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2 Adriaens.

3 In this study, the performance of two monitoring algorithms to detect luteolysis using milk 

4 progesterone measurements was validated on a simulated dataset of realistic milk progesterone 

5 profiles. The synergistic control-based algorithm, PMASC, was able to identify luteolysis almost 

6 simultaneously with its occurrence. It was found to be more robust against missing samples and less 

7 dependent on the absolute milk progesterone values compared to a multiprocess Kalman filter 

8 combined with a fixed threshold. This research showed that implementation of PMASC could 

9 improve progesterone-based fertility monitoring on farm.
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26 ABSTRACT

27 Automated monitoring of fertility in dairy cows using milk progesterone is based on the accurate and 

28 timely identification of luteolysis. In this way, well-adapted insemination advice can be provided to 

29 the farmer to further optimize the fertility management. To properly evaluate and compare the 

30 performance of new and existing data-processing algorithms, a test dataset of progesterone time-

31 series that fully covers the desired variability in progesterone profiles is needed. Further, the data 

32 should be measured with a high frequency to allow rapid onset events, such as luteolysis, to be 

33 precisely determined. Collecting this type of data would require a lot of time, effort and budget. In 

34 the absence of such data, an alternative was developed using simulated progesterone profiles for 

35 multiple cows and lactations, in which the different fertility statuses were represented. To these, 

36 relevant variability in terms of cycle characteristics and measurement error was added, resulting in a 

37 large cost-efficient dataset of well-controlled but highly variable and farm-representative profiles. 

38 Besides the progesterone profiles, information on (the timing of) luteolysis was extracted from the 

39 modelling approach and used as a reference for the evaluation and comparison of the algorithms. In 

40 this study, two progesterone monitoring tools were compared: a multiprocess Kalman filter combined 

41 with a fixed threshold on the smoothed progesterone values to detect luteolysis, and a progesterone 

42 monitoring algorithm using synergistic control ‘PMASC’, which uses a mathematical model based 

43 on the luteal dynamics and a statistical control chart to detect luteolysis. The timing of the alerts and 

44 the robustness against missing values of both algorithms were investigated using two different 

45 sampling schemes: one sample per cow every eight hours versus one sample per day. The alerts for 

46 luteolysis of the PMASC algorithm were on average 20 hours earlier compared to the ones of the 

47 multiprocess Kalman filter, and their timing was less sensitive to missing values. This was shown by 

48 the fact that, when one sample per day was used, the Kalman filter gave its alerts on average 24 hours 

49 later, and the variability in timing of the alerts compared to simulated luteolysis increased with 22%. 
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50 Accordingly, we postulate that implementation of the PMASC system could improve the consistency 

51 of luteolysis detection on farm and lower the analysis costs compared to the current state of the art.

52 Key words. milk progesterone, fertility, dairy cow, simulation, monitoring tool

53

54 INTRODUCTION

55 Monitoring of milk progesterone (P4) in dairy cows allows identification of a cows’ reproduction 

56 status. Because P4 is fat-soluble and transfers from the blood into the milk, the concentration of P4 

57 in milk is 4 to 5 times higher than in blood. High P4 concentrations, produced by an active corpus 

58 luteum (CL) on the ovaries are associated with the luteal phase of the cycle or pregnancy, while low 

59 P4 concentrations are known to occur during the follicular phase of the P4 cycle and in the postpartum 

60 anestrus phase after calving. Luteolysis, under influence of the uterine PGF2α signal and defined as 

61 the regression of the CL, is accompanied with a steep and fast decrease in P4, seen as a drop in milk 

62 P4 from over 15 ng/mL to below 5 ng/mL in approximately 12 to 24 hours. This drop in P4 is 

63 necessary to allow for a LH surge that induces rupture of a pre-ovulatory follicle (ovulation). Estrus 

64 detection based on milk P4 dynamics therefore relies on the accurate and timely identification of 

65 luteolysis preceding ovulation. Since recently, it is possible to automatically measure milk P4 on 

66 farm, in which regular milk analyses clearly show the P4 dynamics during an estrous cycle (Adriaens 

67 et al., 2017; Bruinjé et al., 2017). The current state-of-the-art in P4-based fertility monitoring is to 

68 smooth the raw measured values with a multi-process Kalman filter (MPKF), after which a fixed 

69 threshold (T) to these smoothed values is applied to detect luteal activity and luteolysis (Friggens and 

70 Chagunda, 2005; Friggens et al., 2008). The MPKF hereby ensures that no alerts are triggered for a 

71 single low measurement. The set threshold’s value might depend on the P4 measurement technique 

72 or the calibration method, but is generally taken between 4 and 6 ng/mL (Friggens et al., 2008; Bruinjé 

73 et al., 2017). In contrast, the P4 monitoring algorithm using synergistic control (PMASC) enables the 

74 identification of fertility events on farm using the underlying physiological basis of the related P4 
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75 dynamics (Adriaens et al., 2017, 2018a). It employs a combination of mathematical functions to 

76 describe the development and regression of the CL and a statistical control chart for detection of 

77 luteolysis. Until now, this system was designed, optimized and evaluated on high-frequent P4 

78 measurements in which milk P4 was analyzed post-hoc via ELISA-testing in the lab. This did not yet 

79 represent on-farm measured data for which the measurement error is representative, the time series 

80 are sufficiently long and in which all the variability in P4 profiles on farm is included. Before the 

81 PMASC algorithm can be used on farm, it should therefore also be validated as such.

82 In the ideal scenario, this validation would be performed on a large dataset representative for on-

83 farm measurements and containing numerous milk P4 profiles with as much variability as possible, 

84 not only in fertility and profile characteristics (e.g. including follicular and luteal cysts, early and late 

85 pregnancy and embryonic losses within a lactation) but also in cycle shapes (e.g. height, baseline and 

86 slopes of each P4 cycle). The frequency of measurement should be as high as possible (e.g. once per 

87 milking) in order to be able to vary sampling schemes and test all possible scenarios. Moreover, to 

88 validate a luteolysis monitoring algorithm, the actual moment of luteolysis should ideally be known 

89 in order to use this as the ‘gold standard’. To our knowledge, and especially with respect to time of 

90 luteolysis measures, a dataset does not exist that meets all these criteria.

91 Alternatively, a convenient and more efficient way to obtain an appropriate dataset is through 

92 simulations, which allow generation of extensive datasets while avoiding analysis costs both in terms 

93 of measurements and time. Recently, a systemic white box model representing a virtual cow 

94 (GARUNS, Martin and Sauvant, 2010) coupled to a model describing the reproductive functioning 

95 (reproduction function model, RFM, Martin et al., 2018) was developed. This model allows 

96 simulation of virtual cows with diverse fertility characteristics, and provides scaled P4 profiles 

97 corresponding to the reproductive functioning of the simulated cows. The RFM outputs scaled P4 

98 profiles, meaning that the dynamics are representative for the fertility, but need to be adjusted to 

99 represent the targeted measurement technique and substrate (milk vs. blood), from which we know 
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100 the absolute values can vary. In this way, large datasets representing cows with sufficiently variable 

101 fertility characteristics, for which the number of estruses and timing of luteolyses is known, can be 

102 obtained.

103 In a previous validation study, PMASC was shown to be successful in correctly identifying 

104 luteolysis using milk P4 data measured on-farm with a lateral flow immunoassay (LFIA) (Adriaens 

105 et al., 2019). Nevertheless, as those P4 data originated from a commercial sensor system, the sampling 

106 frequency was set by the system software and the effect of the measurement frequency and timing, 

107 as well as the effect of missing values on the performance of PMASC could not be evaluated. 

108 Additionally, the timing of the alerts generated by PMASC and MPKF+T could not be verified as no 

109 reference information on the exact moment of luteolysis was available on those farms. Therefore, the 

110 objective of the current study was to compare the detection performance, robustness and consistency 

111 of alerts from PMASC and the MPKF+T method based on simulated realistic P4 profiles. 

112 Furthermore, this approach allowed for the evaluation of the effect of missing samples or a reduced 

113 sampling scheme during luteolysis. A good understanding of the performance of the P4 monitoring 

114 algorithm under variable sampling conditions and schemes is important to quantify the uncertainty in 

115 the prediction of the optimal insemination window.

116

117 MATERIALS AND METHODS

118 Simulating Progesterone Profiles

119 In a first step, 100 dairy cows were simulated using a systemic model for describing lifetime 

120 performance in dairy cows (GARUNS), developed by Martin et al. (Martin and Sauvant, 2010; Martin 

121 et al., 2013, 2018; Gaillard et al., 2016). The fertility characteristics of these cows were defined by a 

122 recently developed reproduction module coupled to GARUNS, the RFM, for which a schematic 

123 overview is shown in Figure A1. The general idea of the RFM is that a cow shifts continuously 

124 between 11 different fertility compartments, namely ‘prepubertal’, ‘anestrous’, ‘anovulatory’, ‘pre-
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125 ovulating’, ‘ovulating’, ‘post-ovulating’, ‘luteinizing’, ‘luteal’, ‘cystic’, ‘dysfunctional’ and 

126 ‘gestating’. The dynamics of these shifts are influenced by the lifetime performance model GARUNS, 

127 for instance by the rate of hormonal clearance and the energy balance. In turn, the RFM’ outputs 

128 ‘conception’ and ‘embryonic/fetal death’ manipulate the course of GARUNS, and thus the life of a 

129 cow, to trigger body weight changes, dry-off, initiation of a new lactation and so on. The competence 

130 stages ‘cystic’ and ‘dysfunctional’ are modifications of the original published work (Martin et al., 

131 2018) that allow for interruption of cyclicity in absence of P4 and a P4-producing (luteal) cyst-like 

132 structure, respectively. The first can be either sudden anestrus (no activity on the ovaries) or a 

133 follicular cyst (large, fluid filled follicular structure on the ovaries) (Ranasinghe et al., 2011; Jeengar 

134 et al., 2014). The latter results in intermediate P4 concentrations during the luteal phase as described 

135 by Braw-Tal et al., (2009), Peter et al., (2009) and Rosenberg, (2010). The parameters of the model 

136 (Table A1) were chosen to obtain cows with a large range of fertility characteristics, both in terms of 

137 length of the postpartum anestrus period, number and length of the cycles, occurrence of interrupted 

138 cyclicity due to follicular and luteal cysts and the interval to successful pregnancy. 

139 Each simulated cow had 6 to 7 lactations with different fertility features reflected in the scaled P4 

140 profiles (example in Figure 1, red). A subset of lactations was selected based on the variability in P4 

141 profile characteristics. For this, the profiles were successively sorted by postpartum anestrus length, 

142 number of cycles and incidence of interrupted cyclicity, after which each time the 50 most variable 

143 lactations were selected. This resulted in a dataset of 150 profiles (i.e. the consecutive dynamics over 

144 1 lactation) containing in total 731 scaled estrous cycles. The dataset characteristics are summarized 

145 in Table 1. 

146 The outputs of the GARUNS/RFM simulations are scaled P4 profiles (i.e. representing 

147 reproduction performance over a lactation) of cows reflecting realistic fertility characteristics and 

148 with a measurement frequency of 1 sample per 2 hours (Martin et al., 2018). However, as these 

149 profiles are scaled, they do not represent the variability at cycle level (de-scaling), nor do they contain 
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150 measurement noise associated with the P4 measurement in milk. Accordingly, two additional steps 

151 were required. The first step was to allow variability in the length and the relative P4 concentrations 

152 of the follicular and luteal phases. To this end, and to ensure maximal variability, the following 

153 properties of each cycle were adjusted according to a value randomly sampled from a uniform 

154 distribution, chosen according to the characteristics described by Meier et al. (2009a), Gorzecka et 

155 al. (2011) and Blavy et al. (2016): 

156 (1) The rate of decrease in P4 during luteolysis. In this step, the duration of the drop in P4 from

157 maximum to minimum concentration was adjusted to last between 0.5 and 3 days (Gorzecka

158 et al., 2011; Bruinjé et al., 2017). The uniform distribution used was thus U[0.5;3].

159 (2) Adjustment of cycle height and shape. Meier and colleagues reported three different types of

160 serum P4 profiles: ‘peaked’ profiles without a clear platform, ‘flat-top’ profiles with a

161 distinguishable platform of constant high P4 production, and ‘structured’ profiles in which

162 the P4 seems to rise in two phases (Meier et al., 2009b). To simulate these different types, the

163 maximum P4 value in cycle was adjusted with a certain percentage varying from 40 to 100%

164 (distribution U[0.4;1]) by either cutting off the data higher than this percentage or by

165 multiplying the whole cycle with this percentage. The first procedure results in a ‘flat top’

166 shaped cycle, the second in a ‘peaked’ cycle. A structured shape was not considered, because

167 in contrast to P4 in serum, this shape was not yet reported in milk.

168 (3) The last step was to adjust the length of the baseline of each cycle from 3 to 8 days (Friggens

169 and Chagunda, 2005; Blavy et al., 2016).

170 This procedure was repeated for each of the 731 cycles in the simulated dataset. An example of a (de-

171 )scaled milk P4 profile is shown in black in the upper panel of Figure 1. For each simulated cycle, 

172 the reference moment of luteolysis was defined as the time (days in milk) at which the P4 level 

173 decreased below 70% of the difference between maximum and minimum P4 concentration within 

174 that cycle, further referred to as REFLUT. This moment of REFLUT was chosen based on the 
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175 assumption that the P4 concentration has to be sufficiently low before the dominant follicle can 

176 become LH sensitive. However occasionally, high-P4 estruses exist and thus full clearance of the P4 

177 is not required (Friggens et al., 2008). 

178 The second step entailed the addition of measurement noise corresponding to the on-line LFIA 

179 technique (resulting profile shown in lower panel of Figure 1). The characteristics of this 

180 measurement noise were defined from an available dataset containing 10,958 on-line measured P4 

181 measurements collected at the Hooibeekhoeve in Geel, Belgium, which was described in (Adriaens 

182 et al., 2019). The P4 data in this LFIA dataset was smoothed using a second order Savitzky-Golay 

183 filter with a span of 7 measurements. Subsequently, the smoothed curve was subtracted from the data 

184 and the residuals were sorted based on their smoothed value, in which 28 classes of 1 ng/mL were 

185 created. For example, all measurements with a smoothed level between 0 and 1 ng/mL were assigned 

186 to the first class. Next, the standard deviation of the data in each class was calculated, and a second 

187 order polynomial was fitted to these standard deviation data, shown in Figure 2. This figure shows 

188 that the on-line measured P4 data is heteroscedastic, with less variability at the extremes than at 

189 intermediate values. The level of each simulated P4 measurement was obtained by multiplying the 

190 scaled simulated value with 28 ng/mL, while the second order polynomial fitted on the residuals was 

191 used to determine the standard deviation corresponding to this level. Next, a measurement was 

192 sampled from a normal distribution ~N(level, standard deviation). To introduce outliers in the dataset 

193 caused by e.g. a sampling error, one outlier on average each 8 days of measurements was sampled 

194 from a normal distribution with the maximum variance (i.e. a standard deviation of 5 ng/mL). This 

195 outlier represents e.g. milkings in which the sampling did not represent the whole milking (e.g. failed 

196 milkings or problems with the sampling unit). Accordingly, there was a chance of about 4% [= 1/ 

197 (8*3)] for each milking that the actual milk P4 value was replaced by an outlier sampled from a 

198 normal distribution with the maximum variance. A fixed milking interval of 8 hours (i.e. 3 samples 

199 per day) was chosen because the additional variability introduced by using realistic milking intervals 
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200 (6 – 20 hours) would not have different results (own unpublished data). An overview of the cycle 

201 characteristics of the resulting dataset is given in the right part of Table 1. 

202

203 Progesterone-based monitoring algorithm using synergistic control

204 The first algorithm tested in this paper, PMASC, consists of a mathematical model describing 

205 the luteal dynamics (Adriaens et al., 2017), and a statistical process control chart to detect luteolysis 

206 (Adriaens et al., 2018a). The mathematical model consists of two sigmoidal functions, a symmetrical 

207 Hill function to characterize the increase in P4 during luteal development, and a Gompertz function 

208 to describe the decrease during luteolysis. The control chart detects strong negative residuals from 

209 the predicted luteal P4 concentration, while taking the variability in P4 measurements into account. 

210 The decreasing function is only added after the detection of luteolysis, and can be used to calculate 

211 model-derived indicators that can be employed to inform the farmer on relevant actions to be taken 

212 (e.g. inseminations). It was shown before that the estimation of timing of luteolysis precedes the 

213 preovulatory LH surge by about 55 to 65 hours (Adriaens et al., 2018b). In this study, two outputs of 

214 PMASC were tested for their accuracy to relate to luteolysis. The first is the timing of the first 

215 measurement detected to be out-of-control (OOC), i.e. the exact time in hours that a first drop in P4 

216 lower than expected is detected, followed by the confirmation of luteolysis in the two successive 

217 measurements. The second output ‘TB85’ is an indicator calculated from the model as follows: the 

218 moment that the model describing the drop in P4 during luteolysis (i.e. the Gompertz function) 

219 decreases below 85% of the difference between maximum P4 model concentration minus the 

220 baseline; both calculated from the current P4 cycle characteristics (Adriaens et al., 2018b).

221

222 Multi-process Kalman filter

223 To benchmark PMASC against the current state-of-the-art for on-line P4-based fertility 

224 monitoring, the simulated P4 values were smoothed using a MPKF as described in  Friggens and 
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225 Chagunda, (2005); Friggens et al., (2008); Løvendahl and Chagunda, (2010). More specifically, 

226 posterior mean estimates for the raw P4 values (i.e. the smoothed values) were calculated based on a 

227 ‘mixture’ of 4 local linear dynamic models. These local linear models represent the 4 possible ‘states’ 

228 in which the P4 time-series can be: steady state, encountering a slope or a level change, or an outlier. 

229 The mixture is calculated using the likelihood to be in a certain state taken from a predefined prior, 

230 and the one-step-back and two-steps-back posterior probabilities. This means that the reaction of the 

231 MPKF on a slope or level change increases with the extent of evidence for this state. For example, 

232 when the P4 values rapidly decrease from luteal to follicular concentrations, a first low measurement 

233 will be seen as very unlikely (‘outlier’), and the smoothed value will only decrease by a small amount. 

234 However, when the next sample is low again, there is more ‘evidence’ that this is a slope change, and 

235 an increased probability will be given to the ‘slope’ or ‘level’ change models, resulting in a larger 

236 decrease in the smoothed value.

237 The framework for the MPKF was set up based on the information provided in Smith and West, 

238 (1983), West and Harrison, (1997), Korsgaard and Løvendahl, (2002) and Friggens et al., (2007). The 

239 parameters were estimated based on the raw and smoothed P4 values of the same P4 dataset described 

240 before and in (Adriaens et al., 2019). The mean squared difference between our implementation of 

241 the MPKF and the smoothed values obtained from the on-line device was 0.094 ng/mL which was 

242 considered to be sufficiently low to compare results and derive relevant conclusions.

243  To provide a decision on when luteolysis has happened, the smoothed P4 values are combined 

244 with a fixed threshold to extract information from the time series. The threshold currently considered 

245 reasonable for estrus detection alerts based on milk P4 lies in between 4 and 6 ng/mL, and therefore 

246 in this study was taken 5 ng/mL (Friggens et al., 2008; Bruinjé et al., 2017). The MPKF+T algorithm 

247 gave an estrus alert when the smoothed value undercut the threshold value for the first time having 

248 previously exceeded this threshold value. To avoid multiple alerts within the same follicular period, 

249 a minimum time-interval of 5 days between two alerts was applied. 
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250 Once initiated and trained, this method does not need adjustments nor tuning to detect luteolysis. 

251 However, this user-friendly approach is at the cost of not including between-cow variation in 

252 responsiveness to P4. Moreover, the MPKF results in a time-lag between actual and detected 

253 luteolysis which is strongly dependent on luteolysis speed and the absolute P4 level measured 

254 (Friggens and Chagunda, 2005). A solution for this can be the implementation of a smart sampling 

255 scheme in which more samples are taken during the expected moment of luteolysis (e.g. from 16 days 

256 after the previous luteolysis on) and the calibration of the device to favor discrimination between high 

257 and low values.

258

259 Detection performance

260 The simulated milk P4 dataset was analyzed using both algorithms (PMASC and MPKF+T) using 

261 2 different sampling schemes. In the first sampling scheme, a milk P4 measurement was taken at each 

262 simulated milking (i.e. 3 times a day, sampling scheme ‘ALL’). For the second, only 1 sample per 

263 day (a i.e. 24h interval between samples) was provided to the algorithms (sampling scheme ‘1D’), 

264 which corresponded to a sample or data reduction of 66%. The latter mimics the effect of missing 

265 samples during luteolysis or a sampling scheme in which only 1 sample is taken per day during 

266 luteolysis to minimize the analysis costs. This is still a very high sampling rate, especially during the 

267 growth phase of the CL which is less of interest. Nevertheless, it gives an indication of what the 

268 performance can be with a sampling rate of only 1 sample per day in the period of expected luteolysis, 

269 while previously described studies sample once per milking in that period (Bruinjé et al., 2017). Next, 

270 the number and timing of simulated luteolyses was compared with the number of alerts given by each 

271 algorithm, and based hereon, the sensitivity, precision, and false negative rate (FNR) were calculated 

272 as follows (Eq. 1 to 3):

273 (Eq. 1)𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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274 (Eq. 2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

275 (Eq. 3)𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑁𝑅) =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

276 With TP being the true positives, i.e. the times PMASC or MPKF+T gave a luteolysis alert within a 

277 window of 2 days before (i.e. 6 samples for the ALL, and 2 samples for the 1D sampling scheme) to 

278 4 days after (i.e. 12 samples for ALL and 4 samples for the 1D sampling scheme) a luteolysis was 

279 simulated (REFLUT). This window was chosen based on its practical relevance: detection later than 4 

280 days would imply that ovulation had occurred by the time of detection, and the alert would be of no 

281 relevance for insemination (Roelofs, 2005; Adriaens et al., 2018b). False positives (FP) were alerts 

282 given by an algorithm which were not associated with a REFLUT. The false negatives (FN) were 

283 defined as cases where no alert was given at all or it was given later than 4 days after REFLUT. For 

284 this study, we chose not to include the specificity for a combination of reasons: (1) the specificity of 

285 the algorithms in this study is not fixed, unambiguously defined, but dependent on both the sampling 

286 rate and the window in which alerts are considered ‘true’ or ‘false’; (2) the specificity is not a measure 

287 where the farmer can do something with, as it is generally accepted that sensor systems should output 

288 as much as possible ‘farmers’ actions’, rather than raw data. Both concepts are further clarified in 

289 Hogeveen et al., (2010).  

290

291 Timing of the Alerts and Consistency and Robustness against Missing Samples

292 Besides sensitivity and accuracy measures, also the timing and variability in timing of the 

293 luteolysis alerts (i.e. P4 decrease) are of interest for an on-farm monitoring system. The first aspect, 

294 timing of the alert, is important because early alerts allow for correct planning of the insemination 

295 moment in order to achieve the highest chance of successful conception (Roelofs, 2005). The second 

296 aspect, variability in timing, is mainly of importance when a fixed insemination advice is coupled to 

297 the alerts. To this end, both the timing of the alerts and their variability compared to REFLUT were 
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298 evaluated for both sampling schemes. For PMASC, the first out-of-control measurement as well as 

299 the model-based indicator TB85 were included. The latter is calculated as the moment the decreasing 

300 Gompertz function reaches 85% of the difference between the between maximum and baseline P4 

301 value of the model for that cycle, and thus takes the absolute milk P4 values of a cycle into account. 

302 This was shown previously to be the most consistent model-based decision criterion in relation to the 

303 LH surge (Adriaens et al., 2018b). Accordingly, 6 different groups were obtained, 3 for each sampling 

304 scheme: (1) the difference between REFLUT and the first out-of-control measurement detected by 

305 PMASC, further referred to as OOCALL and OOC1D respectively; (2) the difference between REFLUT 

306 and TB85, referred to as TB85ALL and TB851D; and (3) the difference between REFLUT and the timing 

307 of the milking that MPKF+T generated an alert, further indicated as MPKF+TALL and MPKF+T1D for 

308 each of the sampling schemes, respectively.

309 Because of the unequal variances between the 6 different groups, we could not perform normal 

310 analysis of variance to compare their means. Therefore, the Wilcoxon Signed Rank Test was used to 

311 assess differences in median timing of the alerts, and the Brown-Forsythe test was used to investigate 

312 differences in variability. The latter tests the mean absolute difference from the median, which makes 

313 it robust for non-normality. However, because multiple comparison tests are not available for these 

314 statistical tests, it was decided to test each group against each other group in single pairwise 

315 comparisons. To avoid capitalization of chance due to multiple tests, a Bonferroni-correction on the 

316 significance level α=0.05 was applied by dividing it by the number of tests run, being 15 (each of the 

317 6 groups compared to the 5 other groups). Differences were thus considered significant if the p-value 

318 was below 0.05/15 = 0.0033. 

319

320 RESULTS AND DISCUSSION

321 Simulated data
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322 The simulated dataset contained 150 milk P4 profiles and 731 individual cycles. Eighty-two 

323 cycles had a prolonged follicular phase (≥ 9 days), 53 cycles had a prolonged luteal phase (≥ 17 days) 

324 and 17 cycles had both. The average cycle length was 23.6 ± 7.6 days (mean ± SD) when all cycles 

325 were included, and 20.6 ± 1.9 days when cycles with prolonged phases were excluded. The average 

326 length of the follicular phase was 4.5 ± 1.7 days and the average duration of the P4 drop during 

327 luteolysis was 1.8 ± 0.7 days. The average baseline and maximum P4 concentrations were 2.1 ± 0.9 

328 ng/mL and 18.8 ± 5.2 ng/mL, respectively. The characteristics of these profiles correspond to those 

329 obtained in a real on-farm setting and are in line with reported characteristics in the literature (Blavy 

330 et al., 2016). As such, the described methodology is a valuable way to generate large datasets while 

331 avoiding measurement costs and controlling both fertility and cycle characteristics while having a 

332 more precise reference for luteolysis. This study included in total 731 simulated luteolyses. 

333 Technically, simulating many more (e.g. a million) cycles was possible, but because of computational 

334 limitations, this current size was considered large enough number to show all possible difference 

335 between the groups (MPKF/PMASC and the 2 sampling schemes). 

336

337

338 Detection performance

339 In Table 2, the detection performance statistics for PMASC and MPKF+T are summarized for 

340 the different sampling schemes. When one measurement per milking was considered, PMASC and 

341 MPKF+T both had high sensitivities of 99.2% and 98.6%, respectively. For PMASC, also the 

342 precision of the alerts was high (95.3%), with only 4.7% of the 766 alerts being FP. With 23.0% FP 

343 alerts, the MPKF+T algorithm was more sensitive to variations in the data. More specifically, these 

344 false positive alerts can be classified as (1) outliers in the follicular phase (respectively 40 and 34% 

345 of the FP for 1D and ALL); (2) coincidentally successive measurements below the threshold, 

346 triggering the MPKF to low levels (respectively 43 and 49% of the FP for 1D and ALL);  (3) cycles 



347 with intermediate maximal P4 concentration varying close to the threshold (17% of the FP for both 

348 1D and ALL), which is often the case during e.g. luteal cysts (Yimer et al., 2018). To solve the first 

349 problem, an additional requirement in the MPKF+T model was that P4 had been above 15 ng/mL 

350 since the preceding estrus. The latter two situations are associated with the dependency of MPKF+T 

351 on the absolute measured P4 values, and are therefore not easily solved from a detection perspective. 

352 The MPKF+T of Friggens and Chagunda, (2005) gives an indication of the ‘goodness’ of the shape 

353 of the preceding cycle as information to aid the farmer in deciding whether to inseminate, which 

354 effectively flags these FPs (Friggens et al., 2008). 

355 Reducing the sampling frequency to one sample per day decreases the sensitivity for estrus 

356 detection of PMASC with 0.3% to 98.9%, and of MPKF+T with 2.2% to 96.4% (Table 2). The 

357 number of false detections were halved to 2.6% and 12.7%, respectively for PMASC and MPKF+T 

358 compared to the maximal sampling scheme, mainly because the number of outliers and coincidentally 

359 successive low values decreased. Correspondingly, the precision of MPKF+T increased with 10.3%. 

360 This shows the sensitivity of MPKF+T to the actual entered data and their absolute values. For 

361 PMASC, the FNR was very similar to that for the ‘ALL’ sampling scheme (1.1% and 0.8% 

362 respectively for ‘1D’ and ‘ALL’), which shows that the algorithm can work with less samples, as also 

363 presented in Adriaens et al., (2019). The MPKF+T seems to be more sensitive to this as the FNR 

364 increased from 1.4 to 3.6% when using less samples. The FN cases can be attributed to high-P4 

365 estruses, in which samples close to the threshold were selected by coincidence. As a result, the 

366 smoothed values do not cross the threshold, or do not cross it in time (within a window of 4 days after 

367 simulated luteolysis). This phenomenon also shows the dependency of the MPKF+T on the actual 

368 absolute values. For example, when the P4 concentration drops significantly, e.g. from 25 ng/mL to 

369 4.9 ng/mL, the MPKF tends to be conservative and will not drop to a value lower than the thresholds. 

370 Accordingly, at least 1 additional sample with a low P4 concentration has to be taken to trigger an 

371 alert. This time lag thereby ensures that real outliers do not immediately trigger an alert, which is 
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372 important to guard the farmers’ trust. The advantage of PMASC is that its control limits are 

373 independent of the exact raw P4 values measured, and that the average value during the luteal phase 

374 is indirectly taken into account to monitor the drop during luteolysis. A similar observation was made 

375 by Friggens et al., (2008) when evaluating the luteolysis detection based on the model and algorithm 

376 described in Friggens and Chagunda, (2005). Although the authors started with a fixed threshold of 

377 4 ng/mL, they had to implement another threshold of 6 ng/mL in order to detect high P4 estruses 

378 (Friggens et al., 2008). Because of the quite large measurement error for determining P4 in milk, it is 

379 not yet known whether the differences in P4 concentrations during estrus (and during the luteal 

380 phases) are due to inaccurate measurement and calibration methods, or due to real elevated P4 

381 concentrations, e.g. due to increased P4 production by the adrenal cortex. When an improved P4 

382 detection method becomes available, the inclusion of other information (e.g. health status, parity, fat 

383 content of the milk) might become possible and might improve the detection algorithms, but to date 

384 this is not yet available. 

385 We did not test detection performance with other, more intelligent sampling schemes, because 

386 this was considered outside the scope of this study. First of all, other regular sampling schemes (e.g. 

387 1 sample per 2 days) are irrelevant as detection would likely be too late for timely insemination, even 

388 if a follicular phase was detected. More specifically, PMASC was designed not just to ‘detect’, but 

389 also to ‘timely detect’ estruses in order to increase the chance for successful insemination. 

390

391 Timing of the Alerts: Variability and Robustness against Missing Samples

392 In Figure 3, the results of the timing of the alerts using all samples and one sample per day 

393 compared to REFLUT are presented. The Wilcoxon signed rank test showed that not all medians are 

394 equal (p < 0.001), which can also be seen in Figure 3. Using all samples, the median difference 

395 between REFLUT and the alerts generated by PMASC (TB85 and OOC) was close to 0, and their 

396 individual comparison test had a p-value larger than 0.44. More concretely, a median of zero for the 
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397 OOC group means that the first indication of luteolysis (i.e. first sample out-of-control) is obtained 

398 almost simultaneously with the actual luteolysis REFLUT. This ‘early’ first indication allows to 

399 estimate the moment of luteolysis precisely, and has two large advantages: (1) it allows to organize 

400 the insemination at the best moment; and (2) it allows to wait for additional proof of real estrus or 

401 luteolysis in case of doubt, either by taking additional P4 samples, or by checking for external estrous 

402 symptoms. The latter can be of added value for example when farmers are skeptical about the 

403 reliability of new technologies. As expected, the most consistent insemination advice will be derived 

404 from a model-based indicator as can be calculated from PMASC, which allows determination of the 

405 moment of luteolysis independently of the sampling rate (when comparing 3 versus 1 sample per 24 

406 hours). This paves the way to provide more consistent information to the farmer.

407 For the OOC1D group (first out-of-control measurement detected by PMASC for the one-sample-

408 per day scheme), the first indication of estrus is obtained on average 10 hours later (significantly 

409 different from all other groups, p < 0.001). However, using TB851D, (i.e. the model-based indicator 

410 using the maximum and minimum model P4 value) estimating the actual moment of luteolysis in a 

411 consistent way close to REFLUT remains possible. The alerts of MPFK+TALL and MPKF+T1D came 

412 respectively on average 18 and 48 hours after REFLUT, which also were significantly different from 

413 all other medians (p < 0.001). Accordingly, the MPKF+T algorithm has a time lag in detection of 

414 about 2 milkings when no samples are missed during luteolysis, while this lag increases to 

415 approximately 2 days when only one sample per day is taken. As a result, it becomes difficult to 

416 provide the farmer with a reliable estimation of optimal insemination time, which is not only 

417 dependent on the number of samples missed, but also on how fast P4 decreased (and thus, the MPKF 

418 reacts), the moment of luteolysis compared to the timing of the milkings and milking intervals. 

419 Table 3 shows that the Brown-Forsythe test for differences in variability in the interval alert to 

420 REFLUT was highly significant. The variability for TB85ALL was the smallest, with a standard 

421 deviation respectively 35.3% and 15.8% smaller than OOCALL and MPKF+TALL. The OOCALL and 
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422 MPKF+TALL groups had an equal variability (p-value = 0.017 > 0.0033). Furthermore, individual 

423 comparisons pointed out that the variability does not differ between the OOC and TB85 group when 

424 one sample per day was considered (p-value = 0.047 > 0.0033). In contrast, we see that missing 

425 samples during luteolysis have a larger effect on the consistency of alerts given by the MPKF+T 

426 algorithm than on those obtained from OOC and TB85, resulting in a significantly larger variability 

427 than all other groups (p-value < 0.0033). We can therefore conclude that OOC and TB85 are less 

428 sensitive to missing samples both in terms of median timing of alerts and in terms of variability, 

429 making it a more robust algorithm for missing samples during luteolysis compared to MPKF+T. 

430 Part of the variability within the groups is caused by the timing of the milkings relative to the P4 

431 profiles. For example, in this study a sample could have been taken in a window of 0 to 8 hours after 

432 REFLUT. Accordingly, the effect of the timing of milking relative to REFLUT seems to overrule the 

433 effect of the algorithm for the scheme in which milk P4 is measured every 8 hours. Although taking 

434 only one sample per day might not seem a ‘random’ way to mimic missing samples during luteolysis, 

435 the variability in luteolysis length and the independency of the P4 profiles to the simulated time of 

436 REFLUT ensures that the timing of missed samples compared to luteolysis was variable. In a real on-

437 farm setting, it is more probable that not in all cows samples are skipped, which would make the 

438 variability in alerts compared to real luteolysis for OOC and MPKF+T even larger (see also Adriaens 

439 et al., 2019). Furthermore, based on the results of this study, we can assume that the TB85 indicator 

440 remains consistent in its estimation of the timing luteolysis, independent of the sampling scheme or 

441 interval, which supports its use for monitoring purposes. A robust indicator is important when a fixed 

442 rule is used for decision making. 

443 CONCLUSIONS

444 The detection performance of PMASC and the MPKF+T in terms of sensitivity, precision, false 

445 negative rate, false detection rate, robustness for sampling frequency and missing samples during 

446 luteolysis were studied on a simulated dataset of 150 highly variable P4 profiles containing 731 
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447 luteolyses preceding estrus. Both PMASC and MPKF+T had a high luteolysis detection rate, but 

448 MPKF+T was more sensitive to the absolute values of the P4 data, shown by its higher false detection 

449 rate. This illustrates the value and limitations of both algorithms for on-line fertility monitoring. Using 

450 a PMASC-based model indicator taking into account the luteal and follicular P4 concentrations, a 

451 more robust estimation of the timing of luteolysis was obtained, which was less sensitive to missing 

452 values compared to the current state-of-the-art MPKF+T both in terms of detection rate and 

453 variability. Accordingly, PMASC has shown its potential to improve consistency and robustness of 

454 progesterone-based, cost-effective detection of luteolysis on farm.  

455
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551 Figure 1 Upper panel: example of a simulated progesterone (P4) profile before (RFM, red) and after 

552 adding variability in profile characteristics (RFMC, black). Lower panel: resulting simulated P4 

553 profile after descaling and adding measurement noise.

554

555 Figure 2 Distribution of measurement noise for when progesterone (P4) is determined via an on-farm 

556 lateral flow immune assay (LFIA) device. This device is optimized to discriminate between high and 

557 low P4 values and accordingly, has a low standard deviation at the extremes. The blue bars represent 

558 the standard deviation per smoothed progesterone concentration bin (e.g. 1-2 ng/mL), calculated from 

559 a real on-farm measured dataset and smoothed using a second order Savitzky-Golay filter with a span 

560 of 7 measurements. The red thick line is the fitted second order polynomial fitted on these standard 

561 deviations, and used to determine the simulated measurement noise for each progesterone 

562 measurement.

563

564 Figure 3 Boxplots for the differences between alerts given by the 2 algorithms included in this study 

565 (progesterone monitoring algorithm using synergistic control, PMASC and a multiprocess Kalman 

566 filter plus threshold, MPKF+T) and the simulated luteolysis (reference timing of luteolysis, REFLUT). 

567 A difference of zero means that luteolysis is detected on the moment it is simulated, which is seen for 

568 the first out-of-control sample of PMASC using all samples (first out-of-control, milk progesterone 

569 simulated 3 times a day, OOCALL) and for alerts based on the model-derived indicator TB85, even 

570 when samples during luteolysis are missed (TB85ALL and TB851D). ‘1D’ hereby means that only 1 

571 sample per day was taken, also during the period in which luteolysis occurred. 

572

573
574
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575 Adriaens, Figure 1
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577 Adriaens, Figure 2

578
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579 Adriaens, Figure 3
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581 Adriaens, Table 1. Progesterone (P4) profile and cycle characteristics of the simulated cows 

Profile characteristics Cycle characteristics
Min1 Max2 Mean SD3 Total Min1 Max2 Mean SD3

Length postpartum anestrus 14.9 59.9 29.9 6.2
No. of cycles 2 9 4.9 1.3 731
No. of P44 measurements 281 843 518 106 77707
No. of prolonged phases5 0 4 169
Cycle length6 (days) 15 56 20.6 1.9
Baseline length (days) 2 8 4.5 1.7
Luteolysis length (days) 0.5 3 1.9 0.7
P44 concentration (ng/mL) 0.0 28.0 12.9 9.7

582 1 minimum 
583 2 maximum
584 3 standard deviation
585 4 progesterone (P4)
586 5 a prolonged cycle phase represents the occurrence of a luteal or follicular cyst, in which respectively the luteal or follicular phase of 
587 cycle is prolonged 
588 6

 cycles with prolonged phases excluded
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589 Adriaens, Table 2. Number of estruses detected by PMASC and MPKF+T, and the resulting 

590 sensitivity, precision and false negative rate (FNR) when the progesterone time series consisted of 3 

591 samples per day (ALL) or 1 sample per day (‘1D’) 

PMASC8 MPKF+T9

ALL6 1D7 ALL 1D
Simulated 731 731 731 731
P1 761 742 937 808
TP2 725 723 721 704
FP3 36 19 216 104
FN4 6 8 10 27
Sensitivity (%) 99.2 98.9 98.6 96.3
Precision (%) 95.3 97.4 76.9 87.1
FNR5 (%) 0.8 1.1 1.4 3.7

592 1 P, positives. This is the total number of alerts for estrus 
593 2 TP, true positives. These are the alerts within the window of 2 days before and 4 days after a simulated luteolysis. 
594 3 false positives, FP. These are the alerts not associated with a simulated luteolysis
595 4 False negatives, FN. These are simulated luteolyses not associated with an alert within the window of 2 days before and 4 days after 
596 a simulated luteolysis
597 5 FNR, false negative rate 
598 6 ALL: dataset all contains all samples, corresponding to 1 measurement each 8 hours 
599 7 dataset 1D contains one sample per day
600 8 PMASC: Progesterone Monitoring Algorithm using Synergistic Control
601 9 MPKF+T: algorithm based on smoothed progesterone values using a multiprocess Kalman filter going below a fixed threshold of 5 
602 ng/mL
603
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604 Adriaens, Table 3. Overview of mean, standard deviation and the outcome of the Brown-Forsythe 

605 test for equal absolute deviations of the median for all comparisons for the different algorithms (the 

606 progesterone monitoring algorithm using synergistic control, PMSAC and the multiprocess Kalman 

607 filter + a fixed threshold, MPKF+T) and sampling schemes (ALL: three times a day sampling vs. 1D: 

608 once a day sampling).

No. of luteolysis Mean (h) SD1 (h)
REFLUT

2-OOCALL
3 686 -1.94 13.14

REFLUT-OOC1D
4 686 9.41 15.78

REFLUT-TB85ALL
5 686 -0.26 8.50

REFLUT-TB851D
6 686 -1.44 14.61

REFLUT-MPKF+TALL
7 686 17.20 10.10

REFLUT-MPKF+T1D
8 686 48.32 18.03

Pooled 4116 11.90 13.75

Brown-Forsythe statistic 64.08
Degrees of freedom9 5 , 4110
p-value <0.001

609 1 Standard deviation
610 2 REFLUT: the timing of the simulated moment of luteolysis for each cycle, taken as the reference for the comparisons 
611 3 REFLUT- OOCALL: the difference between REFLUT and the timing of the first out-of-control sample detected by the progesterone 
612 monitoring algorithm using synergistic control, (PMSAC) when the ALL sampling scheme was used (1 sample per 8 hours, i.e. 3 
613 samples per day)
614 4 REFLUT-OOC1D: the difference between REFLUT and the timing of the first out-of-control sample detected by PMSAC when the 1D 
615 sampling scheme was used (1 sample per day)
616 5 REFLUT-TB85ALL: the difference between REFLUT and the timing of the moment when the progesterone model during the decreasing 
617 in progesterone during luteolysis as modeled by PMSAC goes below 85% of the difference between the progesterone baseline and 
618 maximal model value, in the case of the ALL sampling scheme (3 samples per day)
619 6 REFLUT-TB851D: the difference between REFLUT and the timing of the moment when the progesterone model during the decreasing 
620 in progesterone during luteolysis as modeled by PMSAC goes below 85% of the difference between the progesterone baseline and 
621 maximal model value, when using the 1D sampling scheme (1 sample per day)
622 7 REFLUT-MPKF+TALL: the difference between REFLUT and the timing when the smoothed progesterone value calculated using the 
623 multiprocess Kalman filter (MPKF) crosses the threshold value of 5 ng/mL when using the ALL sampling scheme
624 8 REFLUT- MPKF+T1D: the difference between REFLUT and the timing when the smoothed progesterone value calculated using the 
625 multiprocess Kalman filter (MPKF) crosses the threshold value of 5 ng/mL when using the 1D sampling scheme
626 9 the Brown-Forsythe test statistic has an F-distribution with ‘the number of groups minus 1’ numerator degrees of freedom, and ‘pooled 
627 number of samples minus number of groups’ denominator degrees of freedom
628
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630

631 Figure A1 Model structure of the Reproduction Function Model and the adaptations made to allow 

632 for simulation of interrupted cyclicity by prolonged luteal (DYSF and PRLP, indicated in blue) and 

633 follicular phases (CYST, indicated in red), adapted from Martin et al., (2018). 
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634 Adriaens, Figure A1

635



636 Adriaens, Table A1. Parameters for the reproduction function model (RFM) model as described in 

637 Martin et al., (2018). The variability in genetic scaling parameters allows to alter individual 

638 performance of cows at the level of GARUNS. To allow for additional variability in fertility 

639 performance of the simulated cows, two sets of parameters (set 1 and set 2) were entered in the model. 

640 Using this table, new progesterone profiles can be simulated in a similar way as done in this study. 

641
Parameter name RFM1 Set 1 Set 2 Effect
h_CYCL2 -7.0 -15.0 Adjust postpartum anestrus length
Risk_CYST3 1.6 2.0 Incidence of follicular cysts
Risk_DYSF4 1.6 2.0 Incidence of luteal dysfunction 
EMO5 2.1 2.5 Incidence early embryonic mortality (conception failure)
GSP_cv6 0.05 0.05 Variability between cows & characteristics (genetic scaling parameters)
RFM_h_impregnation[4]7 0.10 0.10 Ensure restart of cyclicity after R_CYST 
RFM_k098 0.10 0.10 Ensure restart of cyclicity after R_CYST
RFM_k109 0.12 0.12 Duration follicular cyst / ovarian anestrus
RFM_k1110 0.12 0.12 Duration follicular cyst / ovarian anestrus
RFM_k1311 0.3 0.3 Duration luteal dysfunction
RFM_EMO[2]12 4.6 4.6 Avoid occurrence late embryonic mortality
RFM_EMO[3]13 8.0 8.0 Avoid occurrence fetal death

642 1 RFM: reproduction function model, the model used for simulating progesterone profiles in this study
643 2 Parameter determining the length of the postpartum anestrus phase. One of the 4 parameters varied for both simulations (set 1 and set 
644 2)
645 3 Parameter determining the incidence of follicular cysts. One of the 4 parameters varied for both simulations (set 1 and set 2)
646 4 Parameter determining the incidence of luteal dysfunction. One of the 4 parameters varied for both simulations (set 1 and set 2)
647 5 Parameter determining the incidence of early embryonic mortality. One of the 4 parameters varied for both simulations (set 1 and set 
648 2)
649 6 GSP_cv: coefficient of variation of the genetic scaling parameters. This parameter determines how much difference there is between 
650 simulated cows, and is indicative for the absolute values of some of the other outcomes (milk production, body weight) of the GARUNS 
651 model
652 7 One of the 2 parameters that ensure cyclicity restarts in the model after an interruption due to a prolonged follicular period (low 
653 progesterone)
654 8 One of the 2 parameters that ensure cyclicity restarts in the model after an interruption due to a prolonged follicular period (low 
655 progesterone)
656 9 One of the 2 parameters of the RFM model influencing the duration of follicular problems, reflected in prolonged follicular phases 
657 of the progesterone cycle (low progesterone)
658 10 One of the 2 parameters of the RFM model influencing the duration of follicular problems, reflected in prolonged follicular phases 
659 of the progesterone cycle (low progesterone)
660 11 Parameter influencing the duration of luteal dysfunction, reflected in prolonged luteal phases of the progesterone cycle (high 
661 progesterone)
662 12 Parameter determining when and how often late embryonic mortality occurs
663 13 Parameter determining when and how often fetal death occurs
664

VALIDATION OF LUTEOLYSIS MONITORING TOOL
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