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Abstract

Finite element models of biomedical applications increasingly use anisotropic

hyperelastic material formulations. Appropriate material parameters are essen-

tial for a reliable outcome of these simulations, which is why planar biaxial

testing of soft biological tissues is gaining importance. However, much is still

to be learned regarding the ideal methodology for performing this type of test

and the subsequent parameter fitting procedure.

This paper focuses on the effect of an unknown sample orientation or a mis-

take in the sample orientation in a planar biaxial test using rakes. To this end,

finite element simulations were conducted with various degrees of misalignment.

Variations to the test method and subsequent fitting procedures are compared

and evaluated.

For a perfectly aligned sample and for a slightly misaligned sample, the pa-

rameters of the Gasser-Ogden-Holzapfel model can be found to a reasonable

accuracy using a planar biaxial test with rakes and a parameter fitting proce-

dure that takes into account the boundary conditions. However, after a certain

threshold of misalignment, reliable parameters can no longer be found. The

level of this threshold seems to be material dependent.

For a sample with unknown sample orientation, material parameters could

theoretically be obtained by increasing the degrees of freedom along which test
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data is obtained, e.g. by adding the data of a rail shear test. However, in the

situation and the material model studied here, the inhomogeneous boundary

conditions of the test set-ups render it impossible to obtain the correct param-

eters, even when using the parameter fitting method that takes into account

boundary conditions.

To conclude, it is always important to carefully track the sample orientation

during harvesting and preparation and to minimize the misalignment during

mounting. For transversely isotropic samples with an unknown orientation,

we advise against parameter fitting based on a planar biaxial test, even when

combined with a rail shear test.

Keywords: constitutive modeling, planar biaxial testing, rakes, rail shear

testing, parameter fitting, FE simulations, unknown sample orientation

1. Introduction

Finite element (FE) modeling of biomedical applications has considerable

potential to improve medical treatment. For example, the use of in silico clin-

ical trials can reduce the need for expensive animal and in vivo clinical trials,

and FE modeling enables patient-specific planning of surgical treatment. The

material description of the soft tissues in FE models is crucial to accurately

predict deformations and stresses when loads are applied to a certain geometry.

Mechanical material characterization of soft biological tissues is therefore an

active research domain.

Soft biological tissues are heterogeneous and exhibit non-linear, anisotropic

and visco-elastic mechanical behavior. To characterize this behavior, different

set-ups for in vitro mechanical testing are available, applying different types of

loading along one or multiple axes: uniaxially (tensile, indentation, rail shear),

biaxially (planar tensile, extension-inflation) and triaxially (extension-inflation-

torsion, biaxial tensile-shear).

While the community performing mechanical tests on soft biological tissues

is growing, standardized protocols are lacking and the effects of certain assump-
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tions have only partially been investigated. Especially for planar biaxial testing,

the effect of different gripping mechanisms, i.e. rakes, sutures or clamps, is sig-

nificant but not well understood. The effect of the gripping mechanism or other

testing conditions can be studied using FE modeling. Sun et al. compared

clamps to sutures for planar biaxial testing [? ]. Other groups have focused on

changing conditions (e.g. loading protocol) for a planar biaxial test using rakes

[? ? ] or changing sample shape for a planar biaxial test using clamps [? ] or

sutures [? ]. Nolan and McGarry investigated the shear forces present in planar

biaxial tests with clamps, caused by the confined transversal movement at the

clamps [? ].

While most of the aforementioned papers consider the homogeneity of the

stress-strain field at the center of a sample as a quality measure of the performed

mechanical test, we believe that the quality of the resulting material parameter

estimation is equally if not more important if the results are subsequently used

in a FE simulation. Our previous work investigated the effect of several loading

conditions and provided guidelines for planar biaxial testing with rakes [? ].

This paper continues to study planar biaxial tensile testing with rakes, now

focusing on the effect of an unknown orientation of the test sample with respect

to the tissue’s material axes.

Biological soft tissue’s anisotropic behavior can usually be attributed to the

presence of collagen fiber families along a preferential direction. Often, two or

more collagen fiber families are oriented symmetrically with respect to a natural

axis of the tissue, e.g. the circumferential direction in case of arteries [? ]. As a

consequence, the orientation of test samples with respect to the native geometry

is an important variable and should be tracked. For example, when a cylindrical

segment of arterial tissue is harvested and prepared for planar biaxial testing, a

square sample is excised such that the circumferential and axial direction can be

aligned with the test axes of the set-up. However, quite often the orientation of

the sample can not be recovered or is unclear, e.g. when the sample is resected

from an irregular or incomplete segment of tissue. Furthermore, imperfections

during mounting might also lead to a misalignment between the test axes and
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the tissue’s symmetry axes.

A consequence of an unknown or incorrect orientation of a test sample is that

the collagen fibers will most likely not be oriented symmetrically with respect

to the test axes. In a planar biaxial set-up, this results in shear deformations

and stresses, although shear deformation is often assumed negligible in planar

biaxial testing [? ? ? ]. The goal of this paper is to investigate the effect of a

rotated sample orientation in a planar biaxial test using rakes on the resulting

material parameter estimation. To this end, we simulate a number of virtual

planar biaxial tests using FE modeling, with various material parameter sets

and varying sample rotations. Subsequently, we perform material parameter

fitting on the virtual test results to see if we can retrieve the imposed material

parameters. We also investigate how the addition of a rail shear experiment can

improve the results.

The outline of this paper is as follows: first the different test variations and

their FE model are described. Next, details are given on the strain calculation,

the sample material model, the parameter fitting and accompanying quality

measures. The next section shows the results, including the deformations and

forces of the different tests and the fitted parameters. Finally, these results are

discussed and a conclusion is formulated.

2. Materials and Methods

This section first describes the general principles of the two test types that

are considered: a planar biaxial test using rakes and a rail shear test, since we

investigate whether addition of the latter can improve overall parameter fitting

results. Next, a FE model of both test types is constructed and a series of

FE simulations with different material parameters and sample orientations is

conducted. The material model used is the Gasser-Ogden-Holzapfel material [?

] and the strain in both tests is measured using markers. For all simulations

a parameter fitting is conducted. Different combinations of tests and parame-

ter fitting procedures are used. Finally, quality measures for parameter fitting
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results are described.

2.1. Test types

Two different test types for thin and planar samples are considered: a planar

biaxial test using rakes and a rail shear test (see Figure ??). In both tests,

square-shaped samples are used where often markers or speckles are applied in

the central area of the sample. Hence, the deformation of the sample can be

extracted from continuous camera image acquisition during the test. This allows

the tracking of sample deformation without influence of tear or slippage at the

clamping site. The description that follows is to ensure a good understanding

of the boundary conditions of the tests, which will be reproduced numerically

as described in Section ?? and of the numerical simulation.

2.1.1. Planar Biaxial test with Rakes (PBR)

In a rake-based planar biaxial test, rakes are used to mount the four sides

of a square, planar sample. Rakes are stiff needles that are pierced through the

tissue. The holes created by mounting are further referred to as sample holes.

During the test a normal force or displacement is applied simultaneously on the

four sets of rakes. The data acquired in this type of test is the evolution through

time of the normal force at the rake sets (i.e. not for each individual rake) and

the displacement field of the markers or speckles (see Section ??).

2.1.2. Rail shear test (RS)

In a rail shear test, two sides of a sample are mounted using clamps, re-

sulting in a rectangular testing area, with its long edge parallel to the clamped

edge. One clamp is then displaced tangential to the clamped edge, while the

normal distance between the clamps is fixed. This approximates a simple shear

deformation. The data acquired during this test are the images of the deformed

sample and the shear traction force and, in case of a multi-axial load cell, the

normal force.
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Figure 1: An overview of the test types considered: a planar biaxial test using rakes (PBR)

and a rail shear (RS) test. Each test is shown in initial and deformed state. Adapted from [?

].

2.2. Finite element simulation

This section gives details on the FE modeling of the tests described in Section

??. Using the FE software Abaqus 6.14-1 (Dassault Systmes Simulia Corp.,

Providence Rhode Island, USA), the sample is modeled in the 12-plane with

the thickness or radial direction in the 3-direction. If the orientation of the

sample is known, the circumferential and axial direction are aligned with the 1-

and 2-direction, respectively.

The samples are modeled with M3D4R elements. Membrane elements are

surface elements that transmit in-plane forces and have no bending stiffness [?
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]. For each test a mesh convergence analysis was performed. As a convergence

criterion the error of the force ratio between a mesh with n elements and a

mesh with 2n elements was monitored [? ]. The force ratio was calculated

as the experimental traction force over the model traction force (see Section

??). The number of elements was increased until the convergence error was ≤

2%. The simulations were performed in Abaqus Standard and the maximum

increment of the time step was limited, such that at least 30 data points were

available when exporting data from the simulation. The data corresponding

to what would be available in a real experiment (typically forces and markers

coordinates) are exported from the simulation.

2.2.1. Planar Biaxial test with Rakes (PBR)

A sketch of the FE model of the PBR test is shown in Figure ??. The sample

is 7 mm by 7 mm with different thickness values, the latter depending on the

simulated sample (see Section ??). The mesh consists of 32 331 elements. Each

side of the sample has five sample holes through which the rakes are pierced.

Four nodes located in the center of the sample and forming a square are used

as markers. The dimensions of the sample can be seen in Figure ??.

The rakes are modeled based on BioRakes (CellScale, Waterloo, Canada).

A rake has a length of 30 mm and consists of 8 B33 elements. These beam

elements can be used to model slender beams, where the cross-section is small

compared to the axial length [? ]. The cross section or profile of the beam is

modeled as a circle with radius 0.15 mm. The material of the rakes is linear

elastic with properties of stainless steel: a Young’s modulus of 195 GPa and

a Poisson ratio of 0.31. Each rake is connected to the sample by kinematic

coupling: the semi-circle of the sample hole follows the normal displacements

of the rake tip, and one point on the semi-circle also follows the transversal

displacement of the rake tip. In this way the sample hole is allowed to enlarge,

which can also happen during a real experiment.

To obtain a strain level of approximately 30% in the central area of the

sample, a nominal displacement of 0.88 mm is applied at the distal node of each
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of the rakes, in the direction normal to the undeformed sample edge. Different

ratios for the first and second direction are used for the displacement: (1-1)

(0.5-1) and (1-0.5). All other degrees of freedom of the distal nodes of the rakes

are fixed as well as the central node of the sample. An overview of the mesh

and the boundary conditions is shown in Figure ??. The reaction forces at the

end of the rakes and the coordinates of the markers are exported for each time

step.

Figure 2: Sketch of the FE model of the planar biaxial test using rakes (PBR). The model

consists of a sample and 20 rakes.
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Figure 3: The sample dimensions of both test types (PBR and RS). The markers are located

in the central area of the sample.

2.2.2. Rail shear test (RS)

Figure ?? shows a sketch of the FE model of the RS test and its dimensions.

The sample is 7 mm by 7 mm and again has various thickness values (see

Section ??). The mesh consists of 4720 elements. The markers are modeled as

four nodes located in the central area of the sample in a rectangular shape. A

section of 1 mm high at the bottom end of the sample is clamped, meaning that

all degrees of freedom of these nodes are fixed. At the top end of the sample

again a section of 1 mm high is clamped, where all degrees of freedom are fixed,

except for the transversal 1-direction, which is displaced by a distance of 3.5

mm in both senses consecutively. The reaction forces at the top surface and the

coordinates of the markers are exported for each time step.

2.3. Strain calculation: deformation gradient

During these type of experiments, the strain in the 12-plane is typically mea-

sured using a camera in combination with markers or speckles that are attached

to the sample. In this study, markers are used. The in-plane components of the
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Figure 4: In the FE model of PBR the sample and the rakes are connected via kinematic

coupling between the semi-circle of the sample hole and the rake tip. The outer end of the

rakes are displaced in the normal direction.

deformation gradient

F =


F11 F12 0

F21 F22 0

0 0 F33

 (1)

can be calculated by the method of Hoffman and Grigg [? ]. In this

method, the four markers are considered to build up a two dimensional ele-

ment. Assuming incompressibility of the biological tissue, volume preservation

(or J = det(F ) = 1) allows the calculation of F33 as

F33 =
1

F11F22 − F12F21
. (2)
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2.4. Material

2.4.1. Material model

The material of the sample is described using the Gasser-Ogden-Holzapfel

model (GOH) [? ] which defines a strain energy density function (SEDF) Ψ as

Ψ = C10(I1 − 3) +
∑
i=4,6

k1
2k2

[
ek2(κI1+(1−3κ)Ii−1)2 − 1

]
. (3)

The SEDF is a combination of a linear isotropic term, representing the contri-

bution of the matrix material and an exponential anisotropic term, representing

the contribution of collagen fibers. I1 is the first invariant of the right Cauchy-

Green strain tensor C = F
T
F . I4 and I6 are two pseudo-invariants of C related

to the stretch in the direction of the two fiber families.

I1 = tr(C) (4)

I4,6 = Mi · (CMi), (5)

where Mi is the fiber vector of the fiber family i in the undeformed config-

uration. It expresses the mean direction of the fibers using the fiber angle αi,

defined with respect to the circumferential direction,

Mi =


cos(αi)

sin(αi)

0

 . (6)

C10 [MPa] and k1 [MPa] represent the stiffness of the matrix material and

collagen fibers, respectively. k2 [-] is related to the non-linearity of the collagen

fibers. κ [-] reflects the dispersion of the fibers and has a value between 0 (no

dispersion) and 1/3 (full dispersion).

For arterial tissue, the assumption of symmetric fiber families with respect

to the circumferential direction is often made [? ]. When the orientation of

the sample is known, the circumferential direction is aligned with a test axis.

The relation between both fiber angles is known in this case: α2 = −α1, and
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Table 1: The ground truth material parameter sets for the GOH model.

Name C10 [MPa] k1 [MPa] k2 [-] κ [-] α1 [RAD] α2 [RAD] thickness [mm]

MM1-0 0.0770 0.0078 18.5600 0.2060 0.4800 2.6616 2.65

MM1-8 0.0770 0.0078 18.5600 0.2060 0.6196 2.8013 2.65

MM1-20 0.0770 0.0078 18.5600 0.2060 0.8290 3.0107 2.65

MM1-45 0.0770 0.0078 18.5600 0.2060 1.2654 0.3054 2.65

MM2-0 0.0872 0.0063 3.3500 0.0000 0.2601 2.8815 2.95

MM2-8 0.0872 0.0063 3.3500 0.0000 0.3997 3.0212 2.95

MM2-20 0.0872 0.0063 3.3500 0.0000 0.6091 0.0890 2.95

MM2-45 0.0872 0.0063 3.3500 0.0000 1.0455 0.5253 2.95

only one material parameter α is required for material modeling. When the

orientation of the tissue is unknown, this relation is unknown, and hence two

material parameters α1 and α2 are required to describe the material model.

Thus 5 or 6 material parameters are to be determined to model a material that

is symmetric or asymmetric with respect to the test axes, respectively.

2.4.2. Ground truth material parameter sets

The material parameters used as ground truth values in the FE simulations

are two sets that describe thoracic aorta aneurysmal tissue [? ]. The orientation

of the samples is changed from symmetric with respect to the test axes, slightly

rotated (over 8◦), more rotated (over 20◦) to maximally asymmetric (rotated

over 45◦). With these different orientations, the influence of a small mistake in

orientation or of an unknown orientation can be estimated. The sets are shown

in Table ?? with the corresponding sample thickness.

2.4.3. Model stresses and traction forces

The first Piola-Kirchhoff stress P is calculated as the derivative of the SEDF

with respect to the deformation gradient [? ] as

P
mod = −pF−T +

∂Ψ

∂F
, (7)
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where the scalar p is introduced for incompressible materials and serves as an

indeterminate Lagrange multiplier. It can be considered a hydrostatic pressure

and is determined from boundary conditions. In the case of planar tensile

experiments (such as PBR and RS), p can be determined from the planar stress

state, since

σmod33 = 0. (8)

The Cauchy stress � is calculated from the first Piola-Kirchhoff stress P as

� = J−1
PF

T , (9)

with J = det(F ) the Jacobian determinant or volume ratio of the deforma-

tion gradient.

The first Piola-Kirchhoff stress is related to the traction force t as [? ]

tij = PijAj . (10)

Here, tij is the force in the i-th direction applied on a surface with the

normal in the j-th direction. Note that for equation ?? there is no summation

over j, i.e. Einstein notation is not used. Note also that in other engineering

disciplines, a different convention might be used.

2.5. Parameter fitting

A material model, e.g. the one described in Section ??, describes a tissue’s

behavior using material parameters. The latter are calibrated to match the ex-

perimental data as well as possible using a parameter fitting procedure. This

section first gives details on the objective of this optimization problem, its dif-

ferent components and its weights and then describes the different parameter

fitting procedures.
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2.5.1. Components of the objective function

Parameter fitting is solving an optimization problem or minimizing a cer-

tain objective function, that might be subjected to constraints. The objective

function of the parameter fitting used here, compares traction force data mea-

sured experimentally to the corresponding traction force data computed using

the material model.

Each of the test set-ups described in Section ?? has different boundary con-

ditions, yielding differences in the corresponding objective function. In what

follows, the components of the objective function are described for both test

types: PBR and RS.

PBR.

In a PBR test, the displacements and forces are measured along the two test

axes. In most set-ups only the normal force is measured of the entire set of

rakes. The objective function therefore compares the following components of

the traction force data: n = 11, 22.

RS.

In a RS test, the shear force and displacement of the top surface along the

1-direction are measured. According to our convention for traction force (see

Section ??), the component of the traction force in the objective function of this

test type is: n = 12.

2.5.2. Combining different set-ups: weights

When different experiments are conducted on multiple samples of the same

tissue, this data can be combined in one parameter fitting and hence one objec-

tive function. In this case, weights should be used to assign adequate importance

to each data set. Three different types of weights can be distinguished.

The first weight type wsn,1 corrects for the number of data points of each set.

The data sets with a lower number of data points, receive a higher weight such

that each test has an equal contribution to the objective. Hence, the weight for

a specific set is the ratio between the maximum number of data points of all
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sets over the number of data points of that specific set.

The second weight type wsn,2 corrects for the range of traction force. Usually,

with an increasing traction force, the difference between model and experimen-

tal traction force in the objective function also increases. This weight assures

an equal contribution between different tests with different force ranges. It is

calculated as the lowest maximum traction force of all objective components

over the maximum traction force of that objective component. In other words,

this weight scales the traction forces to the lowest maximum traction force of

all samples and sets.

The third weight type wsn,3 is assigned by the user. The user can for example

decide to assign a higher weight to a test depending on its reliability. In this

case the user weights were all 1.

The total weight for a component of the objective function relating to an ob-

jective component n of a sample s is then

ws,n = wsn,1w
s
n,2w

s
n,3. (11)

2.5.3. Objective function

The objective function O of the parameter fitting problem is a combination

of the components n for every sample s and their weights ws,n. For every

component, the difference between the experimental and model traction force

vector t is minimized,

O =
∑
s

∑
n

(ws,n(tmodn − texpn ))2. (12)

2.5.4. Parameter boundaries and constraints

The boundaries of the parameters are shown in Table ??. Note that the

upper boundaries of C10, k1 and k2 are not based on a physical quantity or

limit but are chosen far enough removed from typically observed values. The

lower boundaries of C10 and k2 are not exactly 0 to avoid numerical issues in

the FE simulations.
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Table 2: The boundaries for the material parameters of the GOH model.

Name C10 [MPa] k1 [MPa] k2 [-] κ [-] αi [RAD]

lower boundaries 1e-4 0 1e-4 0 0

upper boundaries 1 10 100 1/3 π

In the case of five fitting parameters, the objective function is not subjected

to any constraint. In the case of six fitting parameters, a constraint is applied

to assure that both fiber angles αi do not end up in the same value. In this case

the objective function is subjected to

α2 > α1 + 10◦
π

180◦
. (13)

2.5.5. Procedure

Different procedures for parameter fitting exist: the classic parameter fitting,

inverse FE parameter fitting and the parameter fitting that corrects for the

inhomogeneities caused by the boundary conditions in the experimental set-up.

This study uses the first and last procedure, discussed below.

Classic parameter fitting.

In the optimization process of a classic parameter fitting, the material parame-

ters are altered until the objective function is minimized. In that case the model

traction forces are as close as possible to the experimental traction forces. The

optimization problem can be solved analytically, since the model traction forces

are a closed form of the input variable, i.e. the deformation gradient. In our

implementation, the optimization problem was solved in Matlab 2015b (The

Mathworks Inc., Natick, Massachusetts, USA) with the CasAdi toolbox [? ]

using Optistack [? ]. 10 different initial starting points were used to assure a

global minimum was found.

Boundary Conditions Corrected (BCC) .

The Boundary Conditions Corrected (BCC) parameter fitting procedure was
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previously developed by the authors [? ] 1 and takes into account the effects

of the boundary conditions that lead to an inhomogeneous stress-strain field

and corrects for the simplifications that are made in the data processing. For

example: in a planar biaxial experiment with rakes, the forces and displace-

ments are applied at five discrete points. However, in the data processing, it is

assumed that the force is applied in a continuous manner. As shown in [? ],

this assumption leads to incorrect material parameters. The scheme of the BCC

method is shown in Figure ??. First, a classic parameter fitting is conducted on

the experimental data obtained from a mechanical experiment. The resulting

parameters are then used to perform a FE simulation of this mechanical exper-

iment. A correction vector g is calculated component-wise as the ratio between

the model and experimental traction forces from the FE simulation. This cor-

rection vector g is then used in the objective function of the BCC parameter

fitting to compensate for the assumptions made in the classic parameter fitting.

This loop can be repeated until a stop criterion is reached.

2.6. Quality measures for goodness of fit

In general, the goodness of fit reflects the answer to the following question:

how well does the model reflect the experimental data? To this end a Normalized

Root Mean Square Error (NRMSE) can be calculated between the experimental

and model data. Actually, this is the square root of the mean value of the

objective function O,

NRMSEO =

√∑
s

∑
n ws,n

∑
i(t

mod
n,i − gn,it

exp
n,i )2

m
, (14)

with s the number of samples, n the objective components and i the entries

of the vector t. m is the total number of entries for all objective components

and all samples: m = s · n · i. gn,i is the value of the correction vector for the

objective component n at time i. This value is 1 in case of a classic parameter

1Note that the method was previously, i.e. in [? ], referred to as Inhomogeneity from

Experimental set-up Corrected (IEC)
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Figure 5: Overview of the BCC parameter fitting procedure. A FE simulation is conducted

to correct for the assumptions made in the classic parameter fitting. Adapted from [? ].

fitting. It is considered normalized, as the weights ws,n contain a division by the

maximum traction force (see Section ??). Note that we do not use the Pearson

correlation coefficient or coefficient of determination, as these coefficients are

meant for linear models and the GOH model considered here is non-linear.

In this case, as we work with virtual experiments, we know the ground truth

material and can therefore also consider another question: how correct is the

result of the parameter fitting compared to the ground truth? To answer this

question, two quality measures are used: a Mean Percentage Error (MPEGT )

and a NRMSEGT . The resulting fitted parameters themselves can be compared

to the ground truth parameters using a MPEGT . The MPEGT is calculated as

MPEGT =
1

p

∑
i

|FPi −GPi|
|GPi|

, (15)

with FPi the fitted parameter i, GPi the ground truth parameter i and p the

number of fitted parameters. The MPE thus reflects how correct the parameters

are compared to the ground truth parameters.

The NRMSEGT is used to compare the difference between the model traction
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forces calculated with the ground truth parameters and the fitted parameters,

NRMSEGT =

√√√√ 1

m

∑
s

∑
n

∑
i(t

mod
n,i (FP )− tmodn,i (GP ))2

max(tmodn (GP ))
, (16)

with s, n, i and m as mentioned before. tmod(FP ) and tmod(GP ) are cal-

culated based on the fitted and ground truth parameters, respectively. The

NRMSEGT thus reflects how well the fitted traction forces approximate the

ground truth traction forces, regardless of the values of the parameters.

A final measure to assess the quality of the fitted parameters is to extrapolate

them to a different loading domain and compare the results to the ground truth.

To this end, the Cauchy stress σ is calculated, as explained in Section ??, for

a deformation gradient corresponding to a uniaxial tensile test. This is done

using the ground truth as well as the fitted material parameters.

3. Results

This section shows the results in different subsections: first, the deformations

and forces of both test types are shown. Secondly, the difference between the

experimental and the ground truth model traction forces is visualized and finally,

the results of the different parameter fittings are presented.

3.1. Deformation and force

This subsection shows the normal and shear forces as a function of the

deformation for the different sets of FE simulations of both test types. The

deformation is calculated from the displacement of the markers for each test

type. The forces are those that in a physical experiment would be measured

with a multi-axial load cell. Note however, that often only one-axis load cells

are available in actual experimental set-ups. The forces and deformations are

shown for both material sets in every orientation.
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3.1.1. PBR test

The forces and deformations of a MM1 and MM2 sample mounted with

different orientations in a PBR test using a 1-1 loading ratio are shown in

Figures ?? and ??, respectively. The forces and deformations in the normal

directions are much larger than those in the shear directions. When the sample

is not mounted symmetrically with respect to the test axes of a PBR (MM1-

8, MM1-20, MM1-45, MM2-8, MM2-20 and MM2-45), the shear deformations

and forces increase with respect to the symmetric mounting case (MM1-0 and

MM2-0), but are still orders of magnitude smaller than the normal deformations

and traction forces. The non-symmetric mounting also influences the behavior

in the normal directions. While the non-linear behavior is still visible in the

11-direction for MM2-8, it is less pronounced for MM2-20 and no longer visible

for MM2-45. The magnitude of the shear deformations and forces depends on

the material parameters and on the orientations of the fibers. For MM1-45

and MM2-45 the behavior seems isotropic: the curves are the same in the 11-

and 22-direction and in the 12- and 21-direction. The deformed states of all

samples with varying orientations tested in a PBR are shown in Figure ??. The

deformed state does not show a lot of difference between the different sample

orientations.

3.1.2. RS

Figures ?? and ?? show the forces and deformations of a MM1 and MM2

sample, respectively, tested in a RS with different orientations. The left and

right hand plots correspond to a displacement of the top surface of 3.5 mm

and -3.5 mm, respectively. The shear traction force is higher than the normal

traction force, but can be in the same order of magnitude, depending on the

sample material. The deformation in the normal direction is limited. When the

sample orientation is rotated, the force-stretch curves change. The deformed

state of all samples is shown in Figure ??. For different sample orientations, the

deformed states look the same.
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Figure 6: Forces as a function of deformation for a sample with MM1 material. The sample

orientation is varied from mounted symmetrically to maximally asymmetrically with respect

to test axes in a PBR test. The forces and deformations in the normal directions are much

larger than those in the shear directions. Note that the four plots should be interpreted

together given the multi-axial loading situation.

3.2. Experimental and ground truth model traction forces

Figures ?? and ?? show the experimental traction forces as measured during

the experiment and the ground truth model traction forces, calculated from the

ground truth material parameters and the deformation measured during the

experiment. The forces are shown for MM1-0 and MM2-0 for a 1-1 loading

ratio in the case of PBR test, and a 3.5 mm top surface displacement in the

case of RS test. The difference between the experimental and ground truth

model traction forces is caused by the boundary conditions of the set-up and

by assumptions made in the data processing [? ]. Due to this difference, the

ground truth material parameters can never be found using a classic parameter

fitting procedure. The BCC parameter fitting procedure compensates for this

difference, in order to approximate the ground truth.

3.3. Parameter fitting

This subsection shows the results of the different cases for which parameter

fitting was performed. More specifically, the classic (C) procedure and two
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Figure 7: Forces as a function of deformation for a sample with MM2 material. The sample

orientation is varied from mounted symmetrically to maximally asymmetrically with respect

to test axes in a PBR. The forces and deformations in the normal directions are much larger

than those in the shear directions. Note that the four plots should be interpreted together

given the multi-axial loading situation.

iterations of the BCC procedure, were performed. In the first case, the sample

orientation is assumed to be known, i.e. the sample material is assumed to

be mounted symmetrically with respect to the test axes. Hence five material

parameters of the GOH model need to be calibrated. In this first case, the

sample is tested on a PBR (5-PBR). In the second and third case, the sample

orientation is assumed to be unknown, which means that the sample is no longer

assumed to be mounted symmetrically with respect to the test axes and six

material parameters need to be calibrated. In the second case, the sample is

tested on a PBR (6-PBR) and in the third case, a combination of a PBR and

a RS test is used (6-PBR+RS). Note that for all cases of PBR tests, the three

loading ratios were used for the parameter fitting. The tables with the results

from the material parameter fitting and the quality measures are shown in the

Appendix.

An overview figure of the above cases is shown in Figure ??. It visualizes the

quality measures from Tables ??, ?? and ?? used to asses how well the result
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Figure 8: Deformed state of the different sample orientations tested in a PBR. It is not possible

to estimate from the deformed state in a PBR whether the test axes and material axes are

aligned.

of the parameter fitting approximates the ground truth.

Comparing the classic and the BCC parameter fitting results, the MPEGT is

lower for the BCC parameter fitting in most of the cases and the NRMSEGT is

always lower for the BCC parameter fitting. This means that the approximation

of the ground truth material parameters is mostly better and the approximation

of the ground truth model traction forces is always better when BCC parameter

fitting is used.

When the sample orientation is known (MM1-0 & MM2-0) or when there

is only a small deviation in the sample orientation (MM1-8 & MM2-8), the

performance of the three different fitting cases is similar. When the sample ori-

entation is unknown (MM1-20, MM2-20, MM1-45 & MM2-45), the performance

of 6-PBR+RS is better than the other cases.

Figure ?? shows the stress-strain curves of the extrapolation of the parameter

fitting results to a uniaxial tensile test. The parameters obtained via the Classic

and the BCC parameter fitting from the three cases mentioned before are used

and compared to the ground truth. It can be observed that the stress-strain

curves calculated from the material parameters obtained via the BCC procedure

are a better approximation of the ground truth than those calculated from the

material parameters obtained via the Classic procedure. The stress-strain curves

of MM1-45 and MM2-45 do not approximate the ground truth for any of the

three cases.
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Figure 9: Forces as a function of deformation for a MM1 sample with varying orientation

tested using RS. The applied displacement on the top surface is 3.5 mm (left hand side) and

-3.5 mm (right hand side). With a changing orientation, the force-stretch curves change. Note

that the top and bottom curves pertain to the same test and should be interpreted together.

4. Discussion

The aim of this study was first to investigate the consequences of a rotated

sample orientation in a PBR and RS test (i.e. when the material axes are no

longer aligned with the test axes), and second, to examine material parameter

fitting results when the sample orientation is unknown or deviated. This section

discusses the obtained results and is divided in different subsections. First, the

effects of a rotated sample orientation on the obtained test data are discussed,

next different aspects of the effects on parameter fitting results are treated:

BCC parameter fitting, a mistake in sample orientation and an unknown sample

orientation. Finally, a general discussion is held.

4.1. Effect of sample orientation on the obtained test data

To investigate the effect of a rotated sample orientation, a FE simulation

of a PBR and a RS test was conducted with different sample materials and

different sample orientations. Deformations and forces were exported from these

simulations as if they were real tests with a multi-axial load cell.
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Figure 10: Forces as a function of deformation for a MM2 sample with varying orientation

tested using RS. The applied displacement on the top surface is 3.5 mm (left hand side) and

-3.5 mm (right hand side). With a changing orientation, the force-stretch curves change. Note

that the top and bottom curves pertain to the same test and should be interpreted together.

Figure 11: Deformed state of the different sample orientations tested in a RS. It is not possible

to estimate whether the test axes and material axes are aligned from the deformed state.

In a PBR test, shear deformation and forces are orders of magnitude smaller

than the normal ones (see Figures ?? & ??). When the sample orientation is

varied, shear deformations and forces increase, but are still small with respect

to the normal ones. This can be expected, as the boundary conditions of a

PBR test (i.e. the stiff rakes), restrict shear deformation (see Figure ??). The

assumption made in different studies that shear can be neglected in a PBR test

(e.g. [? ], is therefore valid. It is worth to note that a planar biaxial test using

sutures on a pulley system on the other hand, does allow shear deformation. It

is therefore important to understand the different types of planar biaxial tests
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Figure 12: Experimental and ground truth model traction forces from a MM1-0 and MM2-

0 sample tested in a PBR. The difference between experimental and ground truth model

is caused by the boundary conditions of the set-up and assumptions made during the data

processing.

(using rakes, clamps or sutures), since the different gripping mechanisms lead

to different boundary conditions and hence, different deformations and forces.

Results of these different types of planar biaxial tests, can therefore not be

compared without taking these differences into account.

In a RS test, the shear force can be in the same range as the normal force

and the normal deformation is limited. When the sample orientation is varied,

the force-stretch curves change.

In both test types, the obtained test data change as the sample orientation

varies. The sample can appear either more stiff or more compliant when rotated.

The amount of change depends not only on the amount of rotation, but also on

the sample material. When the test data changes, this will be reflected in the

parameter fitting. It is therefore important to carefully track the sample orien-

tation during harvesting and test preparation. When the sample orientation is

unknown, or when the material symmetry is disrupted because of disease, other,

preferably non-destructive, methods (histology, microscopy, µCT) can be used

to provide information on the number of fiber families and their orientation.
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Figure 13: Experimental and ground truth model traction forces from a MM1-0 and MM2-0

sample tested in a RS. The difference between experimental and ground truth model is caused

by the boundary conditions of the set-up and assumptions made during the data processing.

Destructive methods or methods that influence the material behavior should be

avoided if not enough sample material is available.

4.2. Effect of BCC parameter fitting

As shown in Figures ?? & ??, there is a difference between the experimental

traction forces and the ground truth model traction forces. As the experimental

traction forces are used for parameter fitting, the ground truth parameters will

never be found when this difference is not compensated for. This difference is

related to the boundary conditions of the test and the assumptions made in

the data processing. The BCC parameter fitting procedure estimates this dif-

ference using a FE simulation and compensates for it [? ]. This is reflected in

the parameter fitting results: the MPEGT and NRMSEGT in general decrease

when using BCC parameter fitting. Also, when the resulting material parame-

ters are extrapolated, the ones obtained with the BCC procedure are a better

approximation of the ground truth (see Figure ??).

Convergence of the BCC procedure has been reached when the NRMSEGT no

longer decreases for increasing BCC iterations. In some cases the results after
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the second BCC iteration are a less good approximation of the ground truth

parameters than after the first BCC iteration. Moreover, it can be noticed that

the convergence is slower in some cases than in others. Note that in reality

the NRMSEGT can not be calculated, as the ground truth is unknown. This

shows the importance of a good stop criterion for the BCC parameter fitting

procedure, which is subject of future research.

It can be seen for example for MM1-0 & MM2-0 in Table ?? that the results

of the classic parameter fitting are indeed a poor estimation of the ground

truth parameters. Using the BCC procedure, the approximation of the ground

truth improves: decreasing MPEGT and NRSMEGT . Sometimes the MPEGT

increases with increasing BCC iterations. However, if the NRMSEGT decreases,

a better approximation of the ground truth traction forces is still obtained. The

increase of MPEGT can be explained by the convexity of the objective function.

If the objective function is locally flat, different sets of material parameters

will result in a similar value of the objective function. Of course, when the

objective function changes, e.g. when evaluating a different loading condition,

the objective function can change as well and the plateau might disappear.

Therefore, the local shape of the objective function should be investigated to

asses the quality of the parameter fitting results. In general, care is needed

when parameters are extrapolated to a loading range different to the one they

were calibrated on.

4.3. Effect of a mistake in the sample orientation

When the material axes of the sample are not aligned with the test axes of

a set-up, but it is assumed that they are aligned, this is considered as a mistake

in the sample orientation. In this case, the measured forces and deformations

change and shear deformations and forces increase (see Figures ?? & ??).

A small mistake in orientation causes only a small deviation of the force-

stretch curves with respect to the sample that is not rotated. This is also

reflected in the parameter fitting results (see Table ??). With a mistake of 8◦,

the NRMSEGT of MMx-0 and MMx-8 are similar after the classic procedure
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and bigger than after the BCC procedure. This can also be observed in Fig-

ure ?? where the stress-strain curves calculated with the material parameters

obtained with the BCC procedure are a better approximation of the ground

truth compared to those obtained with the Classic procedure. Hence, using

the BCC parameter fitting to correct for the difference between the model and

experimental forces is more important than avoiding a small mistake in sample

orientation.

With an increasing mistake in sample orientation, the deviation of the force-

stretch curves increases. Also the mistake in parameter fitting results increases

accordingly, up to a point at which even the BCC procedure can no longer

correct for it. The estimation of the parameters related to the non-linearity

and the fibers (k1, k2, κ and α) is poor. The amount of deviation of the force-

stretch curves for a certain mistake in sample orientation depends on the sample

material, making it difficult to set a fixed angle above which fitting results cannot

be trusted. Moreover, a mistake in sample orientation is hard to detect from

the deformed sample tested in a PBR (see Figure ??).

When the sample is rotated over 45◦ (MM1-45 & MM2-45), the behavior of

the sample appears to be isotropic. This is reflected in the parameter fitting

with κ going to 1/3. Hence, α no longer has a meaning. The value of α is

no longer optimized and this is reflected with very high MPEGT values. When

these material parametes are extrapolated to uniaxial loading, the resulting

stress-strain curves are far from the ground truth (see Figure ??).

However, note that when such a sample would be tested in a planar biaxial

test using sutures, this mistake in orientation would be easier to detect. This

type of test allows shear deformation, which occurs when the test axes are not

aligned with the material axes. Nevertheless, the latter test type brings other

drawbacks, especially regarding difficulties in mounting, making it perhaps also

more prone to sample orientation errors than a PBR test.
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4.4. Effect of unknown sample orientation

When the sample orientation is unknown, an extra fitting parameter needs

to be calibrated. From Table ??, it can be seen that the data from a PBR test

is not always enough to calibrate the six parameters. This is in accordance with

the theory [? ? ]. While for a known sample orientation, the SEDF depends on

two independent invariants, Ψ(I1, I4), for an unknown sample orientation, the

SEDF depends on three independent invariants: Ψ(I1, I4, I6). However, from

a PBR test, only two independent components of deformation and traction

forces are available (F11 and F22, and t11 and t22, respectively). Therefore, it

is theoretically possible to characterize a sample with known orientation, but

impossible to characterize a sample with unknown orientation.

The combination of a PBR with a RS test results in a third independent

component of deformation and traction force (F12 and t12). Hence, in theory it

should be enough to characterize a sample with unknown orientation. This is

true for the case of an ideal PBR test and an ideal RS test, i.e. with perfectly

homogeneous deformation fields (results not shown). However, as shown in

Table ??, for a PBR and a RS test with realistic boundary conditions, the ground

truth parameters are only found in some cases using the BCC parameter fitting

procedure. It is possible that by a further addition of test data (e.g. adding a

uniaxial test or even more ratios), the parameter fitting results would improve

further.

While, according to theory, the material parameters should be found by com-

bining PBR and RS test, and the BCC method is used to compensate for the

fact that realistic set-ups are used instead of ideal ones, the correct parameters

can not always be found. A possible cause can be that the BCC method has

slow convergence if the first parameter estimation is far from the ground truth.

Another possible cause is related to the shape of the objective function as ex-

plained before. Increasing the amount of information in the objective function,

e.g. by adding an extra loading condition, can be a solution for this.

The addition of the RS test leads to a decrease in MPEGT , however the

MPEGT of MM2-0 and MM2-8 are an exception. Hence, though counter-
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intuitive, increasing the amount of test data, does not always result in an im-

proved parameter fitting result.

Another consideration is the fact that the addition of the RS test will cause a

change in the weights of the objective function ws,n. In this case the weights for

the PBR test will decrease. The NRMSEGT is calculated without weights, and

thus the addition of a RS test might cause an increase in the overall NRMESGT .

Perhaps a better balance between the two tests, different from the weights that

are used now, could improve the outcome. This balance is likely to be depen-

dent on the sample material, which is why the effect of weights in an objective

function should be studied further in the future. Also the effect of constraints

(e.g. equation ??) on the result of the parameter fitting should be further in-

vestigated. For example, now a difference between the fiber angles of 10◦ was

enforced and the optimization did not seem sensitive to small changes, but this

might again dependent on the sample material and on the shape of the objective

function.

4.5. General discussion

This paper investigates the influence of a sample’s orientation on the test

data and parameter fitting of a PBR and a RS test and helps to increase the

understanding of the a set-up and its boundary conditions. A similar analysis

could be made for other set-ups. The FE models of the PBR and RS test used in

this study contains realistic boundary conditions. In a real experiment though,

even more inaccuracies (such as rakes positions, noise on the load cell) will be

present. Moreover, a RS test is sensitive to wrinkling for higher levels of shear

strains. A preload along the normal axis can help reduce this wrinkling. These

inaccuracies and undesired effects will influence the test data and should be

accounted for as much as possible.

Another assumption made here is the fact that two samples are available

with exactly the same material properties: one for a PBR test and another one

for a RS test. In reality, variations in material behavior can exist within one

harvested biological tissue. This assumption can be overcome, if it would be
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possible to perform both test types on the same set-up.

In addition, the sample is modeled as a homogeneous, one-layered material.

Also within one sample small variations in material behavior can exist. The

use of a strain map could allow to distinguish different homogeneous regions

within a sample. However, only the resultant of the traction forces are available,

whereas the amount of unknown parameters would increase. A numeric study

should investigate whether and under which conditions it is possible to estimate

parameter sets corresponding to different regions.

Note that in the current study we optimize traction forces, while in the

past we optimized Cauchy stresses [? ]. To calculate Cauchy stresses from

the measured traction forces, you need to know the full deformation gradient

and all nine traction force components. Since often not all force components

can be measured, the assumption had to be made that the transversal forces

and/or shear deformation were negligible. When optimizing traction forces, this

assumption is no longer required.

In this study the GOH model [? ] was chosen as the sample material.

This material model is widely used in the community and is implemented in

FE software packages. The results of this study are qualitative and a similar

analysis can be made for a different material model.

Still, as all material models, the chosen model with two fiber families with

a certain dispersion is only an approximation of the reality. Moreover, in real-

ity the sample material is inhomogeneous. Investigating the influence of these

assumptions should be the subject of future research.

5. Conclusion

The aim of this study was to obtain a better understanding of the impli-

cations of sample misalignment or an unknown sample orientation in planar

biaxial testing using rakes. A series of finite element simulations were made, in

which realistic PBR tests were simulated, after which the resulting quality of

the parameter fitting procedure was evaluated. Several combinations of varia-
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tions to the material and the test method were evaluated. These variations were

related to

• the material model, two different sets of GOH parameters were used,

• the degree of sample rotation, i.e. 0◦, 8◦, 20◦ and 45◦ ,

• the assumption whether or not the sample orientation was assumed to be

known,

• the use of a classical fitting procedure or a procedure that accounts for

the inhomogeneous boundary conditions, and finally,

• whether or not a rail shear test was added to the planar biaxial test data.

For all test variations a difference between experimental and ground truth

model traction forces is present, caused by the boundary conditions of the ex-

perimental set-up and assumptions made in the data processing. Therefore, in

all cases, the importance of compensating for this difference, for example by

using the BCC parameter fitting procedure, is evident.

For a perfectly aligned sample, the parameters of the GOH model can be

found to a reasonable accuracy using a PBR test and the BCC parameter fitting

procedure. For a slightly misaligned sample, using the BCC method will still

allow you to find acceptable material parameters. However, after a certain

threshold of misalignment, reliable parameters can no longer be found, despite

the fact that the ground truth model traction forces can be accurately predicted

with the resulting material parameters. The level of this threshold seems to

be material dependent, which is why it is always important to carefully track

the sample orientation during harvesting and preparation and minimize the

misalignment.

A sample with fully unknown sample orientation, increases the number of

parameters, or, in other words, uses a SEDF with an extra invariant. Material

parameters could therefore theoretically be obtained by increasing the degrees

of freedom along which test data is obtained, e.g. by adding a RS test. However,
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in practice in the situation and the material model studied here, the inhomoge-

neous boundary conditions of the test set-ups render it impossible to obtain the

correct parameters, even when using the BCC method. Unless more test data

could be added to the fitting procedure, we therefore advise against attempts

to fit the material properties of transversely isotropic samples for which the

orientation is unknown.

6. Acknowledgements

The authors would like to thank Joris Gillis for his help with the implemen-

tation of CasADi and Optistack in our parameter fitting code. This work was

supported by a pre- and post-doctoral fellowship of the Research foundation

Flanders (FWO) (1S35316N and PDO-012) and a C2 project of internal KU

Leuven funding (C24/16/026).

Appendix

Tables ??, ?? and ?? show the material parameters fitting results and the

quality measures of the different cases: 5-PBR, 6-PBR and 6-PBR+RS, respec-

tively. In 5-PBR the sample orientation is assumed to be known and the sample

is tested on a PBR. In 6-PBR and 6-PBR+RS the sample orientation is un-

known and the sample is tested on a PBR and using a combination of a PBR

and a RS test, respectively.
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Table 3: Parameter fitting results of the Classic (C) and BCC procedure (BCC) of a sample

of which the orientation is assumed to be known (5-PBR). One sample is tested in a PBR,

hence in Equations ?? and ?? the number of samples s is 1 and the objective components

n = 11, 22. For a correct sample orientation (MM1-0 & MM2-0), the parameter fitting results

approximate the ground truth (GT) better with increasing the number of BCC iterations:

decreasing NRMSEGT . When a mistake is made in the sample orientation, this is reflected

in the parameter fitting results.

Sample Fitting C10 [MPa] k1 [MPa] k2 [-] κ [-] α1 [RAD] α∗
2 [RAD] NRMSEO [-] MPEGT [%] NRMSEGT [-]

MM1-0 GT 0.0770 0.0078 18.5600 0.2060 0.4800 2.6616

C 0.0630 0.0180 24.2441 0.2750 0.0002 3.1414 0.0982 11.04 0.1791

BCC1 0.0781 0.0081 17.1337 0.1814 0.5274 2.6142 0.1093 1.22 0.1201

BCC2 0.0754 0.0046 14.1103 0.1479 0.5533 2.5883 0.1376 3.78 0.0193

MM2-0 GT 0.0872 0.0063 3.3500 0.0000 0.2601 2.8815

C 0.0714 0.0109 4.8773 0.1217 0.0001 3.1415 0.1309 8.60 0.2062

BCC1 0.0881 0.0080 3.6559 0.0128 0.2854 2.8562 0.0749 1.63 0.0467

BCC2 0.0864 0.0067 3.6374 0.0176 0.2525 2.8891 0.0977 0.69 0.0093

MM1-8 GT 0.0770 0.0078 18.5600 0.2060 0.6196 2.8013

C 0.0630 0.0172 24.1895 0.2735 0.0002 3.1414 0.1024 10.46 0.1786

BCC1 0.0779 0.0118 21.5030 0.2248 0.4531 2.6885 0.1708 3.61 0.1121

BCC2 0.0760 0.0078 18.8919 0.2057 0.4847 2.6569 0.1643 1.01 0.0212

MM2-8 GT 0.0872 0.0063 3.3500 0.0000 0.3997 3.0212

C 0.0715 0.0105 4.7589 0.1209 0.0001 3.1415 0.1396 8.09 0.2074

BCC1 0.0883 0.0111 4.8474 0.0917 0.1307 3.0109 0.1097 6.63 0.0391

BCC2 0.0869 0.0070 3.5402 0.0031 0.3026 2.8390 0.1816 1.59 0.0249

MM1-20 GT 0.0770 0.0078 18.5600 0.2060 0.8290 3.0107

C 0.0630 0.0170 22.9730 0.2711 0.0001 3.1415 0.1674 9.86 0.1862

BCC1 0.0788 0.0185 26.7723 0.2680 0.0001 3.1415 0.1848 10.61 0.0892

BCC2 0.0787 0.0172 27.9222 0.2681 0.0001 3.1415 0.1935 10.25 0.1039

MM2-20 GT 0.0872 0.0063 3.3500 0.0000 0.0890 0.6091

C 0.0721 0.0107 4.5316 0.1426 0.0001 3.1415 0.1546 11.22 0.2037

BCC1 0.0888 0.0120 4.8721 0.1273 0.0002 3.1414 0.2938 11.68 0.0217

BCC2 0.0888 0.0112 5.1276 0.1259 0.0001 3.1415 0.2986 11.51 0.0217

MM1-45 GT 0.0770 0.0078 18.5600 0.2060 0.3054 1.2654

C 0.0625 0.0461 30.5825 0.3333 1.5708 1.5708 0.3215 35.83 0.2060

BCC1 0.0787 0.0470 34.4307 0.3317 0.0005 3.1411 0.4226 28.37 0.0439

BCC2 0.0788 0.0440 35.5418 0.3318 0.0005 3.1411 0.4236 27.30 0.0424

MM2-45 GT 0.0872 0.0063 3.3500 0.0000 0.5253 1.0455

C 0.0723 0.0634 1.8056 0.3333 1.5708 1.5708 0.1172 41.74 0.2010

BCC1 0.0894 0.0801 0.0010 0.3167 0.7670 2.3746 0.2500 49.29 0.0329

BCC2 0.0884 0.1178 0.0010 0.3146 0.7742 2.3674 0.3383 69.22 0.0667

* not a fitting parameter
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Table 4: Parameter fitting results of the Classic (C) and BCC procedure (BCC) of a sample

tested in a PBR of which the orientation is unknown (6-PBR). One sample is tested in a PBR,

hence in Equations ?? and ?? the number of samples s is 1 and the objective components

n = 11, 22. In some cases a good approximation of the ground truth parameters is found.

Sample Fitting C10 [MPa] k1 [MPa] k2 [-] κ [-] α1 [RAD] α2 [RAD] NRMSEO [-] MPEGT [%] NRMSEGT [-]

MM1-0 GT 0.0770 0.0078 18.5600 0.2060 0.4800 2.6616

C 0.0629 0.0143 21.7712 0.2561 0.0042 2.6490 0.0983 6.75 0.1800

BCC1 0.0776 0.0083 17.7754 0.1910 0.5158 2.6346 0.1082 0.75 0.0855

BCC2 0.0758 0.0037 12.6416 0.1203 0.6271 2.6179 0.1313 4.44 0.0119

MM2-0 GT 0.0872 0.0063 3.3500 0.0000 0.2601 2.8815

C 0.0700 0.0073 2.9354 0.0000 2.4972 3.1416 0.1034 4.48 0.2065

BCC1 0.0855 0.0077 3.1652 0.0000 0.1813 2.7709 0.1069 1.77 0.0140

BCC2 0.0867 0.0065 3.3362 0.0000 0.2402 2.8528 0.0804 0.36 0.0041

MM1-8 GT 0.0770 0.0078 18.5600 0.2060 0.6196 2.8013

C 0.0630 0.0089 17.4254 0.2159 2.4968 2.8638 0.0964 5.53 0.1787

BCC1 0.0777 0.0132 26.2256 0.2467 0.3226 2.6967 0.1762 5.08 0.1599

BCC2 0.0764 0.0069 18.2470 0.1931 0.5715 2.6943 0.1620 0.88 0.0382

MM2-8 GT 0.0872 0.0063 3.3500 0.0000 0.3997 3.0212

C 0.0696 0.0081 2.8751 0.0035 0.0000 0.7208 0.0976 6.65 0.2066

BCC1 0.0854 0.0071 3.0224 0.0000 0.2112 2.8513 0.1160 2.15 0.0164

BCC2 0.0872 0.0061 3.3629 0.0000 2.8039 2.9784 0.0977 4.21 0.0118

MM1-20 GT 0.0770 0.0078 18.5600 0.2060 0.8290 3.0107

C 0.0628 0.0025 8.9511 0.0600 0.8808 2.6757 0.0862 6.29 0.1885

BCC1 0.0751 0.0048 15.9042 0.1789 0.7921 2.9895 0.1519 2.04 0.0688

BCC2 0.0772 0.0019 9.5215 0.0495 0.4312 2.4275 0.1389 7.44 0.0176

MM2-20 GT 0.0872 0.0063 3.3500 0.0000 0.0890 0.6091

C 0.0693 0.0090 2.1873 0.0000 0.8548 2.9811 0.0796 11.63 0.2027

BCC1 0.0833 0.0080 2.5276 0.0000 0.0420 0.5820 0.3046 3.15 0.0471

BCC2 0.0856 0.0077 3.0654 0.0000 0.1316 0.6433 0.2481 2.39 0.0099

MM1-45 GT 0.0770 0.0078 18.5600 0.2060 0.3054 1.2654

C 0.0620 0.0041 9.3283 0.0942 0.4908 1.0796 0.0465 6.84 0.2027

BCC1 0.0779 0.0050 19.9315 0.1755 0.4061 1.1457 0.2209 2.82 0.1826

BCC2 0.0768 0.0027 15.7534 0.1191 0.4748 1.0829 0.2480 5.36 0.1491

MM2-45 GT 0.0872 0.0063 3.3500 0.0000 0.5253 1.0455

C 0.0673 0.0123 0.4477 0.0000 2.0783 2.6328 0.0722 13.90 0.2011

BCC1 0.0884 0.0404 0.6978 0.2157 0.0000 1.3525 0.1440 21.47 0.0400

BCC2 0.0764 0.0308 0.0010 0.0000 0.4956 2.0730 0.2260 16.81 0.0297
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Table 5: Parameter fitting results of the Classic (C) and BCC procedure (BCC) of a sample

of which the orientation is unknown tested using a PBR and a RS (6-PBR+RS). Two samples

are tested, hence in Equations ?? and ?? the number of samples s is 2 and the objective

components are n = 11, 22 for the sample tested in a PBR test and n = 12 for the sample

tested in a RS test.

Sample Fitting C10 [MPa] k1 [MPa] k2 [-] κ [-] α1 [RAD] α2 [RAD] NRMSEO [-] MPEGT [%] NRMSEGT [-]

MM1-0 GT 0.0770 0.0078 18.5600 0.2060 0.4800 2.6616

C 0.0611 0.0201 19.2991 0.2548 0.3896 2.7519 0.2044 6.34 0.1837

BCC1 0.0777 0.0078 17.2577 0.1963 0.4987 2.6429 0.1202 0.48 0.0164

BCC2 0.0777 0.0063 17.4758 0.1905 0.5025 2.6391 0.1380 1.08 0.0122

MM2-0 GT 0.0872 0.0063 3.3500 0.0000 0.2601 2.8815

C 0.0697 0.0169 4.7470 0.1475 0.0001 3.1416 0.2268 9.83 0.2071

BCC1 0.0858 0.0095 3.0001 0.0000 0.3804 2.7608 0.2604 3.15 0.0302

BCC2 0.0849 0.0097 2.8523 0.0000 0.3992 2.7420 0.3331 3.61 0.0316

MM1-8 GT 0.0770 0.0078 18.5600 0.2060 0.6196 2.8013

C 0.0614 0.0170 19.3124 0.2483 0.5898 2.9735 0.1780 4.83 0.1847

BCC1 0.0776 0.0077 17.0959 0.1943 0.5787 2.7123 0.1080 0.71 0.0181

BCC2 0.0776 0.0062 17.1344 0.1876 0.5777 2.7045 0.1232 1.34 0.0138

MM2-8 GT 0.0872 0.0063 3.3500 0.0000 0.3997 3.0212

C 0.0696 0.0158 4.4215 0.1354 0.2515 3.1416 0.1784 7.15 0.1959

BCC1 0.0858 0.0094 2.9115 0.0000 0.4490 2.8017 0.1279 2.32 0.0303

BCC2 0.0883 0.0052 3.6301 0.0000 0.4733 3.1237 0.1290 1.36 0.0306

MM1-20 GT 0.0770 0.0078 18.5600 0.2060 0.8290 3.0107

C 0.0615 0.0119 17.1710 0.2231 0.8175 3.1294 0.1680 2.61 0.1878

BCC1 0.0774 0.0074 15.8951 0.1841 0.6948 2.7639 0.2091 1.53 0.0325

BCC2 0.0772 0.0060 15.2941 0.1734 0.6830 2.7504 0.2193 2.31 0.0378

MM2-20 GT 0.0872 0.0063 3.3500 0.0000 0.0890 0.6091

C 0.0694 0.0152 3.6422 0.1210 0.0192 0.5709 0.2425 7.42 0.2087

BCC1 0.0858 0.0093 2.4240 0.0000 0.6184 2.8069 0.2815 15.40 0.0285

BCC2 0.0884 0.0050 3.2600 0.0000 0.6281 3.1366 0.3441 3.71 0.0206

MM1-45 GT 0.0770 0.0078 18.5600 0.2060 0.3054 1.2654

C 0.0620 0.0076 15.3639 0.1983 0.3157 1.2492 0.2276 1.32 0.2116

BCC1 0.0776 0.0070 17.5273 0.1976 1.2184 2.7254 0.2534 7.24 0.0232

BCC2 0.0774 0.0066 17.0763 0.1945 1.2160 2.7177 0.2974 7.56 0.0192

MM2-45 GT 0.0872 0.0063 3.3500 0.0000 0.5253 1.0455

C 0.0701 0.0078 3.6895 0.0428 0.4876 1.0768 0.2068 1.89 0.2135

BCC1 0.0900 0.0058 5.1652 0.0682 0.6132 0.9723 0.3006 2.66 0.0205

BCC2 0.0901 0.0045 4.8442 0.0541 0.7057 0.8803 0.2987 3.67 0.0207
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Figure 14: Measures to asses how well the fitting results approximate the ground truth for all

samples for the various cases. The BCC parameter fitting results in a better approximation

of the ground truth.
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Figure 15: Resulting stress-strain curves when the fitted material parameters are extrapolated

to a uniaxial test. The stress strain-curve calculated with the ground truth material param-

eters is the full blue line. The parameters obtained via BCC parameter fitting (◦) perform

better than those obtained through Classic parameter fitting (?).
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