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Abstract

The Periodic Vehicle Routing Problem is a generalization of the classical capacitated

vehicle routing problem in which routes are determined for a planning horizon of several

days. Each customer has an associated set of allowable visit schedules, and the objective of

the problem is to design a set of minimum cost routes that give service to all the customers

respecting their visit requirements. In this paper we study a new variant of this problem

in which we impose that each customer should be served by the same vehicle/driver at all

visits. We call this problem the Periodic Vehicle Routing Problem with Driver Consistency.

We present an integer linear programming formulation for the problem and derive several

families of valid inequalities. We solve it using an exact branch-and-cut algorithm, and show

computational results on a wide range of randomly generated instances.

Keywords: routing, periodic vehicle routing, driver consistency, valid inequalities, branch-and-

cut

1 Introduction

The Periodic Vehicle Routing Problem (PRVP), introduced by Beltrami and Bodin [6], is a

generalization of the classical capacitated vehicle routing problem (VRP) in which routes are

determined for a planning horizon of multiple periods with some customers demanding multiple

visits. There are several possible schedules for visiting each customer. For instance, if we

are making a plan for Monday to Friday and if a customer needs to be visited twice with

∗Corresponding author

1



at least one day and at most two days between consecutive visits, then Monday - Wednesday,

Monday - Thursday, Tuesday - Thursday, Tuesday - Friday, and Wednesday - Friday are possible

visit schedules for this customer. The problem is to decide on the schedules and the routes

simultaneously to minimize the total transportation cost.

In [6], this problem has been studied for municipal waste collection and a heuristic approach

is proposed. Since this seminal work, many heuristic approaches have been proposed to solve

the PVRP and its variants. See, for instance, [11, 12, 15, 16, 19, 25, 36, 37, 40]. On the other

hand, exact methods for the PVRP and its variants are rare. Mourgaya and Vanderbeck [33]

propose a column generation for the problem of determining the visit schedules and customer

assignments to vehicles without considering the sequencing of customers on routes. Butler et al.

[9] present a branch-and-cut algorithm for a two-period travelling salesman problem. Francis et

al. [17] study a variant in which frequencies of visits are also decisions. They propose a solution

approach based on Lagrangian relaxation and branch-and-bound. Baldacci et al. [3] propose an

exact algorithm for the PVRP that solves a route based formulation by first computing a near

optimal dual solution and then using the dual information to restrict the set of routes without

losing the optimal solution.

Among the applications of the PVRP are the planning of deliveries of hospital linen to clinics

[5], visits for preventive maintenance or quality assurance [7, 23], delivery of blood products to

hospitals [24], visits to suppliers or customers in a supply chain [1, 13, 20, 21, 29, 35], visits to

collect recyclable materials and waste [4, 8, 14, 34, 38, 39, 41], routes for lottery sales [26], or

visits to students or patients at home [2, 32].

For more details on the applications, solution methods and variants of the PVRP, we refer

the reader to the surveys by Campbell and Wilson [10], and by Francis et al. [18].

Groër et al. [22] introduce the Consistent VRP, in which each customer should be visited

by the same vehicle and around the same time of the day. Different from the PVRP, there is a

unique visit schedule for each customer and it is known in advance. Zhu et al. [42] and Luo et al.

[31] study a multi period vehicle routing problem with time windows in which a customer can

be served by at most a certain number of different vehicles over the planning horizon. Kovacs

et al. [27] also study a generalization which allows a certain number of vehicles to visit a node

and penalizes the time inconsistency in the objective function instead of enforcing it through

constraints.

In this study, we introduce the Periodic Vehicle Routing Problem with Driver Consistency

(PVRP-DC), in which we restrict the PVRP by imposing that each customer should be visited

by the same vehicle at all visits. This problem is motivated by an application from a soft drinks
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company that collects the demand by visiting its customers regularly. The number of visits

to a customer per week is one, two or three depending on the sales volume, and all visits are

performed by the same employee. A similar problem is encountered in a delivery system where

vehicles visit retailers to take orders and deliver the items simultaneously. In this system the

drivers have knowledge about the demand at the retailers and decide on how to load their vehicles

with different items based on their forecasts. It is crucial that a retailer is visited by the same

driver at each visit for the learning of the driver. These are two examples from the industry

where driver consistency is required. A third industrial example is routing of merchandisers

who visit chain supermarkets to refill the empty shelves, to better display the products and

promotions. It is again critical that the same merchandiser visits the same supermarket as

the knowledge of the supermarket and the customer profile is very important. There are also

home care applications, like regular home visits by professional caregivers for elderly people or

people with special needs. The contact between the caregiver and the person visited is of critical

importance in these applications. In modeling these examples, we consider customers with unit

demand, as visits have more or less equal durations, and we limit the number of customers that

can be visited by a driver in a day to ensure quality of service.

An important issue to notice is that the consistency requirement really has an effect on the

solutions of the PVRP, as can be seen in Figures 1 and 2. These figures illustrate the optimal

solutions of the PVRP and the PVRP-DC on an instance with ten customers (nodes 1 to 10),

depot located at node 0, a time horizon of two periods or days, and two vehicles that can visit at

most four customers each. Customers 1, 2, 4, 5, 8 and 9 have to be visited both days. Customer

10 must be visited exclusively the first day, and customer 7 must be visited the second day only.

Customers 3 and 6 have to be visited once, either the first or the second day. The optimal

PVRP solution for this instance, depicted in Figure 1, has a cost equal to 688.64. To distinguish

the routes of the two vehicles they are represented by dashed or solid lines. We can see that

customer 1 is visited by a vehicle the first day, and by a different one the second day. If we

ask for driver consistency the optimal solution is the one depicted in Figure 2. In this solution

all customers are always visited by the same driver, though, as expected, this results in a cost

increase.

The PVRP-DC belongs to the class of consistent vehicle routing problems where the focus

is on driver consistency rather than visit time consistency. In this article our aim is to derive a

strong formulation and valid inequalities for PVRP-DC, and to use those results to propose an

exact solution approach to tackle the problem. We restrict our attention to the unit demands

case, since most motivating applications are based on delivering service rather than products.
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Figure 1: A PVRP solution example (cost = 688.64)
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Figure 2: A PVRP-DC solution example (cost = 697.95)

We want to study the effects of combining periodicity and driver consistency, this being the main

contribution of our work. Nevertheless, our model and valid inequalities can be easily extended

to the general demands case. The remainder of the paper is organized as follows. The problem

is formally defined and modeled in Section 2. In Section 3 we present several families of valid

inequalities to strengthen the linear programming (LP) relaxation of the model. We explain the

details of our branch-and-cut algorithm in Section 4. The computational results are presented

and discussed in Section 5. And finally, the paper ends with conclusions in Section 6.

2 MIP Formulation

In this section we give a formal definition of the PVRP-DC and present an integer programming

formulation.
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Let V = {0, 1, . . . , n} be a set of nodes, with node 0 corresponding to the depot and the

other nodes corresponding to customers. Let E = {e ⊂ V : |e| = 2} be the set of edges and

ce denote the transportation cost associated with edge e ∈ E. We consider a planning horizon

T = {1, . . . , τ} of τ periods. Each customer needs to be visited a certain number of times during

the planning horizon, always by the same vehicle. We define Pi to be the set of possible visit

schedules for customer i ∈ V \{0}. A homogenous fleet K = {1, . . . ,m} of m vehicles is available

at the depot, and each vehicle can visit between 2 and q customers in each period.

The aim of the PVRP-DC is to choose a visit schedule for each customer and to design

the routes for each period in order to minimize the total transportation cost over the planning

horizon.

We use the following binary decision variables to formulate the problem. We define zkip to be

1 if schedule p ∈ Pi is chosen to serve customer i ∈ V \ {0} and if all visits in that schedule are

done by vehicle k ∈ K, and 0 otherwise. We also define xtke to be 1 if edge e ∈ E is traversed by

vehicle k ∈ K in period t ∈ T and 0 otherwise, and ytk0 to be 1 if vehicle k ∈ K is used in period

t ∈ T and 0 otherwise. To simplify the notation, we let ytki =
∑

p∈Pi:t∈p z
k
ip for i ∈ V \{0}, t ∈ T

and k ∈ K. This variable is 1 if customer i is visited by vehicle k in period t and is 0 otherwise.

We use some additional notation. For S ⊆ V , let δ(S) = {e ∈ E : |S ∩ e| = 1}. If S = {i},

we write δ(i) instead of δ({i}). In addition, for a given subset of edges E′ ⊆ E, we define

xtk(E′) =
∑

e∈E′ x
tk
e .

The PVRP-DC can be modeled as follows:

min
∑
t∈T

∑
k∈K

∑
e∈E

cex
tk
e (1)

s.t.
∑
p∈Pi

∑
k∈K

zkip = 1 i ∈ V \ {0}, (2)

ytki =
∑

p∈Pi:t∈p
zkip i ∈ V \ {0}, k ∈ K, t ∈ T, (3)

xtk(δ(i)) = 2ytki i ∈ V, k ∈ K, t ∈ T, (4)

xtk(δ(S)) ≥ 2ytki S ⊆ V \ {0}, i ∈ S, k ∈ K, t ∈ T, (5)∑
i∈V \{0}

ytki ≤ qytk0 k ∈ K, t ∈ T, (6)

xtke ∈ {0, 1} e ∈ E, k ∈ K, t ∈ T, (7)

ytki ∈ {0, 1} i ∈ V, k ∈ K, t ∈ T, (8)

zkip ∈ {0, 1} i ∈ V \ {0}, p ∈ Pi, k ∈ K. (9)

The objective function (1) is to minimize the total routing cost. Constraints (2) ensure
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that each customer is serviced by one vehicle, and following one of its allowable visit schedules.

Variables y and z are related through constraints (3). Constraints (4) are the degree constraints

for the depot and the customers.

Constraints (5) ensure the connectivity of the vehicle routes. They state that if a customer

i ∈ S is visited by a vehicle k in period t, then the cut δ(S) must be crossed at least twice by

vehicle k in this time period. When S = V \ {0}, for any given i ∈ S constraints (5) can be

written as xtk(δ(0)) ≥ 2ytki , which becomes, using the degree equation (4) for the depot,

ytki ≤ ytk0 i ∈ V \ {0}, k ∈ K, t ∈ T. (10)

These inequalities avoid visiting customer i by vehicle k in period t if vehicle k is not used in

that period.

Constraints (6) are capacity constraints, and limit to at most q the number of customers

that a vehicle k can visit in a period t. They also avoid visiting a node by a vehicle k in period

t if this vehicle is not used in period t. Finally, constraints (7)-(9) are variable restrictions.

3 Valid inequalities

In this section we present several families of valid inequalities to strengthen the LP relaxation

of the PVRP-DC. The effectiveness of these inequalities will be discussed later, in the section

devoted to computational results. Let X be the set of feasible solutions of the model presented

above.

The first family of valid inequalities is commonly used in solving similar vehicle routing

problems; hence we present it without proof. The family is:

xtk0i ≤ ytki i ∈ V \ {0}, k ∈ K, t ∈ T. (11)

These inequalities ensure that, if an edge adjacent to the depot is traversed by vehicle k in

period t, then its other endpoint is visited by vehicle k in the same period t.

The second family is inspired on the generalized multistar inequalities (see Letchford et al.

[30]).

Proposition 1 Let S ⊆ V \ {0}, k ∈ K, and t ∈ T . The inequality

xtk(δ(S)) ≥ 2

∑
i∈S y

tk
i +

∑
i∈V \(S∪{0}) x

tk(E(i : S))

q
(12)

with E(i : S) = {e ∈ E : i ∈ e, |e ∩ S| 6= ∅} is a valid inequality for set X.
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Proof. The left hand side of inequality (12) is the number of times vehicle k enters and leaves

set S in period t. It is evident that 2
∑

i∈S y
tk
i /q is a lower bound for this number, since

∑
i∈S y

tk
i

is the number of customers in S that must be served by vehicle k in period t. But note that

this can be increased by also considering all customers served by k in period t that are visited

immediately before or after having visited a customer i ∈ S. Hence, (12) is valid. �

The next two families of valid inequalities are specifically derived for the PVRP-DC.

Proposition 2 Let T ′ ⊆ T , K ′ ⊆ K and S ⊆ V \ {0}. The inequality

∑
t∈T ′

∑
k∈K′

xtk(δ(S)) ≥ 2

⌈ |S|
q

⌉
−
∑
i∈S

∑
k∈K′

∑
p∈Pi:p∩T ′=∅

zkip −
∑
i∈S

∑
k∈K\K′

∑
p∈Pi

zkip

 (13)

is a valid inequality for set X.

Proof. This inequality is valid since the number of nodes of set S that are assigned to vehi-

cles in K ′ to be served during a period in T ′ is equal to |S| −
∑

i∈S
∑

k∈K′
∑

p∈Pi:p∩T ′=∅ z
k
ip −∑

i∈S
∑

k∈K\K′
∑

p∈Pi
zkip, i.e., the number of nodes in set S minus the number of nodes in S

that are served by a vehicle in set K ′ but not on any day in T ′ and the number of nodes in S

that are not asigned to vehicles in set K ′. Hence, in a feasible solution, we must have

∑
t∈T ′

∑
k∈K′

xtk(δ(S)) ≥ 2

⌈
|S| −

∑
i∈S
∑

k∈K′
∑

p∈Pi:p∩T ′=∅ z
k
ip −

∑
i∈S
∑

k∈K\K′
∑

p∈Pi
zkip

q

⌉
.

Clearly, the right-hand side of this inequality is greater than or equal to the right-hand side of

the inequality (13). �

Proposition 3 Let T ′ ⊆ T and S ⊆ V \ {0}. The inequality

∑
t∈T ′

∑
k∈K

xtk(δ(S)) ≥ 2

⌈∑
i∈S ηi(T

′)

q

⌉
(14)

where ηi(T
′) = minp∈Pi |T ′ ∩ p| for i ∈ S is a valid inequality for set X.

Proof. As
∑

t∈T ′
∑

k∈K y
tk
i ≥ ηi(T ′) for each i ∈ S and

∑
t∈T ′

∑
k∈K

xtk(δ(S)) ≥ 2

⌈∑
i∈S
∑

t∈T ′
∑

k∈K y
tk
i

q

⌉

is satisfied by every feasible solution, the inequality (14) is valid. �
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4 Branch-and-cut algorithm

We have devised a branch-and-cut algorithm to optimally solve the PVRP-DC. An algorithm of

this type combines a branch-and-bound method for exploring a decision tree, and a cutting-plane

method that computes lower bounds by solving LP relaxations improved by valid inequalities.

We describe next the main features of our algorithm.

4.1 Preprocessing

Before starting the branch-and-bound search we perform a preprocessing phase in order to reduce

the problem size and complexity.

4.1.1 Variable fixing

Some variables can be fixed to zero as follow. For each customer i ∈ V \ {0} and each period

t ∈ T we check whether t belongs to any p ∈ Pi or not. If the answer is negative, that is, if t

does not appear in any of the allowed visits schedules for customer i, then we set ytki = 0 for all

vehicles k ∈ K.

4.1.2 Symmetry breaking

The PVRP-DC has some inherent symmetries in its definition, and counting with rules to avoid

them is necessary to solve it efficiently We apply the following symmetry breaking strategy. For

each vehicle k ∈ {1, ..., |K| − 1}, we choose a customer ik ∈ V \ {0} and set
∑

p∈Pik
zk
′
ik,p

= 0 for

all vehicles k′ ∈ K such that k′ > k. This prevents ik to be assigned to any vehicle with index

larger than k. We choose ik as the still non-assigned customer with largest visit frequency.

4.2 Initialization

The first LP model solved at the root node of the branch-and-cut algorithm is the linear relax-

ation of the model (1)–(9), excluding the connectivity constraints (5), which are exponential in

number.

4.3 Cutting plane phase

Given a fractional solution (x∗, y∗, z∗) the separation routines for inequalities (10), (11), (5), (12),

(13), and (14) are applied, in this sequence, and only if no violated cuts of previous families

have been found (with the exception of the separation routine for (13), that is applied if no

violated cuts (12) have been found). Moreover, the violation of inequalities (12), (13), and (14)
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is checked only at the root node, and the number of cuts of each family added to the model at

each cutting plane iteration is limited to 100. These restrictions are set in order to improve the

general performance of the algorithm, both in terms of consumed memory and time.

Constraints (11) are separated exactly by simple enumeration. We next outline the separa-

tion procedures for the other families of inequalities.

4.3.1 Separation of inequalities (5)

The inequalities (5) involving set S = V \ {0} reduce to (10), and they can be separated by

complete enumeration. To separate the general connectivity constraints (5) we use an exact

polynomial procedure similar to the one used in Labbé et al. [28], inspired in the known sep-

aration algorithm of the subtour elimination constraints for the travelling salesman problem.

The procedure consists of solving max-fow/min-cut problems on appropriately defined support

graphs. To this end, for each given i ∈ V \ {0}, k ∈ K, and t ∈ T , we define a support graph

G′ = (V ′, E′) with V ′ = V and E′ = {e ∈ E : x∗tke > 0}. The capacity of all edges e ∈ E′ is fixed

to x∗tke . Then we find a min-cut set S ⊂ V ′ with i ∈ S and 0 6∈ S, and we check the violation of

inequality (5) for that set.

4.3.2 Separation of inequalities (12)

Inequalities (12) are separated exactly with a procedure that is also inspired in the classical

separation of the subtour elimination constraints for the TSP. For S ⊆ V \ {0}, k ∈ K, and

t ∈ T we can rewrite (12) as:

qxtk(E(0 : S)) + (q − 2)
∑

i∈V \{S∪{0}}

xtk(E(i : S)) + 2
∑
i/∈S

ytki ≥ 2
∑
i∈V

ytki .

For each given k ∈ K and t ∈ T , let us consider a support graph G′ = (V ′, E′) with V ′ = V ∪{s}

where s is a dummy node and edge set E′ is defined as follows:

• All edges e ∈ E such that x∗tke > 0, each one with capacity qx∗tke if e ∈ δ(0) and capacity

(q − 2)x∗tke otherwise.

• All edges connecting s with nodes i ∈ V \ {0}, each one with capacity 2y∗tki .

A set S ⊂ V ′ with s ∈ S and 0 /∈ S defines a violated inequality (12) if the capacity of the cut

δ(S) on G′ is smaller than 2
∑

i∈V y
∗tk
i . Hence, inequalities (12) are separated exactly by solving

a min cut problem for each k ∈ K and t ∈ T .
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4.3.3 Separation of inequalities (13)

Inequalities (13) are defined for each T ′ ⊆ T , K ′ ⊆ K and S ⊆ V \ {0}, and they can be written

as ∑
t∈T ′

∑
k∈K′

xtk(δ(S))− 2

⌈
|S|
q

⌉
+ 2

∑
i∈S

∑
k∈K′

∑
p∈Pi:p∩T ′=∅

zkip + 2
∑
i∈S

∑
k∈K\K′

∑
p∈Pi

zkip ≥ 0.

As it seems complicated to optimally choose the S , T ′, and K ′ that minimize the left hand

side of this inequality, we propose a heuristic method to separate (13). The method is based on

the following observation: for a given solution (x∗, y∗, z∗), the left hand side of the inequality is∑
t∈T ′

∑
k∈K′

x∗tk(δ(S))− 2

⌈
|S|
q

⌉
+ 2

∑
i∈S

∑
k∈K′

∑
p∈Pi:p∩T ′=∅

z∗kip + 2
∑
i∈S

(1−
∑
k∈K′

∑
p∈Pi

z∗kip ),

which is the same as

2

(
|S| −

⌈
|S|
q

⌉)
+
∑
k∈K′

∑
t∈T ′

x∗tk(δ(S)) + 2
∑
i∈S

∑
p∈Pi:p∩T ′=∅

z∗kip − 2
∑
i∈S

∑
p∈Pi

z∗kip

 .

Hence, for some given S and T ′, a minimizing subset of vehicles is

K(S, T ′) = {k ∈ K :
∑
t∈T ′

x∗tk(δ(S)) + 2
∑
i∈S

∑
p∈Pi:p∩T ′=∅

z∗kip − 2
∑
i∈S

∑
p∈Pi

z∗kip < 0}.

Using this result, we separate inequalities (13) heuristically as follows. We consider only

subsets T ′ that are singletons (i.e., that have cardinality one) and subsets S that violate a

constraint (5). For each combination of such T ′ and S, we look for the subset K ′ = K(S, T ′) as

defined above, and we check the violation of inequality (13).

4.3.4 Separation of inequalities (14)

We use the following heuristic procedure to separate inequalities (14). First, we generate all the

subsets T ′ ⊆ T with cardinality 1, 2 and 3. Then, for each of those sets T ′ we look for a subset

S ⊆ V \ {0} that violates ∑
t∈T ′

∑
k∈K

xtk(δ(S)) ≥ 2

∑
i∈S ηi(T

′)

q
, (15)

which is equivalent, since
∑

i∈S ηi(T
′) =

∑
i∈V \{0} ηi(T

′)−
∑

i∈V \(S∪{0}) ηi(T
′), to∑

t∈T ′

∑
k∈K

xtk(δ(S)) + 2

∑
i∈V \(S∪{0}) ηi(T

′)

q
≥ 2

∑
i∈V \{0} ηi(T

′)

q
.

To this end, we create a support graph G′ = (V ′, E′) with V ′ = V ∪{s}, s being a dummy node,

and edge set E′ composed of all edges e ∈ E, with capacity
∑

t∈T ′
∑

k∈K x
∗tk
e , and all edges

{i, s}, for all i ∈ V \ {0}, with capacity 2ηi(T
′)/q. We find a min-cut S′ in G′ such that s ∈ S′

and 0 /∈ S′. We let S = S′ \ {s} and check whether sets S and T ′ give a violated inequality (14).
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5 Computational results

The branch-and-cut algorithm was implemented in C++ and run on a personal computer with

an Intel Core i7 CPU at 3.4 GHz and 16 GB of RAM. We used CPLEX 12.5 as mixed integer

linear programming solver. Default settings for CPLEX were used, except for the variable

selection strategy that was set to “strong branching”. To solve the min-cut problems we used

the routine included in the Concorde TSP software package.

5.1 Test instances

Our first intention was to evaluate the algorithm on the standard benchmark PVRP instances

from the literature, the so called “old data”. This is a group of 32 instances proposed by

Christofides and Beasley [12], Russel and Igo [37], Russel and Gribbin [36], and Chao et al. [11],

and used by many authors like Baldacci et al. [3]. However, we found that these instances are

highly symmetric both in terms of the spatial distribution of the nodes and in terms of the allowed

visit schedules of the customers. This results in PVRP solutions that are driver consistent, even

if this feature is not required. In other words, the PVRP and PVRP-DC solutions coincide on

these instances. As an example, Figure 3 shows an optimal PVRP solution for the instance p14,

a case with 20 customers, two vehicles, and a planning horizon of four periods. The optimal

solution has a cost equal to 954.81 and the two vehicles are used each period. It is clear from the

figure that the solution is driver consistent, since customers to the left of the depot can always

be visited by one of the vehicles, and customers to the right can be visited by the other one. We

show the routes of the two vehicles in dashed and solid lines.

Therefore we decided to generate our own benchmark instances, aiming to produce test cases

where driver consistency would not be implicit in the solution of the PVRP. To this end, we

generated instances with a number of nodes n in {11, 21, 31, 41, 51, 61, 71}. Node coordinates

are randomly generated in [0, 100] × [0, 100]. The depot is placed at node 0 and the customers

at the other nodes. Edge costs cij are computed as the Euclidean distance between i and j.

The number of periods τ varies between 2 and 5, and m, the number of vehicles available at the

depot, varies between 2 and 4 (except when n = 11, that takes values 2 and 3). Vehicle capacity

is set to q = d0.75(|V | − 1)/me. For each node we generate randomly a visit frequency between

1 and τ , and a random number of allowed visit schedules with that frequency. We generated

three instances for each combination of n, τ and m, resulting in a test bed with 240 instances.

The whole set is available from the authors upon request.
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Figure 3: PVRP optimal solution for instance p14 from the literature (cost = 954.81)

5.2 Evaluation of the algorithm

We ran the branch-and-cut algorithm on each instance with a time limit of two hours. Tables 1

and 2 show the results obtained for the small and medium sized instances, and for the large in-

stances, respectively. Each line of the tables reports results corresponding to the three instances

with those number of nodes n, number of periods τ , number of vehicles m, and vehicle capacity

q. The displayed data are:

• nOpt : Number of instances solved to optimality within the time limit.

• nFeas: Number of instances for which only a feasible solution is available when the time

limit is reached.

• nInfeas: Number of instances proved to be infeasible.

• nUnk : Number of instances for which there is neither a feasible solution, nor a proof of

infeasibility, when the time limit is reached.

12



• cpu: Average computing time, in seconds.

• BBnodes: Average number of nodes in the search tree.

• %-gap: Average percentage gap between the optimal solution value and the lower bound

at the end of the root node.

• %-fgap: Average percentage gap between the objective function value of the best solution

found and the lower bound at the end of the computation.

• nCuts: Average number of generated cuts.

These tables show that, for a given number of nodes, the problem gets harder when the

number of periods in the time horizon increases. Also, among all the instances with the same

number of nodes and the same time horizon, the most computationally costly are those with 4

vehicles. We can see in Table 1 that all feasible instances with 11, 21 and 31 nodes are solved

to optimality within the time limit. When the number of nodes is 41, the algorithm fails to

find the optimal solution in six cases. They are two instances with 4 periods and 4 vehicles,

and four instances with 5 periods and 3 or 4 vehicles. Table 2 shows the results for the largest

instances, with 51, 61, and 71 nodes. The easiest instances with these sizes are those with 2

periods, though not all of them are solved to optimality when m = 4. For the largest time

horizon (τ = 5), only some instances with two vehicles are solved to optimality, and there are

even some cases, with 4 vehicles (or even 3 vehicles and n = 71), for which the computation

ends after two hours without finding even a feasible solution.

In order to evaluate the effect of the preprocessing and of the valid inequalities proposed in

this work, we performed an experiment consisting in comparing the branch-and-cut algorithm

with other five simplified versions of it. Table 3 shows the results obtained on the instances with

21 nodes, which we consider to be rather illustrative. The algorithms compared are:

• B&C0 : It just solves the model (1)-(9). Constraints (5) are dynamically incorporated

when violated.

• B&C1 : It incorporates the preprocessing.

• B&C2 : It includes also the separation of valid inequalities (11).

• B&C3 : Valid inequalities (13) are also separated.

• B&C4 : It incorporates the separation of inequalities (12).

• complete B&C : Complete branch-and-cut algorithm, as described in Section 4.
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n τ m q nOpt nFeas nInfeas nUnk cpu BBnodes %-gap %-fgap nCuts

11 2 2 4 3 0 0 0 0.10 1.00 0.71 0.00 29.00

3 3 3 0 0 0 0.20 0.00 0.00 0.00 56.00

3 2 4 3 0 0 0 0.10 0.00 0.00 0.00 31.00

3 3 3 0 0 0 0.36 10.67 5.50 0.00 133.67

4 2 4 3 0 0 0 0.31 7.00 3.88 0.00 108.33

3 3 3 0 0 0 0.74 19.67 5.83 0.00 183.33

5 2 4 3 0 0 0 0.92 32.67 8.67 0.00 228.33

3 3 3 0 0 0 13.23 413.00 10.96 0.00 529.00

21 2 2 8 3 0 0 0 0.62 24.67 2.42 0.00 276.00

3 5 1 0 2 0 0.80 6.00 1.45 0.00 401.00

4 4 3 0 0 0 11.98 159.00 4.64 0.00 890.00

3 2 8 3 0 0 0 0.74 4.33 1.85 0.00 344.67

3 5 3 0 0 0 8.24 103.67 5.57 0.00 880.00

4 4 3 0 0 0 49.27 581.00 7.35 0.00 1414.00

4 2 8 3 0 0 0 2.01 20.00 4.42 0.00 534.67

3 5 3 0 0 0 9.93 77.67 7.03 0.00 1061.00

4 4 3 0 0 0 555.12 3363.67 9.90 0.00 2957.00

5 2 8 3 0 0 0 9.14 80.00 7.06 0.00 1094.33

3 5 3 0 0 0 58.48 189.00 7.89 0.00 2031.67

4 4 3 0 0 0 149.82 904.67 7.20 0.00 2961.67

31 2 2 12 3 0 0 0 1.77 4.67 1.48 0.00 447.00

3 8 3 0 0 0 14.62 81.00 3.87 0.00 1337.00

4 6 3 0 0 0 51.14 227.00 4.40 0.00 2046.33

3 2 12 3 0 0 0 3.31 7.33 0.59 0.00 641.67

3 8 3 0 0 0 22.27 93.33 5.97 0.00 1942.67

4 6 3 0 0 0 415.99 1975.00 7.43 0.00 3497.67

4 2 12 3 0 0 0 14.83 12.00 2.80 0.00 1284.67

3 8 3 0 0 0 64.39 201.67 7.82 0.00 2982.00

4 6 3 0 0 0 372.66 1011.67 6.77 0.00 5117.00

5 2 12 3 0 0 0 9.44 20.00 5.38 0.00 1571.33

3 8 3 0 0 0 345.93 1341.00 8.01 0.00 4471.33

4 6 3 0 0 0 1826.53 3622.67 8.43 0.00 7059.33

41 2 2 15 2 0 1 0 12.36 16.50 1.50 0.00 1158.50

3 10 2 0 1 0 81.87 137.50 4.20 0.00 3111.00

4 8 3 0 0 0 191.31 269.00 3.72 0.00 4420.33

3 2 15 3 0 0 0 27.28 25.00 2.70 0.00 1731.00

3 10 3 0 0 0 78.13 63.67 2.97 0.00 3016.33

4 8 3 0 0 0 3092.43 4629.67 6.37 0.00 9505.67

4 2 15 3 0 0 0 161.06 139.67 4.82 0.00 5119.33

3 10 3 0 0 0 1908.42 1910.00 8.09 0.00 10445.67

4 8 1 2 0 0 4890.36 2106.33 6.62 2.45 13868.33

5 2 15 3 0 0 0 558.67 517.67 5.53 0.00 6727.33

3 10 2 1 0 0 4050.18 1757.00 9.66 2.30 15980.00

4 8 0 3 0 0 7200.00 1929.00 8.38 3.10 20456.00

Table 1: Branch-and-cut results for small and medium-sized instances

14



n τ m q nOpt nFeas nInfeas nUnk cpu BBnodes %-gap %-fgap nCuts

51 2 2 19 3 0 0 0 27.79 20.00 1.55 0.00 1862.67

3 13 3 0 0 0 87.10 91.00 2.35 0.00 3522.67

4 10 3 0 0 0 1273.16 1359.00 4.47 0.00 8900.33

3 2 19 3 0 0 0 181.67 254.33 3.00 0.00 5137.00

3 13 3 0 0 0 260.37 144.00 2.97 0.00 5907.67

4 10 0 3 0 0 7200.00 1747.33 6.64 3.90 19496.67

4 2 19 3 0 0 0 838.16 389.00 5.50 0.00 10448.33

3 13 0 3 0 0 7200.00 1438.67 9.54 4.94 22766.67

4 10 1 2 0 0 6436.24 944.67 8.29 5.68 23622.67

5 2 19 3 0 0 0 1347.64 532.67 5.07 0.00 12951.00

3 13 0 3 0 0 7200.00 851.67 9.07 5.25 23697.67

4 10 0 3 0 0 7200.00 580.00 8.95 7.36 24142.00

61 2 2 23 3 0 0 0 99.57 87.67 2.53 0.00 4738.33

3 15 2 0 1 0 1694.72 2246.50 2.17 0.00 8288.00

4 12 2 1 0 0 4043.11 1238.33 3.63 0.07 16114.67

3 2 23 3 0 0 0 515.46 265.00 2.94 0.00 8565.33

3 15 3 0 0 0 4242.93 911.67 3.48 0.00 15412.67

4 12 0 3 0 0 7200.00 606.00 7.37 6.25 22824.00

4 2 23 3 0 0 0 917.42 330.33 3.76 0.00 10765.33

3 15 1 2 0 0 7126.29 950.33 6.58 2.06 26000.67

4 12 0 3 0 0 7200.00 388.33 8.65 7.23 26165.33

5 2 23 2 1 0 0 2689.71 723.33 4.70 0.37 15068.67

3 15 0 3 0 0 7200.00 611.67 8.01 5.06 28286.33

4 12 0 2 0 1 7200.00 463.50 9.13 7.79 28849.50

71 2 2 27 3 0 0 0 187.42 309.33 2.63 0.00 7221.33

3 18 3 0 0 0 2177.94 680.00 3.61 0.00 14567.67

4 14 2 1 0 0 5413.79 1270.00 4.32 1.44 20967.33

3 2 27 3 0 0 0 464.24 84.67 1.96 0.00 7226.33

3 18 3 0 0 0 3263.23 474.00 4.28 0.00 18308.00

4 14 0 3 0 0 7200.00 473.00 7.80 6.58 23040.33

4 2 27 2 1 0 0 3054.23 494.00 3.84 0.68 21470.33

3 18 0 3 0 0 7200.00 375.00 10.41 8.51 25649.33

4 14 0 2 0 1 7200.00 347.50 11.44 10.91 24336.00

5 2 27 1 2 0 0 6579.80 1033.00 4.13 0.20 28378.67

3 18 0 1 0 2 7200.00 331.00 8.56 8.23 31394.00

4 14 0 1 0 2 7200.00 100.00 9.09 8.85 22796.00

Table 2: Branch-and-cut results for large instances
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B&C0 B&C1 B&C2 B&C3 B&C4 complete B&C

n τ m q cpu %-gap cpu %-gap cpu %-gap cpu %-gap cpu %-gap cpu %-gap

21 2 2 8 0.66 8.13 0.31 3.49 0.27 3.49 0.23 3.31 0.20 3.26 0.33 1.44

3 5 5.29 11.51 0.72 7.28 1.08 7.28 0.69 5.70 1.70 4.38 0.80 1.45

4 4 35.79 11.60 2.67 7.93 1.76 7.90 1.86 5.07 5.12 2.80 2.14 1.68

3 2 8 1.20 8.59 0.59 7.34 0.50 7.34 0.55 7.34 1.47 5.39 0.72 3.90

3 5 29.72 15.64 10.95 14.80 6.69 14.80 7.16 11.16 21.31 8.14 15.87 6.28

4 4 t.l. 19.37 111.03 17.52 89.93 17.52 53.04 13.80 177.65 10.62 124.15 9.92

4 2 8 3.87 10.51 1.20 5.78 2.34 5.78 1.79 5.78 3.67 4.75 2.04 3.42

3 5 240.05 14.34 9.28 10.68 7.18 10.68 4.87 10.45 17.67 6.64 10.72 6.61

4 4 t.l. 15.18 84.94 13.23 39.75 13.23 41.36 11.62 69.16 7.66 97.22 7.34

5 2 8 28.81 12.10 17.50 9.13 9.77 9.11 5.48 9.10 17.22 7.25 15.46 7.24

3 5 6599.03 16.90 170.43 15.31 223.22 15.28 143.26 12.30 203.08 8.27 142.82 7.74

4 4 t.l. 15.61 577.55 13.58 187.17 13.52 607.23 10.37 360.30 6.57 318.80 6.20

Table 3: Effect of using preprocessing and valid inequalities

In each of these methods, the separation procedures for the different types of valid inequalities

are applied in the same sequence that is used in the complete branch-and-cut. Each line of

the table shows average computing times and gaps at the end of the root node for the three

instances with those values of n, τ , m and q. The term “t.l.” in the cpu column indicates that

the two hours time limit was reached.

Note that the most basic algorithm (B&C0 ) fails to solve all the instances with four vehicles

and a time horizon of more than 2 days within the fixed time limit. The use of the preprocessing

produces already a great improvement of the results (see columns under B&C1 ). From that

point, the introduction of each family of valid inequalities considered helps to gradually reduce

the gaps. Regarding the computing times, the improvement is not constant, since they increase

in some cases when a new family of valid inequalities is separated. However, the complete

branch-and-cut algorithm gives the best results for the hardest instances, those with a time

horizon of five days.

Table 4 shows the average percentage of violated cuts of the different families of valid in-

equalities presented in Section 3. Each line reports the results corresponding to the instances

with given size n (i.e., for 24 instances when n = 11, and 36 instances when n ≥ 21). The

largest number of violated cuts generated corresponds to the valid inequalities (11). In fact

these inequalities, that are separated at the beginning of the cutting plane phase and in all the

nodes of the search tree, sum up to around 60% of the added cuts (almost 88% for instances

with n = 11). The second place is for the inequalities (12), which are separated exactly. The
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n (11) (12) (13) (14)

11 87.98 1.17 2.50 8.35

21 52.18 28.97 10.28 8.06

31 64.47 24.05 3.65 7.82

41 61.70 21.67 3.68 12.94

51 57.21 20.59 7.30 14.90

61 62.41 17.10 6.13 14.36

71 58.48 18.29 9.52 13.71

Table 4: Average percentage of violated valid inequalities

last two positions correspond, in general, to inequalities (14) and (13), respectively. The last

three families of inequalities are separated only in the root node, for the sake of efficiency. For

this reason their number is much smaller than that of inequalities (11). Moreover, the separa-

tion procedures for (13) and (14) are heuristic, and therefore they might fail to detect existing

violated cuts.

Finally, we conducted a computational experiment to evaluate the effect of the number of

visit schedules in the problem complexity. We modified our instances so that there would be only

one visit pattern associated to each customer, and we solved them. As expected the modified

instances are easier to handle, and on average they are solved in 75% less computing time.

5.3 The cost of consistency

In this section we try to analyze the effect of the consistency requirement. To this end, we show in

Table 5 the optimal PVPR and PVRP-DC costs for the 24 instances from our benchmark with 11

nodes. Column #-incosis reports the number of customers that are visited by different drivers

along the time horizon in the PVRP solution, and column %-increase shows the percentage

increment in the solution cost when driver consistency is required. The average percentage

increment and average number of inconsistencies are given in the last line.

This experiment shows that the optimal solutions of the PVRP and PVRP-DC are different

in all but 3 of the 24 cases considered. That is, only in 3 instances out the 24 the PVRP solution

resulted to be driver consistent without having required it. On the contrary, in most cases the

PVRP solution includes several customers that are visited by different drivers in different periods.

To provide a consistent service in those cases, a cost increase must be incurred. The percentage

cost increment goes form 0.79% to 10.65%, and it is 3.99% on average.

Based on these results, we can conclude that driver consistency is not a natural characteristic

of the PVRP in general instances and that imposing it modifies the problem.
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n τ m q instance PVRP-cost PVRP-DC-cost %-increase #-inconsis

11 2 2 4 a 688.64 697.95 1.33 5

b 633.14 660.95 4.21 1

c 657.03 657.03 0.00 0

3 3 a 783.22 790.14 0.88 6

b 701.30 701.30 0.00 0

c 732.10 744.25 1.63 3

3 2 4 a 924.16 936.60 1.33 5

b 1032.32 1032.32 0.00 0

c 752.53 759.63 0.93 1

3 3 a 1017.67 1123.86 9.45 7

b 1073.92 1189.47 9.71 7

c 825.68 832.27 0.79 5

4 2 4 a 1214.78 1276.69 4.85 7

b 1334.26 1400.05 4.70 7

c 1077.32 1104.27 2.44 5

3 3 a 1353.87 1457.34 7.10 5

b 1443.44 1502.87 3.95 8

c 1156.43 1203.33 3.90 5

5 2 4 a 1186.08 1242.86 4.57 1

b 1605.76 1759.93 8.76 7

c 1224.82 1248.36 1.89 8

3 3 a 1353.07 1432.09 5.52 7

b 1688.87 1894.51 10.85 9

c 1317.23 1414.96 6.91 6

average 3.99 5.29

Table 5: Effect of consistency
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6 Conclusions

In this paper we have addressed a complex routing problem in which a fleet of homogeneous

capacitated vehicles has to give service to a number of customers over a planning horizon of

several periods. Moreover, each customer has to be visited according to one of its possible visit

schedules, and always by the same vehicle/driver. Solving the problem implies to choose a visit

schedule for each customer, and to design the vehicles’ routes for each period of the time horizon

respecting the driver consistency requirements and the capacity restrictions of the vehicles.

We present, for this new variant of the Periodic VRP, a mathematical model and several

families of valid inequalities. We describe an exact branch-and-cut algorithm, and show com-

putational results on instances with up to 71 nodes and different time horizons and number

of vehicles. The proposed algorithm is able to solve to optimality most of the instances in a

reasonable amount of time.

In the applications where driver consistency is required, the drivers give a service at the

customer nodes they visit. Certainly, the service time has a high impact on the quality and/or

the utility of this service. An interesting future extension of the current study is to decide on

the time that the drivers spend at each customer node in order to maximize the quality/utility

of their service.

The PVRP-DC could also be extended to consider multi-trips, that is, to allow that a

single vehicle/driver performs several consecutive routes at each period. In this case, additional

constraints on the number of trips by a driver, or on the total number of customers that a driver

can serve, have to be imposed so that the driver consistency requirement still makes sense.

Finally, as it is clear that solving to optimality the PVRP-DC is a difficult task even on

medium-sized instances, another interesting field for future research is the design of efficient

heuristic algorithms able to provide good quality solutions in short computing times.
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