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Abstract

We consider the pricing of American-type basket derivatives by numerically solving a partial
differential equation (PDE). The curse of dimensionality inherent to basket derivative pricing is cir-
cumvented by using the theory of comonotonicity. We start with deriving a PDE for the European-
type comonotonic basket derivative price, together with a unique self-financing hedging strategy.
We show how to use the results for the comonotonic market to approximate American-type basket
derivative prices for a basket with correlated stocks. Our methodology generates American basket
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1 Introduction

A European-type basket derivative is a contingent claim written on a basket of stocks, i.e. a weighted
average of stock prices. There is a single pay-off at maturity which depends on the realization of the stock
prices composing the basket. Stock prices are assumed to be dependent, and therefore a multivariate stock
price model is required to price and hedge basket derivatives. Realistic stock price models do not allow
for closed-form solutions for European-type basket derivative prices. Instead, one has to use analytical
approximations or numerical methods to derive basket derivative prices and to deal with the curse of
dimensionality inherent to basket derivative pricing; see e.g. Krekel et al. (2006), Linders and Stassen
(2016), Escobar et al. (2016) and Caldana et al. (2016), among others.

American-type basket derivatives are offering early exercise possibilities and are therefore adding
another layer of complexity to the pricing problem. The Least-Squares Monte Carlo (LSM) method
proposed in Longstaff and Schwarts (2001) is currently one of the preferred methodologies for pricing
American-type derivatives. The LSM method provides accurate and efficient pricing for low dimensional
basket derivatives, but can be time-consuming if the basket size is large. Moreover, the primary focus
of the LSM method is on generating accurate prices. Therefore, there is room for improvement in
determining the exercise region and the delta of American options. For example, Wang and Caflisch
(2010) provide a modified Least Squares Monte Carlo method which is able to determine the exercise
region and the Greeks.

Basket derivative prices with early exercise features can also be determined as the solution of a
Partial Differential Equation (PDE). The PDE approach has already be proven useful for determining
accurate prices for American-type derivatives. In addition, it also allows to extract the exercise regions
and the deltas of the derivative. However, a major drawback of the PDE approach is its curse of di-
mensionality. Indeed, when the basket dimension is large, pricing basket derivatives by solving a PDE
becomes unstable and sometimes even impossible.

The present paper proposes a PDE-based approach to approximate prices of American-type basket
derivatives. We show that our method is fast and efficient, regardless of the basket size and can be used
to price a wide range of exotic basket derivatives. We cope with the curse of dimensionality of the PDE
approach by employing the concept of comonotonicity. Comonotonicity describes an extreme market
situation where only one stochastic factor drives the stock prices composing the basket. Therefore,
the initial multi-dimensional problem is reduced to a univariate problem, and the PDE approach can
be used to derive basket derivative prices. Assuming a comonotonic dependence structure solves the
dimensionality issue, but does not lead to realistic basket derivative prices. Therefore, we transform
the stock volatilities in an appropriate way such that the basket with transformed volatilities, but with
a comonotonic dependence structure is a close approximation for the real basket. As a result, basket
derivative prices in the comonotonic setting are close to the real basket derivative prices.

The idea of using comonotonicity together with a transformation of the marginal volatilities has been
proven useful in solving problems in the area of Asian option pricing, multi-asset derivative pricing, risk
management and portfolio selection; see e.g. Dhaene et al. (2002a,b) for an overview. For example, vari-
ous papers have shown that comonotonic pricing formulas with adjusted marginal volatilities can be used
to derive accurate closed-form approximations for basket and Asian options; see e.g. Simon et al. (2000),
Deelstra et al. (2004), Deelstra et al. (2008), Vyncke et al. (2004), and Linders and Stassen (2016). More-
over, one can prove that under appropriate conditions for the pay-off function, the comonotonic pricing
formulas can be employed to determine upper and lower bounds for basket derivative prices; see e.g.
Kaas et al. (2000), Dhaene et al. (2000), Dhaene et al. (2002a), Chen et al. (2008) and Chen et al. (2015).
The above-mentioned papers deal with pricing European-type options in a risk-neutral valuation context.
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These methodologies focus on approximating the distribution of the basket at the maturity date. Since
American-type option pricing additionally requires information about the future paths of all components
in the basket, these methodologies cannot be easily extended to American-type basket derivatives. To the
best of our knowledge, our paper is the first to use the comonotonicity technique in a PDE framework,
such that we can price both European-type as well as American-type basket derivatives.

We introduce the multivariate Black & Scholes market in Section 2. The stock prices are assumed
to be correlated. We show that the theory of comonotonicity can be used to obtain upper and lower
bounds for the basket derivative price. In Section 3 we show how to price a basket derivative in a
comonotonic market. We derive a partial differential equation (PDE) for the price of a European-type
comonotonic basket derivative and provide an explicit expression for the solution of the PDE as an
integration over all future states of the Brownian motion driving the comonotonic market. Furthermore,
we show that a unique delta-hedging strategy exists for a comonotonic European-type basket derivative.
This hedging strategy consists of taking positions in the risk-free bank account and the comonotonic
basket. In Section 4, we introduce a simple, yet efficient, finite difference scheme with its corresponding
stability criteria to numerically solve the comonotonic PDE for the lower bound, which provides close
approximations for the actual prices. Pricing American-type derivatives in a comonotonic setting can be
done by implementing the early-exercise opportunity in each step of the finite difference method. We
show by a numerical example that using the finite difference method, allows to derive prices, hedging
ratios and early exercise regions for comonotonic basket derivatives.

A closer approximate basket derivative price can be derived by applying an appropriate transforma-
tion on the stock volatilities and assuming a comonotonic market. This technique was developed in Kaas
et al. (2000) and first applied in Simon et al. (2000) to price Asian options and later-on in Deelstra et al.
(2004) to price basket options. We use this approach in Section 5 to derive prices for American-type
put options and compare the efficiency of the proposed finite different scheme against the LSM method.
We first express the price of an option with convex payoff on a basket of stocks as a combination of a
comonotonic upper bound and a comonotonic lower bound. We can then use the results of the comono-
tonic market to express both the upper and lower bounds as solutions of the same two-dimensional PDE,
differing only in the initial condition. We show that our proposed method provides accurate prices for
American put options. The calculation time is much faster (up to a factor 30) than the LSM method.
Moreover, we show that increasing the basket size can have a dramatic effect on the computation time of
the LSM method, while our methodology remains fast and accurate.

2 Basket options in the multivariate Black & Scholes model

2.1 The multivariate Black & Scholes model

Consider a market with n non-dividend paying stocks, labeled from 1 to n. The price of stock i at time
t ≥ 0 is denoted by Si (t) . We assume that the stock price dynamics under the real-world probability
measure P can be described as follows:

Si(t) = Si(0) +

∫ t

0
µiSi(s)ds+

∫ t

0
σiSi(s)dBi(s), for t > 0 and i = 1, 2, . . . , n, (2.1)

where B (t) = (B1 (t) , B2 (t) , . . . , Bn (t)) and {B (t) | t ≥ 0} is a correlated n-dimensional Brownian
motion, with E [dBi(t)dBj(t)] = ρi,jdt, defined on a common probability space, equipped with a filtra-
tion which records the ‘past behavior’ of the multivariate stock price process. The market is assumed to
satisfy the common requirements of an efficient and frictionless market.
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We assume the risk-free rate r to be deterministic and constant over time. We denote by D(t)
the time-t value of the risk-free bank account and its dynamics can be described using the following
differential equation:

dD(t)

D(t)
= rdt.

We denote by S(t) the time-t price of the stock basket, which is expressed as a weighted average of
the n individual stocks:

S (t) = w1S1 (t) + w2S2 (t) + . . .+ wnSn (t) , (2.2)

where the weights wi, for i = 1, ..., n, are positive constants. The subsequent results can be adapted to
account for positive time-varying weights without loss of generality.

2.2 Pricing basket options in the multivariate Black & Scholes model

A basket derivative with maturity T and pay-off functionH is a contingent claim with pay-off determined
by the function H and the sample path of the basket. For European-type derivatives, the pay-off at
maturity is given by H(S(T )), and only depends on the time-T basket price. At time t, the basket spot
price S(t) together with the stock prices Si(t) are assumed to be known and the arbitrage-free price of
the basket derivative is denoted by V (t, S1(t), S2(t), . . . , Sn(t)). In order to simplify the notation, we
sometimes write V (t, S1, S2, . . . , Sn) or V , if no confusion is possible.

Consider an n-dimensional basket option with time-t price denoted by V (t, S1, S2, . . . , Sn), where
S1, S2, . . . , Sn are the basket components. Then one can prove that in a Black & Scholes setting, the
price V of a European-type derivative satisfies the following partial differential equation (PDE):

∂V

∂t
+

1

2

n∑
i=1

n∑
j=1

σiσjρi,jwiwjSiSj
∂2V

∂Si∂Sj
+ r

n∑
i=1

Si
∂V

∂Si
− rV = 0, (2.3)

where the wi are constant and positive basket weights and (σiσjρi,j)1≤i,j≤n is the variance-covariance
matrix of the stock prices. Taking into account appropriate boundary and final conditions, the time-t
price of the basket derivative is the solution of this equation. However, the analytical solution requires
an n-dimensional integration and evaluating such an integral is impossible for high dimensions. Instead,
one can opt to use finite difference methods to numerically solve the differential equation (2.3). This,
however, requires a time grid and an n-dimensional stock price grid, resulting in a procedure which is
too slow to be used for pricing and calibration purposes, especially for high basket dimensions. As a
result, the problem of basket option pricing using PDE methods remains an open problem.

The main advantage of PDE methods over other existing pricing methods, such as risk-neutral val-
uation, is the possibility to incorporate path dependency and early exercise features and to determine
the exercise region for American-type options. In the one-dimensional case, standard numerical meth-
ods such as finite difference can be employed to numerically price an American-type option in the PDE
framework; see e.g. Haentjens and In’t Hout (2015) and Witelski and Bowen (2003). For higher dimen-
sions, however, such numerical schemes become instable and cannot provide accurate results. These
issues are predominantly caused by the cross-derivative terms in the multivariate PDE (2.3). Several
numerical methods exist to deal with the cross-derivative terms, resulting in complex approximate prices
for basket derivatives; see e.g. Reisinger and Wittum (2007), Leentvaar and Oosterlee (2008), Clift and
Forsyth (2008), Düring and Heuer (2015) and Company et al. (2016).
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2.3 An upper bound for basket derivative prices with convex payoff

A possible solution to tackle the problem of pricing basket derivatives, consists in deriving upper and
lower bounds for the derivative price. An upper bound for the basket derivative price is obtained by
making the basket ‘more volatile’. We are considering the same stocks as in the original basket, but we
assume they all move in the same direction. In case the payoff function of the derivative is a convex
function, employing an extreme positive dependence structure leads to an upper bound for the basket
derivative price.

We construct an artificial1 financial market where all stocks behave in a comonotonic way. In this
comonotonic market, n stocks are traded and the price of stock i at time t is denoted by Sci (t). The
dynamics of the n traded stocks is described by the following stochastic integral equation (SIE):

Sci (t) = Si(0) +

∫ t

0
µiS

c
i (s)ds+

∫ t

0
σiS

c
i (s)dB(s), for t > 0 and i = 1, 2, . . . , n, (2.4)

where B = {B(t)| t ≥ 0} is a standard Brownian motion and Si(0), for i = 1, 2, . . . , n, are the time-0
prices of the basket components.

The stocks in the comonotonic market are equal, in distribution, to the original stocks:

Sci (t)
d
= Si(t), for i = 1, 2, . . . , n and t > 0. (2.5)

However, the price vector (Sc1(t), Sc2(t), . . . , Scn(t)) has a comonotonic copula and the correlation be-
tween the log returns is always equal to one. The price of the comonotonic basket at time t is denoted by
Sc(t) and:

Sc(t) = w1S
c
1(t) + w2S

c
2(t) + . . .+ wnS

c
n(t). (2.6)

Consider a derivative with convex pay-off function H and maturity T , but written on the comonotonic
basket Sc(T ). The time-t price of this comonotonic basket derivative is unambiguously determined by
the basket spot Sc(t). In a general, non-comonotonic market, this is not the case: knowledge about the re-
alization S(t) is not sufficient to determine V (t, S1, . . . , Sn). Therefore, we can denote the comonotonic
time-t price by V c (t, Sc(t)). Moreover, Kaas et al. (2000) proved that at any time t, the comonotonic
basket option price V c (t, Sc(t)) is an upper bound for the original price V (t, S1, . . . , Sn).

The main advantage of working in a comonotonic market lies in the dimension reduction of the
problem it produces. Indeed, basket derivative pricing in the comonotonic market is essentially a one-
dimensional problem. The main disadvantage of the comonotonic market is that it does not provide
realistic basket derivative prices. In the next subsection we consider a comonotonic market which does
allow for realistic basket derivative prices by employing an appropriate transformation of the marginal
distributions.

2.4 A lower bound for the basket derivative price with convex payoff

Consider again an artificial comonotonic market with n stock prices labelled Sli , for i = 1, ..., n. The
dynamics of the time-t prices of the Sli’s are given by

Sli(t) = Si(0) +

∫ t

0
µiS

l
i(s)ds+

∫ t

0
νiσiS

l
i(s)dB(s), for t > 0 and i = 1, 2, . . . , n, (2.7)

1we use the term ‘artificial’ to emphasize that the market described by the SIE’s (2.4) is a fictitious market and does not
intend to describe the real market situation.
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where 0 ≤ νi ≤ 1, for i = 1, 2, . . . , n. The time-t stock prices have now different distributions than
the real stock prices. To be more precise, the artificial stock price processes Sli , i = 1, 2, . . . , n are less
volatile compared to the real stock price processes Si, because 0 < νi < 1. Indeed, it is straightforward
to prove that

Var

[
Sli(t)

E
[
Sli(t)

] | F0

]
≤ Var

[
Si(t)

E [Si]
| F0

]
.

Since νi > 0, the time-t stock price vector
(
Sl1, ..., S

l
n

)
has again a comonotonic copula.

The corresponding basket is denoted by Sl(t) and

Sl(t) = w1S
l
1(t) + w2S

l
2(t) + . . .+ wnS

l
n(t).

The distribution of Sl(t) depends on the choice of the factors νi, i = 1, 2, . . . , n. The time-t price of
a basket derivative with convex payoff function H , written on the basket Sl is denoted by V l(t, Sl).
The lemma below provides sufficient conditions for the factors νi, i = 1, 2, . . . , n such that the basket
derivative price V l(t, Sl) will be a lower bound for the basket derivative price V (t, S).

Lemma 2.1 Assume the factors νi, i = 1, 2, . . . , n in the stock price model (2.7) are given by

νi =

∑n
j=1 βjρi,jσj√∑n

j=1

∑n
k=1 βjβkρj,kσjσk

, for i = 1, 2, . . . , n, (2.8)

with βj > 0 for j = 1, 2, . . . , n. Then, there always exists a choice for the βj > 0, j = 1, 2, . . . , n, such
that 0 ≤ νi ≤ 1, i = 1, 2, . . . , n and

V l
(
t, Sl

)
≤ V (t, S).

For suggestions on the choice for the βj parameters and a proof of Lemma 2.1, we refer to Kaas et al.
(2000), Deelstra et al. (2004) and Linders and Stassen (2016).

To conclude, we can derive an upper and a lower bound for the real derivative price V (t, S1, S2, . . . , Sn):

V l(t, Sl) ≤ V (t, S1, S2, . . . , Sn) ≤ V c(t, Sc).

Moreover, both the upper and lower bound can be determined in a comonotonic market. In the follow-
ing section, we search for the basket derivative prices V c(t, Sc) and V l(t, Sl), and we show that the
corresponding PDE’s reduce to two-dimensional PDE’s. As a result, the closed-form solutions consist
of single integrations over Gaussian densities and only a one-dimensional stock price grid is needed for
each PDE if a finite difference method is employed. Note that the dynamics of the baskets Sl and Sc

differ only in the marginal volatilities. Therefore, we exploit this similarity and we derive our results for
the upper bound only.

3 The comonotonic basket derivative

3.1 Dynamics of the comonotonic basket

We find from Expressions (2.4) and (2.6) that the time-t stock prices Sci (t), i = 1, 2, . . . , n and the time-t
basket price Sc(t) can be expressed as functions of t and the Brownian motion B. Moreover, since the
functions fi : R→ R, for i = 1, 2, . . . , n, defined by

fi(x) = wiSi(0)e(µi− 1
2
σ2
i )t+σix
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are strictly increasing, the function

f(x) =

n∑
i=1

fi(x) (3.1)

is also strictly increasing. Hence, for any time partitioning 0 ≤ t1 < . . . < tm ≤ T and real numbers
x1, x2, . . . , xm, where m is an integer, the sets {ω ∈ Ω|Sc(t1) < x1, S

c(t2) < x2, . . . , S
c(tm) < xm}

and {ω ∈ Ω|B(t1) < f−1 (x1) , B(t2) < f−1 (x2) , . . . , B(tm) < f−1 (xm)} are equal. Therefore, the
natural filtration of the Brownian motion and the filtration generated by the comonotonic basket price
coincide. We say that the comonotonic market is driven by the single random source B.

In the following lemma we show that the comonotonic basket Sc = {Sc(t)| t ≥ 0} follows an Ito
process with time-dependent drift and volatility.

Lemma 3.1 Consider the comonotonic market described in (2.4). The stochastic integral equation of
the comonotonic basket Sc defined in (2.6) is given by:

Sc(t) = S(0) +

∫ t

0
µc(s)ds+

∫ t

0
σc(s)dB(s), (3.2)

where

µc(s) =
n∑
i=1

µiwiS
c
i (s) and σc(s) =

n∑
i=1

σiwiS
c
i (s). (3.3)

Proof. Since Sc(t) =
∑n

i=1wiS
c
i (t), the stochastic integral equation (3.2) follows directly from (2.4)

using an inversion of sums and integrals.

Note that we can also use the conventional expression

dSc(t) = µc(t)dt+ σc(t)dB(t), (3.4)

to describe the dynamics of the comonotonic basket, instead of the SIE (3.2).

The comonotonic market described above is assumed to be arbitrage-free. This no-arbitrage condi-
tion is equivalent with the existence of a parameter λ ∈ R satisfying

λ =
µi − r
σi

, for i = 1, 2, . . . , n,

which is called the market price of risk; it expresses the reward one obtains for picking up a unit of
volatility. Indeed, it is the increase in the expected excess return µi − r per unit of volatility. In the
comonotonic market, the market price of risk is the same for each stock because the volatility of each
stock is driven by the same Brownian motion and hence a unit of volatility of stock i is essentially the
same as a unit of volatility of any other stock j. For a detailed discussion on no-arbitrage conditions in
the multivariate Black & Scholes model, we refer to Björk (1998), Dhaene et al. (2014) and Dhaene et al.
(2018).

Define the process Bλ = {Bλ(t) | t ≥ 0} as follows:

dBλ(t) = dB(t) + λdt. (3.5)

Hence, Bλ is a Brownian motion with drift, where the drift parameter is equal to the market price of risk
of the comonotonic market. On the one hand, we can express the marginal stock prices Sci (t) in terms of
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the process Bλ by plugging (3.5) in Expression (3.4) and using the relation r = µi − λσi. The SDE for
Sc can be expressed as follows:

dSc(t) = rSc(t)dt+ σc(t)dBλ(t), (3.6)

and the basket Sc can be expressed as follows

Sc(t) =
n∑
i=1

wiSi(0)e(r− 1
2
σ2
i )t+σiBλ(t). (3.7)

We also find that
µc(t)− σc(t)λ = rSc(t).

Girsanov’s theorem states that there exists a probability measure Q such that the stochastic process Bλ
is a Brownian motion under this new probability measure. Since Bλ has drift equal to the market price
of risk, the probability measure Q corresponds with the risk-neutral pricing measure. Note that under
the probability measure P, this process is a Brownian motion with drift, whereas under the risk-neutral
measure Q, the processBλ is a standard Brownian motion. In the remainder of the paper, we use the SDE
(3.6) for the dynamics of the comonotonic basket but we work under the objective probability measure
P. This means that the process Bλ is a Brownian motion with drift λ.

3.2 The PDE for the basket derivative price

The comonotonic market is driven by a single random source: the process Bλ. The realization of Bλ at
time t unambiguously determines the realizations of Sc(t) and Sci (t). As a result, the price of the basket
derivative can be expressed as a function of the time t and the realization Bλ of the random source. The
time-t comonotonic basket derivative price is then written using an alternative expression for the function
V c
λ , which is defined as follows:

V c
λ (t, Bλ) = V c

(
t,

n∑
i=1

wiSi(0)e(r− 1
2
σ2
i )t+σiBλ

)
.

Note that we use the same t for V c(t, Sc) and V c
λ (t, Bλ) by abuse of notation only. When writing

V c(t, Sc), it is implicitly assumed that Sc is constant when the time varies, whereas in V c
λ (t, Bλ) the

basket Sc is time varying if t varies and Bλ remains constant. Therefore, we have:

∂V c
λ

∂t
(t, Bλ) =

∂V c

∂t
(t, Sc) +

∂V c

∂Sc
(t, Sc)

∂Sc

∂t
(t, Bλ).

A trading strategy is denoted by the stochastic process π = {(π1(t), π2(t)) | t ≥ 0}, where π1(t) and
π2(t) are the number of units invested at time t in the comonotonic basket and the risk-free bank account,
respectively, and satisfy the standard assumption of P-a.s. square integrability on [0, T ]. The time-t value
of the strategy π is denoted by Π(t) and

Π(t) = π1(t)Sc(t) + π2(t)D(t).

A trading strategy is said to be self-financing if one can inject or withdraw money from the investment
portfolio only at the beginning and the end date of the strategy. All other purchases in one asset class
have to be financed by selling positions in the other asset class.
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3.2.1 European-type basket derivative

Assume the basket derivative is of European type, i.e. it has a pay-off at maturity only. We derive the
partial differential equation for the price V c

λ in Theorem (3.1), whose proof can be found in the appendix.
We also show that there exists a unique self-financing portfolio which replicates the comonotonic basket
derivative price. Since the comonotonic basket derivative Sc is an Ito process, the proof follows the same
spirit as the classical Black & Scholes PDE proof; see e.g. Theorem 3.1.1 in Musiela and Rutkowski
(2005).

Theorem 3.1 The derivative price V c
λ with pay-off at time T given in (3.9) satisfies the following back-

ward partial differential equation:

∂V c
λ

∂t
+

1

2

∂2V c
λ

∂B2
λ

− rV c
λ = 0, (3.8)

where the final condition is given by

V c
λ (T,Bλ) = H

(
n∑
i=1

wiSi(0)e(r− 1
2
σ2
i )T+σiBλ

)
. (3.9)

Furthermore, the unique, self-financing, replicating strategy π = {(π1(t), π2(t))| t ≥ 0} of this deriva-
tive is given by:

π1(t) =
1

σc
∂V c

∂Bλ
;

π2(t) =
1

D(t)
(V c (t, Bλ)− π1(t)Sc(t)) .

Equation (3.8) is a backward linear parabolic partial differential equation for the comonotonic basket
price with constant coefficients. It has only two dimensions, regardless of the number of the basket
components. The single dimensionality and the constant coefficients are due to the fact that only one
random source is governing the comonotonic market, and allow for an efficient numerical scheme. The
backward nature of this equation requires to impose the final condition (3.9), which corresponds to the
pay-off at time T , and hence, determines the type of the option.

In order to ensure the uniqueness of the solution of the PDE, we must also impose boundary con-
ditions. These conditions are carrying information on the type of the option under consideration. For
instance, the boundary conditions for a barrier option have to take into account the set of values of the
comonotonic basket for which the option is worthless. Therefore, boundary conditions must be chosen
carefully, with a realistic financial interpretation, to reflect the specificities of the basket derivative. We
refer to Wilmott (2006), among others, for a discussion on the boundary conditions which are applicable
here, with practical aspects on their numerical implementation. We end the comments on Theorem 3.1
with a remark on the assumption of a constant interest rate r and the assumption that we deal with a
non-dividend paying basket. In practice, Equation (3.8) can readily be extended to account for time-
varying deterministic interest rates and to include dividend yields using similar techniques as in the
one-dimensional Black & Scholes case.

3.2.2 Continuously sampled Asian-type basket derivatives

We consider a continuously sampled Asian basket option; a derivative with pay-off function depending
on the average basket price on the interval [0, T ]. The average used in the Asian option is denoted by
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I(t) and is defined as follows:

I(t) =

∫ t

0
g(u, Sc)du,

where the function g determines the type of the agreed-upon averaging, e.g. arithmetic or geometric
average. A similar reasoning is applied to Look-back options, for which the function g has to be adapted
accordingly. The price of the Asian basket derivative is now also dependent on I . Similar calculations as
in the proof of Theorem 3.1 lead to the following PDE that the Asian basket derivative price satisfies:

∂V c
λ

∂t
+ g(t, Sc)

∂V c
λ

∂I
+

1

2

∂2V c
λ

∂B2
λ

− rV c
λ = 0. (3.10)

Deriving a closed-form solution for the PDE (3.10) is in general not feasible. However, pricing comono-
tonic Asian basket options can also be performed numerically. Moreover, given its similarity with the
PDE for an Asian option in the one-dimensional Black & Scholes model, one can tackle the problem of
solving (3.10) in the same way; see e.g. Wilmott et al. (1994), Zvan et al. (1998) and Wilmott (2006).

3.3 Solution of the comonotonic PDE

In Theorem 3.2 stated below, we show that there exists an explicit solution for Equation (3.8) which
satisfies the final condition (3.9). The proof first recasts the PDE (3.8) into a one-dimensional heat
equation, after which we solve the one-dimensional heat equation in terms of Gaussian densities using
similarity reduction techniques. In the last step, we go back to the original problem and find a solution
V c
λ for (3.8); see e.g. Wilmott (2006). Note that the following Theorem enables to derive further results

on the distributions of the comonotonic basket, which are given in the Appendix section.

Theorem 3.2 The time-t price of a European-type derivative with pay-off function H at maturity T
written on the comonotonic basket Sc is denoted by V c

λ (t, Bλ) and is given by:

V c
λ (t, Bλ) = e−r(T−t)

∫ +∞

−∞
H

(
n∑
i=1

wiS
c
i (t)e(r− 1

2
σ2
i )(T−t)+σiy

)
φT−t(y)dy, (3.11)

where Sci (t) is the time-t spot price of the comonotonic stock i, which is given by

Sci (t) = Si(0)e(r− 1
2
σ2
i )t+σiBλ(t), for i = 1, 2, . . . , n, (3.12)

and φT−t denotes the density function of a normal distribution with mean 0 and variance T − t:

φT−t(y) =
e−

y2

2(T−t)√
2π(T − t)

.

4 Finite difference scheme: pricing, hedging and exercise region

4.1 The comonotonic finite difference method for European-type basket derivatives

Solving the comonotonic Black & Scholes PDE given in (3.8) together with the pay-off H(Sc(T )) at
maturity yields the value of the European-type derivative at any time t as a one-dimensional integral; see
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(3.11). In this section, we use the explicit finite difference method to numerically obtain a solution; see
e.g. Brennan and Schwartz (1977).

Take the time step δt and
tk = T − kδt, for k = 0, 1, . . . , N.

Take also a grid with step size δB for Bλ:

bj = (j − I)δB, j = 0, 1, . . . , J.

for some I and J . The value for the comonotonic basket derivative price V c
λ (tk, bj) of the contract at the

grid point (tk, bj) is denoted by V k
j . The partial derivatives in (t, Bλ) can be approximated as follows:

∂V c
λ

∂t
=

V k
j − V

k+1
j

δt
+O(δt) (4.1)

∂2V c
λ

∂B2
λ

=
V k
j+1 − 2V k

j + V k
j−1

δB2
+O(δB2). (4.2)

While the initial condition V 0
j characterizing the contract follows from the pay-off function:

V 0
j = H

(
n∑
i=1

wiSi(0)e(r− 1
2
σ2
i )T+σibj

)
, (4.3)

the basket derivative prices at the other nodes can be derived by using the approximations (4.1) and (4.2)
in the comonotonic PDE (3.8). This gives the following explicit expression for V k+1

j given the values
V k
j−1, V k

j and V k
j+1:

V k+1
j =

1

2

δt

δB2
V k
j−1 +

(
1− rδt− δt

δB2

)
V k
j +

1

2

δt

δB2
V k
j+1 +O(δt; δB2), (4.4)

for j = 1, ..., J − 1 and k = 0, 1, ..., N − 1. Moreover, one needs to determine the boundary conditions
V k

0 and V k
J which depends on the contract specificities.

Similarly to the one-dimensional Black & Scholes model, this method can be improved using implicit
or semi-implicit methods, such as the Crank-Nicolson method; see Crank and Nicolson (1947), Duffy
(2004), Wilmott (2006) and Ahmad (2006).

We provide in the following theorem a condition ensuring the stability of the scheme. The proof can
be found in the Appendix.

Theorem 4.1 The finite difference scheme (4.4) is stable when the following condition is satisfied:

δt ≤ 2δB2

rδB2 + 2
. (4.5)

4.2 Numerical Illustration: upper and lower bounds for European-type basket put op-
tion

We illustrate the use of the finite difference method derived in the previous section using a numerical
example. Consider a European-type put option, written on a four-stock basket with parameters summa-
rized in Table 1. We first approximate the real price of a basket put option with strike K and maturity T
using Monte Carlo simulation with 1000000 simulations. The price is denoted by V Sim.
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Next, we determine the upper bound V c and the lower bound V l using the finite difference scheme.
For the lower bound V l, we use the parameter νi which is chosen as:

νi =

∑n
j=1wjSj(0)ρi,jσj√∑n

j=1

∑n
k=1wjwkSj(0)Sk(0)ρj,kσjσk

, for i = 1, 2, . . . , n. (4.6)

The prices V Sim, V c and V l are calculated for strike prices Ki = 95, 96, . . . , 115. The option prices
are shown in Figure 1. Since a put option has a convex payoff, the price V Sim is bounded from above
by V c and from below by V l for every Ki. We also observe that V l is a good approximation for the
basket derivative price: V l ≈ V Sim, whereas the upper bound does not succeed in providing a close
approximation2. The reason is that the price V c does not contain any information about the dependence
structure and assumes that all pairwise correlations are equal to one. Therefore, the accuracy of the upper
bound V c is improving when the stocks composing the basket are moving strong together. Note that the
computation time to generate the basket put option prices V Sim is around 4 seconds, whereas the upper
bounds V c and lower bounds V l can be determined in approximately 0.4 seconds.

Table 1: The four-basket put option

stocks 1 2 3 4

Vols 0.25 0.3 0.45 0.8
Spot prices 100 100 100 100

Weights 0.25 0.25 0.25 0.25

Correlation 0.3
Maturity 1

Risk-free rate 0.01

Consider the four-basket put option with parameters given in Table 1 and strike priceK = 100. Since
the lower bound prices V l provide close approximations for the real basket option price, we continue
using the lower bound for approximating the real basket option prices. The comonotonic finite difference
method determines a matrix of option prices V k+1

j defined in (4.4), where the volatility σi has to be
replaced by νiσi since we work in the lower bound framework. The price V k

j is an approximation for

the time-tk price of the basket put with basket spot price given by
∑n

i=1wiSi(0)e(r− 1
2

(νiσi)
2)tk+νiσibj

and time to maturity given by T − tk. The delta of an option is its sensitivity w.r.t. the underlying basket
spot price. We can write the delta of the basket derivative V l as follows: ∆ = ∂V l

∂Sl
. Using the chain rule,

these deltas can be approximated in the finite difference scheme as follows

∆k
j =

V kj+1−V kj−1

2δB∑n
i=1 νiσiwi(Si)

k
j

,

where
(Si)

k
j = Si(0)e(r− 1

2
(νiσi)

2)tk+νiσibj .

The left panel of Figure 2 shows the basket put option prices V k+1
j based on the comonotonic lower

bound approximation (2.7). This surface is an approximation for the real price of a basket put option
2The accuracy of the lower bound when approximating prices for European-type basket derivatives using risk-neutral valu-

ation is already studied in Deelstra et al. (2004), Deelstra and Hainaut (2014) and Linders (2013).
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Figure 1: Basket put option prices V Sim
K , V c

K and V l
K for different strike values K for the four-basket

option with parameter values given in Table 1.

for different basket spot prices and different times to maturity. The right panel of Figure 2 shows the
corresponding deltas, based on a lower bound approximation. Note that calculating these price and delta
surfaces does not require any extra work for the finite difference scheme.

4.3 Comonotonic finite difference method for the lower bound of American-type basket
options

Consider an American-type basket derivative with payoff function H and maturity T . We partition the
time interval [0, T ] using a time step δt and the space interval [−IδB, (J − I)δB] using a step size δB.
We take 15000 time steps per year, and the corresponding space grid is chosen such that it complies with
the condition (4.5). We performed convergence tests on the finite different scheme which suggest that
15000 time steps is sufficient. We show now how the early exercise features can be implemented in the
finite difference scheme, similarly to the one-dimensional Black & Scholes case.

Assume we already derived the American-type basket derivative prices V l
j , for j = 0, 1, . . . , J and

l = 0, 1, . . . , k. The American-type basket derivative price V k+1
j at the time point tk+1 can be deter-

mined by comparing the present value of the contract in case the option is not exercised with the payoff
of the derivative in case of early exercise at time tk+1. In case the derivative is not exercised at time tk+1,
it behaves as a European-type derivative in the interval [tk+1, tk]. Therefore, the time-tk+1 price in case
of no early exercise is denoted by Ṽ k+1

j and can be determined by using the methodology explained in
Section 4.1. We have that:

Ṽ k+1
j =

1

2

δt

δB2
V k
j−1 +

(
1− rδt− δt

δB2

)
V k
j +

1

2

δt

δB2
V k
j+1 +O(δt; δB2),

for j = 1, ..., J−1 and k = 0, 1, ..., N−1. Note that we use a marginal volatility parameter equal to νiσi
because we want to use the lower bound approximation as a close approximation for the real American-
type basket put option price. The holder of the derivative will only use the right to exercise at time tk+1
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Figure 2: The left panel shows the option prices V k+1
j based on the lower bound approximation for the

four-basket put option of Table 1 for different maturities and different spot prices. The right panel shows
the corresponding deltas.

if the option provides a payoff which is larger than Ṽ k+1
j . Therefore, the value V k+1

j corresponds with

V k+1
j = max

{
Ṽ k+1
j ,

(
K − Sk+1

j

)
+

}
,

where

Sk+1
j =

n∑
i=1

wiSi(0)e(r− 1
2

(νiσi)
2)tk+1+νiσjbj .

Additionally, the comonotonic finite difference method with the lower bound approximation allows
to determine at each time point tk the basket price S∗(tk) such that it is optimal to exercise the basket put
if the basket spot price is below S∗(tk). The function S∗ is called the exercise region and this exercise
region can directly be extracted from the finite difference scheme without any extra computational cost.
An approximate exercise region can be determined by using the comonotonic finite difference method
together with the lower bound approximation. The result is shown in Figure 3.

5 Pricing American basket put options: comparison with the Least-Squares
Monte Carlo

In this section, we use the finite difference scheme to price American put options, and we compare the
results with the Least-Squares method. We have already illustrated the accuracy of the proposed method
in determining the upper bound V c and the lower bound V l. Now we combine these bounds to determine
an approximate price. First, consider a European-type basket put option with strikeK and maturity T . An
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Figure 3: Exercise region for the lower bound approximation of the four-basket American-type put option
with parameters given in Table 1.

approximation for the real price V (t, S1, S2, . . . , Sn;K) is denoted V̄ (t, S1, S2, . . . , Sn;K) and follows
from the linear combination:

V̄ (t, S1, S2, . . . , Sn;K) = zV l(t, Sl;K) + (1− z)V c(t, Sc;K), (5.1)

and we aim to find a close approximation V̄ for the real price V . It can be shown, see e.g. Vyncke et al.
(2004) and Linders (2013), that by taking the weight z such that:

z =
Var [Sc(T )|Ft]− Var [S(T )|Ft]
Var [Sc(T )|Ft]− Var [Sl(T )|Ft]

, (5.2)

the following relation holds: ∫ +∞

0
V̄ dK =

∫ +∞

0
V dK.

The variances needed to calculate z are taken under the risk-neutral measure, and are given by:

Var [S(T )|Ft] =
n∑
i=1

n∑
j=1

wiwjSi (t)Sj (t) e2r(T−t)
(

eρi,jσiσj(T−t) − 1
)
,

Var [Sc(T )|Ft] =
n∑
i=1

n∑
j=1

wiwjSi (t)Sj (t) e2r(T−t)
(

eσiσj(T−t) − 1
)
,

Var
[
Sl(T )|Ft

]
=

n∑
i=1

n∑
j=1

wiSi (t)wjSj (t) e2r(T−t)
(

eνiνjσiσj(T−t) − 1
)
.

Therefore, relation (5.1) implies that an approximation for the basket option price can be obtained
with two finite difference schemes for V l and V c. The finite difference scheme is implemented as
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described in the previous section. For the LSM, we use 50 exercising times per year. The regressions
are performed using standard polynomials up to the second degree for all stocks composing the basket.
In particular, for the in-the-money paths at each time step, the payoff is approximated by the following
linear model:

β0 +
n∑
i=1

β1,i
Si(t)

Si(0)
+

n∑
i=1

β2,i

(
Si(t)

Si(0)

)2

.

The number of simulated paths is 100000. Moreover, the displayed LSM prices are taken as the average
among 10 simulated prices, which seems to be enough to reduce the variance due to the simulations, and
not too much in order to keep the computation time reasonable. All calculations are performed using R
software on a Dell computer with processor reference ‘Intel(R) Core(TM) i7-4910MQ CPU 2.90GHz’.
We rely on the mvrnorm() function in the MASS package to generate multivariate normal random
variables (see Venables and Ripley (2002)) and the lm() function for the linear regressions (see R Core
Team (2017)). In order to simplify the numerical testing and without any loss of generality, we assume
in the following illustrations that all pairs of stocks have the same correlation and we use the notation
ρ = ρij for all i 6= j. Furthermore, we assume a constant interest rate of 1%.

Table 2 displays American-type basket put option prices for an equally weighted basket of 8 stocks,
all having the same initial value 40. The volatilities of stocks 2 to 8 are 60%, 10%, 90%, 30%, 70%,
80% and 20%, respectively. Prices are calculated for 3 different maturities (i.e. 6 months, 1 year and
2 years), 3 different strikes (i.e. 35, 40 and 45), two levels of the volatility of the first stock (i.e. 30%
and 90%) and two levels of the pairwise correlation (i.e. 0.3 and 0.8). Column ‘Rel. diff.’ reports
the relative difference in percent between the price using the finite difference method and average price
obtained with the LSM method. We observe that the two methods give very close prices. However, we
see from columns ‘Comp. time FD’ and ‘Comp. time LSM’ that the computation time is significantly
smaller for the finite different method. The first reason is that for longer maturities, the increase of both
the number of simulations and the number of exercising opportunities slows down the process. Another
factor impacting the computation time is the strike price. For higher values of the exercising price, the
number of in-the-money paths is higher, requiring further computational efforts. We found the same
order of relative differences and computation times in other examples where we take different weights
in the basket, different basket sizes and different volatilities. The results are not reported here but are
available to the reader upon request.

Figure 4 depicts sensitivity tests with respect to the maturity, the strike, the volatility of the first
stock and the pairwise correlation. We focus on the relative differences between American-type basket
put prices obtained with the finite difference method against those obtained with the LSM method. The
basket under consideration is an equally weighted sum of 4 stocks with initial prices of 40. The base case
from which the sensitivities are drawn is such that the maturity is 1 year and the exercise price is 40. The
pairwise correlation is 0.3 and the volatilities of the four stocks are σ1 = 40%, σ2 = 60%, σ3 = 10%
and σ4 = 90%. The top-left graph shows the sensitivity with respect to the maturity, where we see that
the differences are relatively small. However, it is worth to mention that for high maturities, the relative
differences tend to increase. This can be due to the fact that the approximation errors in the LSM are
compounded over the exercising times, which leads to biased prices. The top-right graph corresponds
to the sensitivity with respect to the strike. It appears that the relative differences become too big for
low strikes. One reason could be that for low strikes, the number of in-the-money paths in the LSM
is reduced, such that the regressions are not performing very well. The same reason could explain the
increase of the relative difference for high volatilities in the bottom left graph. Finally, the bottom-right
graph displays the relative differences as a function of the pairwise correlation coefficient where we see
that the differences are often very small.
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Table 2: American-type basket put option prices on a basket of 8 equally weighted stocks with initial
prices 40 computed using finite difference (FD) method and the LSM with the relative differences (in %)
and the corresponding computation times (in seconds).

Maturity Strike σ1 ρ FD prices LSM prices Rel. diff. Comp. time FD Comp. time LSM

6 months 35 0.3 0.3 1.279 1.282 0.219 9.36 79.81
0.8 2.408 2.413 0.228 9.17 96.44

0.9 0.3 1.700 1.703 0.181 9.17 86.71
0.8 3.053 3.064 0.369 9.17 108.04

40 0.3 0.3 3.461 3.468 0.183 9.36 164.88
0.8 4.866 4.879 0.256 10.33 175.81

0.9 0.3 3.989 4.008 0.453 10.39 163.91
0.8 5.618 5.620 0.023 9.57 157.50

45 0.3 0.3 6.742 6.739 0.037 9.33 216.22
0.8 8.109 8.118 0.104 9.49 201.32

0.9 0.3 7.236 7.245 0.132 9.33 203.58
0.8 8.860 8.881 0.232 8.98 196.07

1 year 35 0.3 0.3 2.386 2.374 0.486 18.78 231.91
0.8 4.015 4.019 0.100 18.34 270.99

0.9 0.3 3.033 3.032 0.030 18.09 246.30
0.8 4.945 4.946 0.022 18.22 280.50

40 0.3 0.3 4.848 4.837 0.237 17.97 1601.22
0.8 6.743 6.732 0.159 84.94 1557.22

0.9 0.3 5.596 5.596 0.010 85.59 1515.75
0.8 7.784 7.787 0.035 81.05 1541.76

45 0.3 0.3 8.093 8.079 0.169 84.80 1977.86
0.8 10.027 10.016 0.109 82.61 1281.59

0.9 0.3 8.093 8.842 0.077 18.24 474.82
0.8 11.098 11.085 0.120 17.85 455.61

2 years 35 0.3 0.3 4.035 3.974 1.521 37.36 729.34
0.8 6.196 6.183 0.216 37.30 2374.89

0.9 0.3 4.978 4.954 0.492 167.00 3028.90
0.8 7.481 7.477 0.065 163.18 3454.50

40 0.3 0.3 6.775 6.704 1.041 169.78 4023.14
0.8 9.204 9.176 0.299 165.61 4148.22

0.9 0.3 7.822 7.814 0.101 167.06 4055.97
0.8 10.614 10.594 0.187 163.75 4245.87

45 0.3 0.3 10.065 10.011 0.538 170.83 4990.59
0.8 12.602 12.576 0.209 165.97 4862.00

0.9 0.3 11.136 11.130 0.049 167.44 4911.06
0.8 14.075 14.049 0.188 164.21 4836.68
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Figure 4: Relative difference between the finite difference method and the LSM as a function of the
maturity (top-left), strike (top-right), volatility of stock 1 (bottom-left) and pairwise correlation (bottom-
right) for an American-type basket put option, where the basket is composed of 4 equally weighted
stocks with initial prices 40. The dashed lines are the differences with upper and lower bounds of the
95% confidence interval

.
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Table 3: American-type basket put option prices on a basket of 4 equally weighted stocks with initial
prices 40 for high pairwise correlations.

Pairwise correlation FD prices LSM prices Comonotonic LSM

0.95 7.427 7.433 –
0.96 7.452 7.444 –
0.97 7.476 7.476 –
0.98 7.500 7.511 –
0.99 7.524 8.670 –

0.992 7.529 10.250 –
0.994 7.534 10.234 –
0.996 7.538 14.702 –
0.998 7.543 17.212 –
1.000 7.548 259.274 7.550

However, surprising values are observed when the correlation coefficient approaches 1, which are
reported in Table 3 but not in Figure 4. While the finite difference method returns smooth prices (i.e.
from 7.43 to 7.55 for correlation coefficients between 0.95 and 1), the LSM prices increase very fast
from 7.43 for ρ = 0.95 to 17.2 for ρ = 0.998, and up to 259.3 in the comonotonic case; see Table 3. The
reason for this deficiency of the LSM could be that the interpolation becomes stiff for high correlations3.
In order to better understand how the LSM performs in the comonotonic case, we look at the values
of the regression coefficients and their significance level at a given exercising time. Table 4 displays
the estimates of the regression coefficients and their corresponding p-values for pairwise correlations
0.5, 0.95 and 1 at the exercising time 25. We observe that for a correlation coefficient equal to 0.5, all
p-values are very close to 0, indicating that all components of the linear regression are highly significant.
For a pairwise correlation of 0.95, two regressors are not significant anymore, but the estimates of their
parameters remain close to those obtained for a correlation equal to 0.5. In the comonotonic case, none of
the regressors is significant and their estimates are either too high or too low compared to those obtained
for ρ = 0.5 and ρ = 0.95. Moreover, the algorithm fails to provide an estimate for β2,3. The reason for
all these anomalies could be that in the comonotonic case, knowing the realization of one component is
sufficient to determine the realization of the whole basket, provided the marginal distributions are known.
Thus, including all basket components might lead to overfitting. Therefore, we propose to enhance the
LSM method in the comonotonic case by including in the regressions only one of the assets composing
the basket, namely, the first asset . This adjustment significantly improves the method. On the one hand,
we observe in Table 5 that all coefficients are significant, and on the other hand, the adjusted algorithm
leads to a price of 7.55 in the comonotonic case, which is in line with the corresponding FD price.

Next, we compare the efficiency of the two methods in terms of computation time when the basket
size increases. As we have seen earlier, the proposed partial differential equation does not depend on
the number of components composing the basket. However, the implementation of the finite difference
scheme requires a grid for the shifted Brownian motion, which is then plugged into each stock in order
to obtain a partitioning of the payoff. For baskets with bigger size, this procedure can slow down the
algorithm, but the overall computation cost remains affordable. For the LSM, it is necessary to simulate
the paths of driving Brownian motions for each stock, which results in a steep increase in computation
time. Furthermore, although the least-squares estimation contributes only marginally in the overall com-
putation time, it also slows down the algorithm when the basket size increases. Figure 5 displays the

3We thank the referee for pointing out the need of a more detailed investigation.
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Table 4: Coefficients and corresponding p-values (in brackets) from the linear regression of the LSM at
the exercising time 25 for pairwise correlations 0.5, 0.95 and 1.

Coefficients ρ = 0.5 ρ = 0.95 ρ = 1

β0 56.36 47.85 9383.1
(< 2× 10−16) (4× 10−05) (0.508)

β1,1 −12.17 −14.86 101543.8
(< 2× 10−16) (4× 10−09) (0.521)

β1,2 −11.43 −12.82 −268656.9
(< 2× 10−16) (< 2× 10−16) (0.530)

β1,3 −46.10 −22.96 −24649.0
(7× 10−09) (0.369) (0.511)

β1,4 −9.83 −13.78 −351436.8
(< 2× 10−16) (< 2× 10−16) (0.547)

β2,1 2.44 4.79 460461.3
(4× 10−10) (0.0009) (0.541)

β2,2 2.42 3.90 28192.3
(< 2× 10−16) (2× 10−05) (0.569)

β2,3 19.54 7.44 Not available
(1.5× 10−06) (0.575)

β2,4 2.27 7.74 −909.1
(< 2× 10−16) (< 2× 10−16) (0.624)

Table 5: Coefficients and corresponding p-values (in brackets) from the linear regression of the adjusted
comonotonic LSM at the exercising time 25.

Coefficients ρ = 1

β0 42.54
(< 2× 10−16)

β1,1 −48.52
(< 2× 10−16)

β2,1 11.78
(< 2× 10−16)
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Figure 5: Computation times of the LSM and the FDM as a function of the basket size with 1 year
maturity and strike 40. All components have a spot price of 40 and a volatility of 30%, and the pairwise
correlation is 0.3.

computation time for both methods, and we clearly see a significant gain in computation time for the
finite difference method (up to 30 times faster for small basket sizes and 10 times faster for bigger bas-
kets). Therefore, given its accuracy and speed, the proposed finite difference scheme seems to be much
more efficient than the standard Least-Squares method.

6 Concluding remarks

We propose a simple PDE method to price American-type basket derivatives using the theory of comono-
tonicity. We reduce the initial multi-dimensional problem to a univariate problem. The obtained comono-
tonic PDE does not depend on the number of stocks in the basket and can be solved to find an explicit
expression for the basket derivative price. American-type basket derivative prices can be determined by
numerically solving the comonotonic PDE with a finite difference method. Our results on the comono-
tonic market are used to determine basket derivative prices in a non-comonotonic market with correlated
stocks. We show that American-type basket derivative prices determined using our methodology are
close to the corresponding prices determined using the LSM method. However, we also show that our
methodology outperforms the LSM method in a number of significant aspects, such as the computation
time and the derivation of the exercise region.
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A Proof of Theorem 3.1

The portfolio value Π of the trading strategy π is given by:

Π(t) = π1(t)Sc(t) + π2(t)D(t). (A.1)

Since π is a replicating strategy for the derivative price V c
λ , we should have that:

Π(t) = V c
λ (t, Bλ), (A.2)

and it follows that
π2(t) =

1

D(t)
(V c
λ (t, Bλ)− π1(t)Sc(t)) . (A.3)

The portfolio π has to be self-financing, hence we find:

dΠ = rV cdt+ π1σ
cdBλ. (A.4)

where we used (A.3) and (3.4) to rewrite the second term on the r.h.s.

On the other hand, for V c
λ (t, Bλ) in C2 (R+ × R,R), we apply Ito’s Lemma together with (3.5) to

derive:

dV c
λ =

(
∂V c

λ

∂t
+

1

2

∂2V c
λ

∂B2
λ

)
dt+

∂V c
λ

∂Bλ
dBλ. (A.5)

We define the stochastic process Z = {Z(t) | t ≥ 0} as follows:

Z(t) = V c(t)−Π(t).

Then it follows from (A.4) and (A.5) that:

dZ =

(
∂V c

λ

∂t
+

1

2

∂2V c
λ

∂B2
λ

− rV c
λ

)
dt+

(
∂V c

λ

∂Bλ
− π1σ

c

)
dBλ,
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and using (3.5), we find:

dZ =

(
∂V c

λ

∂t
+

1

2

∂2V c
λ

∂B2
λ

− rV c
λ + λ

(
∂V c

λ

∂Bλ
− π1σ

c

))
dt+

(
∂V c

λ

∂Bλ
− π1σ

c

)
dB. (A.6)

Since (A.2) holds, we should have that dZ = 0. Then, the uniqueness of the canonical decomposition
for continuous semi-martingales leads to the conclusion that for any t ∈ [0, T ], the following integral∫ t

0

(
∂V c

λ

∂Bλ
(u)− π1(u)σc(u)

)
dB(u) = 0, (A.7)

is P-a.s. equal to zero. Since (A.7) is an Ito integral, we can write:∫ T

0

(
∂V c

λ

∂Bλ
(u)− π1(u)σc(u)

)2

du = 0,

from which we find:
π1 =

1

σc
∂V c

λ

∂Bλ
.

Using this choice for π1 in the SDE (A.6), we find that

dZ =

(
∂V c

λ

∂t
+

1

2

∂2V c
λ

∂B2
λ

− rV c
λ

)
dt.

Hence, in order for dZ = 0 to hold, we should additionally have that the drift term is zero, which means
that the following partial differential equation should be satisfied:

∂V c
λ

∂t
+

1

2

∂2V c
λ

∂B2
λ

− rV c
λ = 0.

We conclude this proof by showing that the trading strategy π is a self-financing strategy, provided (3.8)
holds. We use (A.5) and equality Π(t) = V c

λ (t, Bλ) to find:

dΠ =
∂V c

λ

∂Bλ
dBλ +

(
∂V c

λ

∂t
+

1

2

∂2V c
λ

∂B2
λ

)
dt.

Taking into account (3.8), we find:

dΠ =
∂V c

λ

∂Bλ
dBλ + rV c

λ dt.

If we now use the SDE (3.6) for the process Sc, the SDE of Π becomes:

dΠ = π1dSc + π2dD,

which shows that π is self-financing, and hence, concludes the proof.

B Proof of Theorem 3.2

We introduce the half time decay parameter τ = 1
2 (T − t) and the undiscounted price U , such that:

V c
λ (t, Bλ) = e−2rτU (τ,Bλ) .
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The partial derivatives of V can then be expressed as follows:

∂V c
λ

∂t
= re−2rτU − 1

2
e−2rτ ∂U

∂τ
,

∂V c
λ

∂Bλ
= e−2rτ ∂U

∂Bλ
,

∂2V c
λ

∂B2
λ

= e−2rτ ∂
2U

∂B2
λ

.

If we substitute these partial derivatives in the comonotonic PDE (3.8) and we use the change of variable
Bλ = x, we find the following differential equation for U :

∂U

∂τ
=
∂2U

∂x2
. (B.1)

Equation (B.1) is the so-called heat equation and can be solved using similarity reduction. More details
on the heat equation with discussion on the similarity reduction can be found in Hill and Dewynne
(1987). The fundamental solution Uf satisfying the heat equation (B.1) is given by:

Uf (τ, x) =
1

2
√
πτ

e−
x2

4τ , (B.2)

which corresponds with the pdf of a normal distribution with mean 0 and volatility 2τ ; see e.g. Carslow
and Jaeger (1959) and Crank (1975) for a detailed discussion on solving the heat equation.

The general solution U , which is now satisfying the final condition

U(0, x) = H

(
n∑
i=1

wiSi(0)e2(r− 1
2
σ2
i )T+σix

)
. (B.3)

is then given by

U(τ, x) =

∫ +∞

−∞

1

2
√
πτ

e−
(x−z)2

4τ U(0, x− z)dz. (B.4)

Using the substitution z = y + x and changing the coordinate system back to (t, Bλ), the solution V c
λ

can be written as:

V c
λ (t, Bλ) = e−r(T−t)

∫ +∞

−∞

e−
y2

2(T−t)√
2π(T − t)

H

(
n∑
i=1

wiSi(0)e(r− 1
2
σ2
i )T+σi(Bλ+y)

)
dy. (B.5)

Given the realization Bλ of the shifted Brownian motion at time t, the comonotonic stock prices Sci (t)
can be determined using (3.12) and we find (3.11).

C Proof of Theorem 4.1

Let V k
j be the approximate derivative price obtained by employing the finite difference method (4.4). We

take V̂ k
j as the corresponding approximation such that

V̂ k
j = V k

j + εkj ,
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where εkj is the error term at the node (j, k), which satisfies (4.4), since this equation also applies to V̂ k
j

and V k
j . Furthermore, we assume that the error is oscillatory of amplitude ν and frequency ω, i.e.

εkj = νk exp(ijω),

where i2 = −1. This leads to the following scheme for the error term:

νk+1 exp(ijω) =
1

2

δt

δB2
νk (exp(ijω − iω) + exp(ijω + iω)) +

(
1− rδt− δt

δB2

)
νk exp(ijω),

or, equivalently

ν =
δt

δB2
cosω +

(
1− rδt− δt

δB2

)
. (C.1)

In order to have a stable scheme, we must bound the amplitude of the error εkj for any (j, k) such that

|ν| ≤ 1.

From the expression (C.1) of ν, we can show that

1− rδt− 2
δt

δB2
≤ ν ≤ 1.

Therefore, the scheme is stable when the condition (4.5) is satisfied.

D Additional results for Section 3

D.1 Another PDE for the basket derivative price

It is noteworthy to mention that the PDE (3.8) can be reformulated as follows:

∂V c

∂t
+

1

2
(σc)2 ∂2V c

∂ (Sc)2 + rSc
∂V c

∂Sc
− rV c = 0, (D.1)

with the final condition V c(T, Sc) = H (Sc(T )) , whereas the boundary conditions are obtained by
investigating the situations Sc = 0 and Sc → +∞. The technical aspects discussed above for path-
dependent options and American-type options have also to be taken into account in a similar way when
solving the PDE (D.1).

The differential equation (D.1) is similar to the classical, two-dimensional, Black-Scholes partial
differential equation in the univariate case. Moreover, the different terms in the Equation (D.1) have
a clear interpretation. The first term deals with the ‘Theta’ of the derivative, i.e. the time decay. The
term containing the second derivative considers the convexity, the so-called ‘Gamma’ of the derivative,
and together with the ‘Theta’, they represent the dispersion part of the equation. The convection part
is given by the ‘Delta’, or first derivative, and makes the portfolio risk-free. Finally, the ‘−rV c’ term
is the reaction, which is due to the discounting. Note that the coefficients in front of the Delta and the
Gamma are time dependent, whereas the coefficients of the PDE (3.8) are all constant. Although we do
not report them here, numerical tests confirm that due to the time dependency of the coefficients in (D.1),
the computation time to solve (3.8) is lower.
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D.2 On the distribution of the baskets

Theorem 3.2 provides a solution to the differential equation as an integration over the future states of
the Brownian motion with drift Bλ. A simple trapezoidal rule or Gauss quadrature can be employed to
find an accurate estimate. In general, the price of a multi-asset derivative in a non-comonotonic market
is an n-dimensional integral which is hard to numerically implement. In this subsection, we recast the
solution for the European-type derivative V c

λ in terms of future states of the comonotonic basket Sc. As
a result, we obtain a closed-form pdf for the comonotonic basket from which an approximate pdf of the
original basket is derived. We first state the following lemma.

Lemma D.1 For any x ∈ R+, there exists a value FSc(x;T, t) ∈ (0, 1) satisfying the equation:

n∑
i=1

wiS
c
i (t)e(r− 1

2
σ2
i )(T−t)+σi

√
T−tΦ−1(FSc (x;T,t)) = x, (D.2)

where Φ is the cdf of a standard normal distribution. Moreover, FSc(x;T, t) is the time-t risk-neutral
cdf of Sc(T ) evaluated in x:

FSc(x;T, t) = Q [Sc(T ) ≤ x | Ft] . (D.3)

Now we express the European-type comonotonic basket derivative price V c in function of the future
realizations of the comonotonic basket Sc at time T and provide a closed form expression for the pdf of
Sc. We use the notation V c(t, Sc) for the price at time t.

Theorem D.1 The price at time t of a European-type derivative with pay-off function H written on the
comonotonic sum Sc is denoted by V c(t, Sc) and given by

V c(t, Sc) = e−r(T−t)
∫ +∞

0
H(s)fSc(s;T, t)ds, (D.4)

where

fSc(s, T, t) =
φT−t

(√
T − tΦ−1 (FSc(s;T, t))

)∑n
i=1 σiwiS

c
i (t)e(r− 1

2
σ2
i )(T−t)+σi

√
T−tΦ−1(FSc (s;T,t))

, (D.5)

is the time-t risk-neutral density of the comonotonic basket Sc(T ).

Expression (D.4) then states that the price V c(t, Sc) can be found by determining the pay-off H(s),
multiplying this future pay-off with the risk-neutral comonotonic basket density and finally discounting
the future expected pay-off.

D.3 Proof of Lemma D.1

Assume that we are at time t, i.e. the time-t prices Sci (t) are known for i = 1, 2, . . . , n. We can use
Expression (3.12) to rewrite the comonotonic basket price Sc(T ) as follows:

Sc(T ) =

n∑
i=1

wiS
c
i (t)e(r− 1

2
σ2
i )(T−t)+σi(Bλ(T )−Bλ(t)).
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Under the risk-neutral measure Q, we find Bλ(T ) − Bλ(t)
d
=
√
T − tΦ−1(U), where U is uniformly

distributed and Φ is the cdf of a standard normal distribution. Hence, we have:

Sc(T )
d
=

n∑
i=1

wiS
c
i (t)e(r− 1

2
σ2
i )(T−t)+σi

√
T−tΦ−1(U).

Denote by FSc(x;T, t) the time-t cdf of Sc(T ) under the risk-neutral probability measure:

FSc(x;T, t) = Q [Sc(T ) ≤ x | Ft] .

Using the additivity property of the inverse cdf for comonotonic sums (see Theorem 6 in Dhaene et al.
(2002a)), we find:

F−1
Sc (p;T, t) =

n∑
i=1

wiS
c
i (t)e(r− 1

2
σ2
i )(T−t)+σi

√
T−tΦ−1(p).

We end the proof by noticing that the cdf FSc is strictly increasing and continuous, and hence:

F−1
Sc (FSc(x;T, t);T, t) = x.

D.4 Proof of Theorem D.1

Recall from Theorem 3.2 that the solution V c can be expressed as follows:

V c(t, Sc) = e−r(T−t)
∫ +∞

−∞
H

(
n∑
i=1

wiS
c
i (t)e(r− 1

2
σ2
i )(T−t)+σiy

)
φT−t(y)dy.

We switch from the variable y to the new variable s, where

s =
n∑
i=1

wiS
c
i (t)e(r− 1

2
σ2
i )(T−t)+σiy.

Using Lemma D.1, we find:
y =
√
T − tΦ−1 (FSc(s;T, t)) ,

which leads to:

ds =

(
n∑
i=1

σiwiS
c
i (t)e(r− 1

2
σ2
i )(T−t)+σi

√
T−tΦ−1(FSc (s;T,t))

)
dy.

The price V c(t, Sc) can then be expressed as (D.4).

In order to prove that fSc is the risk-neutral density function of the comonotonic basket, we have
to prove that this function is positive, tends to zero at the limits and integrates to one. Moreover, it
has to correspond with the risk-neutral cdf FSc(s, T, t). Putting H(s) = 1 in (D.4) shows that the area
below the function fSc is equal to one. Moreover, one easily verifies that the function is positive and
fSc(s, T, t) → 0 if s → 0 and s → +∞. This proves that fSc is a valid density function. Consider the
pay-off function H(z) = I(s ≤ x). The price V c of the corresponding derivative can now be expressed
as in (D.4), which results in

∫ x
0 fSc(s, T, t)ds = FSc(x, T, t). We can now conclude that fSc is the

risk-neutral pdf of the comonotonic basket.
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