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Abstract

Gradients can be used to train neural networks, but they can also be used to interpret them. We investigate
how well the inputs of RNNs are remembered by their state by calculating ‘state gradients’, and applying
SVD on the gradient matrix to reveal which directions in embedding space are remembered and to what
extent. Our method can be applied to any RNN and reveals which properties in the embedding space
influence the state space, without the need to know and label the properties beforehand. In this paper, we
propose a normalization method that alleviates the influence of variance in embedding space on the state
gradients and show the effectiveness of our method on a synthetic dataset. Additionally, the influence of
several training settings on the RNN memory is investigated, and a more fine-grained analysis based on
POS and word types shows that LSTM language models learn to model linguistic intuitions. Our code and
datasets are publicly available.
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1. Introduction

Neural networks (NNs) are remarkably powerful models and have pushed the state of the art in several
domains, including speech and language processing (e.g. language modeling [1, 2, 3], automatic speech
recognition (ASR) [4, 5]). They typically consist of several large parameter matrices and non-linear functions,
which transform the input of the network to an output. As a result, however, interpreting the reason why5

a specific output is predicted is not trivial. This is why NNs are often described as ‘black-box’ models.
We usually have some intuitions about how they work, and proceed to propose new architectures, training
regimes, data processing regimes . . . based on these intuitions. In this work, we take a step back and propose
a method that can improve our understanding of how NNs, more specifically recurrent NNs (RNNs), work,
which can potentially lead to better models in the future. Additionally, in certain scenarios such as diagnostic10

medical systems, interpretable models will be more easily accepted.
Our method is inspired by backpropagation, but instead of computing the gradients of the loss with

respect to the parameters of the network, we compute the gradients of the hidden state of the network
with respect to its current input or a previous input – the ‘state gradients’. The gradient matrix can be
decomposed with Singular Value Decomposition (SVD), resulting in singular values (SVs) that indicate the15

extent to which a specific direction in embedding space is preserved in state space. In this manner, we can
investigate which properties that are encoded in the input embedding have an influence on the state, or in
other words are remembered by the network, and to what extent. Our approach can by applied to any type
of RNN1, but in this work we apply it to Long Short-Term Memory (LSTM) [7] language models (LMs) [8].

∗Corresponding author
Email address: lyan.verwimp@kuleuven.be (Lyan Verwimp)

1In this paper ‘RNN’ refers to all types of recurrent architectures, including LSTMs, whereas ‘vanilla RNN’ refers to the
simple RNN or Elman network [6] as employed by among others Mikolov et al. [2].
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The basics of our idea are explained in Verwimp et al. [9], while this paper presents the following additional20

contributions:

• We propose a normalization method for the state gradient matrix that makes sure that all directions
in embedding space have equal variance (see Section 4.1). If the gradient matrix is not normalized,
the singular values can be influenced by the fact that certain properties in embedding space require
much larger steps than others.25

• We demonstrate that the results of our approach are consistent with the predictions and the interme-
diate representations of an LSTM trained on a synthetic dataset (see Section 4.2).

• We investigate the influence of several training settings on the average memory of the model, namely
different random initializations, a random versus a trained LSTM, different RNN cells (vanilla RNN,
LSTM or Gated Recurrent Unit (GRU) [10]), different hidden state sizes, pre-trained embeddings vs30

training the embeddings from scratch, training on a different dataset and using a larger training set
(see Section 4.3.2).

• We investigate whether LSTM LMs learn patterns that intuitively make sense from a linguistic point
of view, by calculating the average memory for specific Part-of-Speech (POS) (Section 4.3.3) and word
types (Section 4.3.4) and looking at how well specific POS are remembered by the RNN (Section 5).35

Our code, that is based on TensorFlow [11], and the datasets that differ from publicly available corpora
(Penn TreeBank with our own normalization, see Section 4.3.1, and the synthetic dataset used in Section 4.2)
are available online: https://github.com/lverwimp/state_gradients/.

The remainder of this paper is structured as follows: we first present an overview of related work in
Section 2. Next, we present the underlying concept of our approach in Section 3. In Section 4 we examine40

the average memory of LSTMs trained on synthetic and natural language data, while in Section 5 we examine
how well specific properties are remembered by the LMs. We end with a conclusion and an outlook to future
work in Section 6.

2. Related Work

Recently, the interest in gaining more insight in how NNs function has been rapidly growing. We make45

a distinction between several approaches to this topic.

Visualization. Dimensionality reduction techniques are commonly used to visualize embeddings in Natu-
ral Language Processing (NLP), e.g. Principal Component Analysis (e.g. in [12]), t-Distributed Stochastic
Neighbor Embedding (t-SNE) [13] and bottleneck features [14]. Li et al. [15] use several techniques to visual-
ize trained networks for sentiment analysis and sequence-to-sequence autoencoders: t-SNE visualization [13],50

a heatmap of the neuron activations over time and the variance of a specific word embedding with respect
to an averaged word embedding. Strobelt et al. [16] release a tool that visualizes the evolution in LSTM
hidden states for several text processing tasks, such as language modeling and biological sequence analysis.
Karpathy et al. [17] visualize the activations of individual cells, tracking specific long-term dependencies
aligned with the input text, for character-level LMs. They also plot gate activation statistics and perform55

error analysis. They show for example that an LSTM LM trained on Penn Treebank groups different types
of phrases (noun/verb/adjective). Shi et al. [18] investigate why neural machine translation (MT) produces
output sequences of the correct length seemingly effortlessly while statistical MT needs to model this explic-
itly. By visualizing activations and by training a classifier to predict string length based on the activations,
they find that the length of the string is encoded by a specific subset of neurons. Ten Bosch and Boves [19]60

visualize the weights of Convolutional Neural Networks (CNNs) trained for keyword spotting, showing that
they resemble spectro-temporal patterns and that increasing the number of convolutional matrices seems
to lead to more specialized matrices. In this paper, we do not visualize embeddings or neuron activations
but rather SVs that represent the extent to which the input embedding has an influence on the RNN state.
Additionally, we visualize two measures of similarity between an embedding property and the embedding65

direction(s) with the largest influence on the state.
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Methods based on derivatives/backpropagation. In computer vision, several backpropagation-based tech-
niques for visualization and investigation of the inner workings of NNs have been proposed [20, 21]. For
example, finding an image that maximizes the activation of a certain neuron can be done by optimizing using
gradient ascent [20]. Simonyan et al. [21] propose two visualization techniques based on backpropagation,70

one which generates an image that maximizes the class score and one which visualizes the pixels in the image
that are most informative for the prediction. This first-derivative saliency method is also applied by Li et
al. [15], Aubakirova and Bansal [22] and Karlekar et al. [23]. These methods differ from our approach in the
sense that they compute gradients of the output of the network with respect to the input, like in classical
backpropagation, whereas we compute the gradients of the hidden state with respect to the input.75

Rationale extraction. Another approach is trying to understand the reason why the network makes a certain
prediction, by extracting the parts of the input that are important for predicting the output. A general
framework to explain the predictions of a classifier is presented in [24], but it can only work with interpretable
data representations such as binary vectors, whereas we present a framework that can deal with continuous
(word) embeddings. Lei et al. [25] extract the parts of the input that are important for predicting the80

output, while Alvarez-Melis and Jaakkola [26] provide a general framework that can explain the predictions
of models with structured input and output. Analyses can also be used to improve models, as Aubakirova
and Bansal [22] demonstrate: they look at the activations of CNNs trained for politeness prediction and
discover new features that can improve feature-based models. Related to rationale extraction, there is a line
of work that tries to extract rules from a trained NN [27, 28, 29]. Our method does not provide ready-made85

explanations for certain predictions, but if for example a certain word has a large influence on the state a
few timesteps later, we assume that that word plays an important role in the prediction of the LM.

Probing tasks. Embeddings can be evaluated by training logistic regression on them to predict a certain
(linguistic) feature. For example, Adi et al. [30] test whether sentence embeddings contain information
such as sentence length, word content and word order. A more extensive analysis of sentence embeddings is90

provided by Conneau et al. [31], involving different probing tasks and comparing different sentence embedding
models. Shi et al. [32] investigate whether the encoder of a neural MT (NMT) system learns the syntax of the
source sentence by training logistic regression on the sentence or word embeddings. Broere [33] investigates
the syntactic properties of skip-thought sentence representations by predicting POS tags and dependency
relations. Belinkov et al. [34, 35] extract word representations from NMT models and train classifiers to95

predict POS tags and morphological tags [34] or POS tags and semantic tags [35]. They report among others
that character-based representations capture more morphology than word-based ones, that the lower layers
of the network better capture syntactic structure while the higher layers better capture semantic information,
and that mainly the encoder contains structural syntactic information. Blevins et al [36] investigate the
syntactic properties of word representations extracted from several models (dependency parsing, semantic100

role labeling, MT and LMs) at several depths of the network. They train a feedforward Rectified Linear Unit
(ReLU) classifier to predict the POS of the current word and its ancestors, and the presence or absence of
a dependency arc between two words. They find that every model encodes syntax to some extent and that
the optimal depth from which the representation is extracted depends on the type of model. Chrupa la et
al. [37] investigate whether the representations in a multi-modal model of speech and images encode features105

such as utterance length, the presence of a word and properties related to meaning and form, and find that
the lower layers in the network are more specialized towards encoding formal properties, whereas the higher
layers encode more semantic properties. For the same multi-modal model, Alishahi et al. [38] demonstrate
based on several experiments that phonological information is best represented in the lower layers. Probing
tasks have also shown that a small set of neurons encodes the length of a sequence [18, 39]. In a similar110

vein, we predict POS tags from word embeddings to verify whether specific classes are linearly separable
in the embedding space. However, our probing experiment is not the main goal of this work but merely
a sanity check to make sure that our definition of a property as a difference vector makes sense for that
specific property (see Section 5 and Appendix 9).

Ablation studies. More insight in a specific model can be gained by removing/altering part of the model115

structure or the input data. Both approaches are used by Kuncoro et al. [40], who examine RNN grammars
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(RNNGs): models that generate a parse tree and a sentence at the same time and that consist of three
data structures: a stack of partially completed constituents, a buffer of generated terminal symbols and
an action history list. Ablations to the RNNG itself involve removing one or two of the data structures
to investigate which of them is most important, while ablations to the data involve removing non-terminal120

symbols to investigate the endocentric hypothesis (the function of a phrase is completely determined by its
constituents). Hermans and Schrauwen [41] examine the influence of each layer in a character-level LM by
setting its output to 0 and calculating the distance between hidden states after processing sequences that are
identical except for one typo. Similarly, removing specific words from the input sentence and investigating
the influence on the hidden state gives a measure of the importance of those words [42, 43]. Khandelwal125

et al. [44] go beyond the sentence level. They analyze the role of context in neural LMs by measuring the
increase in perplexity when prior context words are dropped, shuffled or replaced. Their experiments show
among others that on average the LM uses 200 context words (the ‘effective context size’), and that there is
a distinction between the nearby context, which is approximately 50 words, and the distant context. Target
words seen in the nearby context can be readily copied by the LM, as opposed to the distant context that130

is modeled as a rough semantic representation – which is why a cache helps mostly for distant context
words. The effective context size is larger for infrequent words and for content words. In Section 4.3.4, we
demonstate that infrequent words have a larger influence on the state of the LSTM, which confirms the
findings of Khandelwal et al. [44]. Zhu et al. [45] investigate semantic properties of several types of sentence
embeddings by calculating cosine similarities for triplets of sentences. For example, the similarity of the135

original sentence with a sentence in which the verb is replaced by a synonym should be higher than with
a negated version of the original sentence. Tüske et al. [46] limit the history of LSTM LMs and find that
the performance plateaus at 40-grams for perplexity and 20-grams for ASR. Ablations to individual neurons
have shown that grammatical number information in LMs is mainly encoded in only a few neurons [47]. In
this work, we do not remove part of the model but alter the type of RNN cell or a specific hyperparameter140

and examine how this affects the average memory of the model.

Testing on special-purpose datasets. Instead of altering an existing corpus based on some simple rules as is
done in ablation studies, new datasets can be created that can be used to test a specific feature. Early work
by Gers and Schmidhuber [48] examines the ability of LSTMs to model context-free and context-sensitive
languages by training on synthetic data. Weiss et al. [49] work along the same line by investigating the145

computational power of RNNs used in real applications. RNNs are Turing complete if they have infinite
precision in the states and unbounded computation time, but in reality they have finite precision and
computation time linear in the input length. Machines that can do unbounded counting are also able
to recognize at least one context-free and one context-sensitive language. They show theoretically and
empirically that LSTMs and vanilla RNNs with ReLU activation (that, however, easily have exploding150

gradients) can perform unbounded counting, while GRUs and vanilla RNNs with tanh activation cannot.
More recently, Linzen et al. [50] and Bernardy and Lappin [51] investigate the ability of several models to
learn subject – verb agreement by sampling sentences containing present tense verbs. Kuncoro et al. [52] work
on the same dataset as Linzen et al. [50], comparing LSTM LMs with (several variants of) RNNGs. They
find that LSTM LMs can predict number agreement quite well, but that RNNGs outperform them, probably155

because of their hierarchical structural bias. Gulordava et al. [53] construct a dataset that not only includes
real corpus examples but also ‘nonce’ sentences, that are grammatically correct but semantically nonsense.
They also focus on (long-distance) number agreement but include other cases than subject – verb and other
languages than English. Just like Kuncoro et al. [52], but opposed to Linzen et al. [50] (whose LSTM
possibly did not have optimal hyperparameters), they find that LSTM LMs have good performance on this160

task. Liu et al. [39] create several datasets that should contain the linguistic properties of natural language
data to a specific extent: random sampling from a uniform distribution (no linguistic properties), sampling
from a Zipfian distribution, sampling from a Zipfian distribution + Markovian dependencies between the
words, and finally natural language. They show that the linguistic properties of the data have an impact
on the memorization capability of LSTMs. LSTMs have been trained on a corpus of ‘Dyck’ language which165

is essentially a bracket completion task that should cover all context-free languages, to test their ability to
learn recursion [54] and hierarchical structures [55]. In this paper, we create a synthetic dataset as a sanity
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check for our method (see Section 4.2).

Attention. For MT, it has been shown that NMT without attention fails on longer sentences [56]. Bahdanau
et al. [57] introduce attention to overcome this problem and visualize the attention weights. Attention is170

also used and typically visualized in other NLP tasks, such as natural language inference [58] and speech
recognition [59]. Kuncoro et al. [40] add attention to RNNGs to examine to what extent the linguistic rules
of headedness are learned by the RNNG. In this paper, we do not make use of attention.

Examing the hidden representations. An important question in research about interpreting NNs involves
what information is captured by the hidden representations, and whether different trained networks capture175

the same underlying representation. An information theoretic approach to understanding NNs is based on
the Information Bottleneck principle [60], that models the training of NNs as finding the optimal tradeoff
between the mutual information of the input and the hidden representation (compression, or discarding
information in the input that is irrelevant) and the mutual information between the hidden representation
and the output (prediction) [61, 62]. During training of multiple runs of the same network with Stochastic180

Gradient Descent (SGD), the same pattern emerged: the first, fast, phase consists of optimizing the network
for prediction, whereas the second, much slower phase optimizes for compression. Deeper networks help
because less epochs are needed for good generalization and because compression is more efficient if there are
more layers. Ten Bosch and Boves [19] investigate the bottleneck representations in a phonetic autoencoder,
showing that the representations of several trained networks can be ‘morphed’ into each other through a non-185

linear transformation. Throughout training the representations of phonetic classes become better separable,
but this happens slower and less accurately for the more difficult classes such as nasals and liquids. Another
approach to investigating the hidden representations is inspired by a neuroimaging method, the shared
response model [63], that computes a mapping from the activation patterns of different trained networks to
the same underlying shared representation [64]. In our work, we investigate the hidden states of the network190

by looking at which parts of the input embedding influence the state.

3. Singular Value Decomposition of State Gradients

We would like to know whether and how strong certain properties in embedding space are represented in
the state space of the RNN. Given the fact that we can perform basic calculus operations on vectors, such as
vking −vqueen = vman−vwoman, we assume that properties are represented as vectors in embedding space:195

we can find the embedding for e.g. queen by adding the royal vector to the woman vector. In Figure 1,
we give an example of how the gender (P1) and royal (P2) properties could be represented in embedding
space and in state space. When an input word is processed, the state vector will be modified, i.e. its word
embedding will influence the state vector. If a word property, represented by an embedding component P is
deemed important by the LM to predict future words, we expect the state vector to also shift by an amount200

P ′. Irrelevant properties are not expected to affect the state. In the Figure, the length of P ′1 and P ′2 is
non-zero, but it might very well be the case that those properties are not remembered at all by the RNN,
resulting in zero-length vectors. The strength with which a specific direction is remembered by the RNN
can be measured by calculating how a change of that direction in embedding space, ∆e, influences a change
in state space, ∆s: the partial derivative of s with respect to e, ∂s

∂e .205

We thus calculate the gradients of every component in the state s of the RNN with respect to every
component in the input embedding e of timestep t − τ , where t is the current timestep and τ the delay.
For example, if the input sentence is the cat lies on the mat and we are currently processing the word mat,
the input for a delay of 0 is mat itself, the input for a delay of 1 is the etc. For a specific timestep and
specific delay, our gradients can be arranged in a gradient matrix Gt,τ ∈ RH × E , where H is the size210

of the hidden state and E the size of the embedding . Averaging over all timesteps for a certain delay τ
gives us the average gradient matrix for τ : Ḡτ . This matrix hence contains the average influence of every
component of the input embedding τ steps later on every component of the RNN state.
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Figure 1: Example of how properties in embedding space are transformed to properties in state space by the RNN, and of how
a step in state space ∆s can be calculated based on the partial derivative of the state with respect to input embedding ∂s

∂e
and

the step in embedding space ∆e.

We decompose the average gradient matrix with reduced SVD:

Ḡτ = U Σ VT = σ1 u1 vT1 + σ2 u2 vT2 + . . . (1)

in which U and V are matrices with orthonormal columns ui and vi respectively and Σ is a square diagonal215

matrix with the singular values σi. We can interpret V as directions in the embedding space, Σ as the
extent to which the directions in the embedding space can be found in the hidden state space and U as
corresponding directions in the hidden state space. For example in Figure 1, the male – female property P1

in embedding space corresponds to v1, the first column of V. It has the largest SV (lowest index) σ1, and is
hence the property that has the largest influence on the state space, or in other words, it is the property that220

is best remembered by the RNN. Notice that we make a linear approximation of the non-linear function
of the RNN. One of the strengths of RNN memory analysis through state gradient matrices is that the
embedding representation P of the properties need not be known, nor the properties themselves. The SVD
will reveal which components in the embedding space affect the future state and to what extent. Another
approach to analyzing the retained properties of the RNN would be building classifiers for those properties225

from the state representation, as is done in probing tasks. However, this approach assumes that we already
know what those properties are and that we have appropriately labeled data, while it is possible that the
RNN remembers things we did not initially consider to be important, and/or that the properties are not
easily captured by labels. Our approach on the other hand does not make any a-priori assumptions about
the retention properties of the RNN, and we will only apply probing procedures to interpret the embedding230

and state space representations the SVD analysis has come up with (see Section 5).

4. Average Memory of the RNN

In Section 4.1, we first explain how we calculate the average memory of a specific model (Section 4.1) and
then present the results on a synthetic dataset (Section 4.2) and natural language datasets (Section 4.3).

4.1. Concept235

As discussed in Section 3, the directions with the largest SVs are directions in embedding space that
are best remembered by the RNN. In order to investigate how well the RNN remembers on average, we can
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average G over the whole dataset and can track the SVs with respect to the delay τ . We can also compare
the SVs based on gradient matrices averaged over specific classes of words only, or even over the occurrences
of individual words (the ‘tokens’ corresponding to a single word ‘type’).240

There is however an issue with using the gradient matrix as is. To explain this issue, let us look at what
the input to the RNN LM looks like:

et = E xt (2)

In Equation 2, xt is a one-hot encoding of the current input word, E the embedding matrix and et the
resulting embedding. This embedding is given to the RNN, which multiplies it with a weight matrix W:

st = f(W et + H st−1 + b) (3)

where s is the state of the network, f a non-linearity and b a bias vector. In the case of an LSTM or GRU,245

different weights W, H and b will be trained for every gate.
Since we train our embeddings from scratch together with the rest of the LM and use no regularization

on their weights, there are no constraints on the embedding space either. As a result, a specific property
might be encoded as a larger step in embedding space than another property, and might have a smaller
gradient with respect to the state, even though that does not imply that this property is less important.250

Ideally, we have an embedding space with equal variance to prevent such effects. If that is the case, a larger
gradient effectively means that the property is more important.

To achieve this, we apply normalization to make sure that all directions in embedding space have equal
variance. We can add additional weights Z ∈ RE × E in Equation 3 as follows:

st = f(W Z−1 Z et + H st−1 + b) (4)

if Z−1 Z = I. In Equation 4, we obtain a new embedding space spanned by g:255

gt = Z et (5)

Notice that the weights W are also scaled by Z−1. We can now choose a Z to make sure that the variance
of g is equal in all dimensions, by demanding that the covariance matrix of g is equal to the identity matrix:

covg = I =
1

V

V∑
i=1

(Z ei) (Z ei)
T = Z

1

V

V∑
i=1

(eie
T
i ) ZT = Z cove ZT (6)

on the condition that all e have been normalized to have zero mean (V is the number of words in the
vocabulary). If we decompose cove through Cholesky decomposition into D DT , Equation 6 becomes equal
to:260

I = Z D DT ZT (7)

One of the solutions to Equation 7 can be found by demanding that Z D = I. As a result, we find that
Z = D−1.

Thus, we have a solution for the matrix Z that maps the word embeddings to a space with equal variance2.
The partial derivative of the state with respect to the normalized embeddings is:

∂ s

∂ g
=
∂ s

∂ e

∂ e

∂ g
(8)

2We have found the condition number of Z (the ratio of the largest SV w.r.t. the smallest SV) to be in the range 1–43.
This implies that there are no numerical issues in this normalization.
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Following Equation 5, we find that
∂ e

∂ g
= Z−1 = D (9)

This means that our normalized gradient matrix can be calculated as follows:

Gnorm = G D (10)

In the remainder of this paper, we will always use the normalized gradient matrix, as opposed to [9], unless265

specified otherwise.

4.2. Experiments on synthetic data

In this Section, we first test our method on a synthetic dataset, in which there is a clear dependence
between specific word pairs, and a clear independence between other pairs. For dependent word pairs, the
input embedding of the first word should have a large influence on the state that is used to predict the270

second word, which should result in large SVs of the state gradient matrix. For independent word pairs,
the gradients and subsequently the SVs should be significantly lower. We describe the synthetic dataset in
Section 4.2.1 and the analysis in Section 4.2.2.

4.2.1. Setup

We generate the synthetic dataset in the following manner: we start by randomly drawing two tokens275

from the vocabulary (which contains 10 tokens), the first one is used only once and the second one 15 times.
In the next segment, a new random token is drawn and repeated once, after which the first token of the
previous segment is repeated 15 times:

A B B B B B B B B B B B B B B B C A A A A A A A A A A A A A A A D C C C C C C C
C C C C C C C C E D D D D D D D D D D D D D D D F E E E E . . .280

We continue doing this until we have between 5 and 10 cycles, where a cycle is a combination of a single
random token and the repetition of 15 tokens (the number of cycles is also randomly drawn from a uniform
distribution), and then we generate an end-of-sentence token. In what follows, we refer to token-A-1 as
the first single occurrence of token A and to token-A-2rep as the sequence of 15 A’s that can be predicted
based on the occurrence of token-A-1. token-<x>-{1/2rep} refers to a general token/all instances of the285

specific pattern. Notice that token-<x>-1 can never be predicted from the context, except by accident,
while token-<x>-2rep always can, except for the very first occurrence (token-B-2rep in our example). The
dependencies span across sentence boundaries, such that the token-<x>-1 in the last cycle on a line will
become token-<x>-2rep in the first cycle of the next line. The training set contains 16M tokens and the
validation and test set each contain 160k tokens. We do not use an additional embedding layer, giving the290

one-hot vectors of the input tokens directly as input to the LSTM. The tokens in this dataset hence play
the role of properties in natural language, which simplifies the analysis, since the input embeddings contain
only one property. We train an LSTM with 1 hidden layer of 50 units with Adagrad [65] and a learning rate
of 0.05. The perplexity (PPL) of this model is 1.2906/1.1932 for the validation/test set, which is close to
the minimally possible PPL of 1.1375 (see Appendix 8).295

4.2.2. Analysis

The LSTM needs to remember the first token of the previous cycle token-<x>-1 in order to correctly
predict it as the second element of the current cycle token-<x>-2rep. We expect large SVs for the embedding
of this token with respect to all delays (at least) up to the timestep that the first of 15 repetitions should be
predicted. Possibly, the SVs can remain large during token-<x>-2rep, but here the LSTM can rely on the300

elements of the repetition itself too, because once the first element of token-<x>-2rep is seen, the remaining
ones can be predicted by copying the input token instead of relying on token-<x>-1. Additionally, the
performance can be improved by counting how many tokens the LSTM has seen in token-<y>-2rep.
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Table 1: Test accuracies (%) for LDA trained on the cell state and hidden state of the LSTM to predict the type of token
(‘Token ID’), the fact that the token is a new random token (‘New token’) or the count of the token (‘Counting’). ‘counting
subpace’/‘ID subspace’ means that the cell states have been projected onto the 5-dimensional space which explains the majority
of the variance for counting and its complement respectively (in the case of ‘ID subspace’), found by the LDA trained on the
original cell states to predict counting (first row, last column).

Representation Token ID New token Counting

cell state 93 93 87
hidden state 89 93 80

cell state ‘counting subspace’ 11 93 86
cell state ‘ID subpace’ 93 93 17

Figure 2: Cell states mapped to 2-dimensional space through LDA trained to predict the count of the input token associated
with the cell state. ‘0’ means the input token corresponds to token-<x>-1, ‘1’ to the first element of token-<y>-2rep, and so
on. ‘EOS’ corresponds to the end-of-sentence token.

If we take a closer look at the predictions of the LSTM, we see that it makes mostly ‘expected’ mistakes
in predictions, i.e. when a new random token is chosen, the LSTM accordingly often predicts the wrong305

token. In only 0.009% (15 out of a total of 161,345) of all cases, the LSTM makes a mistake where we do
not expect it – at positions other than a token-<x>-1. All of these ‘unexpected’ mistakes happen at the
beginning of a new cycle, so when the LSTM sees token-<y>-1 and should start predicting the first token
of token-<x>-2rep. This means that in 0.009% of the cases, the LSTM is too slow to adapt to the beginning
of a new cycle.310

We examine whether the cell state and hidden state of the LSTM encode the properties that are needed
to perform this synthetic task. To do this, we train Linear Discriminant Analysis (LDA) on the hidden
representations recorded for the validation set, fitting a Gaussian density function to each token class under
the assumption that all classes share the same covariance matrix. We deliberately kept the design of our
synthetic dataset simple, expecting that the state space of the trained network will be interpretable. It should315

thus be possible to find clusters in the state space that can be described with a multivariate Gaussian, which
is the reason why we chose LDA as classification method and not e.g. a multilayer neural network classifier
which can give more complex decision boundaries. We reserve the last 10k tokens for testing the trained
LDA parameters and use the rest (150k) for training. The results can be found in Table 1. Firstly, we
try to predict the type of input token (10 target classes, see ‘Token ID’ in the Table) and we observe high320
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Figure 3: Left y-axis:
∑
σ of the gradient matrices of the cell state recorded for the validation set of the synthetic data, averaged

over all tokens or over all positions where a new random token token-<x>-1 is seen, w.r.t. consecutive tokens. ‘counting’ refers
to the gradient matrix projected onto the 5-dimensional subspace that represents the counting information according to our
LDA model, ‘ID’ refers to the gradient matrix projected onto the complement of this subspace (see Table 1). Right y-axis:
average LDA accuracy for predicting the input at delay 0 based on the cell state or hidden state for several delays.

test accuracies for both the cell state and the hidden state. Secondly, we check whether the LSTM encodes
the fact that a new random token is sampled (‘New token’): we assign class label ‘1’ to the new random
tokens token-<x>-1, label ‘EOS’ to the special end-of-sentence tokens and ‘0’ to all other tokens. Both
representations encode this property with high accuracy. Finally, we check whether the counting behavior
can be derived from the LSTM states: token-<x>-1 receives label ‘0’, the 15 tokens of token-<y>-2rep325

receive labels ‘1’ until ‘15’ and the end-of-sentence token receives label ‘EOS’. The counting behavior can be
derived with highest accuracy from the cell state, and we find that 5 dimensions in the 50-dimensional state
are mostly responsible for this information (the eigenvalues of these dimensions cover 99%). This finding is
in line with related work that shows that a small set of neurons can encode the length of a sequence [18, 39].
Mapping the cell states to the two most important LDA directions already gives reasonable accuracy, as the330

plot in Figure 2 shows: it can be seen that the counting is cyclical in nature, and that the classes become
better separable when the end of the 15 repetitions is almost reached. Similarly, if we project the cell states
onto all 5 counting dimensions instead of 2 dimensions as in Figure 2, and re-train LDA (cell state ‘counting
subspace’ in the Table), we observe very low accuracy for token ID. On the other hand, projecting the
cell state onto the 45 remaining dimensions (‘ID subspace’) gives high classification accuracy for token ID335

but low accuracy for counting. We can conclude that the LSTM is able to learn our synthetic task almost
perfectly, and that it does this by remembering the identities and the count of the input tokens in different
subspaces of the state space.

We now examine whether the dependencies between the new random token token-<x>-1 and consecutive
words can be detected in the SVs. In Figure 3, we plot the sum of the SVs

∑
σ of the gradient matrices340

averaged over all positions per delay (‘all’ in the Figure), and of the gradient matrices averaged over token-
<x>-1 per delay. We make a distinction between the gradients of directions associated with counting
(‘counting’ in the Figure) and the gradients of the remaining directions (‘ID’ in the Figure), by projecting
the gradient matrix onto the same subspaces as is done in Table 1. Additionally, we check how accurately the
input at delay 0, if it is a new random token token-<x>-1, can be predicted based on the cell state or hidden345

state for a specific delay by training LDA. We observe that token-<x>-1 can be accurately predicted until
the end of token-<x>-2rep is reached, after which the LDA accuracy drops to just above chance level. This
confirms our expectation that the identity of token-<x>-1 is forgotten after token-<x>-2rep. The accuracy
for the hidden state starts decreasing one timestep earlier, which is also in line with our expectations since
the hidden state is used for prediction and there is no need to predict token-<x> when the last element of350

10



token-<x>-2rep is seen.
With respect to the SVs of the cell state, we see a decrease in

∑
σ for the gradient matrix averaged over

all tokens, both for the gradients associated with counting and for those associated with token ID. The SVs
averaged over the new random tokens token-<x>-1 on the other hand, show distinct phases, decreasing at
multiples of 16 steps, which reflects the fact that two data cycles of 16 tokens each need to be remembered to355

make accurate predictions. During the first phase, we observe a decrease followed by an increase of the SVs.
The network seems to strengthen the influence of token-<x> when the moment that it should be predicted
again, i.e. the start of token-<x>-2rep, draws closer. After step 32, only a minor influence of token-<x> is
left, which agrees with classification rates dropping at that point – the fact that the influence of token-<x>
does not disappear completely (especially its identity) agrees with classification rates slightly above chance360

level.
We conclude that for an LSTM that performs a synthetic task almost perfectly, large SVs for a specific

input – state pair indicate that the input is still important at the timestep of the state, and decreasing SVs
indicate decreasing importance of the input.

4.3. Experiments on natural language data365

4.3.1. Setup

For our experiments on natural language data, our baseline LM has the following hyperparameters: it
is an LSTM network containing an embedding layer of dimension 64 and 1 layer of 256 LSTM cells. Using
a larger embedding size in combination with dropout [66] on the embeddings gives slightly better results,
but we choose to not use dropout on the embeddings/input of the LSTM cell since we are interested in370

seeing what the model retains from the input, and masking the input might have unexpected effects on
our analysis. The purpose of this work is not to train the best possible LM, but rather to investigate the
inner workings of LMs with reasonable accuracy, and to examine the influence of changing a specific setting
or hyperparameter on the inner workings. We do apply dropout on the output of the LSTM cells with a
probability of 50%. The norm of the gradients is clipped at 5 for each mini-batch (during training, not while375

generating the state gradients). We train on mini-batches of size 20, each batch element containing a text
sequence of 200 words. The network is initialized with random values drawn from a uniform distribution
between -0.05 and 0.05. The LSTM is trained with SGD, starting with a learning rate of 1 for the first 6
epochs, after which it is exponentially decreased with a decay of 0.8. Notice that our baseline setup is the
same as in [9], except for the fact that the length of our batch and subsequently the number of steps that380

the network is unrolled for (truncated) backpropagation through time is 200 instead of 50. Since we want
to inspect the results for delays up to 50, training on batches of length 50 has the disadvantage that for
a delay of 50 there are much less data points to calculate the gradients, since calculating gradients across
batches is (as far as we know) not possible in TensorFlow. Hence our decision to train on batches of length
200 instead of 50.385

We train the baseline LSTM LM on the widely used Penn TreeBank (PTB) benchmark [67], that contains
900k word tokens for training, 70k word tokens as validation set and 80k words as test set. The PPLs of
three runs of the same network can be found in the first rows of Table 2, the second one will be used as
baseline since it has best PPL. We chose PTB because it contains manually assigned POS tags that we will
use to define specific syntactic properties (see Section 5 and Appendix 9), but 900k words is quite small.390

Therefore, we also train embeddings on Wall Street Journal (WSJ), which encompasses PTB and is hence
in-domain data, but is much larger: we use the CSR LM-1 corpus (obtained from LDC) with non-verbalized
punctuation (years 87–94) which contains 110M words. Embeddings trained on this dataset give better
classification results than embeddings trained on PTB only [9] and are hence better linearly separable.
Thus, we want to use pre-trained WSJ embeddings in our PTB LMs too. However, since the version of395

PTB that is commonly used for language modeling [2] is normalized differently than WSJ, the vocabularies
of the two datasets do not match. If we want to use pre-trained WSJ embeddings, we need an embedding
for every word in the PTB corpus. Hence, we chose to do some additional normalization on PTB and WSJ
(see [9] for a description of the normalization). The WSJ embeddings are trained with word2vec [68] (cbow)
with the default parameters. Using these pre-trained embeddings improves the PPL of the baseline model400

(see Table 2).
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Table 2: Perplexities of the different LMs trained on PTB and WikiText.

Model Size hidden layer Valid PPL Test PPL

PTB LSTM seed 1 256 107.6 104.9
PTB LSTM seed 2 (baseline) 256 103.3 103.8
PTB LSTM seed 3 256 106.4 104.2
PTB LSTM cbow WSJ 256 99.1 95.7
PTB GRU 256 110.4 108.2
PTB RNN 256 686.4 648.3
PTB LSTM 128 119.1 115.3
PTB LSTM 512 101.1 99.8

Wiki-2 256 126.2 118.0
Wiki-2 512 119.5 111.8
Wiki-103 512 43.4 42.1

We compare the LSTM LM with a GRU [10] and a vanilla RNN with the same hyperparameters, which
means that the size of the embedding and the hidden size are equal, but the number of trainable parameters
will be larger for the LSTM than for the GRU, which in turn has more parameters than the vanilla RNN. We
also compare with LSTMs with a smaller (‘128h’) and larger (‘512h’) hidden size. In Table 2, the validation405

and test PPLs for all models can be found. For each setting, we train three networks with a different random
seed, and choose the network with the best results. Notice that even though we picked the best model out
of three separate runs, the vanilla RNN still gives extremely bad PPL results. Moreover, the PPLs of the
three runs were very different, showing the lack of convergence of the vanilla RNN.

We additionally train LMs on the WikiText dataset [69], which consists of WikiText-2 (‘Wiki-2’), with410

a vocabulary of 33k words, 2M words for training, 200k words for validation and 240k words for testing,
and the larger WikiText-103 (‘Wiki-103’), which contains 100M words for training. Wiki-103 has the same
validation and test sets as Wiki-2, which allows us to investigate the impact of the size of the training data
on the memory. As opposed to previous work [69], we use the same vocabulary for Wiki-103 as for Wiki-2
to make sure that the only difference between the two datasets is their size.415

4.3.2. Analysis: Average over all words

In order to investigate the average memory of a LM, we calculate the gradient matrices for all words in
the validation set for delays up to 50. The gradient matrices are averaged over all words for a specific delay,
and SVD is applied to calculate the SVs. Unless specified otherwise, the ‘state’ that we are examining is
the cell state or internal memory of the LSTM. We inspect the largest SV σ1 (dotted lines in all plots) with420

respect to the delay as a measure of the influence of a word on the state after that delay. We observe similar
trends for inspecting other SVs or the sum of all SVs. We also inspect the ratio of the largest SV with
respect to the sum of all SVs σ1/

∑
σ (solid lines in all plots), which gives an indication of how selective the

model is: if the ratio becomes larger, the number of directions in embedding space that have a meaningful
impact on the state becomes smaller. Notice that the y-axes of the plots have logarithmic scales.425

Effect of normalization. We first examine the effect of normalizing the average gradient matrix. In Figure 4a,
we plot σ1 (dotted lines) with respect to the delay for Ḡ and Ḡnorm. The normalization introduces a scaling
(and rotation which is not visible in the plots): we observe that the normalized values are lower. However,
the qualitative trend is similar with and without normalization: there is a fast, but not exponential, decrease
in σ1. Thus, the influence of a word on the state decreases quickly when new words are fed to the network.430

We also plot the ratio of the largest SV (solid lines) and the sum of the 5 largest SVs (lines with triangles)
with respect to the sum of all SVs. The scaling introduced by the normalization is not equally large in all
directions, and as a result the difference between the normalized and non-normalized plots is smaller for the
ratios of SVs than for the largest SV. We observe that in general the memory becomes more selective when
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Figure 4: 4a: Compare memory for normalized (see Section 4.1) and not-normalized gradient matrices of the cell state of the
baseline LSTM LM trained on PTB. The dotted lines indicate the largest SV σ1 (average memory), the solid lines plot the
ratio σ1 /

∑
σ (selectiveness), the lines with triangles the ratio

∑5
i=1 σi /

∑
σ (selectiveness).

4b: Compare average memory and selectiveness for the same baseline model trained with a different seed.

the delay increases. Notice that the value of
∑5
i=1 σi /

∑
σ is close to 1 for large delays, which indicates435

that what the LSTM LM remembers from words seen more than 40 timesteps ago is restricted to roughly
5 directions. In the experiments that follow, all gradient matrices have been normalized.

Effect of different initializations. In Figure 4b, we compare the results for the cell state ct of the baseline
LSTM LM trained with different random initializations. Both qualitatively and quantitatively, we observe
no large difference between the three models. The influence of a word on the state quickly decays, but even440

after seeing more than 40 consecutive words, the LSTM state still contains some information about the
word. The ratio of the largest SV with respect to the sum of all SVs increases when the delay increases,
which shows that the memory becomes more selective over time: the LSTM remembers only one or a few
of the properties from the word it has seen more than 20 timesteps ago. The baseline (‘b’) results shown in
the subsequent experiments correspond to the best model in terms of PPL, ‘seed 2’.445

Effect of training. We are interested in how an LSTM with random weights would perform according to our
metrics. In Figure 5a, we compare the trained baseline model with the same network with random weights.
We observe that with random weights there is an exponential decay of σ1, while training the LSTM as a
LM results in larger SVs and a slower decay. The ratio σ1/

∑
σ (y-axis to the right) is also larger for the

trained model, which implies that even though an LSTM LM has learned to remember important properties450

from its input embeddings, it has also learned to more quickly forget information – we hypothesize that it
has learned that this information is irrelevant for prediction.

Effect of cell/state type. We now compare the cell state ct of the LSTM with its hidden state ht and the
states of a GRU (y-axis to the right) and a vanilla RNN (y-axis to the left) in Figure 5b. The largest SV for
the hidden state is smaller than for the cell state. This is not surprising given the fact that the hidden state455

is the result of multiplying the output gate with a tanh function on the cell state – the gradient of the tanh
function is maximum 1 so it makes sense that the gradients (and the SVs) become smaller. The largest SV
decays similarly, albeit slightly slower, for the GRU cell and lies between the cell state and the hidden state
of the LSTM. The GRU state becomes selective more slowly, which seems plausible after closer inspection
of how its state is calculated:460

ht = zt � ht−1 + (1− zt) � tanh(W xt + H (rt ht−1) + b) (11)

13



0 10 20 30 40

10−13

10−10

10−7

10−4

10−1

delay τ

σ
1

Trained (b)
Random

0

0.2

0.4

0.6

0.8

1

σ
1

/
∑ σ

(a) Baseline PTB LSTM LM vs the same LSTM
with random weights.

0 10 20 30 40
10−11

10−8

10−5

10−2

101

delay τ

σ
1

o
r
σ

1
/
∑ σ

fo
r

R
N

N

10−2

10−1

100

σ
1

o
r
σ

1
/
∑ σLSTM-c(b)

LSTM-h

GRU

RNN

(b) LSTM hidden state, cell state, GRU and
vanilla RNN of same size (PTB).

Figure 5: Compare memory: σ1 = dotted lines (average memory) and σ1/
∑
σ = solid lines (selectiveness).

where � is the element-wise product, zt the output of the update gate and rt the output of the reset gate.
If the GRU wants to remember the new input/add something to its state (second element of the sum), it
needs to forget something too (first element of the sum) since zt is used as an interpolation weight. In an
LSTM, there is no direct connection between remembering something new and having to forget something:

ct = ft � ct−1 + it � tanh(W xt + H ht−1 + b)

ht = ot � tanh(ct)
(12)

In the Equation above, ct is the cell state, ht the hidden state and ot, ft and it the outputs of the output,465

forget and input gate respectively. The forget gate decides what should be forgotten from the previous cell
state, while a different gate, the input gate, decides what should be added. We thus hypothesize that the
LSTM cell state (and as a consequence, its hidden state) is more selective since it is more flexible.

For the vanilla RNN cell, σ1 is much smaller and becomes virtually zero (< 10−10) when the delay
is larger than 20. Our results thus confirm that the memory of the LSTM is effectively longer than the470

memory of the vanilla RNN (see [70, 71] for a mathematical explanation of why this happens), and this has
a considerable impact on the performance, as the results in Table 2 show.

Effect of hidden state size. Next, we would like to investigate the influence of the size of the hidden state on
its capacity to remember properties from the input embeddings. We expect that increasing the hidden size
will make the model less selective, since it has more representational power to encode different directions.475

In Figure 6a, we compare our baseline model with a model with smaller hidden size and larger hidden
size. The small LSTM has lower values for σ1 overall and its memory is more selective, which confirms our
expectations. Given that its PPL is significantly worse than the baseline (see Table 2), these results give
a plausible explanation why a hidden size of 128 is too small for this dataset: the LSTM is not capable of
remembering relevant information long enough since its state cannot accommodate all relevant properties480

long enough. The selectiveness of the large model initially increases less quickly than for the baseline, but
for long delays the large model is more selective and still shows an upward trend, as opposed to the baseline.
This observation contradicts our expectation that a larger hidden state will automatically be less selective.
Instead, we hypothesize that the large model can make more fine-grained distinctions in which properties
should be remembered and which not, even at long delays. This results in slightly better performance, so485

we can conclude that there is no linear relationship between a more selective model and a better PPL.

Effect of pre-trained embeddings. Next, we compare our baseline model, in which the word embeddings are
trained jointly with the rest of the model, with an LM with embeddings pre-trained on the much larger in-
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domain WSJ dataset3. In Figure 6b, it can be seen that σ1 is larger for the LM with pre-trained embeddings
and decreases more slowly, which means that the input embeddings have a larger and longer influence on490

the LSTM state. Given the fact that the input embeddings are meaningful from the very first training
iteration as opposed to the baseline, in which the input embeddings are initially random and only gradually
encode meaning throughout training, we assume that the LSTM LM learns to better make use of its input
embeddings if they are pre-trained. The fact that the memory of the LM with pre-trained embeddings is
less selective supports this hypothesis: plausibly, the LSTM can retain more useful information from the495

pre-trained embeddings for a longer time, and thus less quickly forgets that information. Notice that before
normalization, the absolute values of σ1 were larger for the baseline model without pre-trained embeddings:
σ1 for a delay of 0 is 2.66 for the baseline LM compared to 0.55 for the LM with pre-trained embeddings,
which demonstrates the added value of normalizing the gradient matrices.

Effect of type and size of data. We now examine the influence of training (and validation) data on the average500

memory. In Figure 7a, we compare the PTB model with a hidden size of 512 with the same architecture
trained on the small and large WikiText datasets. The WikiText datasets should contain more long-term
dependencies since they consist of Wikipedia articles about the same topic, so we expect to observe a longer
memory. While Wiki-2 and Wiki-103 share the same vocabulary, type of training data and validation and
test sets, the main similarity between PTB and Wiki-2 as opposed to Wiki-103 is the size of the training505

data (1M and 2M as opposed to 100M words). Interestingly, the selectiveness plots of PTB and Wiki-2 are
more similar than those of Wiki-2 and Wiki-103. The σ1 plots of PTB and Wiki-2 are close for short delays,
but start to diverge for delays longer than 10: the model trained on Wiki-2 has larger SVs, which confirms
our expectation of a longer memory. σ1 of Wiki-103 decays more quickly than for the models trained on
much less data, while the selectiveness curve is considerably lower and stops increasing after a delay of about510

10 words. The curve descends again after a delay of 10, which is caused by the fact that σ1 decays more
quickly during short delays than

∑
σ for this model. This seems to imply that upon seeing more data, the

model learns to focus less strongly on only a few important directions on the long term.

3A similar comparison is made in [9], but the models in this paper differ in two aspects. Firstly, we fixed a preprocessing bug
that produces two end-of-sentence symbols at the end of each sentence instead of one. Since predicting a second end-of-sentence
symbol after the first one is an easy task, the PPLs reported in [9] are lower. The second difference is the fact that we train
with batches of 200 words instead of 50 words (see Section 4.3.1 for the motivation of this choice). In the original setting (50
words per batch and double end-of-sentence symbols), the model with pre-trained embeddings has worse PPL (83.0 compared
to 78.8 for the baseline), while in this setting the model with pre-trained embeddings has better PPL (95.7 compared to 103.8).
However, the relative difference is due to the length of the batch and not due to the preprocessing bug, because the model
with pre-trained embeddings is also worse if we train with the correct preprocessing and a batch size of 50 (101.3 compared to
95.9). Additionally, the results in this paper are for normalized gradient matrices.
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Effect of hidden size on WikiText. We also investigate the influence of increasing the hidden size on the
WikiText dataset, since we expect that a larger hidden size and thus a better memory capacity will have515

a larger impact for WikiText than for PTB. In Figure 7b, we indeed observe a larger difference than in
Figure 6a: the largest SV for the model with size 512 is consistently higher than the largest SV for the
baseline model, even at long delays. We see a similar trend for the ratio σ1 /

∑
σ as with PTB – the

selectiveness of the larger model keeps on increasing while for the medium-sized model, the curve initially
increases and is flat for long delays –, but the difference between the models is larger for WikiText.520

4.3.3. Analysis: Average over specific POS

To investigate how long a specific class/POS is remembered on average, we average the gradient matrices
of the baseline model per POS. In Figure 8a, we show the largest SV σ1 for a delay of 0 and the sum of all
SVs

∑
σ for the largest delay, namely 49, for several POS. Firstly, we observe that the relative relationships

between the different classes remain the same across delays: the classes with the largest σ1 at a delay of525

0 still have the largest
∑
σ for a delay of 49. The classes that have the strongest impact on the state are

nouns and verbs, which intuitively makes sense since these classes are the main pivots, both semantically and
syntactically, of a sentence. The class of adjectives, that also carry some meaning but that will probably not
be important on the long term, has the third largest σ1, followed by adverbs and pronouns, that mainly carry
semantic and syntactic meaning respectively. Conjunctions, prepositions and determiners have the smallest530

impact on the state, which also seems plausible given the fact that those classes mainly have consequences
for short-term syntactic patterns while being relatively straightforward semantically.

4.3.4. Analysis: Average over all occurrences of a specific word

For a more fine-grained analysis, we now proceed to examine the average memory per word type. We
average the gradient matrices over all occurrences of a word in the validation set and inspect its SVs.535

Effect of frequency on σ1. The frequency of a word in the training data has a large influence on the value of
its largest SV, or in other words, how large its impact on the state of the LM is. In Figure 8b, we show the
relationship between the binned value of σ1 (x-axis) of the gradient matrix for delay 0 (we observe similar
tendencies over all delays), and the percentage of words that have a certain binned frequency in the training
set. For example, 99% of the infrequent words (frequency < 10) have a SV larger than or equal to 3, while540

75% of the very frequent words (frequency >= 500) have a SV smaller than 1. It is clear from Figure 8b
that frequent words tend to have low SVs, while infrequent words tend to have high SVs.

Frequent words often have mainly syntactic functionality, while infrequent words are mostly semantically
relevant. If we take a look at the top 20 words with lowest SVs, these include determiners such as an, a, the,
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Figure 8: 8a: average the gradient matrices for the baseline PTB LSTM LM over specific POS. ‘N’ = nouns, ‘Pro’ = pronouns,
‘V’ = verbs, ‘Adj’ = adjectives, ‘Adv’ = adverbs, ‘Det’ = determiners, ‘Conj-P’ = conjunctions and prepositions.
8b: distribution of word frequencies (labels) across the range of σ1 values for the same baseline LM and a delay of 0.

the end-of-sentence symbol, prepositions such as of, in, on, for, at, to, frequent (auxiliary) verbs such as is,545

was, has, would, pronouns such as one, it, its, them, any, that and conjunctions such as because, while, that.
The words with highest SVs generally have high semantic content, e.g. reunification, earthquake, plaintiff,
bizarre, turnpike. This confirms the results for averaging over POS and again intuitively makes sense: words
carrying much meaning should be remembered better since they are important clues for the subsequent
words.550

Effect of frequency on decay of σ1. Additionally, one would expect that words with high semantic content
would be remembered longer, while function words are typically only important on the short term. In other
words, one would expect that the decay of the SVs would be stronger for frequent words. It has for example
been shown that for combinations of LMs with cache models, which function as a sort of external memory
for the LM, the cache model is not beneficial for function words and can receive very low weight in the555

interpolation [72]. To investigate whether this hypothesis is true, we try to fit an exponentially decaying
function to the values of σ1 for a specific word:

σ1 = a ∗ e−b∗τ (13)

In the Equation above, a and b are parameters for which we try to find optimal values. 1/b can be interpreted
as the time constant, which indicates how fast the function decays – larger b means faster decay. The optimal
values of the parameters are found with the help of non-linear least squares4. In Figure 9a, we give as example560

the results for the function word the and the content word congressional. It can be seen that the largest SV
for the decays more quickly then for congressional (and becomes zero for delays of 37 and longer), which
confirms our expectation.

For a quantitative analysis, we investigate the relationship between b and the frequency of the words. In
Figure 9b, we plot on the x-axis the binned optimal b values of the words, and on the y-axis the percentage565

of words with a specific binned frequency (labels) that have this value for b. For example, 76% of the words
with a frequency of less than 10 – which are typically content words – have a b value that is lower than or
equal to 0.2, which corresponds to a slow decay. On the other hand, high-frequency (function) words have
mostly high values for b. Thus, we can conclude that frequent words typically have a smaller impact on the
state of the LSTM than infrequent words, and their impact also decays more quickly.570

4This is implemented in scipy.optimize.curve fit.
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Figure 9: 9a: Optimal values for b in Equation 13 are 0.66 for the and 0.11 for congressional, based on gradient matrices
averaged over all occurrences of those tokens, for the baseline PTB LSTM LM.
9b: distribution of the frequency range of the words (labels) with respect to the fit value of b/inverse time constant according
to Equation 13 for the same baseline LM.

5. Tracking Specific Properties

In Section 5.1, we describe methods for tracking how well specific properties encoded in the input
embedding are remembered by an RNN, which are applied to our baseline LSTM LM in Section 5.2.

5.1. Concept

If we want to know to what extent a specific property encoded in the input embedding is remembered575

in the RNN state, we will compare the vector encoding this property to the directions in V corresponding
to the largest SVs of the average gradient matrix, for which we propose two methods.

We first define a specific syntactic or semantic property, e.g. the difference between singular (‘sg’) and
plural (‘pl’) nouns, as the difference between the averaged embeddings for the classes separated by that
property, normalized to unit length and normalized such that all directions in embedding space have equal580

variance:

da−b = Z
ēa − ēb
‖ ēa − ēb ‖

(14)

where ēa and ēb are the result of averaging all embeddings of words belonging to classes a and b respectively
and Z is the weight matrix as defined in Section 4.1. Before defining a specific property as the difference
between the average embeddings, we will first check whether the embeddings of the two classes are linearly
separable by training a linear classifier (see Appendix 9). We propose two methods to investigate the extent585

to which a property is remembered.

Compare with the n best remembered directions, without taking into account the strength with which they
are remembered. The first possibility is comparing the difference vector d with the n best remembered
directions. To compare d with a set of vectors, we first define Hn as the subspace of the embedding space
spanned by the directions that are best remembered, the n largest right-singular vectors. Next, we make590

the orthogonal projection of d on Hn. Since the n largest right-singular vectors are orthonormal, we can
define the orthogonal projection as follows:

y = projHn
d = Vn VT

n d (15)
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where Vn is the matrix containing the n first columns of V. The angle between Hn and d is equal to the
angle between y and d and hence the cosine similarity is equal to:

cos(d,y) =
dT Vn VT

n d

‖d‖ ‖y‖
=
∥∥VT

n d
∥∥ (16)

The cosine similarity between d and Hn is a measure of how close d is to the top n directions that have595

the largest influence on the RNN state: the closer to 1, the better the property specified by d is remembered
if only n directions are effectively remembered.

Compare with all directions, taking into account the SV of the best remembered direction. A second option
is comparing d with the direction in embedding space that is best remembered. Looking back at Figure 1,
a measure of how well a direction in embedding space is remembered can be defined as follows:600

‖∆s‖ ≈
∥∥∥∥∂s

∂e
∆e

∥∥∥∥ (17)

Since the partial derivatives are captured by the gradient matrix Ḡτ , and ∆e by d, we can define r as a
measure of the extent to which the difference vector is remembered by the state:

r =
∥∥Ḡτ × d

∥∥ (18)

The result is a vector of the size of the state, in which each component captures the influence of the difference
vector on that specific component of the state.

If d would be the embedding direction that has the largest influence on the state, then it would be equal605

to v1 and r would be equal to σ1:

r =
∥∥Ḡτ × v1

∥∥ =
∥∥σ1 u1 vT1 v1 + σ2 u2 vT2 v1 + . . .

∥∥ = σ1 (19)

because the columns of V are orthonormal. In order to get a relative measure of how well a specific direction
is remembered, we compare r with σ1 and obtain an ‘extent to which the property is remembered, relative
to the property that is best remembered’, which we will henceforth refer to as the ‘relative memory’ m:

m =
r

σ1
(20)

Notice that the cosine similarity between d and Hn would be equal to the relative memory if the first n610

SVs have the same values, σn = σ1, and if all other SVs are 0, σn+1 = 0. In such a scenario, the gradient
matrix would be equal to the following:

Ḡ = U Σ VT = Un Σn VT
n = σ1 Un I VT

n = σ1 Un VT
n (21)

Replacing Ḡ in Equation 18 with the equality in Equation 21 gives the following result:

r =
∥∥Ḡ× d

∥∥ =
∥∥σ1 Un VT

n d
∥∥ = σ1

∥∥Un VT
n d

∥∥ = σ1

∥∥VT
n d

∥∥ (22)

Replacing the numerator of Equation 20 with the result of Equation 22, we see that the relative memory
m equals the cosine similarity if σn = σ1 and σn+1 = 0.615

m =

∥∥Ḡ× d
∥∥

σ1
=

σ1

∥∥VT
n d

∥∥
σ1

=
∥∥VT

n d
∥∥ (23)

Thus, both measures capture the extent to which a certain property is remembered, but the cosine
similarity only compares d with the first n right-singular vectors while not taking into account the strength
with which those directions are remembered, whereas the relative memory compares with all right-singular
vectors but is a measure relative to the strength of the direction that is best remembered.
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5.2. Experiments on natural language data620

5.2.1. Setup

All experiments in this Section are carried out on the baseline LSTM LM trained on PTB, as described
in Section 4.3.1 (‘PTB LSTM seed 2’ in Table 2). We will focus on syntactic properties that can be derived
from the PTB POS tags, since this allows us to define difference vectors without manual labeling. Moreover,
semantic properties are typically more ambiguous – a word might have a different meaning depending on625

the context in which it occurs, e.g. spring is my favorite season vs it is spring tide – and more difficult
to capture as a difference vector since they might not be binary, e.g. positive vs negative: words such as
moderate and ok are neither positive nor negative. The properties that are analyzed in this Section have
been tested for linear separability (see Appendix 9).

5.2.2. Analysis630

In Figure 10a, we show the relative memory for the difference vectors separating singular from plural
nouns (e.g. cat vs cats), common from proper nouns (e.g. cat vs adams) and genitive nouns from non-
genitive forms (e.g. japan’s vs japan). We compare with the gradient matrix averaged over all nouns.

At a delay of 0, the genitive property is best remembered by the state with a relatively high m of
almost 0.8. Its relative memory slightly increases at a delay of 1, followed by a gradual decrease at the635

medium-range delays and an increase for longer delays. The importance of the genitive property on the
short term makes intuitively sense, since genitives have to be followed by a noun phrase and are thus an
important syntactic signal. The difference between common and proper nouns is the second most important
property, and becomes the most important property for the medium-range delays, which seems plausible
since proper nouns mainly have semantic content. The difference vector of singular versus plural nouns has640

the lowest relative memory, and decays gradually if the delay increases – again, this intuitively makes sense
since grammatical number has mainly an impact on the short term (e.g. subject – verb agreement).
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Figure 10: Memory of difference vectors separating different noun classes for the baseline PTB LSTM LM; gradient matrices
are averaged over all nouns. Figure 10b uses the same legend as Figure 10a. For the cosine similarities, gray lines indicate the
similarity of the difference vector with the first column of V and black lines with the 5 first columns of V. The dotted lines
are σ1/

∑
σ (gray) and

∑5
i=1 σi/

∑
σ (black).

We now compare the results for relative memory with those for cosine similarity between the difference
vector and the subspace spanned by the top n most important directions. In Figure 10b, we plot the cosine
similarity for n = 5 (black plots) and for n = 1 (gray plots), as well as the ratio of respectively the top 5 SVs645

(dotted black plot) and the largest SV (dotted gray plot) with respect to the sum of all SVs as a measure
of the proportion of the total embedding space that we are comparing against. The ratio for the top 5 SVs
becomes larger than 90% for long delays, which means that we are calculating the cosine similarity of an
embedding vector with more than 90% of the original embedding space, so we need to be careful in drawing
conclusions based on the cosine similarity for long delays. We compare the results for H1 and H5 because650
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for H1, this ratio is smaller and because a large difference between these two measures for a specific property
indicates that even though the property is not close to the best remembered direction, it does belong to the
top 5 best remembered directions.

Looking at the cosine similarity with H1, we observe a similar pattern as for the relative memory: the
genitive and common – proper directions have the highest similarity with the most important direction,655

each taking turns depending on the delay. For the grammatical number direction, we see a similar decay in
similarity when the delay increases. The fact that the cosine similarity increases again after a delay of 16
seems to coincide with an increase in the ratio σ1/

∑
σ. The curves for the cosine similarities with H5 are

smoother, but the same relationships between the different properties apply.
Let us now look at the different properties of verbs: the difference between 3rd and non-3rd singular660

present (e.g. eats vs eat), between the present and past tense (e.g. eat vs ate), and between the present
and past participle (e.g. eating vs eaten). In Figure 11a, we plot the relative memory for these difference
vectors calculated based on the gradient matrix averaged over all occurrences of verbs.

Firstly, we observe that overall the m values are lower for these properties than for the nominal properties
shown in Figure 10a. If we calculate the relative memory with respect to the gradient matrix averaged over665

all words in the validation set instead of over only the verbs or nouns, the nominal properties still have
larger m values: the average σ1 at delay 0 for the nominal properties is 0.72, while the average σ1 for the
verbal properties is 0.47. Given the fact that this also applies to m calculated for the POS-specific gradient
matrices, this seems to imply that the LSTM LM pays more attention to the syntactic properties of nouns
than to the syntactic properties of verbs. We hypothesize that this might be due to the word order in English,670

which is SVO – subject - verb - object. In order for the LM to predict the correct verbal conjugation, it needs
to remember the syntactic properties of the subject. However, once the LM has seen the verb, it does not
need to remember for example whether this verb was a third person conjugation or not in order to predict
the object, which can explain why the difference vector 3rd – non-3rd singular present has the lowest relative
memory. The difference between present and past tense/participle might be important to predict tense in675

subsequent sentences, so intuitively it makes sense that these properties are better remembered. The results
for the cosine similarity are largely consistent with the results for the relative memory (see Figure 11b).
Notice also that it is more difficult to classify the embeddings for verbs according to the syntactic properties
that we are investigating, as opposed the properties of nouns (see Table 3).
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Figure 11: Memory of difference vectors separating different verb classes for the baseline PTB LSTM LM; gradient matrices
are averaged over all nouns. Figure 11b uses the same legend as Figure 11a. For the cosine similarities, gray lines indicate the
similarity of the difference vector with the first column of V and black lines with the 5 first columns of V. The dotted lines
are σ1/

∑
σ (gray) and

∑5
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If we take a look at the syntactic properties of adjectives captured by the PTB POS tags, namely680

base form, comparative or superlative, we observe low relative memory and almost no difference between
the different properties: 0.27 and 0.28 at a delay of 0 for the difference vectors base form vs comparative
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and base form vs superlative respectively. The cosine similarities show the same trend: 0.34 and 0.26 for
similarity with the subspace spanned by the top 5 most important directions. This is slightly surprising
since the presence of a comparative or superlative adjective can be a signal that respectively than and of685

will follow. However, if we look at the frequency of these patterns, we see that firstly comparative and
superlative adjectives constitute only 0.6% and 0.4% of words in the training data, and only in 18% and 7%
of the cases the adjectives are actually followed by the prepositions mentioned. Thus, it is very well possible
that there is not enough training data for the LSTM to properly learn this distinction.

6. Conclusion and Future Work690

We described a framework that is based on SVD of state gradients which can be used to analyze the
influence of input embeddings on the state of RNNs, or in other words, how well properties encoded in
the input embeddings are remembered by RNNs. The state gradients method allows to perform the RNN
memory analysis of properties without knowing what those properties are exactly. This paper extends work
described in [9], but adds a normalization method that ensures that all directions in embedding space have695

equal variance, since large variance differences might affect the gradients.
The method is tested on an LSTM trained on synthetic data, containing dependent word pairs and

completely independent word pairs. We show that the dependent word pairs have large SVs, that the SVs
decrease drastically when an input token does not need to be remembered anymore and that the intermediate
representations of the LSTM effectively capture information that is needed to perform the task well.700

We also apply our method to RNN LMs trained on natural language with different training settings.
Firstly, we observe that it is robust against different random initializations. Secondly, an LSTM with random
weights has exponentially decaying memory and a slow increase in memory selectivity, while training the
LSTM as LM implies that the model learns to remember for a longer time, but also becomes more selective
in what it remembers for longer delays. For GRU LMs, the impact of the input on the state is smaller than705

for the LSTM cell state, but larger than for its hidden state, while both LSTM states are more selective than
the GRU state. We confirm a well-known property of vanilla RNNs, namely that their memory is in practice
much more limited than that of GRUs and LSTMs. Increasing the hidden size results in less selective
memory, but the relationship is not linear and depends on the dataset: increasing the hidden size from
128 to 256 for PTB improves results considerably and makes the memory much less selective. Increasing it710

further to 512 results in smaller gains for PTB than for WikiText. Using embeddings pre-trained on a large
in-domain dataset results in a LM with longer and less selective memory. If we compare LMs trained on
PTB and WikiText, we observe that in terms of selectiveness, the size of the dataset seems to have a larger
impact than the type of data, whereas in terms of largest SV, the type of data is more important – models
trained on WikiText have longer memory.715

The results of applying a more-fine grained analysis are consistent with our expectations about how LMs
function: frequent words, which typically are function words that are mainly important on the short term,
have a smaller impact on the state and their impact decays more quickly. Nouns and verbs have on average
the largest influence on the state, but the different syntactic properties of nouns are remembered better than
the syntactic properties of verbs.720

For future work, it would be interesting to examine whether errors made by the LM coincide with specific
patterns in the state gradients and their SVs. Other interesting test cases include looking at models with
several hidden layers, comparing the average memory for different languages, and applying our framework
to other NLP tasks than language modeling.
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8. Appendix: Perplexity of Synthetic Dataset

The perplexity of seeing any cycle in context, e.g. C A A A A A A A A A A A A A A A in the example
in Section 4.2.1, except for the very first cycle can be calculated as follows:

PPL(cycle|h) = P (CAA . . . A)−
1
N

= (P (C|h) ∗ P (A|h) ∗ P (A|h) ∗ . . . ∗ P (A|h))−
1
16

= (
1

8
∗ 1 ∗ 1 ∗ . . . ∗ 1)−

1
16 = 1.1388

(24)

where h denotes the entire history and corresponds to A B B B B B B B B B B B B B B B for P (C|h),730

N = 16 is the number of tokens in the cycle, P (C|h) = 1
8 since there are 10 possible tokens and C cannot

be equal to A or to B, and the probabilities of seeing every A are 1 since they can be predicted completely
from the context.

The PPL of seeing a line with 5 cycles, l5, can then be calculated as follows:

PPL(l5) = ((
1

8
)5)−

1
5∗16+1 = (

1

8
)−

5
81 =

81
√

85 = 1.1369 (25)

N = 5 ∗ 16 + 1 because there are 5 cycles of 16 tokens and 1 end-of-sentence token, which has probability 1735

since we know that it will follow after 5 cycles.
Since the length of each line is sampled from a uniform distribution in the range [5-10], the probability

of seeing a line with length x is 1
6 and the final PPL of the dataset is:

PPL =
1

6
∗ PPL(l5) +

1

6
∗ PPL(l6) +

1

6
∗ PPL(l7)

+
1

6
∗ PPL(l8) +

1

6
∗ PPL(l9) +

1

6
∗ PPL(l10) = 1.1375

(26)

9. Appendix: Linear Classification

Before investigating the extent to which a difference vector for a certain property is remembered in the740

cell state, we first check whether it makes sense to categorize a certain property as a difference vector by
verifying whether the two classes are separable by a linear classifier.

The linear classifiers are trained with scikit-learn [73], with a grid search over several hyperparameters:
regularization (L1, L2), regularization strength, initialization seed, frequency-based class weights or not, one
vs all or multinomial loss and optimization algorithm.745

In Table 3, we present the validation and test accuracies for logistic regression trained on the embeddings
of the baseline LM to predict specific POS classes as defined in PTB (see [67] for a full description of the
tag set).

The first part of the Table contains results for fine-grained distinctions. Trying to predict all POS tags
jointly (first row) is clearly too difficult, probably because the number of classes is large (34) and because750

there are quite some infrequent classes. Distinguishing between the different sub-types for a class, e.g. sg
(NN), pl (NNS), sg proper (NNP) and pl proper (NNPS) for the class of nouns, is usually easier. The second
part of the Table contains results for more coarse-grained distinctions, e.g. ‘N-V’ is a classifier that tries
to predict whether the embeddings belong to a noun or a verb. In general, we observe that the classifier
achieves reasonable accuracies if the number of classes to separate is limited.755

The final part of the Table are examples of specific properties that can be derived from the PTB POS
tags. For the class of nouns, we add the distinction between genitive and non-genitive nouns (e.g. cat’s
vs cat), for which there are no POS tags but which can be found automatically (words ending on ’s and
their counterparts without ’s). All nominal properties achieve high classification accuracies, while the verbal
properties (next part of the Table) achieve slightly lower but still acceptable accuracies.760
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Table 3: Validation and test accuracies of logistic regression to predict POS-based classes. Numbers between brackets = number
of target classes. N=nouns (tags NN, NNP, NNS, NNPS), V=verbs (tags VBG, VBD, VBN, VBP, VBZ), Adj=adjectives (tags
JJ, JJR, JJS), Adv=adverbs (tags RB, RBR, RBS), Pro=pronouns (tags PRP, PRP$, WP, WP$). The first part of the Table
makes a distinction between POS tags of the same word class (except for the first row), the second part of the Table between
word classes, defined as the union of all POS tags of that word class (e.g. nouns = NN+NNP+NNS+NNPS), while the tags
used for the last two parts are specified in the first column.

Classes Valid Test

all (34 tags) 42.0 40.8
nouns (4 tags) 70.8 72.0
verbs (6 tags) 37.9 39.6
adjectives (3 tags) 96.3 95.9
adverbs (3 tags) 100 94.4
N-V-Adj-Adv-Pro 67.8 66.7
N-V-Adj-Adv 67.9 66.9
N-V-Adj 69.3 68.0
N-V 78.2 77.2
N-Adj 84.2 81.1
N-Adv 94.6 93.4
V-Adj 82.4 80.7
V-Adv 94.6 94.2
Adj-Adv 84.4 86.9
sg-pl (NN+NNP - NNS+NNPS) 85.7 88.2
common-proper (NN+NNS - NNP+NNPS) 83.3 82.0
genitive-non-genitive (self-defined) 93.0 89.4
3rd - non-3d (VBP - VBZ) 70.5 71.5
present - past tense (VBP+VBZ - VBD) 76.4 80.0
present - past participle (VBG - VBN) 73.9 79.6
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[2] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, S. Khudanpur, Recurrent neural network based language model, in:765

Proceedings Interspeech, 2010, pp. 1045–1048.
[3] R. Jozefowicz, W. Zaremba, I. Sutskever, An Empirical Exploration of Recurrent Network Architectures, in: Proceedings

of the International Conference on Machine Learning (ICML), 2015, pp. 2342–2350.
[4] F. Seide, G. Li, D. Yu, Conversational Speech Transcription Using Context-Dependent Deep Neural Networks, in: Pro-

ceedings Interspeech, 2012, pp. 437–440.770

[5] H. Sak, A. Senior, F. Beaufays, Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale
Acoustic Modeling, in: Proceedings Interspeech, 2014, pp. 338–342.

[6] J. L. Elman, Finding structure in time, Cognitive Science 14 (2) (1990) 179–211.
[7] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8) (1997) 1735–1780.
[8] M. Sundermeyer, R. Schlüter, H. Ney, LSTM Neural Networks for Language Modeling, in: Proceedings Interspeech, 2012,775

pp. 1724–1734.
[9] L. Verwimp, H. Van hamme, V. Renkens, P. Wambacq, State Gradients for RNN Memory Analysis, in: Proceedings

Interspeech, 2018, pp. 1467–1471.
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