of approximately 20,000 patients: 

one population with heavily clustered data (intraclass correlation (ICC)=20%), and 

one with little clustering (ICC=5%).23 We fixed the number of centers (J) at 20.24 
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The number of patients per center (nj) was drawn from a Poisson distribution with 

a separate, randomly generated lambda for each center. This yielded center sizes 

ranging from approximately 600 to 2000. 

We generated the data for the source populations according to a predefined 

true random intercept model. Each center was assigned a random center intercept 

aj, generated from a normal distribution of which the variance was determined by 

the desired ICC. The true model included four normally distributed continuous 

predictors and four dichotomous predictors, each with a beta coefficient of 0.8. X1 

through X4 were continuous with mean 0 and standard deviations 1, 0.6, 0.4, and 

0.2, respectively. X5 through X8 were dummy variables with prevalence 0.2, 0.3, 

0.3, and 0.4, respectively. We set the overall intercept α equal to -2.1 to obtain an 

event rate of the outcome Yij of 0.30. For each patient we computed the probability 

of an event (pij)  from the generated predictors and random intercepts, using 

equation (5) and applying the inverse logit transformation. We generated Yij by 

comparing pij to a randomly drawn value from a uniform distribution: 

(16) 

Zij~unif(0,1) 
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Yij= {
1     if zij≤p

ij

0     if zij>p
ij

. 

We drew samples from the source population with either 100 (for ICC=5% 

and ICC=20%) or 5 (only for ICC=20%) events per variable (EPV). The number of 

events to be sampled was calculated by multiplying the preset EPV value by nine (8 

parameters for the regression coefficients plus one extra parameter for the random 

intercept variance). The required number of non-events to be sampled was 

computed such that the event rate in the source population (0.3) was preserved. 

We sampled patients without replacement from all centers, without stratification 

for center. Each simulation was based on 1000 samples.  

We built a random intercept logistic regression model and a standard 

logistic regression model containing all eigth predictors in each sample. We used 

the following convergence criteria for the mixed effects model: a change of less 

than 10-5 in deviances of the models fitted in the last two iterations, 10 to 100 

iterations to fit the model, and no outlying estimated regression coefficients and 

standard errors (visual inspection). For the standard model, we used a positive 

convergence tolerance of 10-9, a maximum of 50 iterations and a visual check of 

estimated regression coefficients and standard errors as convergence criteria. 

Samples with non-converging models were removed from the analysis. 
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We tested the models in the part of the source population that was not used 

for model development. Hence, the development set and the validation set are from 

the same population. We used two versions of the linear predictor for the random 

intercept model: the conditional linear predictor, including the center-specific 

intercept estimates (equation 5), and the linear predictor assuming an average 

random intercept (equation 6). The marginal linear predictor was obtained from 

the standard logistic regression model (equation 2). We computed the standard 

(equation 10) and within-center (equation 11) calibration slopes and intercepts, and 

the standard (equation 8) and within-center C-index (equation 9) for all 

predictions. 

All simulations and calculations were performed in R version 2.14.0 

(Vienna, Austria).25 The lmer function from the lme4 package26 was used to fit 

mixed effect logistic regression models using Laplace approximation, and the rms 

package was used for model evaluation.12 The R code is provided in Web Appendix 

5. 

  



 

23 
 

Results 

 
Calibration 

 
Severe clustering (ICC 20%, 100 events per variable) 

 

The conditional predictions from the random intercept model were well calibrated 

at the center level and the population level (Figure 2, squares; estimates are 

tabulated in Web Appendix 6). The average calibration slopes close to one indicate 

that there was hardly any overfitting. The predictions from the random intercept 

model assuming average random intercepts were only calibrated at the center level 

(Figure 2A, triangles), while the predictions from the standard model were only 

calibrated at the population level (Figure 2B, circles). The center-level calibration 

slopes tended to be larger than one for the predictions of the standard model 

(Figure 2A, circles) and the population-level calibration slopes were smaller than 

one for the predictions assuming an average random intercept (Figure 2B, 

triangles).  

The association between the estimated random intercept variance and the 

within-center calibration slope is slightly negative and close to the theoretical 

approximation, as can be seen in Appendix 4. Note that the within-center 
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calibration slopes plotted in Figure 2 reflect the calibration slopes in the center 

with an average calibration slope, while the estimated bcal j (not shown) reflect 

center-specific differences from this slope. The average estimated variance of the 

bcal j was <0.0005 for the three types of predictions. 

 

Figure 2. Center-level (panel A) and population-level (panel B) calibration slopes of 
the standard logistic regression model (circles), the conditional linear predictor of 
the random intercept model (squares) and the linear predictor of the random 
intercept model assuming an average random intercept (triangles), by estimated 
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random intercept variance in samples with 100 events per variable and true 
random effects variance=0.822 (ICC=20%). Small symbols indicate calibration 
slopes in the samples, large filled symbols indicate average calibration slopes at 
estimated variance=0 for the standard logistic regression model and at the 
correctly estimated variance (0.822) for the random intercept model. The 
horizontal line represents the ideal calibration slope. 

 

Calibration-in-the-large was also satisfactory for conditional predictions at the 

population and the center level, while the predictions assuming average random 

intercepts were only calibrated at the center level and the predictions from the 

standard model were only calibrated at the population level (Web Appendices 6 

and 7, figure A6). The average estimated variance of the center-specific calibration 

intercepts was 0.83 for the predictions assuming an average random intercept and 

0.89 for the predictions from the standard model. The conditional predictions 

yielded a much lower average estimated variance of center-specific calibration 

intercepts (0.05), indicating that most of the between-center differences in the 

event rates are accounted for by using random intercepts in the prediction. 

The results from the simulation with severe clustering and small samples 

(EPV 5) are presented in Web Appendix 2. 

 
Mild clustering (ICC 5%, 100 events per variable) 
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The results are similar to the results of the simulation with severe clustering, 

although differences in calibration between the three types of predictions are 

smaller due to the lower between-center variance (Figure 3 and Web Appendix 7, 

Figure A7). The predictions from the standard model yielded within-center 

calibration slopes slightly above one (Figure 3A, circles), while the predictions 

assuming an average random intercept yielded population-level calibration slopes 

slightly below one (Figure 3 B, triangles).  
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Figure 3. Center-level (panel A) and population-level (panel B) calibration slopes of 
the standard logistic regression model (circles), the conditional linear predictor of 
the random intercept model (squares) and the linear predictor assuming an 
average random intercept (triangles), by estimated random intercept variance in 
samples with 100 events per variable and true random effects variance=0.157 
(ICC=5%). Small symbols indicate calibration slopes in the samples, large filled 
symbols indicate average calibration slopes at estimated variance=0 for the 
standard logistic regression model and at the correctly estimated variance (0.157) 
for the random intercept model. The horizontal line represents the ideal calibration 
slope.  
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Discrimination 

 
The empirical Bayes estimates are constant within each center and therefore do not 

influence the estimated within-center C-indexes. Hence, the obtained within-center 

C-indexes of the conditional predictions and the predictions for an individual from 

an average center are by definition the same, and they are very similar to the 

within-center C-index of the standard model (Figure 4A).  
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Figure 4. Center-level (panel A) and population-level (panel B) C-indexes of the 
standard logistic regression model (circles), the conditional linear predictor of the 
random intercept model (squares) and the linear predictor assuming an average 
random intercept (triangles), by estimated random intercept variance in samples 
with 100 events per variable and true random effects variance=0.822 (ICC=20%). 
Small symbols indicate C-indexes in the samples, large filled symbols indicate 
average C-indexes at estimated variance=0 for the standard logistic regression 
model and at the correctly estimated variance (0.822) for the random intercept 
model. 

The population-level C-indexes for the predictions assuming an average random 

intercept (Figure 4B), were very similar to the population-level C-indexes for the 

predictions from the standard model. Higher population-level C-indexes were 

obtained with the conditional predictions. This effect was even present in datasets 

with a low ICC (Web Appendix 8, Figure A8B, squares). 

The results from the simulation with small samples (EPV 5) and strong 

clustering (ICC=20%) are shown in Web Appendix 2. 

Empirical example 

 
To illustrate our findings on real data, we developed and evaluated models 

to pre-operatively diagnose ovarian cancer. The development dataset consisted of 

3506 women with ovarian masses (949, 27% with malignancies), collected by the 

International Ovarian Tumor Analysis (IOTA) consortium between 1997 and 2007 

in 21 international centers. We used six clinical and ultrasound predictors: age, the 
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proportion of solid tissue, the presence of more than ten locules, the number of 

papillary structures (0, 1, 2, 3, >3, linear effect), the presence of acoustic shadows, 

and the presence of ascites. This yielded an EPV of 136 for the random intercept 

model. The ICC was 15% (τ̂2=0.59), accounting for the predictors. The regression 

coefficients of the standard model tended to be closer to zero than those of the 

mixed effects model, apart from the coefficient of acoustic shadows (Web Appendix 

9, Table A3). Standard errors were larger in the mixed effects model. 

All predictions (marginal, with average random intercept and conditional) 

were validated using conditional and standard performance measures (Figure 1), in 

a dataset of 2224 women (915 (41%) with malignancies), collected between 2009 

and 2012 in 15 of the 21 centers of the development set. The ICC was 14% (τ̂2=0.53) 

after accounting for the linear predictor of the mixed effects model assuming an 

average random intercept.  

The calibration slope at the population level was close to one for the 

marginalized predictions from the random effects model (0.99), and slightly lower 

for the marginal predictions from the standard model (0.95). As expected, the 

calibration slope was lower for the predictions assuming an average random 

intercept (0.91). Surprisingly, the calibration slope of the conditional predictions 
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was also lower (0.88).  It is likely that this is due to differences in the true random 

center intercepts between the development and validation datasets.  

 The within-center calibration slopes for the predictions assuming an 

average random intercept and for the conditional predictions were slightly below 1 

(0.94 and 0.93) (see Web Appendix 9, Table A4). The within-cluster calibration 

slope for the standard model was higher (0.97) than the within-center calibration 

slope for predictions assuming an average random center intercept, which is 

typical. The within-center calibration slope for the marginalized predictions from 

the mixed effect model was 1.02. The random variance of the center-specific 

calibration slopes was nearly half as large for the conditional predictions, as for all 

other predictions. This indicates that the center-specific calibration was more 

stable when conditional predictions were used. 

The population-level calibration intercept was 0.29 for the conditional 

predictions, 0.62 for the marginal predictions from the standard model,0.60 for 

the marginalized predictions from the mixed effects model, and 0.70 for the 

predictions assuming an average random intercept. This is explained by the 

changed event rates within the centers: in 12 out of the 15 centers in the validation 

dataset, the event rate was higher than in the development set. 
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The within-center calibration intercept was 0.27 for the conditional 

predictions, 0.41 for the marginal predictions from the standard model,0.39 for the 

marginalized predictions from the mixed effects model, and 0.48 for the 

predictions assuming an average random intercept.  The conditional predictions 

yielded the within-center calibration intercept closest to zero and the estimated 

variances of the center-specific calibration intercepts were half as large for 

conditional predictions as for all other types of predictions.  

At the center level, all predictions yielded a very similar C-index (0.88). At 

the population level, the discrimination of the conditional predictions was superior 

(0.91) to the other predictions (0.90). The discrepancy might have been higher, if 

the random center intercepts in the validation data were more like the ones in the 

development data.  

 

Discussion 

 
We investigated whether ignoring clustering in multicenter data influences the 

predictive performance of a risk prediction model, comparing standard to mixed 

effects logistic regression. Our results have shown that it does, but the 

consequences of ignoring clustering are dependent on the level at which the model 
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is evaluated (the population or the center level), and on the aspect of predictive 

performance that is evaluated (calibration or discrimination) (Table 1). 

  Marginal 
predictions 

Predictions 
assuming an 
average random 
center intercept 

Conditional 
predictions 

Calibration Conditional 
(center level) 

Calibration 
slope > 1 

Calibration 
intercept ≠ 0 

Well calibrated 

 
 

Well calibrated 

 Standard 
(population 
level) 

Well calibrated  Calibration slope < 
1 

Calibration intercept 
≠ 0 

Well calibrated 

Discrimination Conditional 
(center level) 

Good 
discrimination 

Good discrimination Good 
discrimination 

 Standard 
(population 
level) 

Good 
discrimination 

Good discrimination Superior 
discrimination 

Table 1. Schematic overview of the effect of the type of prediction on the 
conditional and standard performance measures, in the absence of overfitting and 
assuming a representative development dataset. 

 
Predictions from mixed effects models assuming an average random intercept are 

poorly calibrated at the population level, while marginal predictions are poorly 

calibrated at the center level. We showed that this is a consequence of the much-

described finding that marginal regression coefficients are typically closer to zero 

than conditional regression coefficients.20-22 The consequence, from a calibration 

perspective, is that predicted probabilities from a standard logistic regression 

model  are too close to the event rate in the population to reflect the event rates 

within centers.2, 13 For instance, within a center, more than 80% of patients with a 
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predicted risk of 0.8 will experience the event, while of all patients in that center 

with a predicted risk of 0.2, less than 20% will experience the event. In contrast, 

conditional predictions from the mixed effects model (that include center-specific 

effects) were well calibrated at both the population level and the center level (Table 

1). This is in line with earlier research showing that conditional predictions from 

mixed effect models yield better calibration-in-the-large at the center level.5 Hence 

we advise to use a mixed effect model to obtain better within-center calibration. 

Nonetheless, we must note that the degree of clustering in typical outcomes 

of prediction models is generally small. Our simulations in a source population 

with weak clustering (ICC 5%) have shown that the calibration results of the 

standard logistic regression model and the mixed effects logistic regression model 

are very similar.  

We showed that the calibration of mixed effects models depends on the 

estimation of the between-center variance in heavily clustered data. Research has 

shown that a large number of clusters is needed to obtain good estimates of the 

between-cluster variance.27-29 One suggested guideline is to collect data from at 

least fifty clusters,29 although this may be hard to obtain in practice. A sufficiently 

large number of events per variable also contributes to a good estimation of the 

between-cluster variance.16 When data from very few centers (e.g., five) is available, 
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it would be preferable to use a fixed effects regression model, containing dummy 

variables for centers.24  

Additional simulations in small samples (EPV=5) showed that overfitting 

yields poorly calibrated results, both for standard and mixed effects logistic 

regression models. Calibration was poorer for the mixed effects model, because the 

problem of overfitting in small datasets was worsened by the fact that conditional 

regression coefficients are generally more extreme than marginal regression 

coefficients. Although the standard model was seemingly better calibrated, 

ignoring clustering is not an adequate solution for problems caused by small 

sample sizes. 

Discrimination at the population level was better for the conditional 

predictions obtained by mixed effects logistic regression than for the other 

predictions (Table 1). This was even observable when the degree of clustering was 

low. Center-specific intercept estimates contain additional information when 

comparing predicted probabilities for patients from different centers, enhancing 

discrimination. 

Our study has the following limitations. We only considered mixed effects 

logistic regression to account for clustering. Other methods are available, such as 

fixed effects logistic regression with dummy variables for centers. Like the mixed 
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effects logistic regression model, it offers center-specific predictions and the 

regression coefficients have a conditional interpretation.30 Hence, it may perform 

similarly to the mixed effects regression model in terms of discrimination and 

calibration. The optimal choice most likely depends on the number of centers, with 

mixed effects models being more appropriate if the number of clusters is large. 4, 24, 

27-31 Further, we assumed that the assumptions underlying the regression models 

hold. For example, we assumed that the random intercepts were normally 

distributed. This may not always be the case in practice, but evidence to date 32, 33, 34 

suggests that random effects models are quite robust against violations of this 

assumption. Random slopes were beyond the scope of this research. More research 

on how random slopes can be included in the development and external validation 

of prediction models is needed.  

Based on our findings, we advise researchers to use a modeling technique 

that reflects the structure of the data, and to collect sufficiently large datasets to 

avoid overfitting. The need for center-specific models may be alleviated if we 

manage to include patient or center characteristics that explain the differences 

between centers in the prediction model.  

To make predictions for new individuals we suggest to use conditional 

predictions. Center-specific random intercepts are required for conditional 
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predictions, but they are not available for new centers. In the absence of data from 

the new center, numerical integration of the predictions over the estimated random 

effects distribution may be used. However, these marginal predicted probabilities 

will not be well calibrated at the center level. Another option is to substitute the 

center-specific random effect by zero. These predictions are easy to obtain, and will 

be well calibrated in centers with an average effect. Alternative options are to 

estimate the center-specific intercept from the outcome prevalence of the new 

center, or to use the intercept of a similar center from the model development set.6, 

35 

Whether an investigator should evaluate the prediction model at the 

population level or the center level, depends on the situation. If the goal is to 

implement a prediction model nationwide, for example, based on national 

guidelines, the discrimination at the national level can be considered. When risk 

models are used to support decision-making within centers, they should perform 

well at the center level. Sometimes, the prediction model is used for decision 

support at a higher level than the cluster level. For example, a recently developed 

prediction model to screen for Chlamydia trachomatis infection was developed in a 

dataset that was clustered within neighborhoods.36 Given that the intended user of 
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the model screens individuals from various neighborhoods, population-level 

performance measures were of interest.  

Besides investigating performance in the average center,  it is also useful to 

investigate potential heterogeneity in model performance across centers, for 

example, by studying the variance of random effects, prediction intervals of 

performance statistics, or empirical Bayes estimates of center-specific calibration 

intercepts and slopes,5, 9, 37. If centers are large, the center-specific performance can 

be studied. An example on preoperative tumor diagnosis was recently published by 

the IOTA consortium.19  

When interpreting validation results, it should be kept in mind that 

differences in model performance can be the result of many causes, including case-

mix differences in the center populations.38 Obtaining good discrimination and 

calibration in every single center may be difficult. If a model does not perform well 

in specific centers, the local performance can be improved by using conditional 

predictions from a mixed effects logistic regression model, or by applying model 

updating techniques.2, 5, 6, 39-41 

Clustering in multicenter data should be accounted for when developing 

prediction models. At the same time, the level at which prediction models are used, 

determines how the performance should be assessed. It is important to understand 
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that the choice of the model (standard or mixed effects logistic regression), the 

predictions used (marginal, assuming an average random intercept or conditional), 

and the level of performance evaluation (population or center level) will have an 

impact on the estimated predictive performance. We recommend the use of 

conditional predictions, when available, given their good performance at both the 

population and the center level. 
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Appendix 1. Correspondence between predictions from 

the standard logistic regression model and marginalized 

predictions from the mixed effects logistic regression 

model 

 
 

  
Figure A1. Marginal predictions from a standard logistic regression model versus 
marginalized predictions from a mixed effects logistic regression model. 
 
The logistic regression model and the mixed effects logistic regression model were 

developed in a sample with 100 EPV, drawn from a population with clustered data 

(ICC 20%). The predictions depicted are the marginalized predicted probabilities of 

the mixed effects logistic regression model and marginal predicted probabilities 

obtained by the standard logistic regression model.  
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Appendix 2. The influence of the amount of events per 

variable 

 

Calibration and sample size 

 
The most common reason for calibration slopes deviating from one is an 

inadequate sample size for model development. The importance of the number of 

events per variable (EPV) has been shown in many simulation studies.16-18, 42-44 If 

the ratio of the number of events to the number of parameters to estimate is small, 

for instance, less than ten, overfitting will likely occur. The model captures 

idiosyncratic characteristics of the sample at hand,15 and fails to maintain its 

predictive ability when tested in new data. Calibration slopes of overfitted models 

tested in new data are typically smaller than one. The effects of the choice of the 

modelling technique on the calibration slope will in practice often be difficult to 

observe, because of the simultaneous effect of overfitting.  

 

Simulation study 

 
Design 
 
The simulation study was designed as described in the main article. Samples of 

EPV 5 were only drawn from heavily clustered data (ICC=20%) to facilitate the 
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interpretation of the results, since we expect that the choice of the modelling 

technique on the calibration slope will be difficult to observe in weakly clustered 

data, because of the simultaneous effect of overfitting. 

Results 
 
Calibration 
 
31 of 1000 samples (3%) were removed because they did not include patients from 

all centers, making it impossible to give conditional predictions in some centers. 1 

sample (0.1%) was removed because of a change of more than 10-5 in the deviance 

of the last two iterations, and 1 sample (0.1%) was removed because it was outlying 

in a plot of estimated regression coefficients versus standard errors. The 

performance of non-converged models was similar to the performance of 

converged models.  

The random intercept variance was often underestimated (median 0.66) and 

the estimates were very variable across samples, due to the small sample size 

(Figure A2). For the same reason, calibration slopes were highly variable.  

The low center-level calibration slopes of the random intercept model 

indicated overfitting (at the correctly estimated τ2, mean β̂
cal within

=0.74 when 

conditional predictions (big square) were used and mean β̂
cal within

=0.74 when 
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predictions assuming an average random intercept (big triangle) were used, Figure 

A2, panel A). The predictions from the standard model gave within-center 

calibration slopes closer to one (mean β̂
cal within

=0.83, Figure A2, panel A, big 

circle). This is the result of two opposite effects: small sample sizes lead to 

overfitting and decreased calibration slopes, while using marginal predictions leads 

to increased calibration slopes at the center level. 

The standard model was overfitted at the population level (mean β̂
cal

=0.75, 

Figure A2, panel B, big circle). The conditional predictions had a slightly lower 

population-level calibration slope (at the correctly estimated τ, mean β̂
cal

=0.70, 

Figure A2, panel B, big square). The predictions assuming an average random 

intercept gave the lowest population-level calibration slopes (mean β̂
cal

=0.67, 

Figure A2, panel B, big triangle).  
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Figure A2. Center-level (panel A) and population-level (panel B) calibration slopes 
of the standard logistic regression model (circles), the conditional linear predictor 
of the random intercept model (squares) and the linear predictor assuming an 
average random intercept (triangles), by estimated random intercept variance in 
samples with 5 events per variable and true random effects variance=0.822 
(ICC=20%). Small symbols indicate calibration slopes in the samples, large filled 
symbols indicate average calibration slopes at estimated variance=0 for the 
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standard logistic regression model and at the correctly estimated variance (0.822) 
for the random intercept model.  

 

The within-center calibration intercepts were smaller than zero for the standard 

model, indicating that on average, predicted probabilities were too high. The 

population-level calibration intercepts were larger than zero for the predictions 

assuming an average random intercept, indicating that on average, predicted 

probabilities were too low (figure A3).  
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Figure A3. Center-level (panel A) and population-level (panel B) calibration 
intercepts of the standard logistic regression model (circles), the conditional linear 
predictor of the random intercept model from the random intercept model 
(squares) and the linear predictor assuming an average random intercept 
(triangles), by estimated random intercept variance in samples with 5 events per 
variable and true random effects variance=0.822 (ICC=20%). Small symbols 
indicate calibration slopes in the samples, large filled symbols indicate average 
calibration slopes at estimated variance=0 for the standard logistic regression 
model and at the correctly estimated variance (0.822) for the random intercept 
model. The horizontal line represents the ideal calibration intercept. 
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Discrimination 

In small samples (EPV 5), the mean C-index was lower (0.758 and 0.758 for the 

mixed and standard model, respectively) than in large samples, due to overfitting. 

Higher population-level C-indexes were obtained with the conditional predictions 

than with the predictions from the standard model and the predictions assuming 

an average random intercept. The random intercept variance was sometimes 

estimated close to zero in small samples (EPV 5). In these cases, the C-index 

dropped to the level of the C-index of the standard model. 
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Figure A4. Population-level (panel B) and center-level (panel A) C-indexes of the 
standard logistic regression model (circles), the conditional linear predictor of the 
random intercept model (squares) and the linear predictor assuming an average 
random intercept (triangles), by estimated random intercept variance in samples 
with 5 events per variable and true random effects variance=0.822 (ICC=20%). 
Small symbols indicate C-indexes in the samples, large filled symbols indicate 
average C-indexes at estimated variance=0 for the standard logistic regression 
model and at the correctly estimated variance (0.822) for the random intercept 
model. 
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Discussion 

When the dataset was small (EPV=5), both the standard model and the mixed 

effects model yielded poorly calibrated results. The regression models were heavily 

overfitted. The poor calibration was worse in the mixed effects model, because the 

problem of overfitting in small datasets, yielding beta coefficients that are too far 

from zero, was enhanced by the effect that conditional regression coefficients are 

generally more extreme than marginal regression coefficients. Although the 

standard model was seemingly better calibrated, fitting a model that does not 

reflect the data structure is not an adequate way to deal with problems caused by 

small sample sizes. A more appropriate solution would be to collect larger datasets 

for model development. Guidelines suggest to collect at least ten events per 

parameter that needs to be estimated.16, 18, 45 Additional shrinkage or penalization 

of the regression coefficients may be needed when the number of events per 

variable is smaller than twenty.40, 46 When statistical variable selection needs to be 

performed, up to fifty events per candidate predictor are recommended.16, 17 We did 

not investigate a scenario with weak clustering and a low EPV. However, given that 

the performance results for the different types of predictions were very similar in 

the simulations with weak clustering and a high EPV, we expect the overfitting 
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caused by the low sample size would have rendered the effects of ignoring 

clustering on model performance invisible in the simulation results. 
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Appendix 3. Formulas for the C-index and logistic calibration in a comprehensive framework of 

the standard and within-center validation of marginal predictions, conditional predictions and 

predictions assuming an average random intercept 
 Marginal predictions Conditional predictions Predictions assuming an average random intercept 
Standard validation 
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Table A1. Formulas for the C-index and logistic calibration in a comprehensive framework of the standard and within-center validation of 
marginal predictions, conditional predictions and predictions assuming an average random intercept.
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Appendix 4. Calibration with a biased estimate of the 

between-center variance 

 

When we have two mixed effects models fitted on the same dataset, but one has a 

biased estimate of the between-center variance τ̂'
2
 (e.g., underestimated in a 

sample with very few centers), the following equations hold:  

β̂c

√1+τ2c2
≈

β̂c'

√1+τ̂′2c2
 

β̂c'≈β̂c×√
1+τ̂′2c2

1+τ2c2
, 

with c defined as above. Hence, the within-center calibration slopes of these two 

models will differ by factor√ 1+τ2c2

1+τ̂′2c2
. If the model with the correct estimate of the 

between-center variance is perfectly calibrated, the model with the biased estimate 

will yield calibration slopes smaller than one if τ2 is overestimated and calibration 

slopes larger than one if τ2 is underestimated.  

This is illustrated in the simulation study (see Figure A5). If the random 

intercept variance was estimated correctly (0.822), the predictions from the 

random intercept model assuming average random intercepts were well calibrated 

at the center level (mean β̂
cal w

=0.98, large triangle). As we expected, the 
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calibration slope was lower when the random intercept variance was overestimated 

and higher when the random intercept variance was underestimated.  In the 

extreme case where the random intercept variance was set to zero by using a 

standard logistic regression model for prediction (circles), the within-center 

calibration slope was 1.09 on average (large dot).  The association between the 

estimated random intercept variance and the within-center calibration slope was 

negative and close to the theoretical approximation.

  

Figure A5. Center-level calibration slopes of the standard logistic regression model 
(circles) and the random intercept model assumingaverage random intercepts 
(triangles), by estimated random intercept variance. Small symbols indicate 
calibration slopes observed in the samples, large filled symbols indicate observed 
average calibration slopes at estimated variance=0 for the standard logistic 
regression model and at the correctly estimated variance (0.822, ICC=20%) for the 
random intercept model. The dotted line represents the expected relationship.  
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Appendix 5. R code for simulations 

 

#####1. Generation of source populations 
rm(list=ls(all=TRUE)) 
library (rms) 
library (lme4) 
 
set.seed(1986) 
 
#Step 1. Fix the number of clusters (nb) and draw the number of observations per 
#cluster (n2) from a poisson distribution. 
nb <- 20 
mean <- 6.82 
sd <- 0.3 
L1<-rnorm(nb, mean, sd) 
L<-round(exp(L1))  
n2 <- rpois(nb, L)  
cent <-seq(1:nb)  
center <-rep(cent, n2)  
n <- length(center) #number of observations in the source population 
pat_nr <- seq(1:n)  
 
#Step 2. Generate random cluster intercepts (randeff). 
set.seed(2022) 
randeff <- rnorm(nb, 0, 0.9068997)  # this is to obtain an ICC of 20% 
randeffect <-rep(randeff, n2) 
 
## Step 3. Generate predictors x1 to x8 
x1 <- rnorm(n, 0, 1) 
x2 <- rnorm(n, 0, 0.6) 
x3 <- rnorm(n, 0, 0.4) 
x4 <- rnorm(n, 0, 0.2) 
x5 <- rbinom(n, 1, 0.20) 
x6 <- rbinom(n, 1, 0.30) 
x7 <- rbinom(n, 1, 0.30) 
x8 <- rbinom(n, 1, 0.40) 
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# Step 4: Set beta coefficients and obtain the logit.  
b1 <- 0.8 
b2 <- 0.8 
b3 <- 0.8 
b4 <- 0.8 
b5 <- 0.8 
b6 <- 0.8 
b7 <- 0.8 
b8 <- 0.8 
logit <- -
2.1+b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+randeffect  
 
#Step 5: Calculate the predicted probabilities of experiencing an event 
p <- plogis(logit) 
 
#Step 6: Obtain dichotomous outcome y 
y  <- ifelse(runif(n)<=p, 1, 0) 
data <- as.data.frame(cbind(pat_nr, x1, x2, x3, x4, x5, x6, x7, x8, randeffect, center, 
y), dimnames = list(c(1:n), Cs(pat_nr, x1, x2, x3, x4, x5, x6, x7, x8, randeffect, 
center, y))) 
 
####2.Sampling from the source population and model building within samples 
#This code corresponds to sampling with 100 events per variable. The code can be 
#adjusted for other conditions with minor changes. 
rm(list=ls(all=TRUE)) 
library (Hmisc) 
library (rms) 
library (lme4) 
library(arm) 
Nsample <- 1000  #specify the number of samples to be drawn 
 
#Step 1. Specify the number of clusters  
Nsamplev2 <-20 
 
#Step 2. Specify the number of events to be drawn 
NEVENTS <- 900 
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NNONEVENTS <- round((NEVENTS/mean(data$y))-NEVENTS) 
 
#Matrices to store results 
Ncenter_sample <- matrix(NA, nrow=Nsample, ncol=1) 
center_sample <- matrix(NA, nrow=Nsample, ncol=Nsamplev2) 
Nevents_sample <- matrix(NA, nrow=Nsample, ncol=1) 
Npats_sample <- matrix(NA, nrow=Nsample, ncol=1) 
Pevents_sample <- matrix(NA, nrow=Nsample, ncol=1) 
Npats_center_sample <- matrix(NA, nrow=Nsample, ncol=Nsamplev2) 
 
mat_sd_ranef0 <- matrix(NA, nrow=Nsample, ncol=1) 
mat_sd_ranef1 <- matrix(NA, nrow=Nsample, ncol=1) 
mat_regcof <- matrix(NA, nrow=Nsample, ncol=9) 
mat_SEregcof <- matrix(NA, nrow=Nsample, ncol=9) 
mat_ranef <- matrix(NA, nrow=Nsample, ncol=Nsamplev2) 
mat_SEranef <- matrix(NA, nrow=Nsample, ncol=Nsamplev2) 
Niterm1 <- matrix(NA, nrow=Nsample, ncol=1) 
Equaldeviance <- matrix(NA, nrow=Nsample, ncol=1) 
 
mat_regcofu <- matrix(NA, nrow=Nsample, ncol=9) 
mat_SEregcofu <- matrix(NA, nrow=Nsample, ncol=9) 
Niterm1u <- matrix(NA, nrow=Nsample, ncol=1) 
Equaldevianceu <- matrix(NA, nrow=Nsample, ncol=1) 
 
realvalresultB <- matrix(NA,nrow=Nsample, ncol=8) #Validation results for 
predictions average random intercept 
dimnames(realvalresultB) <- list(c(1:Nsample), Cs(C,calib_slope, calib_interc, 
Cw,ML_calib_slope,var_ML_calib_slope, 
ML_calib_interc,var_ML_calib_interc)) 
realvalresultBcond <- matrix(NA,nrow=Nsample, ncol=8) ) #Validation results for 
conditional predictions  
dimnames(realvalresultBcond) <- list(c(1:Nsample), Cs(C,calib_slope, 
calib_interc, Cw,ML_calib_slope,var_ML_calib_slope, 
ML_calib_interc,var_ML_calib_interc)) 
realvalresultBu <- matrix(NA,nrow=Nsample, ncol=8) ) #Validation results for 
marginal predictions 
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dimnames(realvalresultBu) <- list(c(1:Nsample), Cs(C,calib_slope, calib_interc, 
Cw,ML_calib_slope,var_ML_calib_slope, 
ML_calib_interc,var_ML_calib_interc))loglik0 <- 
matrix(NA,nrow=Nsample,ncol=1) 
 
loglik0 <- matrix(NA,nrow=Nsample,ncol=1) 
loglik1 <- matrix(NA,nrow=Nsample,ncol=1) 
loglik0u <- matrix(NA,nrow=Nsample,ncol=1) 
loglik1u <- matrix(NA,nrow=Nsample,ncol=1 
 
#Start sampling from the domain 
tmpA <- aggregate(data$pat_nr, list(center = data$center), FUN=length)  
pt_center <- as.vector(tmpA[,2])  
names(pt_center) <- tmpA[,1]  
 
for (r in 1:Nsample){ 
set.seed(r) 
 
#Step 3. Sample clusters (samp_center) from the source population 
samp_center <- names(pt_center)  
 
#Get the data from sampled clusters (dsample_lev2) 
loc.pt_center <- pt_center[samp_center]  
indices.cutoffs <- c(0,cumsum(loc.pt_center))  
ptnrs_samp2 <- matrix(NA,nrow=sum(loc.pt_center),ncol=1) 
for (i in 1:Nsamplev2){ 
ptnrs_samp2[(indices.cutoffs[i]+1):indices.cutoffs[i+1],] <- 
data[data$center==names(loc.pt_center)[i],1]  
} 
dsample_lev2 <- data[ptnrs_samp2,]  
dsample_lev2<-dsample_lev2[order(dsample_lev2$center), ] 
 
#Step 4. Stratified sampling of events (sample_lev1_y1) and non-events 
(sample_lev1_y0). 
sdatay1 <- dsample_lev2[dsample_lev2$y==1,]  
pt_nr_y1 <- as.vector(sdatay1$pat_nr) 
sample_lev1_y1 <- sample(pt_nr_y1, NEVENTS , replace = FALSE) 
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sdatay0 <- dsample_lev2[dsample_lev2$y==0,] 
pt_nr_y0 <- as.vector(sdatay0$pat_nr) 
sample_lev1_y0 <- sample(pt_nr_y0, NNONEVENTS, replace = FALSE) 
sample_lev1 <- c(sample_lev1_y0, sample_lev1_y1) 
dsample <- data[sample_lev1,] 
 
#Step 5. Fit a random intercept model in the sample: full model (m1) and null 
#model (m0) 
 #mixed effects model 
iter_m1<-capture.output(m1<-lmer(y~x1+x2+x3+x4+x5+x6+x7+x8+(1|center), 
family = "binomial", data=dsample, verbose=T ))  
m0<-lmer(y~(1|center), family = "binomial", data=dsample) 
Last2it<-iter_m1[c(length(iter_m1)-1):c(length(iter_m1))] 
Last2itsplit<-strsplit(Last2it,":") 
Equal<- Last2itsplit [[1]][2]== Last2itsplit [[2]][2]#check convergence 
 #standard model 
m1u<-glm(y~x1+x2+x3+x4+x5+x6+x7+x8,family=binomial ,data=dsample, 
maxit=50) #deviance en fixed parameter schattingen voor alle iteraties tijdens het 
fitten 
m0u<-glm(y~ 1,family=binomial, data=dsample, maxit=50)#nulmodel  
Equalu<- m1u$converge 
 
# Set Npats_center, center and ranef to missing when we sampled <1 observation 
per cluster 
center_s <- length(unique(dsample$center)) 
N_missing_center <- Nsamplev2-Ncenter_s 
add_center <- rep(x=-99, times=N_missing_center) 
if (Ncenter_s < Nsamplev2){ 
center_s <- c(unique(dsample$center), add_center) 
Npats_center_s <- c((aggregate(dsample$pat_nr, list(center = dsample$center), 
FUN=length)[,2]),add_center) 
clustereff_s <- c(attr(m1, "ranef"),add_center) 
clustereff_s_SE <- c(as.numeric(se.ranef(m1)$center), add_center) 
} 
if (Ncenter_s == Nsamplev2) { 
Npats_center_s <- aggregate(dsample$pat_nr, list(center = dsample$center), 
FUN=length)[,2] 
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center_s <- unique(dsample$center) 
clustereff_s <- attr(m1, "ranef") 
clustereff_s_SE <- as.numeric(se.ranef(m1)$center) 
} 
 
#save sample summaries 
Ncenter_sample[r,] <- Ncenter_s 
center_sample[r,] <- center_s 
Npats_center_sample[r,] <- Npats_center_s 
Nevents_sample[r,] <- sum(dsample$y) 
Npats_sample[r,] <- length(dsample[,1]) 
Pevents_sample[r,] <- mean(dsample$y) 
 
#save model parameters 
mat_sd_ranef0[r,]<- sigma.hat(m0)$sigma$center 
mat_sd_ranef1[r,]<- sigma.hat(m1)$sigma$center 
mat_regcof[r,]<- as.numeric(fixef(m1)) 
mat_SEregcof[r,]<- se.coef(m1)$fixef 
mat_ranef[r,] <- clustereff_s 
mat_SEranef[r,] <- clustereff_s_SE 
mat_dims[r,] <- as.numeric(attr(m1,"dims")) 
Niterm1[r,] <- length(iter_m1)-1  
Equaldeviance[r,] <- Equal 
mat_regcofu[r,]<- m1u$coef 
mat_SEregcofu[r,]<- summary(m1u)$coefficients[, 2] 
Niterm1u[r,] <- m1u$iter 
Equaldevianceu[r,] <- Equalu 
 
#save log likelihood of full and null model 
loglik0[r,]<-logLik(m0) 
loglik1[r,]<-logLik(m1) 
loglik0u[r,]<-logLik(m0u) 
loglik1u[r,]<-logLik(m1u) 
 
#Step 6. Evaluate model performance in the test set 
 #Predictions assuming average random intercept 
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datatest<-data.frame(cbind(data[-sample_lev1,2:9], data$y[-sample_lev1], 
data$center[-sample_lev1]))                
datatest$lpB <- cbind(1, as.matrix(data[-sample_lev1,2:9])) %*% fixef(m1) 
names(datatest)<-c("x1","x2", "x3", "x4","x5","x6","x7","x8", "y","center", "lpB")      
perfm_m1B<- lrm(datatest$y~datatest$lpB) 
perfm_m1Bi<- lrm(datatest$y~offset(datatest$lpB)) 
realvalresultB[r,1] <- perfm_m1B$stats[6] # C 
realvalresultB[r,2] <- perfm_m1B$coefficients[2] #calib slope 
realvalresultB[r,3] <- perfm_m1Bi$coefficients[1] #calib intercept 
C.w.index <- rep(NA, length(unique(data$center))) 
n.comp <- rep(NA, length(unique(data$center))) 
for(p in 1:length(unique(data$center))){ 
data_p <- datatest[datatest$center==p,] 
prediction <- plogis(data_p$lpB) 
outcome <- data_p$y 
result <- concordance.prob.logistic(outcome, prediction) 
C.w.index[p] <- result$C 
n.comp[p] <- result$n.comp 
} 
realvalresultB[r,4] <- sum(C.w.index*n.comp/sum(n.comp, na.rm = TRUE), na.rm 
= TRUE) # Cwithin  
calibslope_mlB <- lmer(y~lpB+(lpB|center), family = "binomial", data=datatest) 
realvalresultB[r,5] <- as.numeric(fixef(calibslope_mlB)[2]) #within calib slope 
realvalresultB[r,6] <- (sigma.hat(calibslope_mlB)$sigma$center[2])^2 #var 
within calib slope 
calibint_mlB <- lmer(y~offset(lpB)+(1|center), family = "binomial", data=datatest) 
realvalresultB[r,7] <- as.numeric(fixef(calibint_mlB)[1]) # within calib slope 
realvalresultB[r,8] <- (sigma.hat(calibint_mlB)$sigma$center[1])^2 #var within 
calib slope 
 
 #Conditional predictions 
ri<-ifelse(datatest$center==1,clustereff_s[1], 
 ifelse(datatest$center==2,clustereff_s[2], 
 ifelse (datatest$center==3, clustereff_s[3], 
 ifelse (datatest$center==4, clustereff_s[4], 
 ifelse (datatest$center==5, clustereff_s[5], 
 ifelse (datatest$center==6, clustereff_s[6], 
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 ifelse (datatest$center==7, clustereff_s[7], 
 ifelse (datatest$center==8, clustereff_s[8], 
 ifelse (datatest$center==9, clustereff_s[9], 
 ifelse (datatest$center==10, clustereff_s[10], 
 ifelse (datatest$center==11, clustereff_s[11], 
 ifelse (datatest$center==12, clustereff_s[12], 
 ifelse (datatest$center==13, clustereff_s[13], 
 ifelse (datatest$center==14, clustereff_s[14], 
 ifelse (datatest$center==15, clustereff_s[15], 
 ifelse (datatest$center==16, clustereff_s[16], 
 ifelse (datatest$center==17, clustereff_s[17], 
 ifelse (datatest$center==18, clustereff_s[18], 
 ifelse (datatest$center==19, clustereff_s[19], 
 ifelse (datatest$center==20, clustereff_s[20],0 
 )))))))))))))))))))) 
lpc<-datatest$lpB+ri 
cond<-as.data.frame(cbind(datatest$center,datatest$y,lpc)) 
colnames(cond)<-c("center","y","lp") 
perfm_m1B<- lrm(cond$y~cond$lp) 
realvalresultBcond[r,1] <- perfm_m1B$stats[6] # C 
realvalresultBcond[r,2] <- perfm_m1B$coefficients[2] #calib slope 
perfm_m1Bi<- lrm(cond$y~offset(cond$lp)) 
realvalresultBcond[r,3] <- perfm_m1Bi$coefficients[1] #calib intercept 
C.w.index <- rep(NA, length(unique(cond$center))) 
n.comp <- rep(NA, length(unique(cond$center))) 
for(p in 1:length(unique(cond$center))){ 
data_p <- cond[cond$center==p,] 
prediction <- plogis(data_p$lp) 
outcome <- data_p$y 
result <- concordance.prob.logistic(outcome, prediction) 
C.w.index[p] <- result$C 
n.comp[p] <- result$n.comp 
} 
realvalresultBcond[r,4] <- sum(C.w.index*n.comp/sum(n.comp, na.rm = TRUE), 
na.rm = TRUE) # Cwithin  
calibslope_mlB <- lmer(y~lp+(lp|center), family = "binomial", data=cond) 
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realvalresultBcond[r,5] <- as.numeric(fixef(calibslope_mlB)[2]) #within calib 
slope 
realvalresultBcond[r,6] <- (sigma.hat(calibslope_mlB)$sigma$center[2])^2 #var 
within calib slope 
calibinter_mlB <- lmer(y~offset(lp)+(1|center), family = "binomial", data=cond) 
realvalresultBcond[r,7] <- as.numeric(fixef(calibinter_mlB)[1]) #within calib 
intercept 
realvalresultBcond[r,8] <- (sigma.hat(calibinter_mlB)$sigma$center[1])^2 #var 
within calib intercept 
 
#Marginal predictions  
datatest$lpBu <- cbind(1, as.matrix(data[-sample_lev1,2:9])) %*% m1u$coef 
names(datatest)<-c("x1","x2", "x3", "x4","x5","x6","x7","x8", "y","center", "lpB", 
"lpBu")      
perfm_m1Bu<- lrm(datatest$y~datatest$lpBu) 
realvalresultBu[r,1] <- perfm_m1Bu$stats[6] # C 
realvalresultBu[r,2] <- perfm_m1Bu$coefficients[2] #calib slope 
perfm_m1Bui<- lrm(datatest$y~offset(datatest$lpBu)) 
realvalresultBu[r,3] <- perfm_m1Bui$coefficients[1] #calib slope 
C.w.index <- rep(NA, length(unique(data$center))) 
n.comp <- rep(NA, length(unique(data$center))) 
for(p in 1:length(unique(data$center))){ 
data_p <- datatest[datatest$center==p,] 
prediction <- plogis(data_p$lpBu) 
outcome <- data_p$y 
result <- concordance.prob.logistic(outcome, prediction) 
C.w.index[p] <- result$C 
n.comp[p] <- result$n.comp 
} 
realvalresultBu[r,4] <- sum(C.w.index*n.comp/sum(n.comp, na.rm = TRUE), 
na.rm = TRUE) # Cwithin  
calibslope_mlBu <- lmer(y~lpBu+(lpBu|center), family = "binomial", 
data=datatest) 
realvalresultBu[r,5] <- as.numeric(fixef(calibslope_mlBu)[2]) #within calib slope 
realvalresultBu[r,6] <- (sigma.hat(calibslope_mlBu)$sigma$center[2])^2 #var 
within calib slope 
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calibinter_mlBu <- lmer(y~offset(lpBu)+(1|center), family = "binomial", 
data=datatest) 
realvalresultBu[r,7] <- as.numeric(fixef(calibinter_mlBu)[1]) # within calib 
intercept 
realvalresultBu[r,8] <- (sigma.hat(calibinter_mlBu)$sigma$center[1])^2 #var 
within calib intercept 
 
#write convergence results 
write.table(cbind(r, Niterm1[r,], iter_m1), file="path\\iter", col.names=F, 
row.names=F, append=T) 
write.table(x=Equaldeviance, file=" path \\EPV 100 ICC 20%\\Equaldeviance", 
append=F, na="NA", col.names=F) 
write.table(cbind(r, Niterm1u[r,], iter_m1), file=" path \\iteru", col.names=F, 
row.names=F, append=T) 
write.table(x=Equaldevianceu, file=" path \\Equaldevianceu", append=F, 
na="NA", col.names=F) 
 
} #end of the simulation loop 
  
#Save all results 
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Appendix 6. Detailed simulation results: calibration 

 
Level of 
performance 
evaluation 

Calibration 
measure 

Type of prediction 

Marginal 
predictions 

Predictions 
assuming an 

average random 
center intercept 

Conditional 
predictions 

Conditional 
(center level) 

Calibration slope 
(1 is ideal) 

1.09 (0.05) 

[<0.0005] 

0.98 (0.05) 

[<0.0005] 

0.99 (0.05) 

[<0.0005] 

Calibration 
intercept 
(0 is ideal) 

-0.13 (0.02) 
[0.83] 

-0.01 (0.04) 
[0.89] 

-0.01 (0.03) 
[0.05] 

Standard 
(population 
level) 

Calibration slope 
(1 is ideal) 

0.99 (0.05) 0.88 (0.04) 0.98 (0.04) 

Calibration 
intercept 
(0 is ideal) 

-0.00 (0.02) 0.12 (0.03) -0.00 (0.03) 

Table A2. Calibration slopes and intercepts at the center and population level for 
marginal predictions from the standard logistic regression model and predictions 
assuming an average random center intercept and conditional predictions from the 
random intercept logistic regression model. Results are presented as mean (sd) 
[mean between-center variance of the random calibration intercept or slope]. 
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Appendix 7. Simulation results: calibration intercepts 

 
The within-center calibration intercepts were below zero for the predictions from 

the standard model, indicating that on average, predicted probabilities were too 

high. The population-level calibration intercepts were above zero for the 

predictions assuming an average random intercept, indicating that on average, 

predicted probabilities were too low. Note that in our simulations, the “true” 

prediction model had a negative intercept. In the case of a positive intercept, 

within-center calibration intercepts larger than zero may be expected for the 

predictions of the standard model, and population-level calibration intercepts 

smaller than zero may be expected for the predictions assuming an average random 

intercept (results not shown).  
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Figure A6. Center-level (panel A) and population-level (panel B) calibration 
intercepts of the standard logistic regression model (circles), the conditional linear 
predictor of the random intercept model from the random intercept model 
(squares) and the linear predictor assuming an average random intercept 
(triangles), by estimated random intercept variance in samples with 100 events per 
variable and true random effects variance=0.822 (ICC=20%). Small symbols 
indicate calibration slopes in the samples, large filled symbols indicate average 
calibration slopes at estimated variance=0 for the standard logistic regression 
model and at the correctly estimated variance (0.822) for the random intercept 
model. The horizontal line represents the ideal calibration intercept. 
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Figure A7. Center-level (panel A) and population-level (panel B) calibration 
intercepts of the standard logistic regression model (circles), the conditional linear 
predictor of the random intercept model from the random intercept model 
(squares) and the linear predictor assuming an average random intercept 
(triangles), by estimated random intercept variance in samples with 100 events per 
variable and true random effects variance=0.157 (ICC=5%). Small symbols indicate 
calibration slopes in the samples, large filled symbols indicate average calibration 
slopes at estimated variance=0 for the standard logistic regression model and at 
the correctly estimated variance (0.157) for the random intercept model. The 
horizontal line represents the ideal calibration intercept.  
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Appendix 8. Simulation results: C-indexes 

 
Figure A8. Center-level (panel A) and population-level (panel B) C-indexes of the 
standard logistic regression model (circles), the conditional linear predictor of the 
random intercept model (squares) and the linear predictor assuming an average 
random intercept (triangles), by estimated random intercept variance in samples 
with 100 events per variable and true random effects variance=0.159 (ICC=5%). 
Small symbols indicate C-indexes in the samples, large filled symbols indicate 
average C-indexes at estimated variance=0 for the standard logistic regression 
model and at the correctly estimated variance (0.159) for the random intercept 
model.  
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Appendix 9. Case study results 

 

 
Mixed effects model 

β ̂(se) 

Standard model 

β ̂(se) 

Intercept -4.729 (0.280) -4.520 (0.203) 

Age (in years) 0.036 (0.004) 0.035 (0.003) 

Proportion of solid tissue 3.655 (0.189) 3.614 (0.181) 

More than 10 locules (yes/no) 1.858 (0.191) 1.728 (0.183) 

Number of papillations (0,1,2,3,>3) 0.633 (0.045) 0.592 (0.043) 

Presence of acoustic shadows (yes/no) -2.151 (0.242) -2.161 (0.232) 

Presence of ascites (yes/no) 2.975 (0.203) 2.848 (0.193) 

Table A3. Estimated regression coefficients from a mixed effects logistic regression 
model and a standard logistic regression model to predict the risk of ovarian mass 
malignancy. 

 
Population-

level C 

Population-
level 

calibration 
slope 

Population-
level 

calibration 
intercept 

Within-
center C 

Within-
center 

calibration 
slope 

(variance) 

Within-
center 

calibration 
intercept 
(variance) 

Marginal 0.90 0.95 0.62 0.88 
0.97 

(0.014) 

0.41 

(0.554) 

Average 
cluster effect 

0.90 0.91 0.70 0.88 
0.94 

(0.015) 

0.48 

(0.582) 

Marginalized 
from mixed 
effects 

0.90 0.99 0.60 0.88 
1.02 

(0.017) 

0.39 

(0.529) 

Conditional 0.91 0.88 0.29 0.88 
0.93 

(0.009) 

0.27 

(0.248) 

 

Table A4. Population-level and center-level discrimination and calibration statistics 
for the marginal predicted risks from a standard logistic regression model and for 
the predicted risks assuming an average random intercept, the marginalized 
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predicted risks and the conditional predicted risks from a mixed effects standard 
logistic regression model for ovarian tumor malignancy. 


